bitcoin/src/validation.cpp

5100 lines
230 KiB
C++
Raw Normal View History

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2020 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <validation.h>
#include <arith_uint256.h>
#include <chain.h>
#include <chainparams.h>
#include <checkqueue.h>
#include <consensus/amount.h>
#include <consensus/consensus.h>
#include <consensus/merkle.h>
#include <consensus/tx_check.h>
#include <consensus/tx_verify.h>
#include <consensus/validation.h>
#include <cuckoocache.h>
#include <deploymentstatus.h>
#include <flatfile.h>
#include <hash.h>
#include <index/blockfilterindex.h>
#include <logging.h>
#include <logging/timer.h>
#include <node/blockstorage.h>
#include <node/coinstats.h>
#include <node/ui_interface.h>
#include <node/utxo_snapshot.h>
#include <policy/policy.h>
#include <policy/rbf.h>
#include <policy/settings.h>
#include <pow.h>
#include <primitives/block.h>
#include <primitives/transaction.h>
#include <random.h>
#include <reverse_iterator.h>
#include <script/script.h>
#include <script/sigcache.h>
#include <shutdown.h>
2019-07-17 05:40:34 -04:00
#include <signet.h>
#include <timedata.h>
#include <tinyformat.h>
#include <txdb.h>
#include <txmempool.h>
#include <uint256.h>
#include <undo.h>
#include <util/check.h> // For NDEBUG compile time check
2021-04-05 16:15:56 -04:00
#include <util/hasher.h>
scripted-diff: Move util files to separate directory. -BEGIN VERIFY SCRIPT- mkdir -p src/util git mv src/util.h src/util/system.h git mv src/util.cpp src/util/system.cpp git mv src/utilmemory.h src/util/memory.h git mv src/utilmoneystr.h src/util/moneystr.h git mv src/utilmoneystr.cpp src/util/moneystr.cpp git mv src/utilstrencodings.h src/util/strencodings.h git mv src/utilstrencodings.cpp src/util/strencodings.cpp git mv src/utiltime.h src/util/time.h git mv src/utiltime.cpp src/util/time.cpp sed -i 's/<util\.h>/<util\/system\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilmemory\.h>/<util\/memory\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilmoneystr\.h>/<util\/moneystr\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilstrencodings\.h>/<util\/strencodings\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utiltime\.h>/<util\/time\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/BITCOIN_UTIL_H/BITCOIN_UTIL_SYSTEM_H/g' src/util/system.h sed -i 's/BITCOIN_UTILMEMORY_H/BITCOIN_UTIL_MEMORY_H/g' src/util/memory.h sed -i 's/BITCOIN_UTILMONEYSTR_H/BITCOIN_UTIL_MONEYSTR_H/g' src/util/moneystr.h sed -i 's/BITCOIN_UTILSTRENCODINGS_H/BITCOIN_UTIL_STRENCODINGS_H/g' src/util/strencodings.h sed -i 's/BITCOIN_UTILTIME_H/BITCOIN_UTIL_TIME_H/g' src/util/time.h sed -i 's/ util\.\(h\|cpp\)/ util\/system\.\1/g' src/Makefile.am sed -i 's/utilmemory\.\(h\|cpp\)/util\/memory\.\1/g' src/Makefile.am sed -i 's/utilmoneystr\.\(h\|cpp\)/util\/moneystr\.\1/g' src/Makefile.am sed -i 's/utilstrencodings\.\(h\|cpp\)/util\/strencodings\.\1/g' src/Makefile.am sed -i 's/utiltime\.\(h\|cpp\)/util\/time\.\1/g' src/Makefile.am sed -i 's/-> util ->/-> util\/system ->/' test/lint/lint-circular-dependencies.sh sed -i 's/src\/util\.cpp/src\/util\/system\.cpp/g' test/lint/lint-format-strings.py test/lint/lint-locale-dependence.sh sed -i 's/src\/utilmoneystr\.cpp/src\/util\/moneystr\.cpp/g' test/lint/lint-locale-dependence.sh sed -i 's/src\/utilstrencodings\.\(h\|cpp\)/src\/util\/strencodings\.\1/g' test/lint/lint-locale-dependence.sh sed -i 's/src\\utilstrencodings\.cpp/src\\util\\strencodings\.cpp/' build_msvc/libbitcoinconsensus/libbitcoinconsensus.vcxproj -END VERIFY SCRIPT-
2018-10-22 19:51:11 -03:00
#include <util/moneystr.h>
#include <util/rbf.h>
scripted-diff: Move util files to separate directory. -BEGIN VERIFY SCRIPT- mkdir -p src/util git mv src/util.h src/util/system.h git mv src/util.cpp src/util/system.cpp git mv src/utilmemory.h src/util/memory.h git mv src/utilmoneystr.h src/util/moneystr.h git mv src/utilmoneystr.cpp src/util/moneystr.cpp git mv src/utilstrencodings.h src/util/strencodings.h git mv src/utilstrencodings.cpp src/util/strencodings.cpp git mv src/utiltime.h src/util/time.h git mv src/utiltime.cpp src/util/time.cpp sed -i 's/<util\.h>/<util\/system\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilmemory\.h>/<util\/memory\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilmoneystr\.h>/<util\/moneystr\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilstrencodings\.h>/<util\/strencodings\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utiltime\.h>/<util\/time\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/BITCOIN_UTIL_H/BITCOIN_UTIL_SYSTEM_H/g' src/util/system.h sed -i 's/BITCOIN_UTILMEMORY_H/BITCOIN_UTIL_MEMORY_H/g' src/util/memory.h sed -i 's/BITCOIN_UTILMONEYSTR_H/BITCOIN_UTIL_MONEYSTR_H/g' src/util/moneystr.h sed -i 's/BITCOIN_UTILSTRENCODINGS_H/BITCOIN_UTIL_STRENCODINGS_H/g' src/util/strencodings.h sed -i 's/BITCOIN_UTILTIME_H/BITCOIN_UTIL_TIME_H/g' src/util/time.h sed -i 's/ util\.\(h\|cpp\)/ util\/system\.\1/g' src/Makefile.am sed -i 's/utilmemory\.\(h\|cpp\)/util\/memory\.\1/g' src/Makefile.am sed -i 's/utilmoneystr\.\(h\|cpp\)/util\/moneystr\.\1/g' src/Makefile.am sed -i 's/utilstrencodings\.\(h\|cpp\)/util\/strencodings\.\1/g' src/Makefile.am sed -i 's/utiltime\.\(h\|cpp\)/util\/time\.\1/g' src/Makefile.am sed -i 's/-> util ->/-> util\/system ->/' test/lint/lint-circular-dependencies.sh sed -i 's/src\/util\.cpp/src\/util\/system\.cpp/g' test/lint/lint-format-strings.py test/lint/lint-locale-dependence.sh sed -i 's/src\/utilmoneystr\.cpp/src\/util\/moneystr\.cpp/g' test/lint/lint-locale-dependence.sh sed -i 's/src\/utilstrencodings\.\(h\|cpp\)/src\/util\/strencodings\.\1/g' test/lint/lint-locale-dependence.sh sed -i 's/src\\utilstrencodings\.cpp/src\\util\\strencodings\.cpp/' build_msvc/libbitcoinconsensus/libbitcoinconsensus.vcxproj -END VERIFY SCRIPT-
2018-10-22 19:51:11 -03:00
#include <util/strencodings.h>
#include <util/system.h>
#include <util/trace.h>
#include <util/translation.h>
#include <validationinterface.h>
#include <warnings.h>
#include <numeric>
#include <optional>
#include <string>
#include <boost/algorithm/string/replace.hpp>
#define MICRO 0.000001
#define MILLI 0.001
/**
* An extra transaction can be added to a package, as long as it only has one
* ancestor and is no larger than this. Not really any reason to make this
* configurable as it doesn't materially change DoS parameters.
*/
static const unsigned int EXTRA_DESCENDANT_TX_SIZE_LIMIT = 10000;
/** Maximum kilobytes for transactions to store for processing during reorg */
static const unsigned int MAX_DISCONNECTED_TX_POOL_SIZE = 20000;
/** Time to wait between writing blocks/block index to disk. */
static constexpr std::chrono::hours DATABASE_WRITE_INTERVAL{1};
/** Time to wait between flushing chainstate to disk. */
static constexpr std::chrono::hours DATABASE_FLUSH_INTERVAL{24};
/** Maximum age of our tip for us to be considered current for fee estimation */
static constexpr std::chrono::hours MAX_FEE_ESTIMATION_TIP_AGE{3};
const std::vector<std::string> CHECKLEVEL_DOC {
"level 0 reads the blocks from disk",
"level 1 verifies block validity",
"level 2 verifies undo data",
"level 3 checks disconnection of tip blocks",
"level 4 tries to reconnect the blocks",
"each level includes the checks of the previous levels",
};
bool CBlockIndexWorkComparator::operator()(const CBlockIndex *pa, const CBlockIndex *pb) const {
// First sort by most total work, ...
if (pa->nChainWork > pb->nChainWork) return false;
if (pa->nChainWork < pb->nChainWork) return true;
// ... then by earliest time received, ...
if (pa->nSequenceId < pb->nSequenceId) return false;
if (pa->nSequenceId > pb->nSequenceId) return true;
// Use pointer address as tie breaker (should only happen with blocks
// loaded from disk, as those all have id 0).
if (pa < pb) return false;
if (pa > pb) return true;
// Identical blocks.
return false;
}
/**
* Mutex to guard access to validation specific variables, such as reading
* or changing the chainstate.
*
* This may also need to be locked when updating the transaction pool, e.g. on
* AcceptToMemoryPool. See CTxMemPool::cs comment for details.
*
* The transaction pool has a separate lock to allow reading from it and the
* chainstate at the same time.
*/
RecursiveMutex cs_main;
CBlockIndex *pindexBestHeader = nullptr;
Mutex g_best_block_mutex;
std::condition_variable g_best_block_cv;
uint256 g_best_block;
bool g_parallel_script_checks{false};
bool fRequireStandard = true;
bool fCheckBlockIndex = false;
bool fCheckpointsEnabled = DEFAULT_CHECKPOINTS_ENABLED;
int64_t nMaxTipAge = DEFAULT_MAX_TIP_AGE;
uint256 hashAssumeValid;
arith_uint256 nMinimumChainWork;
CFeeRate minRelayTxFee = CFeeRate(DEFAULT_MIN_RELAY_TX_FEE);
2014-07-03 14:25:32 -04:00
// Internal stuff
namespace {
CBlockIndex* pindexBestInvalid = nullptr;
} // namespace
// Internal stuff from blockstorage ...
extern RecursiveMutex cs_LastBlockFile;
extern std::vector<CBlockFileInfo> vinfoBlockFile;
extern int nLastBlockFile;
extern bool fCheckForPruning;
extern std::set<CBlockIndex*> setDirtyBlockIndex;
extern std::set<int> setDirtyFileInfo;
void FlushBlockFile(bool fFinalize = false, bool finalize_undo = false);
// ... TODO move fully to blockstorage
2013-11-17 21:25:17 -03:00
CBlockIndex* BlockManager::LookupBlockIndex(const uint256& hash) const
{
AssertLockHeld(cs_main);
BlockMap::const_iterator it = m_block_index.find(hash);
return it == m_block_index.end() ? nullptr : it->second;
}
CBlockIndex* BlockManager::FindForkInGlobalIndex(const CChain& chain, const CBlockLocator& locator)
2014-09-02 20:52:01 -04:00
{
AssertLockHeld(cs_main);
// Find the latest block common to locator and chain - we expect that
// locator.vHave is sorted descending by height.
for (const uint256& hash : locator.vHave) {
2018-01-11 21:23:09 -03:00
CBlockIndex* pindex = LookupBlockIndex(hash);
if (pindex) {
2014-09-02 20:52:01 -04:00
if (chain.Contains(pindex))
return pindex;
if (pindex->GetAncestor(chain.Height()) == chain.Tip()) {
return chain.Tip();
}
}
}
2014-09-02 20:52:01 -04:00
return chain.Genesis();
}
bool CheckInputScripts(const CTransaction& tx, TxValidationState& state,
const CCoinsViewCache& inputs, unsigned int flags, bool cacheSigStore,
bool cacheFullScriptStore, PrecomputedTransactionData& txdata,
std::vector<CScriptCheck>* pvChecks = nullptr)
EXCLUSIVE_LOCKS_REQUIRED(cs_main);
bool CheckFinalTx(const CBlockIndex* active_chain_tip, const CTransaction &tx, int flags)
{
AssertLockHeld(cs_main);
assert(active_chain_tip); // TODO: Make active_chain_tip a reference
// By convention a negative value for flags indicates that the
// current network-enforced consensus rules should be used. In
// a future soft-fork scenario that would mean checking which
// rules would be enforced for the next block and setting the
// appropriate flags. At the present time no soft-forks are
// scheduled, so no flags are set.
flags = std::max(flags, 0);
// CheckFinalTx() uses active_chain_tip.Height()+1 to evaluate
// nLockTime because when IsFinalTx() is called within
2021-06-08 10:57:40 -04:00
// AcceptBlock(), the height of the block *being*
// evaluated is what is used. Thus if we want to know if a
// transaction can be part of the *next* block, we need to call
// IsFinalTx() with one more than active_chain_tip.Height().
const int nBlockHeight = active_chain_tip->nHeight + 1;
// BIP113 requires that time-locked transactions have nLockTime set to
// less than the median time of the previous block they're contained in.
// When the next block is created its previous block will be the current
// chain tip, so we use that to calculate the median time passed to
// IsFinalTx() if LOCKTIME_MEDIAN_TIME_PAST is set.
const int64_t nBlockTime = (flags & LOCKTIME_MEDIAN_TIME_PAST)
? active_chain_tip->GetMedianTimePast()
: GetAdjustedTime();
return IsFinalTx(tx, nBlockHeight, nBlockTime);
}
bool CheckSequenceLocks(CBlockIndex* tip,
const CCoinsView& coins_view,
const CTransaction& tx,
int flags,
LockPoints* lp,
bool useExistingLockPoints)
{
2017-08-23 04:47:56 -03:00
assert(tip != nullptr);
CBlockIndex index;
index.pprev = tip;
// CheckSequenceLocks() uses active_chainstate.m_chain.Height()+1 to evaluate
// height based locks because when SequenceLocks() is called within
// ConnectBlock(), the height of the block *being*
// evaluated is what is used.
// Thus if we want to know if a transaction can be part of the
// *next* block, we need to use one more than active_chainstate.m_chain.Height()
index.nHeight = tip->nHeight + 1;
std::pair<int, int64_t> lockPair;
if (useExistingLockPoints) {
assert(lp);
lockPair.first = lp->height;
lockPair.second = lp->time;
}
else {
std::vector<int> prevheights;
prevheights.resize(tx.vin.size());
for (size_t txinIndex = 0; txinIndex < tx.vin.size(); txinIndex++) {
const CTxIn& txin = tx.vin[txinIndex];
Coin coin;
if (!coins_view.GetCoin(txin.prevout, coin)) {
return error("%s: Missing input", __func__);
}
if (coin.nHeight == MEMPOOL_HEIGHT) {
// Assume all mempool transaction confirm in the next block
prevheights[txinIndex] = tip->nHeight + 1;
} else {
prevheights[txinIndex] = coin.nHeight;
}
}
lockPair = CalculateSequenceLocks(tx, flags, prevheights, index);
if (lp) {
lp->height = lockPair.first;
lp->time = lockPair.second;
// Also store the hash of the block with the highest height of
// all the blocks which have sequence locked prevouts.
// This hash needs to still be on the chain
// for these LockPoint calculations to be valid
// Note: It is impossible to correctly calculate a maxInputBlock
// if any of the sequence locked inputs depend on unconfirmed txs,
// except in the special case where the relative lock time/height
// is 0, which is equivalent to no sequence lock. Since we assume
// input height of tip+1 for mempool txs and test the resulting
// lockPair from CalculateSequenceLocks against tip+1. We know
// EvaluateSequenceLocks will fail if there was a non-zero sequence
// lock on a mempool input, so we can use the return value of
// CheckSequenceLocks to indicate the LockPoints validity
int maxInputHeight = 0;
for (const int height : prevheights) {
// Can ignore mempool inputs since we'll fail if they had non-zero locks
if (height != tip->nHeight+1) {
maxInputHeight = std::max(maxInputHeight, height);
}
}
lp->maxInputBlock = tip->GetAncestor(maxInputHeight);
}
}
return EvaluateSequenceLocks(index, lockPair);
}
// Returns the script flags which should be checked for a given block
static unsigned int GetBlockScriptFlags(const CBlockIndex* pindex, const Consensus::Params& chainparams);
static void LimitMempoolSize(CTxMemPool& pool, CCoinsViewCache& coins_cache, size_t limit, std::chrono::seconds age)
EXCLUSIVE_LOCKS_REQUIRED(pool.cs, ::cs_main)
2018-12-22 12:33:54 -03:00
{
int expired = pool.Expire(GetTime<std::chrono::seconds>() - age);
if (expired != 0) {
LogPrint(BCLog::MEMPOOL, "Expired %i transactions from the memory pool\n", expired);
}
std::vector<COutPoint> vNoSpendsRemaining;
pool.TrimToSize(limit, &vNoSpendsRemaining);
for (const COutPoint& removed : vNoSpendsRemaining)
coins_cache.Uncache(removed);
}
static bool IsCurrentForFeeEstimation(CChainState& active_chainstate) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
{
AssertLockHeld(cs_main);
if (active_chainstate.IsInitialBlockDownload())
return false;
if (active_chainstate.m_chain.Tip()->GetBlockTime() < count_seconds(GetTime<std::chrono::seconds>() - MAX_FEE_ESTIMATION_TIP_AGE))
return false;
if (active_chainstate.m_chain.Height() < pindexBestHeader->nHeight - 1)
return false;
return true;
}
void CChainState::MaybeUpdateMempoolForReorg(
DisconnectedBlockTransactions& disconnectpool,
bool fAddToMempool)
{
if (!m_mempool) return;
AssertLockHeld(cs_main);
AssertLockHeld(m_mempool->cs);
std::vector<uint256> vHashUpdate;
// disconnectpool's insertion_order index sorts the entries from
// oldest to newest, but the oldest entry will be the last tx from the
// latest mined block that was disconnected.
// Iterate disconnectpool in reverse, so that we add transactions
// back to the mempool starting with the earliest transaction that had
// been previously seen in a block.
auto it = disconnectpool.queuedTx.get<insertion_order>().rbegin();
while (it != disconnectpool.queuedTx.get<insertion_order>().rend()) {
// ignore validation errors in resurrected transactions
if (!fAddToMempool || (*it)->IsCoinBase() ||
AcceptToMemoryPool(*this, *it, GetTime(),
/*bypass_limits=*/true, /*test_accept=*/false).m_result_type !=
MempoolAcceptResult::ResultType::VALID) {
// If the transaction doesn't make it in to the mempool, remove any
// transactions that depend on it (which would now be orphans).
m_mempool->removeRecursive(**it, MemPoolRemovalReason::REORG);
} else if (m_mempool->exists(GenTxid::Txid((*it)->GetHash()))) {
vHashUpdate.push_back((*it)->GetHash());
}
++it;
}
disconnectpool.queuedTx.clear();
// AcceptToMemoryPool/addUnchecked all assume that new mempool entries have
// no in-mempool children, which is generally not true when adding
// previously-confirmed transactions back to the mempool.
// UpdateTransactionsFromBlock finds descendants of any transactions in
// the disconnectpool that were added back and cleans up the mempool state.
m_mempool->UpdateTransactionsFromBlock(vHashUpdate);
const auto check_final_and_mature = [this, flags=STANDARD_LOCKTIME_VERIFY_FLAGS](CTxMemPool::txiter it)
EXCLUSIVE_LOCKS_REQUIRED(m_mempool->cs, ::cs_main) {
bool should_remove = false;
AssertLockHeld(m_mempool->cs);
AssertLockHeld(::cs_main);
const CTransaction& tx = it->GetTx();
LockPoints lp = it->GetLockPoints();
const bool validLP{TestLockPointValidity(m_chain, lp)};
CCoinsViewMemPool view_mempool(&CoinsTip(), *m_mempool);
if (!CheckFinalTx(m_chain.Tip(), tx, flags)
|| !CheckSequenceLocks(m_chain.Tip(), view_mempool, tx, flags, &lp, validLP)) {
// Note if CheckSequenceLocks fails the LockPoints may still be invalid
// So it's critical that we remove the tx and not depend on the LockPoints.
should_remove = true;
} else if (it->GetSpendsCoinbase()) {
for (const CTxIn& txin : tx.vin) {
auto it2 = m_mempool->mapTx.find(txin.prevout.hash);
if (it2 != m_mempool->mapTx.end())
continue;
const Coin &coin = CoinsTip().AccessCoin(txin.prevout);
assert(!coin.IsSpent());
const auto mempool_spend_height{m_chain.Tip()->nHeight + 1};
if (coin.IsSpent() || (coin.IsCoinBase() && mempool_spend_height - coin.nHeight < COINBASE_MATURITY)) {
should_remove = true;
break;
}
}
}
return should_remove;
};
// We also need to remove any now-immature transactions
m_mempool->removeForReorg(m_chain, check_final_and_mature);
// Re-limit mempool size, in case we added any transactions
LimitMempoolSize(
*m_mempool,
this->CoinsTip(),
gArgs.GetIntArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000,
std::chrono::hours{gArgs.GetIntArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY)});
}
/**
* Checks to avoid mempool polluting consensus critical paths since cached
* signature and script validity results will be reused if we validate this
* transaction again during block validation.
* */
static bool CheckInputsFromMempoolAndCache(const CTransaction& tx, TxValidationState& state,
const CCoinsViewCache& view, const CTxMemPool& pool,
unsigned int flags, PrecomputedTransactionData& txdata, CCoinsViewCache& coins_tip)
EXCLUSIVE_LOCKS_REQUIRED(cs_main, pool.cs)
{
AssertLockHeld(cs_main);
AssertLockHeld(pool.cs);
assert(!tx.IsCoinBase());
for (const CTxIn& txin : tx.vin) {
const Coin& coin = view.AccessCoin(txin.prevout);
// This coin was checked in PreChecks and MemPoolAccept
// has been holding cs_main since then.
Assume(!coin.IsSpent());
if (coin.IsSpent()) return false;
// If the Coin is available, there are 2 possibilities:
// it is available in our current ChainstateActive UTXO set,
// or it's a UTXO provided by a transaction in our mempool.
// Ensure the scriptPubKeys in Coins from CoinsView are correct.
const CTransactionRef& txFrom = pool.get(txin.prevout.hash);
if (txFrom) {
assert(txFrom->GetHash() == txin.prevout.hash);
assert(txFrom->vout.size() > txin.prevout.n);
assert(txFrom->vout[txin.prevout.n] == coin.out);
} else {
const Coin& coinFromUTXOSet = coins_tip.AccessCoin(txin.prevout);
assert(!coinFromUTXOSet.IsSpent());
assert(coinFromUTXOSet.out == coin.out);
}
}
// Call CheckInputScripts() to cache signature and script validity against current tip consensus rules.
return CheckInputScripts(tx, state, view, flags, /* cacheSigStore= */ true, /* cacheFullScriptStore= */ true, txdata);
}
namespace {
class MemPoolAccept
{
public:
explicit MemPoolAccept(CTxMemPool& mempool, CChainState& active_chainstate) : m_pool(mempool), m_view(&m_dummy), m_viewmempool(&active_chainstate.CoinsTip(), m_pool), m_active_chainstate(active_chainstate),
m_limit_ancestors(gArgs.GetIntArg("-limitancestorcount", DEFAULT_ANCESTOR_LIMIT)),
m_limit_ancestor_size(gArgs.GetIntArg("-limitancestorsize", DEFAULT_ANCESTOR_SIZE_LIMIT)*1000),
m_limit_descendants(gArgs.GetIntArg("-limitdescendantcount", DEFAULT_DESCENDANT_LIMIT)),
m_limit_descendant_size(gArgs.GetIntArg("-limitdescendantsize", DEFAULT_DESCENDANT_SIZE_LIMIT)*1000) {
}
// We put the arguments we're handed into a struct, so we can pass them
// around easier.
struct ATMPArgs {
const CChainParams& m_chainparams;
const int64_t m_accept_time;
const bool m_bypass_limits;
/*
* Return any outpoints which were not previously present in the coins
* cache, but were added as a result of validating the tx for mempool
* acceptance. This allows the caller to optionally remove the cache
* additions if the associated transaction ends up being rejected by
* the mempool.
*/
std::vector<COutPoint>& m_coins_to_uncache;
const bool m_test_accept;
/** Whether we allow transactions to replace mempool transactions by BIP125 rules. If false,
* any transaction spending the same inputs as a transaction in the mempool is considered
* a conflict. */
const bool m_allow_bip125_replacement;
/** Parameters for single transaction mempool validation. */
static ATMPArgs SingleAccept(const CChainParams& chainparams, int64_t accept_time,
bool bypass_limits, std::vector<COutPoint>& coins_to_uncache,
bool test_accept) {
return ATMPArgs{/* m_chainparams */ chainparams,
/* m_accept_time */ accept_time,
/* m_bypass_limits */ bypass_limits,
/* m_coins_to_uncache */ coins_to_uncache,
/* m_test_accept */ test_accept,
/* m_allow_bip125_replacement */ true,
};
}
/** Parameters for test package mempool validation through testmempoolaccept. */
static ATMPArgs PackageTestAccept(const CChainParams& chainparams, int64_t accept_time,
std::vector<COutPoint>& coins_to_uncache) {
return ATMPArgs{/* m_chainparams */ chainparams,
/* m_accept_time */ accept_time,
/* m_bypass_limits */ false,
/* m_coins_to_uncache */ coins_to_uncache,
/* m_test_accept */ true,
/* m_allow_bip125_replacement */ false,
};
}
// No default ctor to avoid exposing details to clients and allowing the possibility of
// mixing up the order of the arguments. Use static functions above instead.
ATMPArgs() = delete;
};
// Single transaction acceptance
MempoolAcceptResult AcceptSingleTransaction(const CTransactionRef& ptx, ATMPArgs& args) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
/**
* Multiple transaction acceptance. Transactions may or may not be interdependent,
* but must not conflict with each other. Parents must come before children if any
2021-05-27 03:39:59 -04:00
* dependencies exist.
*/
PackageMempoolAcceptResult AcceptMultipleTransactions(const std::vector<CTransactionRef>& txns, ATMPArgs& args) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
private:
// All the intermediate state that gets passed between the various levels
// of checking a given transaction.
struct Workspace {
explicit Workspace(const CTransactionRef& ptx) : m_ptx(ptx), m_hash(ptx->GetHash()) {}
2021-11-04 13:23:32 -03:00
/** Txids of mempool transactions that this transaction directly conflicts with. */
std::set<uint256> m_conflicts;
2021-11-04 13:23:32 -03:00
/** Iterators to mempool entries that this transaction directly conflicts with. */
CTxMemPool::setEntries m_iters_conflicting;
2021-11-04 13:23:32 -03:00
/** Iterators to all mempool entries that would be replaced by this transaction, including
* those it directly conflicts with and their descendants. */
CTxMemPool::setEntries m_all_conflicting;
2021-11-04 13:23:32 -03:00
/** All mempool ancestors of this transaction. */
CTxMemPool::setEntries m_ancestors;
2021-11-04 13:23:32 -03:00
/** Mempool entry constructed for this transaction. Constructed in PreChecks() but not
* inserted into the mempool until Finalize(). */
std::unique_ptr<CTxMemPoolEntry> m_entry;
2021-11-04 13:23:32 -03:00
/** Pointers to the transactions that have been removed from the mempool and replaced by
* this transaction, used to return to the MemPoolAccept caller. Only populated if
* validation is successful and the original transactions are removed. */
std::list<CTransactionRef> m_replaced_transactions;
/** Virtual size of the transaction as used by the mempool, calculated using serialized size
* of the transaction and sigops. */
int64_t m_vsize;
2021-11-04 13:23:32 -03:00
/** Fees paid by this transaction: total input amounts subtracted by total output amounts. */
CAmount m_base_fees;
2021-11-04 13:23:32 -03:00
/** Base fees + any fee delta set by the user with prioritisetransaction. */
CAmount m_modified_fees;
/** Total modified fees of all transactions being replaced. */
CAmount m_conflicting_fees{0};
/** Total virtual size of all transactions being replaced. */
size_t m_conflicting_size{0};
const CTransactionRef& m_ptx;
2021-11-04 13:23:32 -03:00
/** Txid. */
const uint256& m_hash;
TxValidationState m_state;
/** A temporary cache containing serialized transaction data for signature verification.
* Reused across PolicyScriptChecks and ConsensusScriptChecks. */
PrecomputedTransactionData m_precomputed_txdata;
};
// Run the policy checks on a given transaction, excluding any script checks.
// Looks up inputs, calculates feerate, considers replacement, evaluates
// package limits, etc. As this function can be invoked for "free" by a peer,
// only tests that are fast should be done here (to avoid CPU DoS).
bool PreChecks(ATMPArgs& args, Workspace& ws) EXCLUSIVE_LOCKS_REQUIRED(cs_main, m_pool.cs);
// Run checks for mempool replace-by-fee.
bool ReplacementChecks(Workspace& ws) EXCLUSIVE_LOCKS_REQUIRED(cs_main, m_pool.cs);
// Enforce package mempool ancestor/descendant limits (distinct from individual
// ancestor/descendant limits done in PreChecks).
bool PackageMempoolChecks(const std::vector<CTransactionRef>& txns,
PackageValidationState& package_state) EXCLUSIVE_LOCKS_REQUIRED(cs_main, m_pool.cs);
// Run the script checks using our policy flags. As this can be slow, we should
// only invoke this on transactions that have otherwise passed policy checks.
bool PolicyScriptChecks(const ATMPArgs& args, Workspace& ws) EXCLUSIVE_LOCKS_REQUIRED(cs_main, m_pool.cs);
// Re-run the script checks, using consensus flags, and try to cache the
// result in the scriptcache. This should be done after
// PolicyScriptChecks(). This requires that all inputs either be in our
// utxo set or in the mempool.
bool ConsensusScriptChecks(const ATMPArgs& args, Workspace& ws) EXCLUSIVE_LOCKS_REQUIRED(cs_main, m_pool.cs);
// Try to add the transaction to the mempool, removing any conflicts first.
// Returns true if the transaction is in the mempool after any size
// limiting is performed, false otherwise.
bool Finalize(const ATMPArgs& args, Workspace& ws) EXCLUSIVE_LOCKS_REQUIRED(cs_main, m_pool.cs);
// Compare a package's feerate against minimum allowed.
bool CheckFeeRate(size_t package_size, CAmount package_fee, TxValidationState& state) EXCLUSIVE_LOCKS_REQUIRED(cs_main, m_pool.cs)
{
CAmount mempoolRejectFee = m_pool.GetMinFee(gArgs.GetIntArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000).GetFee(package_size);
if (mempoolRejectFee > 0 && package_fee < mempoolRejectFee) {
return state.Invalid(TxValidationResult::TX_MEMPOOL_POLICY, "mempool min fee not met", strprintf("%d < %d", package_fee, mempoolRejectFee));
}
if (package_fee < ::minRelayTxFee.GetFee(package_size)) {
return state.Invalid(TxValidationResult::TX_MEMPOOL_POLICY, "min relay fee not met", strprintf("%d < %d", package_fee, ::minRelayTxFee.GetFee(package_size)));
}
return true;
}
private:
CTxMemPool& m_pool;
CCoinsViewCache m_view;
CCoinsViewMemPool m_viewmempool;
CCoinsView m_dummy;
CChainState& m_active_chainstate;
// The package limits in effect at the time of invocation.
const size_t m_limit_ancestors;
const size_t m_limit_ancestor_size;
// These may be modified while evaluating a transaction (eg to account for
// in-mempool conflicts; see below).
size_t m_limit_descendants;
size_t m_limit_descendant_size;
/** Whether the transaction(s) would replace any mempool transactions. If so, RBF rules apply. */
bool m_rbf{false};
};
bool MemPoolAccept::PreChecks(ATMPArgs& args, Workspace& ws)
{
const CTransactionRef& ptx = ws.m_ptx;
const CTransaction& tx = *ws.m_ptx;
const uint256& hash = ws.m_hash;
// Copy/alias what we need out of args
const int64_t nAcceptTime = args.m_accept_time;
const bool bypass_limits = args.m_bypass_limits;
std::vector<COutPoint>& coins_to_uncache = args.m_coins_to_uncache;
// Alias what we need out of ws
TxValidationState& state = ws.m_state;
std::unique_ptr<CTxMemPoolEntry>& entry = ws.m_entry;
if (!CheckTransaction(tx, state)) {
return false; // state filled in by CheckTransaction
}
// Coinbase is only valid in a block, not as a loose transaction
if (tx.IsCoinBase())
return state.Invalid(TxValidationResult::TX_CONSENSUS, "coinbase");
// Rather not work on nonstandard transactions (unless -testnet/-regtest)
std::string reason;
2018-04-29 20:34:57 -03:00
if (fRequireStandard && !IsStandardTx(tx, reason))
return state.Invalid(TxValidationResult::TX_NOT_STANDARD, reason);
// Do not work on transactions that are too small.
// A transaction with 1 segwit input and 1 P2WPHK output has non-witness size of 82 bytes.
// Transactions smaller than this are not relayed to mitigate CVE-2017-12842 by not relaying
// 64-byte transactions.
if (::GetSerializeSize(tx, PROTOCOL_VERSION | SERIALIZE_TRANSACTION_NO_WITNESS) < MIN_STANDARD_TX_NONWITNESS_SIZE)
return state.Invalid(TxValidationResult::TX_NOT_STANDARD, "tx-size-small");
// Only accept nLockTime-using transactions that can be mined in the next
// block; we don't want our mempool filled up with transactions that can't
// be mined yet.
if (!CheckFinalTx(m_active_chainstate.m_chain.Tip(), tx, STANDARD_LOCKTIME_VERIFY_FLAGS))
return state.Invalid(TxValidationResult::TX_PREMATURE_SPEND, "non-final");
if (m_pool.exists(GenTxid::Wtxid(tx.GetWitnessHash()))) {
// Exact transaction already exists in the mempool.
return state.Invalid(TxValidationResult::TX_CONFLICT, "txn-already-in-mempool");
} else if (m_pool.exists(GenTxid::Txid(tx.GetHash()))) {
// Transaction with the same non-witness data but different witness (same txid, different
// wtxid) already exists in the mempool.
return state.Invalid(TxValidationResult::TX_CONFLICT, "txn-same-nonwitness-data-in-mempool");
}
// Check for conflicts with in-memory transactions
for (const CTxIn &txin : tx.vin)
{
const CTransaction* ptxConflicting = m_pool.GetConflictTx(txin.prevout);
if (ptxConflicting) {
if (!args.m_allow_bip125_replacement) {
// Transaction conflicts with a mempool tx, but we're not allowing replacements.
return state.Invalid(TxValidationResult::TX_MEMPOOL_POLICY, "bip125-replacement-disallowed");
}
if (!ws.m_conflicts.count(ptxConflicting->GetHash()))
{
// Transactions that don't explicitly signal replaceability are
// *not* replaceable with the current logic, even if one of their
// unconfirmed ancestors signals replaceability. This diverges
// from BIP125's inherited signaling description (see CVE-2021-31876).
// Applications relying on first-seen mempool behavior should
// check all unconfirmed ancestors; otherwise an opt-in ancestor
// might be replaced, causing removal of this descendant.
if (!SignalsOptInRBF(*ptxConflicting)) {
return state.Invalid(TxValidationResult::TX_MEMPOOL_POLICY, "txn-mempool-conflict");
}
ws.m_conflicts.insert(ptxConflicting->GetHash());
}
}
}
LockPoints lp;
m_view.SetBackend(m_viewmempool);
const CCoinsViewCache& coins_cache = m_active_chainstate.CoinsTip();
// do all inputs exist?
for (const CTxIn& txin : tx.vin) {
if (!coins_cache.HaveCoinInCache(txin.prevout)) {
coins_to_uncache.push_back(txin.prevout);
}
// Note: this call may add txin.prevout to the coins cache
// (coins_cache.cacheCoins) by way of FetchCoin(). It should be removed
// later (via coins_to_uncache) if this tx turns out to be invalid.
if (!m_view.HaveCoin(txin.prevout)) {
// Are inputs missing because we already have the tx?
for (size_t out = 0; out < tx.vout.size(); out++) {
// Optimistically just do efficient check of cache for outputs
if (coins_cache.HaveCoinInCache(COutPoint(hash, out))) {
return state.Invalid(TxValidationResult::TX_CONFLICT, "txn-already-known");
}
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 12:54:00 -04:00
}
// Otherwise assume this might be an orphan tx for which we just haven't seen parents yet
return state.Invalid(TxValidationResult::TX_MISSING_INPUTS, "bad-txns-inputs-missingorspent");
}
}
// This is const, but calls into the back end CoinsViews. The CCoinsViewDB at the bottom of the
// hierarchy brings the best block into scope. See CCoinsViewDB::GetBestBlock().
m_view.GetBestBlock();
// we have all inputs cached now, so switch back to dummy (to protect
// against bugs where we pull more inputs from disk that miss being added
// to coins_to_uncache)
m_view.SetBackend(m_dummy);
assert(m_active_chainstate.m_blockman.LookupBlockIndex(m_view.GetBestBlock()) == m_active_chainstate.m_chain.Tip());
// Only accept BIP68 sequence locked transactions that can be mined in the next
// block; we don't want our mempool filled up with transactions that can't
// be mined yet.
// Pass in m_view which has all of the relevant inputs cached. Note that, since m_view's
// backend was removed, it no longer pulls coins from the mempool.
if (!CheckSequenceLocks(m_active_chainstate.m_chain.Tip(), m_view, tx, STANDARD_LOCKTIME_VERIFY_FLAGS, &lp))
return state.Invalid(TxValidationResult::TX_PREMATURE_SPEND, "non-BIP68-final");
// The mempool holds txs for the next block, so pass height+1 to CheckTxInputs
if (!Consensus::CheckTxInputs(tx, state, m_view, m_active_chainstate.m_chain.Height() + 1, ws.m_base_fees)) {
return false; // state filled in by CheckTxInputs
}
// Check for non-standard pay-to-script-hash in inputs
2021-11-15 06:56:16 -03:00
if (fRequireStandard && !AreInputsStandard(tx, m_view)) {
return state.Invalid(TxValidationResult::TX_INPUTS_NOT_STANDARD, "bad-txns-nonstandard-inputs");
}
// Check for non-standard witnesses.
if (tx.HasWitness() && fRequireStandard && !IsWitnessStandard(tx, m_view))
return state.Invalid(TxValidationResult::TX_WITNESS_MUTATED, "bad-witness-nonstandard");
int64_t nSigOpsCost = GetTransactionSigOpCost(tx, m_view, STANDARD_SCRIPT_VERIFY_FLAGS);
// ws.m_modified_fees includes any fee deltas from PrioritiseTransaction
ws.m_modified_fees = ws.m_base_fees;
m_pool.ApplyDelta(hash, ws.m_modified_fees);
// Keep track of transactions that spend a coinbase, which we re-scan
// during reorgs to ensure COINBASE_MATURITY is still met.
bool fSpendsCoinbase = false;
for (const CTxIn &txin : tx.vin) {
const Coin &coin = m_view.AccessCoin(txin.prevout);
if (coin.IsCoinBase()) {
fSpendsCoinbase = true;
break;
}
}
entry.reset(new CTxMemPoolEntry(ptx, ws.m_base_fees, nAcceptTime, m_active_chainstate.m_chain.Height(),
fSpendsCoinbase, nSigOpsCost, lp));
ws.m_vsize = entry->GetTxSize();
if (nSigOpsCost > MAX_STANDARD_TX_SIGOPS_COST)
return state.Invalid(TxValidationResult::TX_NOT_STANDARD, "bad-txns-too-many-sigops",
strprintf("%d", nSigOpsCost));
// No transactions are allowed below minRelayTxFee except from disconnected
// blocks
if (!bypass_limits && !CheckFeeRate(ws.m_vsize, ws.m_modified_fees, state)) return false;
ws.m_iters_conflicting = m_pool.GetIterSet(ws.m_conflicts);
// Calculate in-mempool ancestors, up to a limit.
if (ws.m_conflicts.size() == 1) {
// In general, when we receive an RBF transaction with mempool conflicts, we want to know whether we
// would meet the chain limits after the conflicts have been removed. However, there isn't a practical
// way to do this short of calculating the ancestor and descendant sets with an overlay cache of
// changed mempool entries. Due to both implementation and runtime complexity concerns, this isn't
// very realistic, thus we only ensure a limited set of transactions are RBF'able despite mempool
// conflicts here. Importantly, we need to ensure that some transactions which were accepted using
// the below carve-out are able to be RBF'ed, without impacting the security the carve-out provides
// for off-chain contract systems (see link in the comment below).
//
// Specifically, the subset of RBF transactions which we allow despite chain limits are those which
// conflict directly with exactly one other transaction (but may evict children of said transaction),
// and which are not adding any new mempool dependencies. Note that the "no new mempool dependencies"
// check is accomplished later, so we don't bother doing anything about it here, but if BIP 125 is
// amended, we may need to move that check to here instead of removing it wholesale.
//
// Such transactions are clearly not merging any existing packages, so we are only concerned with
// ensuring that (a) no package is growing past the package size (not count) limits and (b) we are
// not allowing something to effectively use the (below) carve-out spot when it shouldn't be allowed
// to.
//
// To check these we first check if we meet the RBF criteria, above, and increment the descendant
// limits by the direct conflict and its descendants (as these are recalculated in
// CalculateMempoolAncestors by assuming the new transaction being added is a new descendant, with no
2019-11-04 06:22:53 -03:00
// removals, of each parent's existing dependent set). The ancestor count limits are unmodified (as
// the ancestor limits should be the same for both our new transaction and any conflicts).
// We don't bother incrementing m_limit_descendants by the full removal count as that limit never comes
// into force here (as we're only adding a single transaction).
assert(ws.m_iters_conflicting.size() == 1);
CTxMemPool::txiter conflict = *ws.m_iters_conflicting.begin();
m_limit_descendants += 1;
m_limit_descendant_size += conflict->GetSizeWithDescendants();
}
std::string errString;
if (!m_pool.CalculateMemPoolAncestors(*entry, ws.m_ancestors, m_limit_ancestors, m_limit_ancestor_size, m_limit_descendants, m_limit_descendant_size, errString)) {
ws.m_ancestors.clear();
// If CalculateMemPoolAncestors fails second time, we want the original error string.
std::string dummy_err_string;
// Contracting/payment channels CPFP carve-out:
// If the new transaction is relatively small (up to 40k weight)
// and has at most one ancestor (ie ancestor limit of 2, including
// the new transaction), allow it if its parent has exactly the
// descendant limit descendants.
//
// This allows protocols which rely on distrusting counterparties
// being able to broadcast descendants of an unconfirmed transaction
// to be secure by simply only having two immediately-spendable
// outputs - one for each counterparty. For more info on the uses for
// this, see https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-November/016518.html
if (ws.m_vsize > EXTRA_DESCENDANT_TX_SIZE_LIMIT ||
!m_pool.CalculateMemPoolAncestors(*entry, ws.m_ancestors, 2, m_limit_ancestor_size, m_limit_descendants + 1, m_limit_descendant_size + EXTRA_DESCENDANT_TX_SIZE_LIMIT, dummy_err_string)) {
return state.Invalid(TxValidationResult::TX_MEMPOOL_POLICY, "too-long-mempool-chain", errString);
}
}
// A transaction that spends outputs that would be replaced by it is invalid. Now
// that we have the set of all ancestors we can detect this
// pathological case by making sure ws.m_conflicts and ws.m_ancestors don't
// intersect.
if (const auto err_string{EntriesAndTxidsDisjoint(ws.m_ancestors, ws.m_conflicts, hash)}) {
// We classify this as a consensus error because a transaction depending on something it
// conflicts with would be inconsistent.
return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-txns-spends-conflicting-tx", *err_string);
}
m_rbf = !ws.m_conflicts.empty();
return true;
}
bool MemPoolAccept::ReplacementChecks(Workspace& ws)
{
AssertLockHeld(cs_main);
AssertLockHeld(m_pool.cs);
const CTransaction& tx = *ws.m_ptx;
const uint256& hash = ws.m_hash;
TxValidationState& state = ws.m_state;
CFeeRate newFeeRate(ws.m_modified_fees, ws.m_vsize);
// It's possible that the replacement pays more fees than its direct conflicts but not more
// than all conflicts (i.e. the direct conflicts have high-fee descendants). However, if the
// replacement doesn't pay more fees than its direct conflicts, then we can be sure it's not
// more economically rational to mine. Before we go digging through the mempool for all
// transactions that would need to be removed (direct conflicts and all descendants), check
// that the replacement transaction pays more than its direct conflicts.
if (const auto err_string{PaysMoreThanConflicts(ws.m_iters_conflicting, newFeeRate, hash)}) {
return state.Invalid(TxValidationResult::TX_MEMPOOL_POLICY, "insufficient fee", *err_string);
}
// Calculate all conflicting entries and enforce BIP125 Rule #5.
if (const auto err_string{GetEntriesForConflicts(tx, m_pool, ws.m_iters_conflicting, ws.m_all_conflicting)}) {
return state.Invalid(TxValidationResult::TX_MEMPOOL_POLICY,
"too many potential replacements", *err_string);
}
// Enforce BIP125 Rule #2.
if (const auto err_string{HasNoNewUnconfirmed(tx, m_pool, ws.m_iters_conflicting)}) {
return state.Invalid(TxValidationResult::TX_MEMPOOL_POLICY,
"replacement-adds-unconfirmed", *err_string);
}
// Check if it's economically rational to mine this transaction rather than the ones it
// replaces and pays for its own relay fees. Enforce BIP125 Rules #3 and #4.
for (CTxMemPool::txiter it : ws.m_all_conflicting) {
ws.m_conflicting_fees += it->GetModifiedFee();
ws.m_conflicting_size += it->GetTxSize();
}
if (const auto err_string{PaysForRBF(ws.m_conflicting_fees, ws.m_modified_fees, ws.m_vsize,
::incrementalRelayFee, hash)}) {
return state.Invalid(TxValidationResult::TX_MEMPOOL_POLICY, "insufficient fee", *err_string);
}
return true;
}
bool MemPoolAccept::PackageMempoolChecks(const std::vector<CTransactionRef>& txns,
PackageValidationState& package_state)
{
AssertLockHeld(cs_main);
AssertLockHeld(m_pool.cs);
std::string err_string;
if (!m_pool.CheckPackageLimits(txns, m_limit_ancestors, m_limit_ancestor_size, m_limit_descendants,
m_limit_descendant_size, err_string)) {
// This is a package-wide error, separate from an individual transaction error.
return package_state.Invalid(PackageValidationResult::PCKG_POLICY, "package-mempool-limits", err_string);
}
return true;
}
bool MemPoolAccept::PolicyScriptChecks(const ATMPArgs& args, Workspace& ws)
{
const CTransaction& tx = *ws.m_ptx;
TxValidationState& state = ws.m_state;
constexpr unsigned int scriptVerifyFlags = STANDARD_SCRIPT_VERIFY_FLAGS;
// Check input scripts and signatures.
// This is done last to help prevent CPU exhaustion denial-of-service attacks.
if (!CheckInputScripts(tx, state, m_view, scriptVerifyFlags, true, false, ws.m_precomputed_txdata)) {
// SCRIPT_VERIFY_CLEANSTACK requires SCRIPT_VERIFY_WITNESS, so we
// need to turn both off, and compare against just turning off CLEANSTACK
// to see if the failure is specifically due to witness validation.
TxValidationState state_dummy; // Want reported failures to be from first CheckInputScripts
if (!tx.HasWitness() && CheckInputScripts(tx, state_dummy, m_view, scriptVerifyFlags & ~(SCRIPT_VERIFY_WITNESS | SCRIPT_VERIFY_CLEANSTACK), true, false, ws.m_precomputed_txdata) &&
!CheckInputScripts(tx, state_dummy, m_view, scriptVerifyFlags & ~SCRIPT_VERIFY_CLEANSTACK, true, false, ws.m_precomputed_txdata)) {
// Only the witness is missing, so the transaction itself may be fine.
state.Invalid(TxValidationResult::TX_WITNESS_STRIPPED,
state.GetRejectReason(), state.GetDebugMessage());
}
return false; // state filled in by CheckInputScripts
}
return true;
}
bool MemPoolAccept::ConsensusScriptChecks(const ATMPArgs& args, Workspace& ws)
{
const CTransaction& tx = *ws.m_ptx;
const uint256& hash = ws.m_hash;
TxValidationState& state = ws.m_state;
const CChainParams& chainparams = args.m_chainparams;
// Check again against the current block tip's script verification
// flags to cache our script execution flags. This is, of course,
// useless if the next block has different script flags from the
// previous one, but because the cache tracks script flags for us it
// will auto-invalidate and we'll just have a few blocks of extra
// misses on soft-fork activation.
//
// This is also useful in case of bugs in the standard flags that cause
// transactions to pass as valid when they're actually invalid. For
// instance the STRICTENC flag was incorrectly allowing certain
// CHECKSIG NOT scripts to pass, even though they were invalid.
//
// There is a similar check in CreateNewBlock() to prevent creating
// invalid blocks (using TestBlockValidity), however allowing such
// transactions into the mempool can be exploited as a DoS attack.
unsigned int currentBlockScriptVerifyFlags = GetBlockScriptFlags(m_active_chainstate.m_chain.Tip(), chainparams.GetConsensus());
if (!CheckInputsFromMempoolAndCache(tx, state, m_view, m_pool, currentBlockScriptVerifyFlags,
ws.m_precomputed_txdata, m_active_chainstate.CoinsTip())) {
LogPrintf("BUG! PLEASE REPORT THIS! CheckInputScripts failed against latest-block but not STANDARD flags %s, %s\n", hash.ToString(), state.ToString());
return Assume(false);
}
return true;
}
bool MemPoolAccept::Finalize(const ATMPArgs& args, Workspace& ws)
{
const CTransaction& tx = *ws.m_ptx;
const uint256& hash = ws.m_hash;
TxValidationState& state = ws.m_state;
const bool bypass_limits = args.m_bypass_limits;
std::unique_ptr<CTxMemPoolEntry>& entry = ws.m_entry;
// Remove conflicting transactions from the mempool
for (CTxMemPool::txiter it : ws.m_all_conflicting)
{
LogPrint(BCLog::MEMPOOL, "replacing tx %s with %s for %s additional fees, %d delta bytes\n",
it->GetTx().GetHash().ToString(),
hash.ToString(),
FormatMoney(ws.m_modified_fees - ws.m_conflicting_fees),
(int)entry->GetTxSize() - (int)ws.m_conflicting_size);
ws.m_replaced_transactions.push_back(it->GetSharedTx());
}
m_pool.RemoveStaged(ws.m_all_conflicting, false, MemPoolRemovalReason::REPLACED);
// This transaction should only count for fee estimation if:
// - it's not being re-added during a reorg which bypasses typical mempool fee limits
// - the node is not behind
// - the transaction is not dependent on any other transactions in the mempool
bool validForFeeEstimation = !bypass_limits && IsCurrentForFeeEstimation(m_active_chainstate) && m_pool.HasNoInputsOf(tx);
// Store transaction in memory
m_pool.addUnchecked(*entry, ws.m_ancestors, validForFeeEstimation);
// trim mempool and check if tx was trimmed
if (!bypass_limits) {
LimitMempoolSize(m_pool, m_active_chainstate.CoinsTip(), gArgs.GetIntArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000, std::chrono::hours{gArgs.GetIntArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY)});
if (!m_pool.exists(GenTxid::Txid(hash)))
return state.Invalid(TxValidationResult::TX_MEMPOOL_POLICY, "mempool full");
}
return true;
}
MempoolAcceptResult MemPoolAccept::AcceptSingleTransaction(const CTransactionRef& ptx, ATMPArgs& args)
{
AssertLockHeld(cs_main);
LOCK(m_pool.cs); // mempool "read lock" (held through GetMainSignals().TransactionAddedToMempool())
Workspace ws(ptx);
if (!PreChecks(args, ws)) return MempoolAcceptResult::Failure(ws.m_state);
if (m_rbf && !ReplacementChecks(ws)) return MempoolAcceptResult::Failure(ws.m_state);
// Perform the inexpensive checks first and avoid hashing and signature verification unless
// those checks pass, to mitigate CPU exhaustion denial-of-service attacks.
if (!PolicyScriptChecks(args, ws)) return MempoolAcceptResult::Failure(ws.m_state);
if (!ConsensusScriptChecks(args, ws)) return MempoolAcceptResult::Failure(ws.m_state);
// Tx was accepted, but not added
if (args.m_test_accept) {
return MempoolAcceptResult::Success(std::move(ws.m_replaced_transactions), ws.m_vsize, ws.m_base_fees);
}
if (!Finalize(args, ws)) return MempoolAcceptResult::Failure(ws.m_state);
GetMainSignals().TransactionAddedToMempool(ptx, m_pool.GetAndIncrementSequence());
return MempoolAcceptResult::Success(std::move(ws.m_replaced_transactions), ws.m_vsize, ws.m_base_fees);
}
PackageMempoolAcceptResult MemPoolAccept::AcceptMultipleTransactions(const std::vector<CTransactionRef>& txns, ATMPArgs& args)
{
AssertLockHeld(cs_main);
// These context-free package limits can be done before taking the mempool lock.
PackageValidationState package_state;
if (!CheckPackage(txns, package_state)) return PackageMempoolAcceptResult(package_state, {});
std::vector<Workspace> workspaces{};
workspaces.reserve(txns.size());
std::transform(txns.cbegin(), txns.cend(), std::back_inserter(workspaces),
[](const auto& tx) { return Workspace(tx); });
std::map<const uint256, const MempoolAcceptResult> results;
LOCK(m_pool.cs);
// Do all PreChecks first and fail fast to avoid running expensive script checks when unnecessary.
for (Workspace& ws : workspaces) {
if (!PreChecks(args, ws)) {
package_state.Invalid(PackageValidationResult::PCKG_TX, "transaction failed");
// Exit early to avoid doing pointless work. Update the failed tx result; the rest are unfinished.
results.emplace(ws.m_ptx->GetWitnessHash(), MempoolAcceptResult::Failure(ws.m_state));
return PackageMempoolAcceptResult(package_state, std::move(results));
}
// Make the coins created by this transaction available for subsequent transactions in the
2021-05-27 03:39:59 -04:00
// package to spend. Since we already checked conflicts in the package and we don't allow
// replacements, we don't need to track the coins spent. Note that this logic will need to be
// updated if package replace-by-fee is allowed in the future.
assert(!args.m_allow_bip125_replacement);
m_viewmempool.PackageAddTransaction(ws.m_ptx);
}
// Apply package mempool ancestor/descendant limits. Skip if there is only one transaction,
// because it's unnecessary. Also, CPFP carve out can increase the limit for individual
// transactions, but this exemption is not extended to packages in CheckPackageLimits().
std::string err_string;
if (txns.size() > 1 && !PackageMempoolChecks(txns, package_state)) {
return PackageMempoolAcceptResult(package_state, std::move(results));
}
for (Workspace& ws : workspaces) {
if (!PolicyScriptChecks(args, ws)) {
// Exit early to avoid doing pointless work. Update the failed tx result; the rest are unfinished.
package_state.Invalid(PackageValidationResult::PCKG_TX, "transaction failed");
results.emplace(ws.m_ptx->GetWitnessHash(), MempoolAcceptResult::Failure(ws.m_state));
return PackageMempoolAcceptResult(package_state, std::move(results));
}
if (args.m_test_accept) {
// When test_accept=true, transactions that pass PolicyScriptChecks are valid because there are
// no further mempool checks (passing PolicyScriptChecks implies passing ConsensusScriptChecks).
results.emplace(ws.m_ptx->GetWitnessHash(),
MempoolAcceptResult::Success(std::move(ws.m_replaced_transactions),
ws.m_vsize, ws.m_base_fees));
}
}
return PackageMempoolAcceptResult(package_state, std::move(results));
}
} // anon namespace
MempoolAcceptResult AcceptToMemoryPool(CChainState& active_chainstate, const CTransactionRef& tx,
2021-11-03 22:23:38 -03:00
int64_t accept_time, bool bypass_limits, bool test_accept)
EXCLUSIVE_LOCKS_REQUIRED(cs_main)
{
2021-11-03 22:23:38 -03:00
const CChainParams& chainparams{active_chainstate.m_params};
assert(active_chainstate.GetMempool() != nullptr);
CTxMemPool& pool{*active_chainstate.GetMempool()};
std::vector<COutPoint> coins_to_uncache;
2021-11-03 22:23:38 -03:00
auto args = MemPoolAccept::ATMPArgs::SingleAccept(chainparams, accept_time, bypass_limits, coins_to_uncache, test_accept);
const MempoolAcceptResult result = MemPoolAccept(pool, active_chainstate).AcceptSingleTransaction(tx, args);
if (result.m_result_type != MempoolAcceptResult::ResultType::VALID) {
// Remove coins that were not present in the coins cache before calling
// AcceptSingleTransaction(); this is to prevent memory DoS in case we receive a large
// number of invalid transactions that attempt to overrun the in-memory coins cache
// (`CCoinsViewCache::cacheCoins`).
for (const COutPoint& hashTx : coins_to_uncache)
active_chainstate.CoinsTip().Uncache(hashTx);
}
// After we've (potentially) uncached entries, ensure our coins cache is still within its size limits
BlockValidationState state_dummy;
active_chainstate.FlushStateToDisk(state_dummy, FlushStateMode::PERIODIC);
return result;
}
PackageMempoolAcceptResult ProcessNewPackage(CChainState& active_chainstate, CTxMemPool& pool,
const Package& package, bool test_accept)
{
AssertLockHeld(cs_main);
assert(test_accept); // Only allow package accept dry-runs (testmempoolaccept RPC).
assert(!package.empty());
assert(std::all_of(package.cbegin(), package.cend(), [](const auto& tx){return tx != nullptr;}));
std::vector<COutPoint> coins_to_uncache;
const CChainParams& chainparams = Params();
auto args = MemPoolAccept::ATMPArgs::PackageTestAccept(chainparams, GetTime(), coins_to_uncache);
const PackageMempoolAcceptResult result = MemPoolAccept(pool, active_chainstate).AcceptMultipleTransactions(package, args);
// Uncache coins pertaining to transactions that were not submitted to the mempool.
for (const COutPoint& hashTx : coins_to_uncache) {
active_chainstate.CoinsTip().Uncache(hashTx);
}
return result;
}
CAmount GetBlockSubsidy(int nHeight, const Consensus::Params& consensusParams)
{
int halvings = nHeight / consensusParams.nSubsidyHalvingInterval;
// Force block reward to zero when right shift is undefined.
if (halvings >= 64)
return 0;
CAmount nSubsidy = 50 * COIN;
// Subsidy is cut in half every 210,000 blocks which will occur approximately every 4 years.
nSubsidy >>= halvings;
return nSubsidy;
}
CoinsViews::CoinsViews(
std::string ldb_name,
size_t cache_size_bytes,
bool in_memory,
bool should_wipe) : m_dbview(
gArgs.GetDataDirNet() / ldb_name, cache_size_bytes, in_memory, should_wipe),
m_catcherview(&m_dbview) {}
void CoinsViews::InitCache()
{
m_cacheview = std::make_unique<CCoinsViewCache>(&m_catcherview);
}
CChainState::CChainState(
CTxMemPool* mempool,
BlockManager& blockman,
ChainstateManager& chainman,
std::optional<uint256> from_snapshot_blockhash)
: m_mempool(mempool),
m_blockman(blockman),
2021-11-03 22:23:38 -03:00
m_params(::Params()),
m_chainman(chainman),
m_from_snapshot_blockhash(from_snapshot_blockhash) {}
void CChainState::InitCoinsDB(
size_t cache_size_bytes,
bool in_memory,
bool should_wipe,
std::string leveldb_name)
{
if (m_from_snapshot_blockhash) {
leveldb_name += "_" + m_from_snapshot_blockhash->ToString();
}
m_coins_views = std::make_unique<CoinsViews>(
leveldb_name, cache_size_bytes, in_memory, should_wipe);
}
void CChainState::InitCoinsCache(size_t cache_size_bytes)
{
assert(m_coins_views != nullptr);
m_coinstip_cache_size_bytes = cache_size_bytes;
m_coins_views->InitCache();
}
// Note that though this is marked const, we may end up modifying `m_cached_finished_ibd`, which
// is a performance-related implementation detail. This function must be marked
// `const` so that `CValidationInterface` clients (which are given a `const CChainState*`)
// can call it.
//
bool CChainState::IsInitialBlockDownload() const
{
// Optimization: pre-test latch before taking the lock.
if (m_cached_finished_ibd.load(std::memory_order_relaxed))
return false;
LOCK(cs_main);
if (m_cached_finished_ibd.load(std::memory_order_relaxed))
return false;
if (fImporting || fReindex)
return true;
if (m_chain.Tip() == nullptr)
return true;
if (m_chain.Tip()->nChainWork < nMinimumChainWork)
return true;
if (m_chain.Tip()->GetBlockTime() < (GetTime() - nMaxTipAge))
return true;
LogPrintf("Leaving InitialBlockDownload (latching to false)\n");
m_cached_finished_ibd.store(true, std::memory_order_relaxed);
return false;
}
static void AlertNotify(const std::string& strMessage)
2016-03-06 07:07:25 -03:00
{
uiInterface.NotifyAlertChanged();
#if HAVE_SYSTEM
std::string strCmd = gArgs.GetArg("-alertnotify", "");
2016-03-06 07:07:25 -03:00
if (strCmd.empty()) return;
// Alert text should be plain ascii coming from a trusted source, but to
// be safe we first strip anything not in safeChars, then add single quotes around
// the whole string before passing it to the shell:
std::string singleQuote("'");
std::string safeStatus = SanitizeString(strMessage);
safeStatus = singleQuote+safeStatus+singleQuote;
boost::replace_all(strCmd, "%s", safeStatus);
std::thread t(runCommand, strCmd);
t.detach(); // thread runs free
#endif
2016-03-06 07:07:25 -03:00
}
void CChainState::CheckForkWarningConditions()
{
AssertLockHeld(cs_main);
// Before we get past initial download, we cannot reliably alert about forks
// (we assume we don't get stuck on a fork before finishing our initial sync)
if (IsInitialBlockDownload()) {
return;
}
if (pindexBestInvalid && pindexBestInvalid->nChainWork > m_chain.Tip()->nChainWork + (GetBlockProof(*m_chain.Tip()) * 6)) {
LogPrintf("%s: Warning: Found invalid chain at least ~6 blocks longer than our best chain.\nChain state database corruption likely.\n", __func__);
SetfLargeWorkInvalidChainFound(true);
} else {
SetfLargeWorkInvalidChainFound(false);
}
}
Walk pindexBestHeader back to ChainActive().Tip() if it is invalid Instead of keeping pindexBestHeader set to the best header we've ever seen, reset it back to our validated tip if we find an ancestor of it turns out to be invalid. While the name is now a bit confusing, this matches much better with how it is used in practice, see below. Further, this opens up more use-cases for it in the future, namely aggressively searching for new peers in case we have discovered (possibly via some covert channel) headers which we do not know to be invalid, but which we cannot find block data for. Places pindexBestHeader is used: * Various GUI displays of the best header and getblockchaininfo["headers"], I don't think changing this is bad, and if anything this is less confusing in the presence of an invalid block. * IsCurrentForFeeEstimation(): If anything I think ensuring pindexBestHeader isn't some crazy invalid chain is better than the alternative, even in the case where you are rejecting the current chain due to hardware error (since hopefully in that case you won't get any new blocks anyway). * ConnectBlock assumevalid checks: We use pindexBestHeader to check that the block we're connecting leads to something with nMinimumChainWork (preventing a user-set assumevalid from having bogus work) and that the block we're connecting leads to pindexBestHeader (I'm not too worried about this one - it's nice to "disable" assumevalid if we have a long invalid headers chain, but I don't see it as a critical protection). * BlockRequestAllowed() uses pindexBestHeader as its target to ensure the requested block is within a month of the "current chain". I don't think this is a meaningful difference, if we're rejecting the current tip we're trivially fingerprintable anyway, and if the chain really does have a bunch of invalid crap near the tip, using the best not-invalid header is likely a better criteria. * ProcessGetBlockData uses pindexBestHeader as the "current chain" definition of whether a block request is "historical" for the purpose of bandwidth limiting. Similarly, I don't see why this is a meaningful change. * We use pindexBestHeader for requesting missing headers on receipt of a headers/compact block message or block inv as well as for initial getheaders. I think this is definitely wrong, using the best not-invalid header for such requests is much better. * We use pindexBestHeader to define the "current chain" for deciding when we're close to done with initial headers sync. I don't think this is a meaningful change. * We use pindexBestHeader to decide if initial headers sync has timed out. If we're rejecting the chain due to hardware error this may result in additional cases where we ban a peer, but this is already true, so I think its fine.
2019-09-26 19:02:31 -03:00
// Called both upon regular invalid block discovery *and* InvalidateBlock
void CChainState::InvalidChainFound(CBlockIndex* pindexNew)
{
if (!pindexBestInvalid || pindexNew->nChainWork > pindexBestInvalid->nChainWork)
pindexBestInvalid = pindexNew;
Walk pindexBestHeader back to ChainActive().Tip() if it is invalid Instead of keeping pindexBestHeader set to the best header we've ever seen, reset it back to our validated tip if we find an ancestor of it turns out to be invalid. While the name is now a bit confusing, this matches much better with how it is used in practice, see below. Further, this opens up more use-cases for it in the future, namely aggressively searching for new peers in case we have discovered (possibly via some covert channel) headers which we do not know to be invalid, but which we cannot find block data for. Places pindexBestHeader is used: * Various GUI displays of the best header and getblockchaininfo["headers"], I don't think changing this is bad, and if anything this is less confusing in the presence of an invalid block. * IsCurrentForFeeEstimation(): If anything I think ensuring pindexBestHeader isn't some crazy invalid chain is better than the alternative, even in the case where you are rejecting the current chain due to hardware error (since hopefully in that case you won't get any new blocks anyway). * ConnectBlock assumevalid checks: We use pindexBestHeader to check that the block we're connecting leads to something with nMinimumChainWork (preventing a user-set assumevalid from having bogus work) and that the block we're connecting leads to pindexBestHeader (I'm not too worried about this one - it's nice to "disable" assumevalid if we have a long invalid headers chain, but I don't see it as a critical protection). * BlockRequestAllowed() uses pindexBestHeader as its target to ensure the requested block is within a month of the "current chain". I don't think this is a meaningful difference, if we're rejecting the current tip we're trivially fingerprintable anyway, and if the chain really does have a bunch of invalid crap near the tip, using the best not-invalid header is likely a better criteria. * ProcessGetBlockData uses pindexBestHeader as the "current chain" definition of whether a block request is "historical" for the purpose of bandwidth limiting. Similarly, I don't see why this is a meaningful change. * We use pindexBestHeader for requesting missing headers on receipt of a headers/compact block message or block inv as well as for initial getheaders. I think this is definitely wrong, using the best not-invalid header for such requests is much better. * We use pindexBestHeader to define the "current chain" for deciding when we're close to done with initial headers sync. I don't think this is a meaningful change. * We use pindexBestHeader to decide if initial headers sync has timed out. If we're rejecting the chain due to hardware error this may result in additional cases where we ban a peer, but this is already true, so I think its fine.
2019-09-26 19:02:31 -03:00
if (pindexBestHeader != nullptr && pindexBestHeader->GetAncestor(pindexNew->nHeight) == pindexNew) {
pindexBestHeader = m_chain.Tip();
Walk pindexBestHeader back to ChainActive().Tip() if it is invalid Instead of keeping pindexBestHeader set to the best header we've ever seen, reset it back to our validated tip if we find an ancestor of it turns out to be invalid. While the name is now a bit confusing, this matches much better with how it is used in practice, see below. Further, this opens up more use-cases for it in the future, namely aggressively searching for new peers in case we have discovered (possibly via some covert channel) headers which we do not know to be invalid, but which we cannot find block data for. Places pindexBestHeader is used: * Various GUI displays of the best header and getblockchaininfo["headers"], I don't think changing this is bad, and if anything this is less confusing in the presence of an invalid block. * IsCurrentForFeeEstimation(): If anything I think ensuring pindexBestHeader isn't some crazy invalid chain is better than the alternative, even in the case where you are rejecting the current chain due to hardware error (since hopefully in that case you won't get any new blocks anyway). * ConnectBlock assumevalid checks: We use pindexBestHeader to check that the block we're connecting leads to something with nMinimumChainWork (preventing a user-set assumevalid from having bogus work) and that the block we're connecting leads to pindexBestHeader (I'm not too worried about this one - it's nice to "disable" assumevalid if we have a long invalid headers chain, but I don't see it as a critical protection). * BlockRequestAllowed() uses pindexBestHeader as its target to ensure the requested block is within a month of the "current chain". I don't think this is a meaningful difference, if we're rejecting the current tip we're trivially fingerprintable anyway, and if the chain really does have a bunch of invalid crap near the tip, using the best not-invalid header is likely a better criteria. * ProcessGetBlockData uses pindexBestHeader as the "current chain" definition of whether a block request is "historical" for the purpose of bandwidth limiting. Similarly, I don't see why this is a meaningful change. * We use pindexBestHeader for requesting missing headers on receipt of a headers/compact block message or block inv as well as for initial getheaders. I think this is definitely wrong, using the best not-invalid header for such requests is much better. * We use pindexBestHeader to define the "current chain" for deciding when we're close to done with initial headers sync. I don't think this is a meaningful change. * We use pindexBestHeader to decide if initial headers sync has timed out. If we're rejecting the chain due to hardware error this may result in additional cases where we ban a peer, but this is already true, so I think its fine.
2019-09-26 19:02:31 -03:00
}
LogPrintf("%s: invalid block=%s height=%d log2_work=%f date=%s\n", __func__,
pindexNew->GetBlockHash().ToString(), pindexNew->nHeight,
log(pindexNew->nChainWork.getdouble())/log(2.0), FormatISO8601DateTime(pindexNew->GetBlockTime()));
CBlockIndex *tip = m_chain.Tip();
assert (tip);
LogPrintf("%s: current best=%s height=%d log2_work=%f date=%s\n", __func__,
tip->GetBlockHash().ToString(), m_chain.Height(), log(tip->nChainWork.getdouble())/log(2.0),
FormatISO8601DateTime(tip->GetBlockTime()));
CheckForkWarningConditions();
}
Walk pindexBestHeader back to ChainActive().Tip() if it is invalid Instead of keeping pindexBestHeader set to the best header we've ever seen, reset it back to our validated tip if we find an ancestor of it turns out to be invalid. While the name is now a bit confusing, this matches much better with how it is used in practice, see below. Further, this opens up more use-cases for it in the future, namely aggressively searching for new peers in case we have discovered (possibly via some covert channel) headers which we do not know to be invalid, but which we cannot find block data for. Places pindexBestHeader is used: * Various GUI displays of the best header and getblockchaininfo["headers"], I don't think changing this is bad, and if anything this is less confusing in the presence of an invalid block. * IsCurrentForFeeEstimation(): If anything I think ensuring pindexBestHeader isn't some crazy invalid chain is better than the alternative, even in the case where you are rejecting the current chain due to hardware error (since hopefully in that case you won't get any new blocks anyway). * ConnectBlock assumevalid checks: We use pindexBestHeader to check that the block we're connecting leads to something with nMinimumChainWork (preventing a user-set assumevalid from having bogus work) and that the block we're connecting leads to pindexBestHeader (I'm not too worried about this one - it's nice to "disable" assumevalid if we have a long invalid headers chain, but I don't see it as a critical protection). * BlockRequestAllowed() uses pindexBestHeader as its target to ensure the requested block is within a month of the "current chain". I don't think this is a meaningful difference, if we're rejecting the current tip we're trivially fingerprintable anyway, and if the chain really does have a bunch of invalid crap near the tip, using the best not-invalid header is likely a better criteria. * ProcessGetBlockData uses pindexBestHeader as the "current chain" definition of whether a block request is "historical" for the purpose of bandwidth limiting. Similarly, I don't see why this is a meaningful change. * We use pindexBestHeader for requesting missing headers on receipt of a headers/compact block message or block inv as well as for initial getheaders. I think this is definitely wrong, using the best not-invalid header for such requests is much better. * We use pindexBestHeader to define the "current chain" for deciding when we're close to done with initial headers sync. I don't think this is a meaningful change. * We use pindexBestHeader to decide if initial headers sync has timed out. If we're rejecting the chain due to hardware error this may result in additional cases where we ban a peer, but this is already true, so I think its fine.
2019-09-26 19:02:31 -03:00
// Same as InvalidChainFound, above, except not called directly from InvalidateBlock,
// which does its own setBlockIndexCandidates management.
void CChainState::InvalidBlockFound(CBlockIndex* pindex, const BlockValidationState& state)
{
if (state.GetResult() != BlockValidationResult::BLOCK_MUTATED) {
pindex->nStatus |= BLOCK_FAILED_VALID;
m_blockman.m_failed_blocks.insert(pindex);
setDirtyBlockIndex.insert(pindex);
setBlockIndexCandidates.erase(pindex);
InvalidChainFound(pindex);
}
}
void UpdateCoins(const CTransaction& tx, CCoinsViewCache& inputs, CTxUndo &txundo, int nHeight)
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 12:54:00 -04:00
{
// mark inputs spent
if (!tx.IsCoinBase()) {
2014-09-03 09:54:37 -04:00
txundo.vprevout.reserve(tx.vin.size());
for (const CTxIn &txin : tx.vin) {
txundo.vprevout.emplace_back();
bool is_spent = inputs.SpendCoin(txin.prevout, &txundo.vprevout.back());
assert(is_spent);
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 12:54:00 -04:00
}
}
// add outputs
AddCoins(inputs, tx, nHeight);
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 12:54:00 -04:00
}
bool CScriptCheck::operator()() {
const CScript &scriptSig = ptxTo->vin[nIn].scriptSig;
2016-08-03 20:49:16 -04:00
const CScriptWitness *witness = &ptxTo->vin[nIn].scriptWitness;
2017-09-22 03:27:03 -03:00
return VerifyScript(scriptSig, m_tx_out.scriptPubKey, witness, nFlags, CachingTransactionSignatureChecker(ptxTo, nIn, m_tx_out.nValue, cacheStore, *txdata), &error);
}
static CuckooCache::cache<uint256, SignatureCacheHasher> g_scriptExecutionCache;
static CSHA256 g_scriptExecutionCacheHasher;
Cache full script execution results in addition to signatures This adds a new CuckooCache in validation, caching whether all of a transaction's scripts were valid with a given set of script flags. Unlike previous attempts at caching an entire transaction's validity, which have nearly universally introduced consensus failures, this only caches the validity of a transaction's scriptSigs. As these are pure functions of the transaction and data it commits to, this should be much safer. This is somewhat duplicative with the sigcache, as entries in the new cache will also have several entries in the sigcache. However, the sigcache is kept both as ATMP relies on it and because it prevents malleability-based DoS attacks on the new higher-level cache. Instead, the -sigcachesize option is re-used - cutting the sigcache size in half and using the newly freed memory for the script execution cache. Transactions which match the script execution cache never even have entries in the script check thread's workqueue created. Note that the cache is indexed only on the script execution flags and the transaction's witness hash. While this is sufficient to make the CScriptCheck() calls pure functions, this introduces dependancies on the mempool calculating things such as the PrecomputedTransactionData object, filling the CCoinsViewCache, etc in the exact same way as ConnectBlock. I belive this is a reasonable assumption, but should be noted carefully. In a rather naive benchmark (reindex-chainstate up to block 284k with cuckoocache always returning true for contains(), -assumevalid=0 and a very large dbcache), this connected blocks ~1.7x faster.
2017-04-11 17:46:39 -03:00
void InitScriptExecutionCache() {
// Setup the salted hasher
uint256 nonce = GetRandHash();
// We want the nonce to be 64 bytes long to force the hasher to process
// this chunk, which makes later hash computations more efficient. We
// just write our 32-byte entropy twice to fill the 64 bytes.
g_scriptExecutionCacheHasher.Write(nonce.begin(), 32);
g_scriptExecutionCacheHasher.Write(nonce.begin(), 32);
Cache full script execution results in addition to signatures This adds a new CuckooCache in validation, caching whether all of a transaction's scripts were valid with a given set of script flags. Unlike previous attempts at caching an entire transaction's validity, which have nearly universally introduced consensus failures, this only caches the validity of a transaction's scriptSigs. As these are pure functions of the transaction and data it commits to, this should be much safer. This is somewhat duplicative with the sigcache, as entries in the new cache will also have several entries in the sigcache. However, the sigcache is kept both as ATMP relies on it and because it prevents malleability-based DoS attacks on the new higher-level cache. Instead, the -sigcachesize option is re-used - cutting the sigcache size in half and using the newly freed memory for the script execution cache. Transactions which match the script execution cache never even have entries in the script check thread's workqueue created. Note that the cache is indexed only on the script execution flags and the transaction's witness hash. While this is sufficient to make the CScriptCheck() calls pure functions, this introduces dependancies on the mempool calculating things such as the PrecomputedTransactionData object, filling the CCoinsViewCache, etc in the exact same way as ConnectBlock. I belive this is a reasonable assumption, but should be noted carefully. In a rather naive benchmark (reindex-chainstate up to block 284k with cuckoocache always returning true for contains(), -assumevalid=0 and a very large dbcache), this connected blocks ~1.7x faster.
2017-04-11 17:46:39 -03:00
// nMaxCacheSize is unsigned. If -maxsigcachesize is set to zero,
// setup_bytes creates the minimum possible cache (2 elements).
size_t nMaxCacheSize = std::min(std::max((int64_t)0, gArgs.GetIntArg("-maxsigcachesize", DEFAULT_MAX_SIG_CACHE_SIZE) / 2), MAX_MAX_SIG_CACHE_SIZE) * ((size_t) 1 << 20);
size_t nElems = g_scriptExecutionCache.setup_bytes(nMaxCacheSize);
LogPrintf("Using %zu MiB out of %zu/2 requested for script execution cache, able to store %zu elements\n",
(nElems*sizeof(uint256)) >>20, (nMaxCacheSize*2)>>20, nElems);
Cache full script execution results in addition to signatures This adds a new CuckooCache in validation, caching whether all of a transaction's scripts were valid with a given set of script flags. Unlike previous attempts at caching an entire transaction's validity, which have nearly universally introduced consensus failures, this only caches the validity of a transaction's scriptSigs. As these are pure functions of the transaction and data it commits to, this should be much safer. This is somewhat duplicative with the sigcache, as entries in the new cache will also have several entries in the sigcache. However, the sigcache is kept both as ATMP relies on it and because it prevents malleability-based DoS attacks on the new higher-level cache. Instead, the -sigcachesize option is re-used - cutting the sigcache size in half and using the newly freed memory for the script execution cache. Transactions which match the script execution cache never even have entries in the script check thread's workqueue created. Note that the cache is indexed only on the script execution flags and the transaction's witness hash. While this is sufficient to make the CScriptCheck() calls pure functions, this introduces dependancies on the mempool calculating things such as the PrecomputedTransactionData object, filling the CCoinsViewCache, etc in the exact same way as ConnectBlock. I belive this is a reasonable assumption, but should be noted carefully. In a rather naive benchmark (reindex-chainstate up to block 284k with cuckoocache always returning true for contains(), -assumevalid=0 and a very large dbcache), this connected blocks ~1.7x faster.
2017-04-11 17:46:39 -03:00
}
/**
* Check whether all of this transaction's input scripts succeed.
*
* This involves ECDSA signature checks so can be computationally intensive. This function should
* only be called after the cheap sanity checks in CheckTxInputs passed.
*
* If pvChecks is not nullptr, script checks are pushed onto it instead of being performed inline. Any
* script checks which are not necessary (eg due to script execution cache hits) are, obviously,
* not pushed onto pvChecks/run.
*
* Setting cacheSigStore/cacheFullScriptStore to false will remove elements from the corresponding cache
* which are matched. This is useful for checking blocks where we will likely never need the cache
* entry again.
*
* Note that we may set state.reason to NOT_STANDARD for extra soft-fork flags in flags, block-checking
* callers should probably reset it to CONSENSUS in such cases.
*
* Non-static (and re-declared) in src/test/txvalidationcache_tests.cpp
*/
bool CheckInputScripts(const CTransaction& tx, TxValidationState& state,
const CCoinsViewCache& inputs, unsigned int flags, bool cacheSigStore,
bool cacheFullScriptStore, PrecomputedTransactionData& txdata,
std::vector<CScriptCheck>* pvChecks)
{
if (tx.IsCoinBase()) return true;
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 12:54:00 -04:00
if (pvChecks) {
pvChecks->reserve(tx.vin.size());
}
Cache full script execution results in addition to signatures This adds a new CuckooCache in validation, caching whether all of a transaction's scripts were valid with a given set of script flags. Unlike previous attempts at caching an entire transaction's validity, which have nearly universally introduced consensus failures, this only caches the validity of a transaction's scriptSigs. As these are pure functions of the transaction and data it commits to, this should be much safer. This is somewhat duplicative with the sigcache, as entries in the new cache will also have several entries in the sigcache. However, the sigcache is kept both as ATMP relies on it and because it prevents malleability-based DoS attacks on the new higher-level cache. Instead, the -sigcachesize option is re-used - cutting the sigcache size in half and using the newly freed memory for the script execution cache. Transactions which match the script execution cache never even have entries in the script check thread's workqueue created. Note that the cache is indexed only on the script execution flags and the transaction's witness hash. While this is sufficient to make the CScriptCheck() calls pure functions, this introduces dependancies on the mempool calculating things such as the PrecomputedTransactionData object, filling the CCoinsViewCache, etc in the exact same way as ConnectBlock. I belive this is a reasonable assumption, but should be noted carefully. In a rather naive benchmark (reindex-chainstate up to block 284k with cuckoocache always returning true for contains(), -assumevalid=0 and a very large dbcache), this connected blocks ~1.7x faster.
2017-04-11 17:46:39 -03:00
// First check if script executions have been cached with the same
// flags. Note that this assumes that the inputs provided are
// correct (ie that the transaction hash which is in tx's prevouts
// properly commits to the scriptPubKey in the inputs view of that
// transaction).
uint256 hashCacheEntry;
CSHA256 hasher = g_scriptExecutionCacheHasher;
hasher.Write(tx.GetWitnessHash().begin(), 32).Write((unsigned char*)&flags, sizeof(flags)).Finalize(hashCacheEntry.begin());
AssertLockHeld(cs_main); //TODO: Remove this requirement by making CuckooCache not require external locks
if (g_scriptExecutionCache.contains(hashCacheEntry, !cacheFullScriptStore)) {
return true;
}
Cache full script execution results in addition to signatures This adds a new CuckooCache in validation, caching whether all of a transaction's scripts were valid with a given set of script flags. Unlike previous attempts at caching an entire transaction's validity, which have nearly universally introduced consensus failures, this only caches the validity of a transaction's scriptSigs. As these are pure functions of the transaction and data it commits to, this should be much safer. This is somewhat duplicative with the sigcache, as entries in the new cache will also have several entries in the sigcache. However, the sigcache is kept both as ATMP relies on it and because it prevents malleability-based DoS attacks on the new higher-level cache. Instead, the -sigcachesize option is re-used - cutting the sigcache size in half and using the newly freed memory for the script execution cache. Transactions which match the script execution cache never even have entries in the script check thread's workqueue created. Note that the cache is indexed only on the script execution flags and the transaction's witness hash. While this is sufficient to make the CScriptCheck() calls pure functions, this introduces dependancies on the mempool calculating things such as the PrecomputedTransactionData object, filling the CCoinsViewCache, etc in the exact same way as ConnectBlock. I belive this is a reasonable assumption, but should be noted carefully. In a rather naive benchmark (reindex-chainstate up to block 284k with cuckoocache always returning true for contains(), -assumevalid=0 and a very large dbcache), this connected blocks ~1.7x faster.
2017-04-11 17:46:39 -03:00
if (!txdata.m_spent_outputs_ready) {
std::vector<CTxOut> spent_outputs;
spent_outputs.reserve(tx.vin.size());
for (const auto& txin : tx.vin) {
const COutPoint& prevout = txin.prevout;
const Coin& coin = inputs.AccessCoin(prevout);
assert(!coin.IsSpent());
spent_outputs.emplace_back(coin.out);
}
txdata.Init(tx, std::move(spent_outputs));
}
assert(txdata.m_spent_outputs.size() == tx.vin.size());
for (unsigned int i = 0; i < tx.vin.size(); i++) {
// We very carefully only pass in things to CScriptCheck which
// are clearly committed to by tx' witness hash. This provides
// a sanity check that our caching is not introducing consensus
// failures through additional data in, eg, the coins being
// spent being checked as a part of CScriptCheck.
// Verify signature
CScriptCheck check(txdata.m_spent_outputs[i], tx, i, flags, cacheSigStore, &txdata);
if (pvChecks) {
pvChecks->push_back(CScriptCheck());
check.swap(pvChecks->back());
} else if (!check()) {
if (flags & STANDARD_NOT_MANDATORY_VERIFY_FLAGS) {
// Check whether the failure was caused by a
// non-mandatory script verification check, such as
// non-standard DER encodings or non-null dummy
// arguments; if so, ensure we return NOT_STANDARD
// instead of CONSENSUS to avoid downstream users
// splitting the network between upgraded and
// non-upgraded nodes by banning CONSENSUS-failing
// data providers.
CScriptCheck check2(txdata.m_spent_outputs[i], tx, i,
flags & ~STANDARD_NOT_MANDATORY_VERIFY_FLAGS, cacheSigStore, &txdata);
if (check2())
return state.Invalid(TxValidationResult::TX_NOT_STANDARD, strprintf("non-mandatory-script-verify-flag (%s)", ScriptErrorString(check.GetScriptError())));
Cache full script execution results in addition to signatures This adds a new CuckooCache in validation, caching whether all of a transaction's scripts were valid with a given set of script flags. Unlike previous attempts at caching an entire transaction's validity, which have nearly universally introduced consensus failures, this only caches the validity of a transaction's scriptSigs. As these are pure functions of the transaction and data it commits to, this should be much safer. This is somewhat duplicative with the sigcache, as entries in the new cache will also have several entries in the sigcache. However, the sigcache is kept both as ATMP relies on it and because it prevents malleability-based DoS attacks on the new higher-level cache. Instead, the -sigcachesize option is re-used - cutting the sigcache size in half and using the newly freed memory for the script execution cache. Transactions which match the script execution cache never even have entries in the script check thread's workqueue created. Note that the cache is indexed only on the script execution flags and the transaction's witness hash. While this is sufficient to make the CScriptCheck() calls pure functions, this introduces dependancies on the mempool calculating things such as the PrecomputedTransactionData object, filling the CCoinsViewCache, etc in the exact same way as ConnectBlock. I belive this is a reasonable assumption, but should be noted carefully. In a rather naive benchmark (reindex-chainstate up to block 284k with cuckoocache always returning true for contains(), -assumevalid=0 and a very large dbcache), this connected blocks ~1.7x faster.
2017-04-11 17:46:39 -03:00
}
// MANDATORY flag failures correspond to
// TxValidationResult::TX_CONSENSUS. Because CONSENSUS
// failures are the most serious case of validation
// failures, we may need to consider using
// RECENT_CONSENSUS_CHANGE for any script failure that
// could be due to non-upgraded nodes which we may want to
// support, to avoid splitting the network (but this
// depends on the details of how net_processing handles
// such errors).
return state.Invalid(TxValidationResult::TX_CONSENSUS, strprintf("mandatory-script-verify-flag-failed (%s)", ScriptErrorString(check.GetScriptError())));
}
}
if (cacheFullScriptStore && !pvChecks) {
// We executed all of the provided scripts, and were told to
// cache the result. Do so now.
g_scriptExecutionCache.insert(hashCacheEntry);
}
return true;
}
bool AbortNode(BlockValidationState& state, const std::string& strMessage, const bilingual_str& userMessage)
{
AbortNode(strMessage, userMessage);
return state.Error(strMessage);
}
/**
* Restore the UTXO in a Coin at a given COutPoint
* @param undo The Coin to be restored.
* @param view The coins view to which to apply the changes.
* @param out The out point that corresponds to the tx input.
* @return A DisconnectResult as an int
*/
int ApplyTxInUndo(Coin&& undo, CCoinsViewCache& view, const COutPoint& out)
{
bool fClean = true;
if (view.HaveCoin(out)) fClean = false; // overwriting transaction output
if (undo.nHeight == 0) {
// Missing undo metadata (height and coinbase). Older versions included this
// information only in undo records for the last spend of a transactions'
// outputs. This implies that it must be present for some other output of the same tx.
const Coin& alternate = AccessByTxid(view, out.hash);
if (!alternate.IsSpent()) {
undo.nHeight = alternate.nHeight;
undo.fCoinBase = alternate.fCoinBase;
} else {
return DISCONNECT_FAILED; // adding output for transaction without known metadata
}
}
// If the coin already exists as an unspent coin in the cache, then the
// possible_overwrite parameter to AddCoin must be set to true. We have
// already checked whether an unspent coin exists above using HaveCoin, so
// we don't need to guess. When fClean is false, an unspent coin already
// existed and it is an overwrite.
view.AddCoin(out, std::move(undo), !fClean);
return fClean ? DISCONNECT_OK : DISCONNECT_UNCLEAN;
}
/** Undo the effects of this block (with given index) on the UTXO set represented by coins.
* When FAILED is returned, view is left in an indeterminate state. */
DisconnectResult CChainState::DisconnectBlock(const CBlock& block, const CBlockIndex* pindex, CCoinsViewCache& view)
{
AssertLockHeld(::cs_main);
2012-12-30 11:29:39 -03:00
bool fClean = true;
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 12:54:00 -04:00
CBlockUndo blockUndo;
if (!UndoReadFromDisk(blockUndo, pindex)) {
error("DisconnectBlock(): failure reading undo data");
return DISCONNECT_FAILED;
}
if (blockUndo.vtxundo.size() + 1 != block.vtx.size()) {
error("DisconnectBlock(): block and undo data inconsistent");
return DISCONNECT_FAILED;
}
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 12:54:00 -04:00
// undo transactions in reverse order
2013-06-23 21:32:58 -04:00
for (int i = block.vtx.size() - 1; i >= 0; i--) {
const CTransaction &tx = *(block.vtx[i]);
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 12:54:00 -04:00
uint256 hash = tx.GetHash();
bool is_coinbase = tx.IsCoinBase();
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 12:54:00 -04:00
// Check that all outputs are available and match the outputs in the block itself
// exactly.
for (size_t o = 0; o < tx.vout.size(); o++) {
if (!tx.vout[o].scriptPubKey.IsUnspendable()) {
COutPoint out(hash, o);
Coin coin;
bool is_spent = view.SpendCoin(out, &coin);
if (!is_spent || tx.vout[o] != coin.out || pindex->nHeight != coin.nHeight || is_coinbase != coin.fCoinBase) {
fClean = false; // transaction output mismatch
}
}
}
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 12:54:00 -04:00
// restore inputs
if (i > 0) { // not coinbases
CTxUndo &txundo = blockUndo.vtxundo[i-1];
if (txundo.vprevout.size() != tx.vin.size()) {
error("DisconnectBlock(): transaction and undo data inconsistent");
return DISCONNECT_FAILED;
}
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 12:54:00 -04:00
for (unsigned int j = tx.vin.size(); j-- > 0;) {
const COutPoint &out = tx.vin[j].prevout;
int res = ApplyTxInUndo(std::move(txundo.vprevout[j]), view, out);
if (res == DISCONNECT_FAILED) return DISCONNECT_FAILED;
fClean = fClean && res != DISCONNECT_UNCLEAN;
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 12:54:00 -04:00
}
// At this point, all of txundo.vprevout should have been moved out.
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 12:54:00 -04:00
}
}
// move best block pointer to prevout block
view.SetBestBlock(pindex->pprev->GetBlockHash());
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 12:54:00 -04:00
return fClean ? DISCONNECT_OK : DISCONNECT_UNCLEAN;
}
static CCheckQueue<CScriptCheck> scriptcheckqueue(128);
2020-08-21 02:24:05 -04:00
void StartScriptCheckWorkerThreads(int threads_num)
{
scriptcheckqueue.StartWorkerThreads(threads_num);
}
void StopScriptCheckWorkerThreads()
{
scriptcheckqueue.StopWorkerThreads();
}
/**
* Threshold condition checker that triggers when unknown versionbits are seen on the network.
*/
class WarningBitsConditionChecker : public AbstractThresholdConditionChecker
{
private:
int bit;
public:
explicit WarningBitsConditionChecker(int bitIn) : bit(bitIn) {}
int64_t BeginTime(const Consensus::Params& params) const override { return 0; }
int64_t EndTime(const Consensus::Params& params) const override { return std::numeric_limits<int64_t>::max(); }
int Period(const Consensus::Params& params) const override { return params.nMinerConfirmationWindow; }
int Threshold(const Consensus::Params& params) const override { return params.nRuleChangeActivationThreshold; }
bool Condition(const CBlockIndex* pindex, const Consensus::Params& params) const override
{
return pindex->nHeight >= params.MinBIP9WarningHeight &&
((pindex->nVersion & VERSIONBITS_TOP_MASK) == VERSIONBITS_TOP_BITS) &&
((pindex->nVersion >> bit) & 1) != 0 &&
((g_versionbitscache.ComputeBlockVersion(pindex->pprev, params) >> bit) & 1) == 0;
}
};
static ThresholdConditionCache warningcache[VERSIONBITS_NUM_BITS] GUARDED_BY(cs_main);
static unsigned int GetBlockScriptFlags(const CBlockIndex* pindex, const Consensus::Params& consensusparams)
{
unsigned int flags = SCRIPT_VERIFY_NONE;
// BIP16 didn't become active until Apr 1 2012 (on mainnet, and
// retroactively applied to testnet)
// However, only one historical block violated the P2SH rules (on both
// mainnet and testnet), so for simplicity, always leave P2SH
// on except for the one violating block.
if (consensusparams.BIP16Exception.IsNull() || // no bip16 exception on this chain
pindex->phashBlock == nullptr || // this is a new candidate block, eg from TestBlockValidity()
*pindex->phashBlock != consensusparams.BIP16Exception) // this block isn't the historical exception
{
// Enforce WITNESS rules whenever P2SH is in effect
flags |= SCRIPT_VERIFY_P2SH | SCRIPT_VERIFY_WITNESS;
}
// Enforce the DERSIG (BIP66) rule
if (DeploymentActiveAt(*pindex, consensusparams, Consensus::DEPLOYMENT_DERSIG)) {
flags |= SCRIPT_VERIFY_DERSIG;
}
// Enforce CHECKLOCKTIMEVERIFY (BIP65)
if (DeploymentActiveAt(*pindex, consensusparams, Consensus::DEPLOYMENT_CLTV)) {
flags |= SCRIPT_VERIFY_CHECKLOCKTIMEVERIFY;
}
// Enforce CHECKSEQUENCEVERIFY (BIP112)
if (DeploymentActiveAt(*pindex, consensusparams, Consensus::DEPLOYMENT_CSV)) {
flags |= SCRIPT_VERIFY_CHECKSEQUENCEVERIFY;
}
// Enforce Taproot (BIP340-BIP342)
if (DeploymentActiveAt(*pindex, consensusparams, Consensus::DEPLOYMENT_TAPROOT)) {
flags |= SCRIPT_VERIFY_TAPROOT;
}
// Enforce BIP147 NULLDUMMY (activated simultaneously with segwit)
if (DeploymentActiveAt(*pindex, consensusparams, Consensus::DEPLOYMENT_SEGWIT)) {
flags |= SCRIPT_VERIFY_NULLDUMMY;
}
return flags;
}
static int64_t nTimeCheck = 0;
static int64_t nTimeForks = 0;
static int64_t nTimeVerify = 0;
static int64_t nTimeConnect = 0;
static int64_t nTimeIndex = 0;
static int64_t nTimeTotal = 0;
static int64_t nBlocksTotal = 0;
/** Apply the effects of this block (with given index) on the UTXO set represented by coins.
* Validity checks that depend on the UTXO set are also done; ConnectBlock()
* can fail if those validity checks fail (among other reasons). */
bool CChainState::ConnectBlock(const CBlock& block, BlockValidationState& state, CBlockIndex* pindex,
CCoinsViewCache& view, bool fJustCheck)
{
AssertLockHeld(cs_main);
assert(pindex);
assert(*pindex->phashBlock == block.GetHash());
int64_t nTimeStart = GetTimeMicros();
// Check it again in case a previous version let a bad block in
// NOTE: We don't currently (re-)invoke ContextualCheckBlock() or
// ContextualCheckBlockHeader() here. This means that if we add a new
// consensus rule that is enforced in one of those two functions, then we
// may have let in a block that violates the rule prior to updating the
// software, and we would NOT be enforcing the rule here. Fully solving
// upgrade from one software version to the next after a consensus rule
// change is potentially tricky and issue-specific (see NeedsRedownload()
// for one approach that was used for BIP 141 deployment).
// Also, currently the rule against blocks more than 2 hours in the future
// is enforced in ContextualCheckBlockHeader(); we wouldn't want to
// re-enforce that rule here (at least until we make it impossible for
// GetAdjustedTime() to go backward).
if (!CheckBlock(block, state, m_params.GetConsensus(), !fJustCheck, !fJustCheck)) {
if (state.GetResult() == BlockValidationResult::BLOCK_MUTATED) {
// We don't write down blocks to disk if they may have been
// corrupted, so this should be impossible unless we're having hardware
// problems.
return AbortNode(state, "Corrupt block found indicating potential hardware failure; shutting down");
}
return error("%s: Consensus::CheckBlock: %s", __func__, state.ToString());
}
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 12:54:00 -04:00
// verify that the view's current state corresponds to the previous block
uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : pindex->pprev->GetBlockHash();
assert(hashPrevBlock == view.GetBestBlock());
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 12:54:00 -04:00
2019-01-29 10:03:53 -03:00
nBlocksTotal++;
// Special case for the genesis block, skipping connection of its transactions
// (its coinbase is unspendable)
if (block.GetHash() == m_params.GetConsensus().hashGenesisBlock) {
if (!fJustCheck)
view.SetBestBlock(pindex->GetBlockHash());
return true;
}
bool fScriptChecks = true;
if (!hashAssumeValid.IsNull()) {
// We've been configured with the hash of a block which has been externally verified to have a valid history.
// A suitable default value is included with the software and updated from time to time. Because validity
// relative to a piece of software is an objective fact these defaults can be easily reviewed.
// This setting doesn't force the selection of any particular chain but makes validating some faster by
// effectively caching the result of part of the verification.
BlockMap::const_iterator it = m_blockman.m_block_index.find(hashAssumeValid);
if (it != m_blockman.m_block_index.end()) {
if (it->second->GetAncestor(pindex->nHeight) == pindex &&
pindexBestHeader->GetAncestor(pindex->nHeight) == pindex &&
pindexBestHeader->nChainWork >= nMinimumChainWork) {
// This block is a member of the assumed verified chain and an ancestor of the best header.
// Script verification is skipped when connecting blocks under the
// assumevalid block. Assuming the assumevalid block is valid this
// is safe because block merkle hashes are still computed and checked,
// Of course, if an assumed valid block is invalid due to false scriptSigs
// this optimization would allow an invalid chain to be accepted.
// The equivalent time check discourages hash power from extorting the network via DOS attack
// into accepting an invalid block through telling users they must manually set assumevalid.
// Requiring a software change or burying the invalid block, regardless of the setting, makes
// it hard to hide the implication of the demand. This also avoids having release candidates
// that are hardly doing any signature verification at all in testing without having to
// artificially set the default assumed verified block further back.
// The test against nMinimumChainWork prevents the skipping when denied access to any chain at
// least as good as the expected chain.
fScriptChecks = (GetBlockProofEquivalentTime(*pindexBestHeader, *pindex, *pindexBestHeader, m_params.GetConsensus()) <= 60 * 60 * 24 * 7 * 2);
}
}
}
int64_t nTime1 = GetTimeMicros(); nTimeCheck += nTime1 - nTimeStart;
LogPrint(BCLog::BENCH, " - Sanity checks: %.2fms [%.2fs (%.2fms/blk)]\n", MILLI * (nTime1 - nTimeStart), nTimeCheck * MICRO, nTimeCheck * MILLI / nBlocksTotal);
// Do not allow blocks that contain transactions which 'overwrite' older transactions,
// unless those are already completely spent.
// If such overwrites are allowed, coinbases and transactions depending upon those
// can be duplicated to remove the ability to spend the first instance -- even after
// being sent to another address.
// See BIP30, CVE-2012-1909, and http://r6.ca/blog/20120206T005236Z.html for more information.
2015-04-28 11:48:28 -03:00
// This rule was originally applied to all blocks with a timestamp after March 15, 2012, 0:00 UTC.
// Now that the whole chain is irreversibly beyond that time it is applied to all blocks except the
2015-04-28 11:47:17 -03:00
// two in the chain that violate it. This prevents exploiting the issue against nodes during their
// initial block download.
bool fEnforceBIP30 = !((pindex->nHeight==91842 && pindex->GetBlockHash() == uint256S("0x00000000000a4d0a398161ffc163c503763b1f4360639393e0e4c8e300e0caec")) ||
(pindex->nHeight==91880 && pindex->GetBlockHash() == uint256S("0x00000000000743f190a18c5577a3c2d2a1f610ae9601ac046a38084ccb7cd721")));
// Once BIP34 activated it was not possible to create new duplicate coinbases and thus other than starting
// with the 2 existing duplicate coinbase pairs, not possible to create overwriting txs. But by the
// time BIP34 activated, in each of the existing pairs the duplicate coinbase had overwritten the first
2018-03-18 11:26:45 -03:00
// before the first had been spent. Since those coinbases are sufficiently buried it's no longer possible to create further
// duplicate transactions descending from the known pairs either.
// If we're on the known chain at height greater than where BIP34 activated, we can save the db accesses needed for the BIP30 check.
2017-10-05 14:43:47 -03:00
// BIP34 requires that a block at height X (block X) has its coinbase
// scriptSig start with a CScriptNum of X (indicated height X). The above
// logic of no longer requiring BIP30 once BIP34 activates is flawed in the
// case that there is a block X before the BIP34 height of 227,931 which has
// an indicated height Y where Y is greater than X. The coinbase for block
// X would also be a valid coinbase for block Y, which could be a BIP30
// violation. An exhaustive search of all mainnet coinbases before the
// BIP34 height which have an indicated height greater than the block height
// reveals many occurrences. The 3 lowest indicated heights found are
// 209,921, 490,897, and 1,983,702 and thus coinbases for blocks at these 3
// heights would be the first opportunity for BIP30 to be violated.
// The search reveals a great many blocks which have an indicated height
// greater than 1,983,702, so we simply remove the optimization to skip
// BIP30 checking for blocks at height 1,983,702 or higher. Before we reach
// that block in another 25 years or so, we should take advantage of a
// future consensus change to do a new and improved version of BIP34 that
// will actually prevent ever creating any duplicate coinbases in the
// future.
static constexpr int BIP34_IMPLIES_BIP30_LIMIT = 1983702;
// There is no potential to create a duplicate coinbase at block 209,921
// because this is still before the BIP34 height and so explicit BIP30
// checking is still active.
// The final case is block 176,684 which has an indicated height of
// 490,897. Unfortunately, this issue was not discovered until about 2 weeks
// before block 490,897 so there was not much opportunity to address this
// case other than to carefully analyze it and determine it would not be a
// problem. Block 490,897 was, in fact, mined with a different coinbase than
// block 176,684, but it is important to note that even if it hadn't been or
// is remined on an alternate fork with a duplicate coinbase, we would still
// not run into a BIP30 violation. This is because the coinbase for 176,684
// is spent in block 185,956 in transaction
// d4f7fbbf92f4a3014a230b2dc70b8058d02eb36ac06b4a0736d9d60eaa9e8781. This
// spending transaction can't be duplicated because it also spends coinbase
// 0328dd85c331237f18e781d692c92de57649529bd5edf1d01036daea32ffde29. This
// coinbase has an indicated height of over 4.2 billion, and wouldn't be
// duplicatable until that height, and it's currently impossible to create a
// chain that long. Nevertheless we may wish to consider a future soft fork
// which retroactively prevents block 490,897 from creating a duplicate
// coinbase. The two historical BIP30 violations often provide a confusing
// edge case when manipulating the UTXO and it would be simpler not to have
// another edge case to deal with.
// testnet3 has no blocks before the BIP34 height with indicated heights
// post BIP34 before approximately height 486,000,000 and presumably will
// be reset before it reaches block 1,983,702 and starts doing unnecessary
// BIP30 checking again.
assert(pindex->pprev);
CBlockIndex* pindexBIP34height = pindex->pprev->GetAncestor(m_params.GetConsensus().BIP34Height);
//Only continue to enforce if we're below BIP34 activation height or the block hash at that height doesn't correspond.
fEnforceBIP30 = fEnforceBIP30 && (!pindexBIP34height || !(pindexBIP34height->GetBlockHash() == m_params.GetConsensus().BIP34Hash));
2017-10-05 14:43:47 -03:00
// TODO: Remove BIP30 checking from block height 1,983,702 on, once we have a
// consensus change that ensures coinbases at those heights can not
// duplicate earlier coinbases.
if (fEnforceBIP30 || pindex->nHeight >= BIP34_IMPLIES_BIP30_LIMIT) {
for (const auto& tx : block.vtx) {
for (size_t o = 0; o < tx->vout.size(); o++) {
if (view.HaveCoin(COutPoint(tx->GetHash(), o))) {
LogPrintf("ERROR: ConnectBlock(): tried to overwrite transaction\n");
return state.Invalid(BlockValidationResult::BLOCK_CONSENSUS, "bad-txns-BIP30");
}
}
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 12:54:00 -04:00
}
}
// Enforce BIP68 (sequence locks)
2016-02-16 13:37:43 -03:00
int nLockTimeFlags = 0;
if (DeploymentActiveAt(*pindex, m_params.GetConsensus(), Consensus::DEPLOYMENT_CSV)) {
2016-02-16 13:37:43 -03:00
nLockTimeFlags |= LOCKTIME_VERIFY_SEQUENCE;
}
// Get the script flags for this block
unsigned int flags = GetBlockScriptFlags(pindex, m_params.GetConsensus());
int64_t nTime2 = GetTimeMicros(); nTimeForks += nTime2 - nTime1;
LogPrint(BCLog::BENCH, " - Fork checks: %.2fms [%.2fs (%.2fms/blk)]\n", MILLI * (nTime2 - nTime1), nTimeForks * MICRO, nTimeForks * MILLI / nBlocksTotal);
CBlockUndo blockundo;
// Precomputed transaction data pointers must not be invalidated
// until after `control` has run the script checks (potentially
// in multiple threads). Preallocate the vector size so a new allocation
// doesn't invalidate pointers into the vector, and keep txsdata in scope
// for as long as `control`.
CCheckQueueControl<CScriptCheck> control(fScriptChecks && g_parallel_script_checks ? &scriptcheckqueue : nullptr);
std::vector<PrecomputedTransactionData> txsdata(block.vtx.size());
std::vector<int> prevheights;
2014-04-22 19:46:19 -03:00
CAmount nFees = 0;
int nInputs = 0;
int64_t nSigOpsCost = 0;
2014-09-03 09:54:37 -04:00
blockundo.vtxundo.reserve(block.vtx.size() - 1);
2013-06-23 21:50:06 -04:00
for (unsigned int i = 0; i < block.vtx.size(); i++)
{
const CTransaction &tx = *(block.vtx[i]);
nInputs += tx.vin.size();
if (!tx.IsCoinBase())
{
CAmount txfee = 0;
TxValidationState tx_state;
if (!Consensus::CheckTxInputs(tx, tx_state, view, pindex->nHeight, txfee)) {
// Any transaction validation failure in ConnectBlock is a block consensus failure
state.Invalid(BlockValidationResult::BLOCK_CONSENSUS,
tx_state.GetRejectReason(), tx_state.GetDebugMessage());
return error("%s: Consensus::CheckTxInputs: %s, %s", __func__, tx.GetHash().ToString(), state.ToString());
}
nFees += txfee;
if (!MoneyRange(nFees)) {
LogPrintf("ERROR: %s: accumulated fee in the block out of range.\n", __func__);
return state.Invalid(BlockValidationResult::BLOCK_CONSENSUS, "bad-txns-accumulated-fee-outofrange");
}
// Check that transaction is BIP68 final
// BIP68 lock checks (as opposed to nLockTime checks) must
// be in ConnectBlock because they require the UTXO set
prevheights.resize(tx.vin.size());
for (size_t j = 0; j < tx.vin.size(); j++) {
prevheights[j] = view.AccessCoin(tx.vin[j].prevout).nHeight;
}
if (!SequenceLocks(tx, nLockTimeFlags, prevheights, *pindex)) {
LogPrintf("ERROR: %s: contains a non-BIP68-final transaction\n", __func__);
return state.Invalid(BlockValidationResult::BLOCK_CONSENSUS, "bad-txns-nonfinal");
}
}
// GetTransactionSigOpCost counts 3 types of sigops:
// * legacy (always)
// * p2sh (when P2SH enabled in flags and excludes coinbase)
// * witness (when witness enabled in flags and excludes coinbase)
nSigOpsCost += GetTransactionSigOpCost(tx, view, flags);
if (nSigOpsCost > MAX_BLOCK_SIGOPS_COST) {
LogPrintf("ERROR: ConnectBlock(): too many sigops\n");
return state.Invalid(BlockValidationResult::BLOCK_CONSENSUS, "bad-blk-sigops");
}
if (!tx.IsCoinBase())
{
std::vector<CScriptCheck> vChecks;
bool fCacheResults = fJustCheck; /* Don't cache results if we're actually connecting blocks (still consult the cache, though) */
TxValidationState tx_state;
if (fScriptChecks && !CheckInputScripts(tx, tx_state, view, flags, fCacheResults, fCacheResults, txsdata[i], g_parallel_script_checks ? &vChecks : nullptr)) {
// Any transaction validation failure in ConnectBlock is a block consensus failure
state.Invalid(BlockValidationResult::BLOCK_CONSENSUS,
tx_state.GetRejectReason(), tx_state.GetDebugMessage());
return error("ConnectBlock(): CheckInputScripts on %s failed with %s",
tx.GetHash().ToString(), state.ToString());
}
control.Add(vChecks);
}
2014-09-03 09:54:37 -04:00
CTxUndo undoDummy;
if (i > 0) {
blockundo.vtxundo.push_back(CTxUndo());
}
UpdateCoins(tx, view, i == 0 ? undoDummy : blockundo.vtxundo.back(), pindex->nHeight);
}
int64_t nTime3 = GetTimeMicros(); nTimeConnect += nTime3 - nTime2;
LogPrint(BCLog::BENCH, " - Connect %u transactions: %.2fms (%.3fms/tx, %.3fms/txin) [%.2fs (%.2fms/blk)]\n", (unsigned)block.vtx.size(), MILLI * (nTime3 - nTime2), MILLI * (nTime3 - nTime2) / block.vtx.size(), nInputs <= 1 ? 0 : MILLI * (nTime3 - nTime2) / (nInputs-1), nTimeConnect * MICRO, nTimeConnect * MILLI / nBlocksTotal);
CAmount blockReward = nFees + GetBlockSubsidy(pindex->nHeight, m_params.GetConsensus());
if (block.vtx[0]->GetValueOut() > blockReward) {
LogPrintf("ERROR: ConnectBlock(): coinbase pays too much (actual=%d vs limit=%d)\n", block.vtx[0]->GetValueOut(), blockReward);
return state.Invalid(BlockValidationResult::BLOCK_CONSENSUS, "bad-cb-amount");
}
if (!control.Wait()) {
LogPrintf("ERROR: %s: CheckQueue failed\n", __func__);
return state.Invalid(BlockValidationResult::BLOCK_CONSENSUS, "block-validation-failed");
}
int64_t nTime4 = GetTimeMicros(); nTimeVerify += nTime4 - nTime2;
LogPrint(BCLog::BENCH, " - Verify %u txins: %.2fms (%.3fms/txin) [%.2fs (%.2fms/blk)]\n", nInputs - 1, MILLI * (nTime4 - nTime2), nInputs <= 1 ? 0 : MILLI * (nTime4 - nTime2) / (nInputs-1), nTimeVerify * MICRO, nTimeVerify * MILLI / nBlocksTotal);
if (fJustCheck)
return true;
if (!WriteUndoDataForBlock(blockundo, state, pindex, m_params)) {
return false;
}
if (!pindex->IsValid(BLOCK_VALID_SCRIPTS)) {
pindex->RaiseValidity(BLOCK_VALID_SCRIPTS);
setDirtyBlockIndex.insert(pindex);
}
assert(pindex->phashBlock);
// add this block to the view's block chain
view.SetBestBlock(pindex->GetBlockHash());
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 12:54:00 -04:00
int64_t nTime5 = GetTimeMicros(); nTimeIndex += nTime5 - nTime4;
LogPrint(BCLog::BENCH, " - Index writing: %.2fms [%.2fs (%.2fms/blk)]\n", MILLI * (nTime5 - nTime4), nTimeIndex * MICRO, nTimeIndex * MILLI / nBlocksTotal);
TRACE6(validation, block_connected,
block.GetHash().data(),
pindex->nHeight,
block.vtx.size(),
nInputs,
nSigOpsCost,
GetTimeMicros() - nTimeStart // in microseconds (µs)
);
return true;
}
CoinsCacheSizeState CChainState::GetCoinsCacheSizeState()
{
return this->GetCoinsCacheSizeState(
m_coinstip_cache_size_bytes,
gArgs.GetIntArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000);
}
CoinsCacheSizeState CChainState::GetCoinsCacheSizeState(
size_t max_coins_cache_size_bytes,
size_t max_mempool_size_bytes)
{
const int64_t nMempoolUsage = m_mempool ? m_mempool->DynamicMemoryUsage() : 0;
int64_t cacheSize = CoinsTip().DynamicMemoryUsage();
int64_t nTotalSpace =
max_coins_cache_size_bytes + std::max<int64_t>(max_mempool_size_bytes - nMempoolUsage, 0);
//! No need to periodic flush if at least this much space still available.
static constexpr int64_t MAX_BLOCK_COINSDB_USAGE_BYTES = 10 * 1024 * 1024; // 10MB
int64_t large_threshold =
std::max((9 * nTotalSpace) / 10, nTotalSpace - MAX_BLOCK_COINSDB_USAGE_BYTES);
if (cacheSize > nTotalSpace) {
LogPrintf("Cache size (%s) exceeds total space (%s)\n", cacheSize, nTotalSpace);
return CoinsCacheSizeState::CRITICAL;
} else if (cacheSize > large_threshold) {
return CoinsCacheSizeState::LARGE;
}
return CoinsCacheSizeState::OK;
}
bool CChainState::FlushStateToDisk(
BlockValidationState &state,
FlushStateMode mode,
int nManualPruneHeight)
{
LOCK(cs_main);
assert(this->CanFlushToDisk());
static std::chrono::microseconds nLastWrite{0};
static std::chrono::microseconds nLastFlush{0};
std::set<int> setFilesToPrune;
bool full_flush_completed = false;
const size_t coins_count = CoinsTip().GetCacheSize();
const size_t coins_mem_usage = CoinsTip().DynamicMemoryUsage();
2015-01-04 15:11:44 -03:00
try {
{
bool fFlushForPrune = false;
bool fDoFullFlush = false;
CoinsCacheSizeState cache_state = GetCoinsCacheSizeState();
LOCK(cs_LastBlockFile);
if (fPruneMode && (fCheckForPruning || nManualPruneHeight > 0) && !fReindex) {
// make sure we don't prune above the blockfilterindexes bestblocks
// pruning is height-based
int last_prune = m_chain.Height(); // last height we can prune
ForEachBlockFilterIndex([&](BlockFilterIndex& index) {
last_prune = std::max(1, std::min(last_prune, index.GetSummary().best_block_height));
});
if (nManualPruneHeight > 0) {
LOG_TIME_MILLIS_WITH_CATEGORY("find files to prune (manual)", BCLog::BENCH);
m_blockman.FindFilesToPruneManual(setFilesToPrune, std::min(last_prune, nManualPruneHeight), m_chain.Height());
} else {
LOG_TIME_MILLIS_WITH_CATEGORY("find files to prune", BCLog::BENCH);
m_blockman.FindFilesToPrune(setFilesToPrune, m_params.PruneAfterHeight(), m_chain.Height(), last_prune, IsInitialBlockDownload());
fCheckForPruning = false;
2014-11-25 12:26:20 -03:00
}
if (!setFilesToPrune.empty()) {
fFlushForPrune = true;
if (!fHavePruned) {
2021-07-01 04:24:58 -04:00
m_blockman.m_block_tree_db->WriteFlag("prunedblockfiles", true);
fHavePruned = true;
}
2014-11-25 12:26:20 -03:00
}
}
const auto nNow = GetTime<std::chrono::microseconds>();
// Avoid writing/flushing immediately after startup.
if (nLastWrite.count() == 0) {
nLastWrite = nNow;
}
if (nLastFlush.count() == 0) {
nLastFlush = nNow;
}
// The cache is large and we're within 10% and 10 MiB of the limit, but we have time now (not in the middle of a block processing).
bool fCacheLarge = mode == FlushStateMode::PERIODIC && cache_state >= CoinsCacheSizeState::LARGE;
// The cache is over the limit, we have to write now.
bool fCacheCritical = mode == FlushStateMode::IF_NEEDED && cache_state >= CoinsCacheSizeState::CRITICAL;
// It's been a while since we wrote the block index to disk. Do this frequently, so we don't need to redownload after a crash.
bool fPeriodicWrite = mode == FlushStateMode::PERIODIC && nNow > nLastWrite + DATABASE_WRITE_INTERVAL;
// It's been very long since we flushed the cache. Do this infrequently, to optimize cache usage.
bool fPeriodicFlush = mode == FlushStateMode::PERIODIC && nNow > nLastFlush + DATABASE_FLUSH_INTERVAL;
// Combine all conditions that result in a full cache flush.
scripted-diff: Convert 11 enums into scoped enums (C++11) -BEGIN VERIFY SCRIPT- sed -i 's/enum DBErrors/enum class DBErrors/g' src/wallet/walletdb.h git grep -l DB_ | xargs sed -i 's/DB_\(LOAD_OK\|CORRUPT\|NONCRITICAL_ERROR\|TOO_NEW\|LOAD_FAIL\|NEED_REWRITE\)/DBErrors::\1/g' sed -i 's/^ DBErrors::/ /g' src/wallet/walletdb.h sed -i 's/enum VerifyResult/enum class VerifyResult/g' src/wallet/db.h sed -i 's/\(VERIFY_OK\|RECOVER_OK\|RECOVER_FAIL\)/VerifyResult::\1/g' src/wallet/db.cpp sed -i 's/enum ThresholdState/enum class ThresholdState/g' src/versionbits.h git grep -l THRESHOLD_ | xargs sed -i 's/THRESHOLD_\(DEFINED\|STARTED\|LOCKED_IN\|ACTIVE\|FAILED\)/ThresholdState::\1/g' sed -i 's/^ ThresholdState::/ /g' src/versionbits.h sed -i 's/enum SigVersion/enum class SigVersion/g' src/script/interpreter.h git grep -l SIGVERSION_ | xargs sed -i 's/SIGVERSION_\(BASE\|WITNESS_V0\)/SigVersion::\1/g' sed -i 's/^ SigVersion::/ /g' src/script/interpreter.h sed -i 's/enum RetFormat {/enum class RetFormat {/g' src/rest.cpp sed -i 's/RF_\(UNDEF\|BINARY\|HEX\|JSON\)/RetFormat::\1/g' src/rest.cpp sed -i 's/^ RetFormat::/ /g' src/rest.cpp sed -i 's/enum HelpMessageMode {/enum class HelpMessageMode {/g' src/init.h git grep -l HMM_ | xargs sed -i 's/HMM_BITCOIN/HelpMessageMode::BITCOIN/g' sed -i 's/^ HelpMessageMode::/ /g' src/init.h sed -i 's/enum FeeEstimateHorizon/enum class FeeEstimateHorizon/g' src/policy/fees.h sed -i 's/enum RBFTransactionState/enum class RBFTransactionState/g' src/policy/rbf.h git grep -l RBF_ | xargs sed -i 's/RBF_TRANSACTIONSTATE_\(UNKNOWN\|REPLACEABLE_BIP125\|FINAL\)/RBFTransactionState::\1/g' sed -i 's/^ RBFTransactionState::/ /g' src/policy/rbf.h sed -i 's/enum BlockSource {/enum class BlockSource {/g' src/qt/clientmodel.h git grep -l BLOCK_SOURCE_ | xargs sed -i 's/BLOCK_SOURCE_\(NONE\|REINDEX\|DISK\|NETWORK\)/BlockSource::\1/g' sed -i 's/^ BlockSource::/ /g' src/qt/clientmodel.h sed -i 's/enum FlushStateMode {/enum class FlushStateMode {/g' src/validation.cpp sed -i 's/FLUSH_STATE_\(NONE\|IF_NEEDED\|PERIODIC\|ALWAYS\)/FlushStateMode::\1/g' src/validation.cpp sed -i 's/^ FlushStateMode::/ /g' src/validation.cpp sed -i 's/enum WitnessMode {/enum class WitnessMode {/g' src/test/script_tests.cpp sed -i 's/WITNESS_\(NONE\|PKH\|SH\)/WitnessMode::\1/g' src/test/script_tests.cpp sed -i 's/^ WitnessMode::/ /g' src/test/script_tests.cpp -END VERIFY SCRIPT-
2018-03-09 11:03:40 -03:00
fDoFullFlush = (mode == FlushStateMode::ALWAYS) || fCacheLarge || fCacheCritical || fPeriodicFlush || fFlushForPrune;
// Write blocks and block index to disk.
if (fDoFullFlush || fPeriodicWrite) {
// Ensure we can write block index
if (!CheckDiskSpace(gArgs.GetBlocksDirPath())) {
return AbortNode(state, "Disk space is too low!", _("Disk space is too low!"));
2018-09-01 19:18:02 -03:00
}
{
LOG_TIME_MILLIS_WITH_CATEGORY("write block and undo data to disk", BCLog::BENCH);
// First make sure all block and undo data is flushed to disk.
FlushBlockFile();
}
// Then update all block file information (which may refer to block and undo files).
{
LOG_TIME_MILLIS_WITH_CATEGORY("write block index to disk", BCLog::BENCH);
std::vector<std::pair<int, const CBlockFileInfo*> > vFiles;
vFiles.reserve(setDirtyFileInfo.size());
for (std::set<int>::iterator it = setDirtyFileInfo.begin(); it != setDirtyFileInfo.end(); ) {
vFiles.push_back(std::make_pair(*it, &vinfoBlockFile[*it]));
setDirtyFileInfo.erase(it++);
}
std::vector<const CBlockIndex*> vBlocks;
vBlocks.reserve(setDirtyBlockIndex.size());
for (std::set<CBlockIndex*>::iterator it = setDirtyBlockIndex.begin(); it != setDirtyBlockIndex.end(); ) {
vBlocks.push_back(*it);
setDirtyBlockIndex.erase(it++);
}
2021-07-01 04:24:58 -04:00
if (!m_blockman.m_block_tree_db->WriteBatchSync(vFiles, nLastBlockFile, vBlocks)) {
return AbortNode(state, "Failed to write to block index database");
}
}
// Finally remove any pruned files
if (fFlushForPrune) {
LOG_TIME_MILLIS_WITH_CATEGORY("unlink pruned files", BCLog::BENCH);
UnlinkPrunedFiles(setFilesToPrune);
}
nLastWrite = nNow;
}
// Flush best chain related state. This can only be done if the blocks / block index write was also done.
if (fDoFullFlush && !CoinsTip().GetBestBlock().IsNull()) {
LOG_TIME_MILLIS_WITH_CATEGORY(strprintf("write coins cache to disk (%d coins, %.2fkB)",
coins_count, coins_mem_usage / 1000), BCLog::BENCH);
// Typical Coin structures on disk are around 48 bytes in size.
// Pushing a new one to the database can cause it to be written
// twice (once in the log, and once in the tables). This is already
// an overestimation, as most will delete an existing entry or
// overwrite one. Still, use a conservative safety factor of 2.
if (!CheckDiskSpace(gArgs.GetDataDirNet(), 48 * 2 * 2 * CoinsTip().GetCacheSize())) {
return AbortNode(state, "Disk space is too low!", _("Disk space is too low!"));
2018-09-01 19:18:02 -03:00
}
// Flush the chainstate (which may refer to block index entries).
if (!CoinsTip().Flush())
return AbortNode(state, "Failed to write to coin database");
nLastFlush = nNow;
full_flush_completed = true;
}
TRACE6(utxocache, flush,
(int64_t)(GetTimeMicros() - nNow.count()), // in microseconds (µs)
(u_int32_t)mode,
(u_int64_t)coins_count,
(u_int64_t)coins_mem_usage,
(bool)fFlushForPrune,
(bool)fDoFullFlush);
}
if (full_flush_completed) {
// Update best block in wallet (so we can detect restored wallets).
GetMainSignals().ChainStateFlushed(m_chain.GetLocator());
2012-09-05 22:21:18 -03:00
}
2015-01-04 15:11:44 -03:00
} catch (const std::runtime_error& e) {
return AbortNode(state, std::string("System error while flushing: ") + e.what());
2015-01-04 15:11:44 -03:00
}
return true;
}
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 12:54:00 -04:00
void CChainState::ForceFlushStateToDisk()
{
BlockValidationState state;
if (!this->FlushStateToDisk(state, FlushStateMode::ALWAYS)) {
LogPrintf("%s: failed to flush state (%s)\n", __func__, state.ToString());
}
}
void CChainState::PruneAndFlush()
{
BlockValidationState state;
fCheckForPruning = true;
if (!this->FlushStateToDisk(state, FlushStateMode::NONE)) {
LogPrintf("%s: failed to flush state (%s)\n", __func__, state.ToString());
}
}
static void DoWarning(const bilingual_str& warning)
{
static bool fWarned = false;
SetMiscWarning(warning);
if (!fWarned) {
AlertNotify(warning.original);
fWarned = true;
}
}
/** Private helper function that concatenates warning messages. */
static void AppendWarning(bilingual_str& res, const bilingual_str& warn)
{
if (!res.empty()) res += Untranslated(", ");
res += warn;
}
static void UpdateTipLog(
const CCoinsViewCache& coins_tip,
const CBlockIndex* tip,
const CChainParams& params,
const std::string& func_name,
const std::string& prefix,
const std::string& warning_messages) EXCLUSIVE_LOCKS_REQUIRED(::cs_main)
{
AssertLockHeld(::cs_main);
LogPrintf("%s%s: new best=%s height=%d version=0x%08x log2_work=%f tx=%lu date='%s' progress=%f cache=%.1fMiB(%utxo)%s\n",
prefix, func_name,
tip->GetBlockHash().ToString(), tip->nHeight, tip->nVersion,
log(tip->nChainWork.getdouble()) / log(2.0), (unsigned long)tip->nChainTx,
FormatISO8601DateTime(tip->GetBlockTime()),
GuessVerificationProgress(params.TxData(), tip),
coins_tip.DynamicMemoryUsage() * (1.0 / (1 << 20)),
coins_tip.GetCacheSize(),
!warning_messages.empty() ? strprintf(" warning='%s'", warning_messages) : "");
}
void CChainState::UpdateTip(const CBlockIndex* pindexNew)
{
const auto& coins_tip = this->CoinsTip();
// The remainder of the function isn't relevant if we are not acting on
// the active chainstate, so return if need be.
if (this != &m_chainman.ActiveChainstate()) {
// Only log every so often so that we don't bury log messages at the tip.
constexpr int BACKGROUND_LOG_INTERVAL = 2000;
if (pindexNew->nHeight % BACKGROUND_LOG_INTERVAL == 0) {
UpdateTipLog(coins_tip, pindexNew, m_params, __func__, "[background validation] ", "");
}
return;
}
// New best block
if (m_mempool) {
m_mempool->AddTransactionsUpdated(1);
}
2012-05-13 00:43:24 -04:00
{
LOCK(g_best_block_mutex);
g_best_block = pindexNew->GetBlockHash();
g_best_block_cv.notify_all();
}
2012-05-13 00:43:24 -04:00
bilingual_str warning_messages;
if (!this->IsInitialBlockDownload()) {
const CBlockIndex* pindex = pindexNew;
for (int bit = 0; bit < VERSIONBITS_NUM_BITS; bit++) {
WarningBitsConditionChecker checker(bit);
ThresholdState state = checker.GetStateFor(pindex, m_params.GetConsensus(), warningcache[bit]);
scripted-diff: Convert 11 enums into scoped enums (C++11) -BEGIN VERIFY SCRIPT- sed -i 's/enum DBErrors/enum class DBErrors/g' src/wallet/walletdb.h git grep -l DB_ | xargs sed -i 's/DB_\(LOAD_OK\|CORRUPT\|NONCRITICAL_ERROR\|TOO_NEW\|LOAD_FAIL\|NEED_REWRITE\)/DBErrors::\1/g' sed -i 's/^ DBErrors::/ /g' src/wallet/walletdb.h sed -i 's/enum VerifyResult/enum class VerifyResult/g' src/wallet/db.h sed -i 's/\(VERIFY_OK\|RECOVER_OK\|RECOVER_FAIL\)/VerifyResult::\1/g' src/wallet/db.cpp sed -i 's/enum ThresholdState/enum class ThresholdState/g' src/versionbits.h git grep -l THRESHOLD_ | xargs sed -i 's/THRESHOLD_\(DEFINED\|STARTED\|LOCKED_IN\|ACTIVE\|FAILED\)/ThresholdState::\1/g' sed -i 's/^ ThresholdState::/ /g' src/versionbits.h sed -i 's/enum SigVersion/enum class SigVersion/g' src/script/interpreter.h git grep -l SIGVERSION_ | xargs sed -i 's/SIGVERSION_\(BASE\|WITNESS_V0\)/SigVersion::\1/g' sed -i 's/^ SigVersion::/ /g' src/script/interpreter.h sed -i 's/enum RetFormat {/enum class RetFormat {/g' src/rest.cpp sed -i 's/RF_\(UNDEF\|BINARY\|HEX\|JSON\)/RetFormat::\1/g' src/rest.cpp sed -i 's/^ RetFormat::/ /g' src/rest.cpp sed -i 's/enum HelpMessageMode {/enum class HelpMessageMode {/g' src/init.h git grep -l HMM_ | xargs sed -i 's/HMM_BITCOIN/HelpMessageMode::BITCOIN/g' sed -i 's/^ HelpMessageMode::/ /g' src/init.h sed -i 's/enum FeeEstimateHorizon/enum class FeeEstimateHorizon/g' src/policy/fees.h sed -i 's/enum RBFTransactionState/enum class RBFTransactionState/g' src/policy/rbf.h git grep -l RBF_ | xargs sed -i 's/RBF_TRANSACTIONSTATE_\(UNKNOWN\|REPLACEABLE_BIP125\|FINAL\)/RBFTransactionState::\1/g' sed -i 's/^ RBFTransactionState::/ /g' src/policy/rbf.h sed -i 's/enum BlockSource {/enum class BlockSource {/g' src/qt/clientmodel.h git grep -l BLOCK_SOURCE_ | xargs sed -i 's/BLOCK_SOURCE_\(NONE\|REINDEX\|DISK\|NETWORK\)/BlockSource::\1/g' sed -i 's/^ BlockSource::/ /g' src/qt/clientmodel.h sed -i 's/enum FlushStateMode {/enum class FlushStateMode {/g' src/validation.cpp sed -i 's/FLUSH_STATE_\(NONE\|IF_NEEDED\|PERIODIC\|ALWAYS\)/FlushStateMode::\1/g' src/validation.cpp sed -i 's/^ FlushStateMode::/ /g' src/validation.cpp sed -i 's/enum WitnessMode {/enum class WitnessMode {/g' src/test/script_tests.cpp sed -i 's/WITNESS_\(NONE\|PKH\|SH\)/WitnessMode::\1/g' src/test/script_tests.cpp sed -i 's/^ WitnessMode::/ /g' src/test/script_tests.cpp -END VERIFY SCRIPT-
2018-03-09 11:03:40 -03:00
if (state == ThresholdState::ACTIVE || state == ThresholdState::LOCKED_IN) {
const bilingual_str warning = strprintf(_("Unknown new rules activated (versionbit %i)"), bit);
scripted-diff: Convert 11 enums into scoped enums (C++11) -BEGIN VERIFY SCRIPT- sed -i 's/enum DBErrors/enum class DBErrors/g' src/wallet/walletdb.h git grep -l DB_ | xargs sed -i 's/DB_\(LOAD_OK\|CORRUPT\|NONCRITICAL_ERROR\|TOO_NEW\|LOAD_FAIL\|NEED_REWRITE\)/DBErrors::\1/g' sed -i 's/^ DBErrors::/ /g' src/wallet/walletdb.h sed -i 's/enum VerifyResult/enum class VerifyResult/g' src/wallet/db.h sed -i 's/\(VERIFY_OK\|RECOVER_OK\|RECOVER_FAIL\)/VerifyResult::\1/g' src/wallet/db.cpp sed -i 's/enum ThresholdState/enum class ThresholdState/g' src/versionbits.h git grep -l THRESHOLD_ | xargs sed -i 's/THRESHOLD_\(DEFINED\|STARTED\|LOCKED_IN\|ACTIVE\|FAILED\)/ThresholdState::\1/g' sed -i 's/^ ThresholdState::/ /g' src/versionbits.h sed -i 's/enum SigVersion/enum class SigVersion/g' src/script/interpreter.h git grep -l SIGVERSION_ | xargs sed -i 's/SIGVERSION_\(BASE\|WITNESS_V0\)/SigVersion::\1/g' sed -i 's/^ SigVersion::/ /g' src/script/interpreter.h sed -i 's/enum RetFormat {/enum class RetFormat {/g' src/rest.cpp sed -i 's/RF_\(UNDEF\|BINARY\|HEX\|JSON\)/RetFormat::\1/g' src/rest.cpp sed -i 's/^ RetFormat::/ /g' src/rest.cpp sed -i 's/enum HelpMessageMode {/enum class HelpMessageMode {/g' src/init.h git grep -l HMM_ | xargs sed -i 's/HMM_BITCOIN/HelpMessageMode::BITCOIN/g' sed -i 's/^ HelpMessageMode::/ /g' src/init.h sed -i 's/enum FeeEstimateHorizon/enum class FeeEstimateHorizon/g' src/policy/fees.h sed -i 's/enum RBFTransactionState/enum class RBFTransactionState/g' src/policy/rbf.h git grep -l RBF_ | xargs sed -i 's/RBF_TRANSACTIONSTATE_\(UNKNOWN\|REPLACEABLE_BIP125\|FINAL\)/RBFTransactionState::\1/g' sed -i 's/^ RBFTransactionState::/ /g' src/policy/rbf.h sed -i 's/enum BlockSource {/enum class BlockSource {/g' src/qt/clientmodel.h git grep -l BLOCK_SOURCE_ | xargs sed -i 's/BLOCK_SOURCE_\(NONE\|REINDEX\|DISK\|NETWORK\)/BlockSource::\1/g' sed -i 's/^ BlockSource::/ /g' src/qt/clientmodel.h sed -i 's/enum FlushStateMode {/enum class FlushStateMode {/g' src/validation.cpp sed -i 's/FLUSH_STATE_\(NONE\|IF_NEEDED\|PERIODIC\|ALWAYS\)/FlushStateMode::\1/g' src/validation.cpp sed -i 's/^ FlushStateMode::/ /g' src/validation.cpp sed -i 's/enum WitnessMode {/enum class WitnessMode {/g' src/test/script_tests.cpp sed -i 's/WITNESS_\(NONE\|PKH\|SH\)/WitnessMode::\1/g' src/test/script_tests.cpp sed -i 's/^ WitnessMode::/ /g' src/test/script_tests.cpp -END VERIFY SCRIPT-
2018-03-09 11:03:40 -03:00
if (state == ThresholdState::ACTIVE) {
DoWarning(warning);
} else {
AppendWarning(warning_messages, warning);
}
}
}
}
UpdateTipLog(coins_tip, pindexNew, m_params, __func__, "", warning_messages.original);
}
/** Disconnect m_chain's tip.
* After calling, the mempool will be in an inconsistent state, with
* transactions from disconnected blocks being added to disconnectpool. You
* should make the mempool consistent again by calling MaybeUpdateMempoolForReorg.
* with cs_main held.
*
* If disconnectpool is nullptr, then no disconnected transactions are added to
* disconnectpool (note that the caller is responsible for mempool consistency
* in any case).
*/
bool CChainState::DisconnectTip(BlockValidationState& state, DisconnectedBlockTransactions* disconnectpool)
{
AssertLockHeld(cs_main);
if (m_mempool) AssertLockHeld(m_mempool->cs);
CBlockIndex *pindexDelete = m_chain.Tip();
assert(pindexDelete);
// Read block from disk.
std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
CBlock& block = *pblock;
if (!ReadBlockFromDisk(block, pindexDelete, m_params.GetConsensus())) {
return error("DisconnectTip(): Failed to read block");
}
// Apply the block atomically to the chain state.
int64_t nStart = GetTimeMicros();
{
CCoinsViewCache view(&CoinsTip());
assert(view.GetBestBlock() == pindexDelete->GetBlockHash());
if (DisconnectBlock(block, pindexDelete, view) != DISCONNECT_OK)
return error("DisconnectTip(): DisconnectBlock %s failed", pindexDelete->GetBlockHash().ToString());
bool flushed = view.Flush();
assert(flushed);
}
LogPrint(BCLog::BENCH, "- Disconnect block: %.2fms\n", (GetTimeMicros() - nStart) * MILLI);
// Write the chain state to disk, if necessary.
if (!FlushStateToDisk(state, FlushStateMode::IF_NEEDED)) {
return false;
}
if (disconnectpool && m_mempool) {
// Save transactions to re-add to mempool at end of reorg
for (auto it = block.vtx.rbegin(); it != block.vtx.rend(); ++it) {
disconnectpool->addTransaction(*it);
}
while (disconnectpool->DynamicMemoryUsage() > MAX_DISCONNECTED_TX_POOL_SIZE * 1000) {
// Drop the earliest entry, and remove its children from the mempool.
auto it = disconnectpool->queuedTx.get<insertion_order>().begin();
m_mempool->removeRecursive(**it, MemPoolRemovalReason::REORG);
disconnectpool->removeEntry(it);
}
}
m_chain.SetTip(pindexDelete->pprev);
UpdateTip(pindexDelete->pprev);
// Let wallets know transactions went from 1-confirmed to
// 0-confirmed or conflicted:
GetMainSignals().BlockDisconnected(pblock, pindexDelete);
return true;
}
static int64_t nTimeReadFromDisk = 0;
static int64_t nTimeConnectTotal = 0;
static int64_t nTimeFlush = 0;
static int64_t nTimeChainState = 0;
static int64_t nTimePostConnect = 0;
struct PerBlockConnectTrace {
CBlockIndex* pindex = nullptr;
std::shared_ptr<const CBlock> pblock;
PerBlockConnectTrace() {}
};
/**
* Used to track blocks whose transactions were applied to the UTXO state as a
* part of a single ActivateBestChainStep call.
*
* This class is single-use, once you call GetBlocksConnected() you have to throw
* it away and make a new one.
*/
class ConnectTrace {
private:
std::vector<PerBlockConnectTrace> blocksConnected;
public:
explicit ConnectTrace() : blocksConnected(1) {}
void BlockConnected(CBlockIndex* pindex, std::shared_ptr<const CBlock> pblock) {
assert(!blocksConnected.back().pindex);
assert(pindex);
assert(pblock);
blocksConnected.back().pindex = pindex;
blocksConnected.back().pblock = std::move(pblock);
blocksConnected.emplace_back();
}
std::vector<PerBlockConnectTrace>& GetBlocksConnected() {
// We always keep one extra block at the end of our list because
// blocks are added after all the conflicted transactions have
// been filled in. Thus, the last entry should always be an empty
// one waiting for the transactions from the next block. We pop
// the last entry here to make sure the list we return is sane.
assert(!blocksConnected.back().pindex);
blocksConnected.pop_back();
return blocksConnected;
}
};
2015-05-31 10:36:44 -03:00
/**
* Connect a new block to m_chain. pblock is either nullptr or a pointer to a CBlock
* corresponding to pindexNew, to bypass loading it again from disk.
*
* The block is added to connectTrace if connection succeeds.
*/
bool CChainState::ConnectTip(BlockValidationState& state, CBlockIndex* pindexNew, const std::shared_ptr<const CBlock>& pblock, ConnectTrace& connectTrace, DisconnectedBlockTransactions& disconnectpool)
{
AssertLockHeld(cs_main);
if (m_mempool) AssertLockHeld(m_mempool->cs);
assert(pindexNew->pprev == m_chain.Tip());
// Read block from disk.
int64_t nTime1 = GetTimeMicros();
std::shared_ptr<const CBlock> pthisBlock;
2014-08-25 20:26:41 -04:00
if (!pblock) {
std::shared_ptr<CBlock> pblockNew = std::make_shared<CBlock>();
if (!ReadBlockFromDisk(*pblockNew, pindexNew, m_params.GetConsensus())) {
return AbortNode(state, "Failed to read block");
}
pthisBlock = pblockNew;
} else {
pthisBlock = pblock;
2014-08-25 20:26:41 -04:00
}
const CBlock& blockConnecting = *pthisBlock;
// Apply the block atomically to the chain state.
int64_t nTime2 = GetTimeMicros(); nTimeReadFromDisk += nTime2 - nTime1;
int64_t nTime3;
LogPrint(BCLog::BENCH, " - Load block from disk: %.2fms [%.2fs]\n", (nTime2 - nTime1) * MILLI, nTimeReadFromDisk * MICRO);
{
CCoinsViewCache view(&CoinsTip());
bool rv = ConnectBlock(blockConnecting, state, pindexNew, view);
GetMainSignals().BlockChecked(blockConnecting, state);
if (!rv) {
if (state.IsInvalid())
InvalidBlockFound(pindexNew, state);
return error("%s: ConnectBlock %s failed, %s", __func__, pindexNew->GetBlockHash().ToString(), state.ToString());
2013-01-26 21:24:06 -03:00
}
nTime3 = GetTimeMicros(); nTimeConnectTotal += nTime3 - nTime2;
2019-01-29 10:03:53 -03:00
assert(nBlocksTotal > 0);
LogPrint(BCLog::BENCH, " - Connect total: %.2fms [%.2fs (%.2fms/blk)]\n", (nTime3 - nTime2) * MILLI, nTimeConnectTotal * MICRO, nTimeConnectTotal * MILLI / nBlocksTotal);
bool flushed = view.Flush();
assert(flushed);
}
int64_t nTime4 = GetTimeMicros(); nTimeFlush += nTime4 - nTime3;
LogPrint(BCLog::BENCH, " - Flush: %.2fms [%.2fs (%.2fms/blk)]\n", (nTime4 - nTime3) * MILLI, nTimeFlush * MICRO, nTimeFlush * MILLI / nBlocksTotal);
// Write the chain state to disk, if necessary.
if (!FlushStateToDisk(state, FlushStateMode::IF_NEEDED)) {
return false;
}
int64_t nTime5 = GetTimeMicros(); nTimeChainState += nTime5 - nTime4;
LogPrint(BCLog::BENCH, " - Writing chainstate: %.2fms [%.2fs (%.2fms/blk)]\n", (nTime5 - nTime4) * MILLI, nTimeChainState * MICRO, nTimeChainState * MILLI / nBlocksTotal);
// Remove conflicting transactions from the mempool.;
if (m_mempool) {
m_mempool->removeForBlock(blockConnecting.vtx, pindexNew->nHeight);
disconnectpool.removeForBlock(blockConnecting.vtx);
}
// Update m_chain & related variables.
m_chain.SetTip(pindexNew);
UpdateTip(pindexNew);
int64_t nTime6 = GetTimeMicros(); nTimePostConnect += nTime6 - nTime5; nTimeTotal += nTime6 - nTime1;
LogPrint(BCLog::BENCH, " - Connect postprocess: %.2fms [%.2fs (%.2fms/blk)]\n", (nTime6 - nTime5) * MILLI, nTimePostConnect * MICRO, nTimePostConnect * MILLI / nBlocksTotal);
LogPrint(BCLog::BENCH, "- Connect block: %.2fms [%.2fs (%.2fms/blk)]\n", (nTime6 - nTime1) * MILLI, nTimeTotal * MICRO, nTimeTotal * MILLI / nBlocksTotal);
connectTrace.BlockConnected(pindexNew, std::move(pthisBlock));
return true;
}
/**
* Return the tip of the chain with the most work in it, that isn't
* known to be invalid (it's however far from certain to be valid).
*/
CBlockIndex* CChainState::FindMostWorkChain() {
do {
CBlockIndex *pindexNew = nullptr;
// Find the best candidate header.
{
std::set<CBlockIndex*, CBlockIndexWorkComparator>::reverse_iterator it = setBlockIndexCandidates.rbegin();
if (it == setBlockIndexCandidates.rend())
return nullptr;
pindexNew = *it;
}
// Check whether all blocks on the path between the currently active chain and the candidate are valid.
// Just going until the active chain is an optimization, as we know all blocks in it are valid already.
CBlockIndex *pindexTest = pindexNew;
bool fInvalidAncestor = false;
while (pindexTest && !m_chain.Contains(pindexTest)) {
assert(pindexTest->HaveTxsDownloaded() || pindexTest->nHeight == 0);
// Pruned nodes may have entries in setBlockIndexCandidates for
// which block files have been deleted. Remove those as candidates
// for the most work chain if we come across them; we can't switch
// to a chain unless we have all the non-active-chain parent blocks.
bool fFailedChain = pindexTest->nStatus & BLOCK_FAILED_MASK;
bool fMissingData = !(pindexTest->nStatus & BLOCK_HAVE_DATA);
if (fFailedChain || fMissingData) {
// Candidate chain is not usable (either invalid or missing data)
if (fFailedChain && (pindexBestInvalid == nullptr || pindexNew->nChainWork > pindexBestInvalid->nChainWork))
pindexBestInvalid = pindexNew;
CBlockIndex *pindexFailed = pindexNew;
// Remove the entire chain from the set.
while (pindexTest != pindexFailed) {
if (fFailedChain) {
pindexFailed->nStatus |= BLOCK_FAILED_CHILD;
} else if (fMissingData) {
// If we're missing data, then add back to m_blocks_unlinked,
// so that if the block arrives in the future we can try adding
// to setBlockIndexCandidates again.
m_blockman.m_blocks_unlinked.insert(
std::make_pair(pindexFailed->pprev, pindexFailed));
}
setBlockIndexCandidates.erase(pindexFailed);
pindexFailed = pindexFailed->pprev;
}
setBlockIndexCandidates.erase(pindexTest);
fInvalidAncestor = true;
break;
2013-01-26 20:14:11 -03:00
}
pindexTest = pindexTest->pprev;
}
if (!fInvalidAncestor)
return pindexNew;
} while(true);
}
/** Delete all entries in setBlockIndexCandidates that are worse than the current tip. */
void CChainState::PruneBlockIndexCandidates() {
// Note that we can't delete the current block itself, as we may need to return to it later in case a
// reorganization to a better block fails.
std::set<CBlockIndex*, CBlockIndexWorkComparator>::iterator it = setBlockIndexCandidates.begin();
while (it != setBlockIndexCandidates.end() && setBlockIndexCandidates.value_comp()(*it, m_chain.Tip())) {
setBlockIndexCandidates.erase(it++);
}
2014-11-20 08:43:50 -03:00
// Either the current tip or a successor of it we're working towards is left in setBlockIndexCandidates.
assert(!setBlockIndexCandidates.empty());
}
/**
* Try to make some progress towards making pindexMostWork the active block.
* pblock is either nullptr or a pointer to a CBlock corresponding to pindexMostWork.
*
* @returns true unless a system error occurred
*/
bool CChainState::ActivateBestChainStep(BlockValidationState& state, CBlockIndex* pindexMostWork, const std::shared_ptr<const CBlock>& pblock, bool& fInvalidFound, ConnectTrace& connectTrace)
{
AssertLockHeld(cs_main);
if (m_mempool) AssertLockHeld(m_mempool->cs);
const CBlockIndex* pindexOldTip = m_chain.Tip();
const CBlockIndex* pindexFork = m_chain.FindFork(pindexMostWork);
// Disconnect active blocks which are no longer in the best chain.
bool fBlocksDisconnected = false;
DisconnectedBlockTransactions disconnectpool;
while (m_chain.Tip() && m_chain.Tip() != pindexFork) {
if (!DisconnectTip(state, &disconnectpool)) {
// This is likely a fatal error, but keep the mempool consistent,
// just in case. Only remove from the mempool in this case.
MaybeUpdateMempoolForReorg(disconnectpool, false);
// If we're unable to disconnect a block during normal operation,
// then that is a failure of our local system -- we should abort
// rather than stay on a less work chain.
AbortNode(state, "Failed to disconnect block; see debug.log for details");
return false;
}
fBlocksDisconnected = true;
}
// Build list of new blocks to connect (in descending height order).
std::vector<CBlockIndex*> vpindexToConnect;
bool fContinue = true;
int nHeight = pindexFork ? pindexFork->nHeight : -1;
while (fContinue && nHeight != pindexMostWork->nHeight) {
// Don't iterate the entire list of potential improvements toward the best tip, as we likely only need
// a few blocks along the way.
int nTargetHeight = std::min(nHeight + 32, pindexMostWork->nHeight);
vpindexToConnect.clear();
vpindexToConnect.reserve(nTargetHeight - nHeight);
CBlockIndex* pindexIter = pindexMostWork->GetAncestor(nTargetHeight);
while (pindexIter && pindexIter->nHeight != nHeight) {
vpindexToConnect.push_back(pindexIter);
pindexIter = pindexIter->pprev;
}
nHeight = nTargetHeight;
// Connect new blocks.
for (CBlockIndex* pindexConnect : reverse_iterate(vpindexToConnect)) {
if (!ConnectTip(state, pindexConnect, pindexConnect == pindexMostWork ? pblock : std::shared_ptr<const CBlock>(), connectTrace, disconnectpool)) {
if (state.IsInvalid()) {
// The block violates a consensus rule.
if (state.GetResult() != BlockValidationResult::BLOCK_MUTATED) {
InvalidChainFound(vpindexToConnect.front());
}
state = BlockValidationState();
fInvalidFound = true;
fContinue = false;
break;
} else {
// A system error occurred (disk space, database error, ...).
// Make the mempool consistent with the current tip, just in case
// any observers try to use it before shutdown.
MaybeUpdateMempoolForReorg(disconnectpool, false);
return false;
}
} else {
PruneBlockIndexCandidates();
if (!pindexOldTip || m_chain.Tip()->nChainWork > pindexOldTip->nChainWork) {
// We're in a better position than we were. Return temporarily to release the lock.
fContinue = false;
break;
}
}
}
}
if (fBlocksDisconnected) {
// If any blocks were disconnected, disconnectpool may be non empty. Add
// any disconnected transactions back to the mempool.
MaybeUpdateMempoolForReorg(disconnectpool, true);
}
if (m_mempool) m_mempool->check(this->CoinsTip(), this->m_chain.Height() + 1);
CheckForkWarningConditions();
return true;
}
static SynchronizationState GetSynchronizationState(bool init)
{
if (!init) return SynchronizationState::POST_INIT;
if (::fReindex) return SynchronizationState::INIT_REINDEX;
return SynchronizationState::INIT_DOWNLOAD;
}
static bool NotifyHeaderTip(CChainState& chainstate) LOCKS_EXCLUDED(cs_main) {
2016-04-28 11:18:45 -03:00
bool fNotify = false;
bool fInitialBlockDownload = false;
static CBlockIndex* pindexHeaderOld = nullptr;
CBlockIndex* pindexHeader = nullptr;
2016-04-28 11:18:45 -03:00
{
LOCK(cs_main);
pindexHeader = pindexBestHeader;
2016-04-28 11:18:45 -03:00
if (pindexHeader != pindexHeaderOld) {
fNotify = true;
fInitialBlockDownload = chainstate.IsInitialBlockDownload();
2016-04-28 11:18:45 -03:00
pindexHeaderOld = pindexHeader;
}
}
// Send block tip changed notifications without cs_main
if (fNotify) {
uiInterface.NotifyHeaderTip(GetSynchronizationState(fInitialBlockDownload), pindexHeader);
2016-04-28 11:18:45 -03:00
}
return fNotify;
2016-04-28 11:18:45 -03:00
}
static void LimitValidationInterfaceQueue() LOCKS_EXCLUDED(cs_main) {
AssertLockNotHeld(cs_main);
if (GetMainSignals().CallbacksPending() > 10) {
SyncWithValidationInterfaceQueue();
}
}
bool CChainState::ActivateBestChain(BlockValidationState& state, std::shared_ptr<const CBlock> pblock)
{
// Note that while we're often called here from ProcessNewBlock, this is
// far from a guarantee. Things in the P2P/RPC will often end up calling
// us in the middle of ProcessNewBlock - do not assume pblock is set
// sanely for performance or correctness!
AssertLockNotHeld(cs_main);
// ABC maintains a fair degree of expensive-to-calculate internal state
// because this function periodically releases cs_main so that it does not lock up other threads for too long
// during large connects - and to allow for e.g. the callback queue to drain
// we use m_cs_chainstate to enforce mutual exclusion so that only one caller may execute this function at a time
LOCK(m_cs_chainstate);
CBlockIndex *pindexMostWork = nullptr;
CBlockIndex *pindexNewTip = nullptr;
int nStopAtHeight = gArgs.GetIntArg("-stopatheight", DEFAULT_STOPATHEIGHT);
do {
// Block until the validation queue drains. This should largely
// never happen in normal operation, however may happen during
// reindex, causing memory blowup if we run too far ahead.
// Note that if a validationinterface callback ends up calling
// ActivateBestChain this may lead to a deadlock! We should
// probably have a DEBUG_LOCKORDER test for this in the future.
LimitValidationInterfaceQueue();
{
LOCK(cs_main);
// Lock transaction pool for at least as long as it takes for connectTrace to be consumed
LOCK(MempoolMutex());
CBlockIndex* starting_tip = m_chain.Tip();
bool blocks_connected = false;
do {
// We absolutely may not unlock cs_main until we've made forward progress
// (with the exception of shutdown due to hardware issues, low disk space, etc).
ConnectTrace connectTrace; // Destructed before cs_main is unlocked
if (pindexMostWork == nullptr) {
pindexMostWork = FindMostWorkChain();
}
// Whether we have anything to do at all.
if (pindexMostWork == nullptr || pindexMostWork == m_chain.Tip()) {
break;
}
bool fInvalidFound = false;
std::shared_ptr<const CBlock> nullBlockPtr;
if (!ActivateBestChainStep(state, pindexMostWork, pblock && pblock->GetHash() == pindexMostWork->GetBlockHash() ? pblock : nullBlockPtr, fInvalidFound, connectTrace)) {
// A system error occurred
return false;
}
blocks_connected = true;
if (fInvalidFound) {
// Wipe cache, we may need another branch now.
pindexMostWork = nullptr;
}
pindexNewTip = m_chain.Tip();
for (const PerBlockConnectTrace& trace : connectTrace.GetBlocksConnected()) {
assert(trace.pblock && trace.pindex);
GetMainSignals().BlockConnected(trace.pblock, trace.pindex);
}
} while (!m_chain.Tip() || (starting_tip && CBlockIndexWorkComparator()(m_chain.Tip(), starting_tip)));
if (!blocks_connected) return true;
const CBlockIndex* pindexFork = m_chain.FindFork(starting_tip);
bool fInitialDownload = IsInitialBlockDownload();
// Notify external listeners about the new tip.
// Enqueue while holding cs_main to ensure that UpdatedBlockTip is called in the order in which blocks are connected
if (pindexFork != pindexNewTip) {
// Notify ValidationInterface subscribers
GetMainSignals().UpdatedBlockTip(pindexNewTip, pindexFork, fInitialDownload);
// Always notify the UI if a new block tip was connected
uiInterface.NotifyBlockTip(GetSynchronizationState(fInitialDownload), pindexNewTip);
}
}
// When we reach this point, we switched to a new tip (stored in pindexNewTip).
if (nStopAtHeight && pindexNewTip && pindexNewTip->nHeight >= nStopAtHeight) StartShutdown();
// We check shutdown only after giving ActivateBestChainStep a chance to run once so that we
// never shutdown before connecting the genesis block during LoadChainTip(). Previously this
// caused an assert() failure during shutdown in such cases as the UTXO DB flushing checks
// that the best block hash is non-null.
if (ShutdownRequested()) break;
} while (pindexNewTip != pindexMostWork);
CheckBlockIndex();
// Write changes periodically to disk, after relay.
if (!FlushStateToDisk(state, FlushStateMode::PERIODIC)) {
return false;
}
return true;
}
bool CChainState::PreciousBlock(BlockValidationState& state, CBlockIndex* pindex)
{
{
LOCK(cs_main);
if (pindex->nChainWork < m_chain.Tip()->nChainWork) {
// Nothing to do, this block is not at the tip.
return true;
}
if (m_chain.Tip()->nChainWork > nLastPreciousChainwork) {
// The chain has been extended since the last call, reset the counter.
nBlockReverseSequenceId = -1;
}
nLastPreciousChainwork = m_chain.Tip()->nChainWork;
setBlockIndexCandidates.erase(pindex);
pindex->nSequenceId = nBlockReverseSequenceId;
if (nBlockReverseSequenceId > std::numeric_limits<int32_t>::min()) {
// We can't keep reducing the counter if somebody really wants to
// call preciousblock 2**31-1 times on the same set of tips...
nBlockReverseSequenceId--;
}
if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS) && pindex->HaveTxsDownloaded()) {
setBlockIndexCandidates.insert(pindex);
PruneBlockIndexCandidates();
}
}
return ActivateBestChain(state, std::shared_ptr<const CBlock>());
}
bool CChainState::InvalidateBlock(BlockValidationState& state, CBlockIndex* pindex)
{
// Genesis block can't be invalidated
assert(pindex);
if (pindex->nHeight == 0) return false;
CBlockIndex* to_mark_failed = pindex;
bool pindex_was_in_chain = false;
int disconnected = 0;
// We do not allow ActivateBestChain() to run while InvalidateBlock() is
// running, as that could cause the tip to change while we disconnect
// blocks.
LOCK(m_cs_chainstate);
// We'll be acquiring and releasing cs_main below, to allow the validation
// callbacks to run. However, we should keep the block index in a
// consistent state as we disconnect blocks -- in particular we need to
// add equal-work blocks to setBlockIndexCandidates as we disconnect.
// To avoid walking the block index repeatedly in search of candidates,
// build a map once so that we can look up candidate blocks by chain
// work as we go.
std::multimap<const arith_uint256, CBlockIndex *> candidate_blocks_by_work;
{
LOCK(cs_main);
for (const auto& entry : m_blockman.m_block_index) {
CBlockIndex *candidate = entry.second;
// We don't need to put anything in our active chain into the
// multimap, because those candidates will be found and considered
// as we disconnect.
// Instead, consider only non-active-chain blocks that have at
// least as much work as where we expect the new tip to end up.
if (!m_chain.Contains(candidate) &&
!CBlockIndexWorkComparator()(candidate, pindex->pprev) &&
candidate->IsValid(BLOCK_VALID_TRANSACTIONS) &&
candidate->HaveTxsDownloaded()) {
candidate_blocks_by_work.insert(std::make_pair(candidate->nChainWork, candidate));
}
}
}
// Disconnect (descendants of) pindex, and mark them invalid.
while (true) {
if (ShutdownRequested()) break;
// Make sure the queue of validation callbacks doesn't grow unboundedly.
LimitValidationInterfaceQueue();
LOCK(cs_main);
// Lock for as long as disconnectpool is in scope to make sure MaybeUpdateMempoolForReorg is
// called after DisconnectTip without unlocking in between
LOCK(MempoolMutex());
if (!m_chain.Contains(pindex)) break;
pindex_was_in_chain = true;
CBlockIndex *invalid_walk_tip = m_chain.Tip();
// ActivateBestChain considers blocks already in m_chain
// unconditionally valid already, so force disconnect away from it.
DisconnectedBlockTransactions disconnectpool;
bool ret = DisconnectTip(state, &disconnectpool);
// DisconnectTip will add transactions to disconnectpool.
// Adjust the mempool to be consistent with the new tip, adding
// transactions back to the mempool if disconnecting was successful,
// and we're not doing a very deep invalidation (in which case
// keeping the mempool up to date is probably futile anyway).
MaybeUpdateMempoolForReorg(disconnectpool, /* fAddToMempool = */ (++disconnected <= 10) && ret);
if (!ret) return false;
assert(invalid_walk_tip->pprev == m_chain.Tip());
// We immediately mark the disconnected blocks as invalid.
// This prevents a case where pruned nodes may fail to invalidateblock
// and be left unable to start as they have no tip candidates (as there
// are no blocks that meet the "have data and are not invalid per
// nStatus" criteria for inclusion in setBlockIndexCandidates).
invalid_walk_tip->nStatus |= BLOCK_FAILED_VALID;
setDirtyBlockIndex.insert(invalid_walk_tip);
setBlockIndexCandidates.erase(invalid_walk_tip);
setBlockIndexCandidates.insert(invalid_walk_tip->pprev);
if (invalid_walk_tip->pprev == to_mark_failed && (to_mark_failed->nStatus & BLOCK_FAILED_VALID)) {
// We only want to mark the last disconnected block as BLOCK_FAILED_VALID; its children
// need to be BLOCK_FAILED_CHILD instead.
to_mark_failed->nStatus = (to_mark_failed->nStatus ^ BLOCK_FAILED_VALID) | BLOCK_FAILED_CHILD;
setDirtyBlockIndex.insert(to_mark_failed);
}
// Add any equal or more work headers to setBlockIndexCandidates
auto candidate_it = candidate_blocks_by_work.lower_bound(invalid_walk_tip->pprev->nChainWork);
while (candidate_it != candidate_blocks_by_work.end()) {
if (!CBlockIndexWorkComparator()(candidate_it->second, invalid_walk_tip->pprev)) {
setBlockIndexCandidates.insert(candidate_it->second);
candidate_it = candidate_blocks_by_work.erase(candidate_it);
} else {
++candidate_it;
}
}
// Track the last disconnected block, so we can correct its BLOCK_FAILED_CHILD status in future
// iterations, or, if it's the last one, call InvalidChainFound on it.
to_mark_failed = invalid_walk_tip;
}
CheckBlockIndex();
{
LOCK(cs_main);
if (m_chain.Contains(to_mark_failed)) {
// If the to-be-marked invalid block is in the active chain, something is interfering and we can't proceed.
return false;
}
// Mark pindex (or the last disconnected block) as invalid, even when it never was in the main chain
to_mark_failed->nStatus |= BLOCK_FAILED_VALID;
setDirtyBlockIndex.insert(to_mark_failed);
setBlockIndexCandidates.erase(to_mark_failed);
m_blockman.m_failed_blocks.insert(to_mark_failed);
// If any new blocks somehow arrived while we were disconnecting
// (above), then the pre-calculation of what should go into
// setBlockIndexCandidates may have missed entries. This would
// technically be an inconsistency in the block index, but if we clean
// it up here, this should be an essentially unobservable error.
// Loop back over all block index entries and add any missing entries
// to setBlockIndexCandidates.
BlockMap::iterator it = m_blockman.m_block_index.begin();
while (it != m_blockman.m_block_index.end()) {
if (it->second->IsValid(BLOCK_VALID_TRANSACTIONS) && it->second->HaveTxsDownloaded() && !setBlockIndexCandidates.value_comp()(it->second, m_chain.Tip())) {
setBlockIndexCandidates.insert(it->second);
}
it++;
}
InvalidChainFound(to_mark_failed);
}
// Only notify about a new block tip if the active chain was modified.
if (pindex_was_in_chain) {
uiInterface.NotifyBlockTip(GetSynchronizationState(IsInitialBlockDownload()), to_mark_failed->pprev);
}
return true;
}
void CChainState::ResetBlockFailureFlags(CBlockIndex *pindex) {
AssertLockHeld(cs_main);
int nHeight = pindex->nHeight;
// Remove the invalidity flag from this block and all its descendants.
BlockMap::iterator it = m_blockman.m_block_index.begin();
while (it != m_blockman.m_block_index.end()) {
if (!it->second->IsValid() && it->second->GetAncestor(nHeight) == pindex) {
it->second->nStatus &= ~BLOCK_FAILED_MASK;
setDirtyBlockIndex.insert(it->second);
if (it->second->IsValid(BLOCK_VALID_TRANSACTIONS) && it->second->HaveTxsDownloaded() && setBlockIndexCandidates.value_comp()(m_chain.Tip(), it->second)) {
setBlockIndexCandidates.insert(it->second);
}
if (it->second == pindexBestInvalid) {
// Reset invalid block marker if it was pointing to one of those.
pindexBestInvalid = nullptr;
}
m_blockman.m_failed_blocks.erase(it->second);
}
it++;
}
// Remove the invalidity flag from all ancestors too.
while (pindex != nullptr) {
if (pindex->nStatus & BLOCK_FAILED_MASK) {
pindex->nStatus &= ~BLOCK_FAILED_MASK;
setDirtyBlockIndex.insert(pindex);
m_blockman.m_failed_blocks.erase(pindex);
}
pindex = pindex->pprev;
}
}
CBlockIndex* BlockManager::AddToBlockIndex(const CBlockHeader& block)
{
AssertLockHeld(cs_main);
// Check for duplicate
2013-06-23 22:00:18 -04:00
uint256 hash = block.GetHash();
BlockMap::iterator it = m_block_index.find(hash);
if (it != m_block_index.end())
return it->second;
// Construct new block index object
2013-06-23 22:00:18 -04:00
CBlockIndex* pindexNew = new CBlockIndex(block);
// We assign the sequence id to blocks only when the full data is available,
// to avoid miners withholding blocks but broadcasting headers, to get a
// competitive advantage.
pindexNew->nSequenceId = 0;
BlockMap::iterator mi = m_block_index.insert(std::make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
BlockMap::iterator miPrev = m_block_index.find(block.hashPrevBlock);
if (miPrev != m_block_index.end())
{
pindexNew->pprev = (*miPrev).second;
pindexNew->nHeight = pindexNew->pprev->nHeight + 1;
pindexNew->BuildSkip();
}
pindexNew->nTimeMax = (pindexNew->pprev ? std::max(pindexNew->pprev->nTimeMax, pindexNew->nTime) : pindexNew->nTime);
pindexNew->nChainWork = (pindexNew->pprev ? pindexNew->pprev->nChainWork : 0) + GetBlockProof(*pindexNew);
pindexNew->RaiseValidity(BLOCK_VALID_TREE);
if (pindexBestHeader == nullptr || pindexBestHeader->nChainWork < pindexNew->nChainWork)
pindexBestHeader = pindexNew;
setDirtyBlockIndex.insert(pindexNew);
return pindexNew;
}
/** Mark a block as having its data received and checked (up to BLOCK_VALID_TRANSACTIONS). */
void CChainState::ReceivedBlockTransactions(const CBlock& block, CBlockIndex* pindexNew, const FlatFilePos& pos)
{
pindexNew->nTx = block.vtx.size();
pindexNew->nChainTx = 0;
pindexNew->nFile = pos.nFile;
pindexNew->nDataPos = pos.nPos;
pindexNew->nUndoPos = 0;
pindexNew->nStatus |= BLOCK_HAVE_DATA;
if (DeploymentActiveAt(*pindexNew, m_params.GetConsensus(), Consensus::DEPLOYMENT_SEGWIT)) {
pindexNew->nStatus |= BLOCK_OPT_WITNESS;
}
pindexNew->RaiseValidity(BLOCK_VALID_TRANSACTIONS);
setDirtyBlockIndex.insert(pindexNew);
if (pindexNew->pprev == nullptr || pindexNew->pprev->HaveTxsDownloaded()) {
// If pindexNew is the genesis block or all parents are BLOCK_VALID_TRANSACTIONS.
std::deque<CBlockIndex*> queue;
queue.push_back(pindexNew);
// Recursively process any descendant blocks that now may be eligible to be connected.
while (!queue.empty()) {
CBlockIndex *pindex = queue.front();
queue.pop_front();
pindex->nChainTx = (pindex->pprev ? pindex->pprev->nChainTx : 0) + pindex->nTx;
pindex->nSequenceId = nBlockSequenceId++;
if (m_chain.Tip() == nullptr || !setBlockIndexCandidates.value_comp()(pindex, m_chain.Tip())) {
setBlockIndexCandidates.insert(pindex);
}
std::pair<std::multimap<CBlockIndex*, CBlockIndex*>::iterator, std::multimap<CBlockIndex*, CBlockIndex*>::iterator> range = m_blockman.m_blocks_unlinked.equal_range(pindex);
while (range.first != range.second) {
std::multimap<CBlockIndex*, CBlockIndex*>::iterator it = range.first;
queue.push_back(it->second);
range.first++;
m_blockman.m_blocks_unlinked.erase(it);
}
}
} else {
if (pindexNew->pprev && pindexNew->pprev->IsValid(BLOCK_VALID_TREE)) {
m_blockman.m_blocks_unlinked.insert(std::make_pair(pindexNew->pprev, pindexNew));
}
}
}
static bool CheckBlockHeader(const CBlockHeader& block, BlockValidationState& state, const Consensus::Params& consensusParams, bool fCheckPOW = true)
{
// Check proof of work matches claimed amount
if (fCheckPOW && !CheckProofOfWork(block.GetHash(), block.nBits, consensusParams))
return state.Invalid(BlockValidationResult::BLOCK_INVALID_HEADER, "high-hash", "proof of work failed");
return true;
}
bool CheckBlock(const CBlock& block, BlockValidationState& state, const Consensus::Params& consensusParams, bool fCheckPOW, bool fCheckMerkleRoot)
{
// These are checks that are independent of context.
2015-08-15 18:32:38 -03:00
if (block.fChecked)
return true;
// Check that the header is valid (particularly PoW). This is mostly
// redundant with the call in AcceptBlockHeader.
if (!CheckBlockHeader(block, state, consensusParams, fCheckPOW))
return false;
2019-07-17 05:40:34 -04:00
// Signet only: check block solution
if (consensusParams.signet_blocks && fCheckPOW && !CheckSignetBlockSolution(block, consensusParams)) {
return state.Invalid(BlockValidationResult::BLOCK_CONSENSUS, "bad-signet-blksig", "signet block signature validation failure");
}
// Check the merkle root.
if (fCheckMerkleRoot) {
bool mutated;
uint256 hashMerkleRoot2 = BlockMerkleRoot(block, &mutated);
if (block.hashMerkleRoot != hashMerkleRoot2)
return state.Invalid(BlockValidationResult::BLOCK_MUTATED, "bad-txnmrklroot", "hashMerkleRoot mismatch");
// Check for merkle tree malleability (CVE-2012-2459): repeating sequences
// of transactions in a block without affecting the merkle root of a block,
// while still invalidating it.
if (mutated)
return state.Invalid(BlockValidationResult::BLOCK_MUTATED, "bad-txns-duplicate", "duplicate transaction");
}
// All potential-corruption validation must be done before we do any
// transaction validation, as otherwise we may mark the header as invalid
// because we receive the wrong transactions for it.
// Note that witness malleability is checked in ContextualCheckBlock, so no
// checks that use witness data may be performed here.
// Size limits
if (block.vtx.empty() || block.vtx.size() * WITNESS_SCALE_FACTOR > MAX_BLOCK_WEIGHT || ::GetSerializeSize(block, PROTOCOL_VERSION | SERIALIZE_TRANSACTION_NO_WITNESS) * WITNESS_SCALE_FACTOR > MAX_BLOCK_WEIGHT)
return state.Invalid(BlockValidationResult::BLOCK_CONSENSUS, "bad-blk-length", "size limits failed");
// First transaction must be coinbase, the rest must not be
if (block.vtx.empty() || !block.vtx[0]->IsCoinBase())
return state.Invalid(BlockValidationResult::BLOCK_CONSENSUS, "bad-cb-missing", "first tx is not coinbase");
2013-06-23 22:14:11 -04:00
for (unsigned int i = 1; i < block.vtx.size(); i++)
if (block.vtx[i]->IsCoinBase())
return state.Invalid(BlockValidationResult::BLOCK_CONSENSUS, "bad-cb-multiple", "more than one coinbase");
// Check transactions
// Must check for duplicate inputs (see CVE-2018-17144)
for (const auto& tx : block.vtx) {
TxValidationState tx_state;
if (!CheckTransaction(*tx, tx_state)) {
// CheckBlock() does context-free validation checks. The only
// possible failures are consensus failures.
assert(tx_state.GetResult() == TxValidationResult::TX_CONSENSUS);
return state.Invalid(BlockValidationResult::BLOCK_CONSENSUS, tx_state.GetRejectReason(),
strprintf("Transaction check failed (tx hash %s) %s", tx->GetHash().ToString(), tx_state.GetDebugMessage()));
}
}
unsigned int nSigOps = 0;
for (const auto& tx : block.vtx)
{
nSigOps += GetLegacySigOpCount(*tx);
}
if (nSigOps * WITNESS_SCALE_FACTOR > MAX_BLOCK_SIGOPS_COST)
return state.Invalid(BlockValidationResult::BLOCK_CONSENSUS, "bad-blk-sigops", "out-of-bounds SigOpCount");
2015-08-15 18:32:38 -03:00
if (fCheckPOW && fCheckMerkleRoot)
block.fChecked = true;
return true;
}
void UpdateUncommittedBlockStructures(CBlock& block, const CBlockIndex* pindexPrev, const Consensus::Params& consensusParams)
{
int commitpos = GetWitnessCommitmentIndex(block);
static const std::vector<unsigned char> nonce(32, 0x00);
if (commitpos != NO_WITNESS_COMMITMENT && DeploymentActiveAfter(pindexPrev, consensusParams, Consensus::DEPLOYMENT_SEGWIT) && !block.vtx[0]->HasWitness()) {
CMutableTransaction tx(*block.vtx[0]);
2016-08-03 20:49:16 -04:00
tx.vin[0].scriptWitness.stack.resize(1);
tx.vin[0].scriptWitness.stack[0] = nonce;
block.vtx[0] = MakeTransactionRef(std::move(tx));
}
}
std::vector<unsigned char> GenerateCoinbaseCommitment(CBlock& block, const CBlockIndex* pindexPrev, const Consensus::Params& consensusParams)
{
std::vector<unsigned char> commitment;
int commitpos = GetWitnessCommitmentIndex(block);
std::vector<unsigned char> ret(32, 0x00);
if (commitpos == NO_WITNESS_COMMITMENT) {
uint256 witnessroot = BlockWitnessMerkleRoot(block, nullptr);
CHash256().Write(witnessroot).Write(ret).Finalize(witnessroot);
CTxOut out;
out.nValue = 0;
out.scriptPubKey.resize(MINIMUM_WITNESS_COMMITMENT);
out.scriptPubKey[0] = OP_RETURN;
out.scriptPubKey[1] = 0x24;
out.scriptPubKey[2] = 0xaa;
out.scriptPubKey[3] = 0x21;
out.scriptPubKey[4] = 0xa9;
out.scriptPubKey[5] = 0xed;
memcpy(&out.scriptPubKey[6], witnessroot.begin(), 32);
commitment = std::vector<unsigned char>(out.scriptPubKey.begin(), out.scriptPubKey.end());
CMutableTransaction tx(*block.vtx[0]);
tx.vout.push_back(out);
block.vtx[0] = MakeTransactionRef(std::move(tx));
}
UpdateUncommittedBlockStructures(block, pindexPrev, consensusParams);
return commitment;
}
CBlockIndex* BlockManager::GetLastCheckpoint(const CCheckpointData& data)
{
const MapCheckpoints& checkpoints = data.mapCheckpoints;
for (const MapCheckpoints::value_type& i : reverse_iterate(checkpoints))
{
const uint256& hash = i.second;
CBlockIndex* pindex = LookupBlockIndex(hash);
if (pindex) {
return pindex;
}
}
return nullptr;
}
/** Context-dependent validity checks.
* By "context", we mean only the previous block headers, but not the UTXO
* set; UTXO-related validity checks are done in ConnectBlock().
* NOTE: This function is not currently invoked by ConnectBlock(), so we
* should consider upgrade issues if we change which consensus rules are
* enforced in this function (eg by adding a new consensus rule). See comment
* in ConnectBlock().
* Note that -reindex-chainstate skips the validation that happens here!
*/
static bool ContextualCheckBlockHeader(const CBlockHeader& block, BlockValidationState& state, BlockManager& blockman, const CChainParams& params, const CBlockIndex* pindexPrev, int64_t nAdjustedTime) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
{
assert(pindexPrev != nullptr);
const int nHeight = pindexPrev->nHeight + 1;
// Check proof of work
const Consensus::Params& consensusParams = params.GetConsensus();
if (block.nBits != GetNextWorkRequired(pindexPrev, &block, consensusParams))
return state.Invalid(BlockValidationResult::BLOCK_INVALID_HEADER, "bad-diffbits", "incorrect proof of work");
// Check against checkpoints
if (fCheckpointsEnabled) {
// Don't accept any forks from the main chain prior to last checkpoint.
// GetLastCheckpoint finds the last checkpoint in MapCheckpoints that's in our
// BlockIndex().
CBlockIndex* pcheckpoint = blockman.GetLastCheckpoint(params.Checkpoints());
if (pcheckpoint && nHeight < pcheckpoint->nHeight) {
LogPrintf("ERROR: %s: forked chain older than last checkpoint (height %d)\n", __func__, nHeight);
return state.Invalid(BlockValidationResult::BLOCK_CHECKPOINT, "bad-fork-prior-to-checkpoint");
}
}
// Check timestamp against prev
if (block.GetBlockTime() <= pindexPrev->GetMedianTimePast())
return state.Invalid(BlockValidationResult::BLOCK_INVALID_HEADER, "time-too-old", "block's timestamp is too early");
2015-01-19 20:37:21 -03:00
// Check timestamp
if (block.GetBlockTime() > nAdjustedTime + MAX_FUTURE_BLOCK_TIME)
return state.Invalid(BlockValidationResult::BLOCK_TIME_FUTURE, "time-too-new", "block timestamp too far in the future");
// Reject blocks with outdated version
if ((block.nVersion < 2 && DeploymentActiveAfter(pindexPrev, consensusParams, Consensus::DEPLOYMENT_HEIGHTINCB)) ||
(block.nVersion < 3 && DeploymentActiveAfter(pindexPrev, consensusParams, Consensus::DEPLOYMENT_DERSIG)) ||
(block.nVersion < 4 && DeploymentActiveAfter(pindexPrev, consensusParams, Consensus::DEPLOYMENT_CLTV))) {
return state.Invalid(BlockValidationResult::BLOCK_INVALID_HEADER, strprintf("bad-version(0x%08x)", block.nVersion),
2016-07-21 19:27:55 -04:00
strprintf("rejected nVersion=0x%08x block", block.nVersion));
}
2015-01-19 20:37:21 -03:00
return true;
}
/** NOTE: This function is not currently invoked by ConnectBlock(), so we
* should consider upgrade issues if we change which consensus rules are
* enforced in this function (eg by adding a new consensus rule). See comment
* in ConnectBlock().
* Note that -reindex-chainstate skips the validation that happens here!
*/
static bool ContextualCheckBlock(const CBlock& block, BlockValidationState& state, const Consensus::Params& consensusParams, const CBlockIndex* pindexPrev)
{
const int nHeight = pindexPrev == nullptr ? 0 : pindexPrev->nHeight + 1;
// Enforce BIP113 (Median Time Past).
2016-02-16 13:33:31 -03:00
int nLockTimeFlags = 0;
if (DeploymentActiveAfter(pindexPrev, consensusParams, Consensus::DEPLOYMENT_CSV)) {
assert(pindexPrev != nullptr);
2016-02-16 13:33:31 -03:00
nLockTimeFlags |= LOCKTIME_MEDIAN_TIME_PAST;
}
int64_t nLockTimeCutoff = (nLockTimeFlags & LOCKTIME_MEDIAN_TIME_PAST)
? pindexPrev->GetMedianTimePast()
: block.GetBlockTime();
// Check that all transactions are finalized
for (const auto& tx : block.vtx) {
if (!IsFinalTx(*tx, nHeight, nLockTimeCutoff)) {
return state.Invalid(BlockValidationResult::BLOCK_CONSENSUS, "bad-txns-nonfinal", "non-final transaction");
}
}
2016-07-21 19:27:55 -04:00
// Enforce rule that the coinbase starts with serialized block height
if (DeploymentActiveAfter(pindexPrev, consensusParams, Consensus::DEPLOYMENT_HEIGHTINCB))
{
CScript expect = CScript() << nHeight;
if (block.vtx[0]->vin[0].scriptSig.size() < expect.size() ||
!std::equal(expect.begin(), expect.end(), block.vtx[0]->vin[0].scriptSig.begin())) {
return state.Invalid(BlockValidationResult::BLOCK_CONSENSUS, "bad-cb-height", "block height mismatch in coinbase");
}
}
// Validation for witness commitments.
// * We compute the witness hash (which is the hash including witnesses) of all the block's transactions, except the
// coinbase (where 0x0000....0000 is used instead).
// * The coinbase scriptWitness is a stack of a single 32-byte vector, containing a witness reserved value (unconstrained).
// * We build a merkle tree with all those witness hashes as leaves (similar to the hashMerkleRoot in the block header).
// * There must be at least one output whose scriptPubKey is a single 36-byte push, the first 4 bytes of which are
// {0xaa, 0x21, 0xa9, 0xed}, and the following 32 bytes are SHA256^2(witness root, witness reserved value). In case there are
// multiple, the last one is used.
bool fHaveWitness = false;
if (DeploymentActiveAfter(pindexPrev, consensusParams, Consensus::DEPLOYMENT_SEGWIT)) {
int commitpos = GetWitnessCommitmentIndex(block);
if (commitpos != NO_WITNESS_COMMITMENT) {
bool malleated = false;
uint256 hashWitness = BlockWitnessMerkleRoot(block, &malleated);
// The malleation check is ignored; as the transaction tree itself
// already does not permit it, it is impossible to trigger in the
// witness tree.
2016-08-03 20:49:16 -04:00
if (block.vtx[0]->vin[0].scriptWitness.stack.size() != 1 || block.vtx[0]->vin[0].scriptWitness.stack[0].size() != 32) {
return state.Invalid(BlockValidationResult::BLOCK_MUTATED, "bad-witness-nonce-size", strprintf("%s : invalid witness reserved value size", __func__));
}
2020-06-18 20:19:46 -04:00
CHash256().Write(hashWitness).Write(block.vtx[0]->vin[0].scriptWitness.stack[0]).Finalize(hashWitness);
if (memcmp(hashWitness.begin(), &block.vtx[0]->vout[commitpos].scriptPubKey[6], 32)) {
return state.Invalid(BlockValidationResult::BLOCK_MUTATED, "bad-witness-merkle-match", strprintf("%s : witness merkle commitment mismatch", __func__));
}
fHaveWitness = true;
}
}
// No witness data is allowed in blocks that don't commit to witness data, as this would otherwise leave room for spam
if (!fHaveWitness) {
for (const auto& tx : block.vtx) {
if (tx->HasWitness()) {
return state.Invalid(BlockValidationResult::BLOCK_MUTATED, "unexpected-witness", strprintf("%s : unexpected witness data found", __func__));
}
}
}
// After the coinbase witness reserved value and commitment are verified,
2016-07-18 13:28:26 -04:00
// we can check if the block weight passes (before we've checked the
// coinbase witness, it would be possible for the weight to be too
// large by filling up the coinbase witness, which doesn't change
// the block hash, so we couldn't mark the block as permanently
// failed).
2016-07-18 13:28:26 -04:00
if (GetBlockWeight(block) > MAX_BLOCK_WEIGHT) {
return state.Invalid(BlockValidationResult::BLOCK_CONSENSUS, "bad-blk-weight", strprintf("%s : weight limit failed", __func__));
}
return true;
}
bool BlockManager::AcceptBlockHeader(const CBlockHeader& block, BlockValidationState& state, const CChainParams& chainparams, CBlockIndex** ppindex)
{
AssertLockHeld(cs_main);
// Check for duplicate
2013-06-23 22:27:02 -04:00
uint256 hash = block.GetHash();
BlockMap::iterator miSelf = m_block_index.find(hash);
if (hash != chainparams.GetConsensus().hashGenesisBlock) {
if (miSelf != m_block_index.end()) {
// Block header is already known.
CBlockIndex* pindex = miSelf->second;
if (ppindex)
*ppindex = pindex;
if (pindex->nStatus & BLOCK_FAILED_MASK) {
LogPrint(BCLog::VALIDATION, "%s: block %s is marked invalid\n", __func__, hash.ToString());
return state.Invalid(BlockValidationResult::BLOCK_CACHED_INVALID, "duplicate");
}
return true;
}
if (!CheckBlockHeader(block, state, chainparams.GetConsensus())) {
LogPrint(BCLog::VALIDATION, "%s: Consensus::CheckBlockHeader: %s, %s\n", __func__, hash.ToString(), state.ToString());
return false;
}
// Get prev block index
CBlockIndex* pindexPrev = nullptr;
BlockMap::iterator mi = m_block_index.find(block.hashPrevBlock);
if (mi == m_block_index.end()) {
LogPrint(BCLog::VALIDATION, "%s: %s prev block not found\n", __func__, hash.ToString());
return state.Invalid(BlockValidationResult::BLOCK_MISSING_PREV, "prev-blk-not-found");
}
pindexPrev = (*mi).second;
if (pindexPrev->nStatus & BLOCK_FAILED_MASK) {
LogPrint(BCLog::VALIDATION, "%s: %s prev block invalid\n", __func__, hash.ToString());
return state.Invalid(BlockValidationResult::BLOCK_INVALID_PREV, "bad-prevblk");
}
if (!ContextualCheckBlockHeader(block, state, *this, chainparams, pindexPrev, GetAdjustedTime())) {
LogPrint(BCLog::VALIDATION, "%s: Consensus::ContextualCheckBlockHeader: %s, %s\n", __func__, hash.ToString(), state.ToString());
return false;
}
/* Determine if this block descends from any block which has been found
* invalid (m_failed_blocks), then mark pindexPrev and any blocks between
* them as failed. For example:
*
* D3
* /
* B2 - C2
* / \
* A D2 - E2 - F2
* \
* B1 - C1 - D1 - E1
*
* In the case that we attempted to reorg from E1 to F2, only to find
* C2 to be invalid, we would mark D2, E2, and F2 as BLOCK_FAILED_CHILD
* but NOT D3 (it was not in any of our candidate sets at the time).
*
* In any case D3 will also be marked as BLOCK_FAILED_CHILD at restart
* in LoadBlockIndex.
*/
if (!pindexPrev->IsValid(BLOCK_VALID_SCRIPTS)) {
// The above does not mean "invalid": it checks if the previous block
// hasn't been validated up to BLOCK_VALID_SCRIPTS. This is a performance
// optimization, in the common case of adding a new block to the tip,
// we don't need to iterate over the failed blocks list.
for (const CBlockIndex* failedit : m_failed_blocks) {
if (pindexPrev->GetAncestor(failedit->nHeight) == failedit) {
assert(failedit->nStatus & BLOCK_FAILED_VALID);
CBlockIndex* invalid_walk = pindexPrev;
while (invalid_walk != failedit) {
invalid_walk->nStatus |= BLOCK_FAILED_CHILD;
setDirtyBlockIndex.insert(invalid_walk);
invalid_walk = invalid_walk->pprev;
}
LogPrint(BCLog::VALIDATION, "%s: %s prev block invalid\n", __func__, hash.ToString());
return state.Invalid(BlockValidationResult::BLOCK_INVALID_PREV, "bad-prevblk");
}
}
}
}
CBlockIndex* pindex = AddToBlockIndex(block);
if (ppindex)
*ppindex = pindex;
return true;
}
// Exposed wrapper for AcceptBlockHeader
bool ChainstateManager::ProcessNewBlockHeaders(const std::vector<CBlockHeader>& headers, BlockValidationState& state, const CChainParams& chainparams, const CBlockIndex** ppindex)
{
AssertLockNotHeld(cs_main);
{
LOCK(cs_main);
for (const CBlockHeader& header : headers) {
CBlockIndex *pindex = nullptr; // Use a temp pindex instead of ppindex to avoid a const_cast
bool accepted = m_blockman.AcceptBlockHeader(
header, state, chainparams, &pindex);
ActiveChainstate().CheckBlockIndex();
if (!accepted) {
return false;
}
if (ppindex) {
*ppindex = pindex;
}
}
}
if (NotifyHeaderTip(ActiveChainstate())) {
if (ActiveChainstate().IsInitialBlockDownload() && ppindex && *ppindex) {
LogPrintf("Synchronizing blockheaders, height: %d (~%.2f%%)\n", (*ppindex)->nHeight, 100.0/((*ppindex)->nHeight+(GetAdjustedTime() - (*ppindex)->GetBlockTime()) / Params().GetConsensus().nPowTargetSpacing) * (*ppindex)->nHeight);
}
}
return true;
}
/** Store block on disk. If dbp is non-nullptr, the file is known to already reside on disk */
bool CChainState::AcceptBlock(const std::shared_ptr<const CBlock>& pblock, BlockValidationState& state, CBlockIndex** ppindex, bool fRequested, const FlatFilePos* dbp, bool* fNewBlock)
{
const CBlock& block = *pblock;
if (fNewBlock) *fNewBlock = false;
AssertLockHeld(cs_main);
CBlockIndex *pindexDummy = nullptr;
CBlockIndex *&pindex = ppindex ? *ppindex : pindexDummy;
bool accepted_header = m_blockman.AcceptBlockHeader(block, state, m_params, &pindex);
CheckBlockIndex();
if (!accepted_header)
return false;
// Try to process all requested blocks that we don't have, but only
// process an unrequested block if it's new and has enough work to
// advance our tip, and isn't too many blocks ahead.
bool fAlreadyHave = pindex->nStatus & BLOCK_HAVE_DATA;
bool fHasMoreOrSameWork = (m_chain.Tip() ? pindex->nChainWork >= m_chain.Tip()->nChainWork : true);
// Blocks that are too out-of-order needlessly limit the effectiveness of
// pruning, because pruning will not delete block files that contain any
// blocks which are too close in height to the tip. Apply this test
// regardless of whether pruning is enabled; it should generally be safe to
// not process unrequested blocks.
bool fTooFarAhead = (pindex->nHeight > int(m_chain.Height() + MIN_BLOCKS_TO_KEEP));
// TODO: Decouple this function from the block download logic by removing fRequested
2017-03-21 15:49:08 -03:00
// This requires some new chain data structure to efficiently look up if a
// block is in a chain leading to a candidate for best tip, despite not
// being such a candidate itself.
// Note that this would break the getblockfrompeer RPC
// TODO: deal better with return value and error conditions for duplicate
// and unrequested blocks.
if (fAlreadyHave) return true;
if (!fRequested) { // If we didn't ask for it:
if (pindex->nTx != 0) return true; // This is a previously-processed block that was pruned
if (!fHasMoreOrSameWork) return true; // Don't process less-work chains
if (fTooFarAhead) return true; // Block height is too high
// Protect against DoS attacks from low-work chains.
// If our tip is behind, a peer could try to send us
// low-work blocks on a fake chain that we would never
// request; don't process these.
if (pindex->nChainWork < nMinimumChainWork) return true;
}
if (!CheckBlock(block, state, m_params.GetConsensus()) ||
!ContextualCheckBlock(block, state, m_params.GetConsensus(), pindex->pprev)) {
if (state.IsInvalid() && state.GetResult() != BlockValidationResult::BLOCK_MUTATED) {
pindex->nStatus |= BLOCK_FAILED_VALID;
setDirtyBlockIndex.insert(pindex);
}
return error("%s: %s", __func__, state.ToString());
}
// Header is valid/has work, merkle tree and segwit merkle tree are good...RELAY NOW
// (but if it does not build on our best tip, let the SendMessages loop relay it)
if (!IsInitialBlockDownload() && m_chain.Tip() == pindex->pprev)
GetMainSignals().NewPoWValidBlock(pindex, pblock);
// Write block to history file
if (fNewBlock) *fNewBlock = true;
2013-01-28 21:44:19 -03:00
try {
FlatFilePos blockPos = SaveBlockToDisk(block, pindex->nHeight, m_chain, m_params, dbp);
2017-04-25 22:35:02 -03:00
if (blockPos.IsNull()) {
state.Error(strprintf("%s: Failed to find position to write new block to disk", __func__));
return false;
}
ReceivedBlockTransactions(block, pindex, blockPos);
} catch (const std::runtime_error& e) {
return AbortNode(state, std::string("System error: ") + e.what());
2013-01-28 21:44:19 -03:00
}
FlushStateToDisk(state, FlushStateMode::NONE);
CheckBlockIndex();
return true;
}
bool ChainstateManager::ProcessNewBlock(const CChainParams& chainparams, const std::shared_ptr<const CBlock>& block, bool force_processing, bool* new_block)
{
AssertLockNotHeld(cs_main);
{
CBlockIndex *pindex = nullptr;
if (new_block) *new_block = false;
BlockValidationState state;
// CheckBlock() does not support multi-threaded block validation because CBlock::fChecked can cause data race.
// Therefore, the following critical section must include the CheckBlock() call as well.
LOCK(cs_main);
// Skipping AcceptBlock() for CheckBlock() failures means that we will never mark a block as invalid if
// CheckBlock() fails. This is protective against consensus failure if there are any unknown forms of block
// malleability that cause CheckBlock() to fail; see e.g. CVE-2012-2459 and
// https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-February/016697.html. Because CheckBlock() is
// not very expensive, the anti-DoS benefits of caching failure (of a definitely-invalid block) are not substantial.
bool ret = CheckBlock(*block, state, chainparams.GetConsensus());
if (ret) {
// Store to disk
ret = ActiveChainstate().AcceptBlock(block, state, &pindex, force_processing, nullptr, new_block);
}
if (!ret) {
GetMainSignals().BlockChecked(*block, state);
return error("%s: AcceptBlock FAILED (%s)", __func__, state.ToString());
}
2014-05-07 11:10:35 -04:00
}
NotifyHeaderTip(ActiveChainstate());
2016-04-28 11:18:45 -03:00
BlockValidationState state; // Only used to report errors, not invalidity - ignore it
if (!ActiveChainstate().ActivateBestChain(state, block)) {
return error("%s: ActivateBestChain failed (%s)", __func__, state.ToString());
}
2014-05-07 11:10:35 -04:00
return true;
}
MempoolAcceptResult ChainstateManager::ProcessTransaction(const CTransactionRef& tx, bool test_accept)
{
CChainState& active_chainstate = ActiveChainstate();
if (!active_chainstate.GetMempool()) {
TxValidationState state;
state.Invalid(TxValidationResult::TX_NO_MEMPOOL, "no-mempool");
return MempoolAcceptResult::Failure(state);
}
auto result = AcceptToMemoryPool(active_chainstate, tx, GetTime(), /*bypass_limits=*/ false, test_accept);
active_chainstate.GetMempool()->check(active_chainstate.CoinsTip(), active_chainstate.m_chain.Height() + 1);
return result;
}
bool TestBlockValidity(BlockValidationState& state,
const CChainParams& chainparams,
CChainState& chainstate,
const CBlock& block,
CBlockIndex* pindexPrev,
bool fCheckPOW,
bool fCheckMerkleRoot)
{
AssertLockHeld(cs_main);
assert(pindexPrev && pindexPrev == chainstate.m_chain.Tip());
CCoinsViewCache viewNew(&chainstate.CoinsTip());
uint256 block_hash(block.GetHash());
CBlockIndex indexDummy(block);
indexDummy.pprev = pindexPrev;
indexDummy.nHeight = pindexPrev->nHeight + 1;
indexDummy.phashBlock = &block_hash;
// NOTE: CheckBlockHeader is called by CheckBlock
if (!ContextualCheckBlockHeader(block, state, chainstate.m_blockman, chainparams, pindexPrev, GetAdjustedTime()))
return error("%s: Consensus::ContextualCheckBlockHeader: %s", __func__, state.ToString());
if (!CheckBlock(block, state, chainparams.GetConsensus(), fCheckPOW, fCheckMerkleRoot))
return error("%s: Consensus::CheckBlock: %s", __func__, state.ToString());
if (!ContextualCheckBlock(block, state, chainparams.GetConsensus(), pindexPrev))
return error("%s: Consensus::ContextualCheckBlock: %s", __func__, state.ToString());
if (!chainstate.ConnectBlock(block, state, &indexDummy, viewNew, true)) {
return false;
}
assert(state.IsValid());
return true;
}
/**
* BLOCK PRUNING CODE
*/
void BlockManager::PruneOneBlockFile(const int fileNumber)
{
AssertLockHeld(cs_main);
LOCK(cs_LastBlockFile);
for (const auto& entry : m_block_index) {
CBlockIndex* pindex = entry.second;
if (pindex->nFile == fileNumber) {
pindex->nStatus &= ~BLOCK_HAVE_DATA;
pindex->nStatus &= ~BLOCK_HAVE_UNDO;
pindex->nFile = 0;
pindex->nDataPos = 0;
pindex->nUndoPos = 0;
setDirtyBlockIndex.insert(pindex);
// Prune from m_blocks_unlinked -- any block we prune would have
// to be downloaded again in order to consider its chain, at which
// point it would be considered as a candidate for
// m_blocks_unlinked or setBlockIndexCandidates.
auto range = m_blocks_unlinked.equal_range(pindex->pprev);
while (range.first != range.second) {
2016-09-02 13:19:01 -03:00
std::multimap<CBlockIndex *, CBlockIndex *>::iterator _it = range.first;
range.first++;
2016-09-02 13:19:01 -03:00
if (_it->second == pindex) {
m_blocks_unlinked.erase(_it);
}
}
}
}
vinfoBlockFile[fileNumber].SetNull();
setDirtyFileInfo.insert(fileNumber);
}
void BlockManager::FindFilesToPruneManual(std::set<int>& setFilesToPrune, int nManualPruneHeight, int chain_tip_height)
{
assert(fPruneMode && nManualPruneHeight > 0);
LOCK2(cs_main, cs_LastBlockFile);
if (chain_tip_height < 0) {
return;
}
// last block to prune is the lesser of (user-specified height, MIN_BLOCKS_TO_KEEP from the tip)
unsigned int nLastBlockWeCanPrune = std::min((unsigned)nManualPruneHeight, chain_tip_height - MIN_BLOCKS_TO_KEEP);
int count = 0;
for (int fileNumber = 0; fileNumber < nLastBlockFile; fileNumber++) {
if (vinfoBlockFile[fileNumber].nSize == 0 || vinfoBlockFile[fileNumber].nHeightLast > nLastBlockWeCanPrune) {
continue;
}
PruneOneBlockFile(fileNumber);
setFilesToPrune.insert(fileNumber);
count++;
}
LogPrintf("Prune (Manual): prune_height=%d removed %d blk/rev pairs\n", nLastBlockWeCanPrune, count);
}
/* This function is called from the RPC code for pruneblockchain */
void PruneBlockFilesManual(CChainState& active_chainstate, int nManualPruneHeight)
{
BlockValidationState state;
if (!active_chainstate.FlushStateToDisk(
state, FlushStateMode::NONE, nManualPruneHeight)) {
LogPrintf("%s: failed to flush state (%s)\n", __func__, state.ToString());
}
}
void BlockManager::FindFilesToPrune(std::set<int>& setFilesToPrune, uint64_t nPruneAfterHeight, int chain_tip_height, int prune_height, bool is_ibd)
{
LOCK2(cs_main, cs_LastBlockFile);
if (chain_tip_height < 0 || nPruneTarget == 0) {
return;
}
if ((uint64_t)chain_tip_height <= nPruneAfterHeight) {
return;
}
unsigned int nLastBlockWeCanPrune = std::min(prune_height, chain_tip_height - static_cast<int>(MIN_BLOCKS_TO_KEEP));
uint64_t nCurrentUsage = CalculateCurrentUsage();
// We don't check to prune until after we've allocated new space for files
// So we should leave a buffer under our target to account for another allocation
// before the next pruning.
uint64_t nBuffer = BLOCKFILE_CHUNK_SIZE + UNDOFILE_CHUNK_SIZE;
uint64_t nBytesToPrune;
int count = 0;
if (nCurrentUsage + nBuffer >= nPruneTarget) {
// On a prune event, the chainstate DB is flushed.
// To avoid excessive prune events negating the benefit of high dbcache
// values, we should not prune too rapidly.
// So when pruning in IBD, increase the buffer a bit to avoid a re-prune too soon.
if (is_ibd) {
// Since this is only relevant during IBD, we use a fixed 10%
nBuffer += nPruneTarget / 10;
}
for (int fileNumber = 0; fileNumber < nLastBlockFile; fileNumber++) {
nBytesToPrune = vinfoBlockFile[fileNumber].nSize + vinfoBlockFile[fileNumber].nUndoSize;
if (vinfoBlockFile[fileNumber].nSize == 0) {
continue;
}
if (nCurrentUsage + nBuffer < nPruneTarget) { // are we below our target?
break;
}
// don't prune files that could have a block within MIN_BLOCKS_TO_KEEP of the main chain's tip but keep scanning
if (vinfoBlockFile[fileNumber].nHeightLast > nLastBlockWeCanPrune) {
continue;
}
PruneOneBlockFile(fileNumber);
// Queue up the files for removal
setFilesToPrune.insert(fileNumber);
nCurrentUsage -= nBytesToPrune;
count++;
}
}
LogPrint(BCLog::PRUNE, "Prune: target=%dMiB actual=%dMiB diff=%dMiB max_prune_height=%d removed %d blk/rev pairs\n",
nPruneTarget/1024/1024, nCurrentUsage/1024/1024,
((int64_t)nPruneTarget - (int64_t)nCurrentUsage)/1024/1024,
nLastBlockWeCanPrune, count);
}
CBlockIndex * BlockManager::InsertBlockIndex(const uint256& hash)
{
AssertLockHeld(cs_main);
if (hash.IsNull())
return nullptr;
// Return existing
BlockMap::iterator mi = m_block_index.find(hash);
if (mi != m_block_index.end())
return (*mi).second;
// Create new
CBlockIndex* pindexNew = new CBlockIndex();
mi = m_block_index.insert(std::make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
return pindexNew;
}
bool BlockManager::LoadBlockIndex(
const Consensus::Params& consensus_params,
std::set<CBlockIndex*, CBlockIndexWorkComparator>& block_index_candidates)
{
2021-07-01 04:24:58 -04:00
if (!m_block_tree_db->LoadBlockIndexGuts(consensus_params, [this](const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { return this->InsertBlockIndex(hash); })) {
return false;
2021-07-01 04:24:58 -04:00
}
// Calculate nChainWork
std::vector<std::pair<int, CBlockIndex*> > vSortedByHeight;
vSortedByHeight.reserve(m_block_index.size());
for (const std::pair<const uint256, CBlockIndex*>& item : m_block_index)
{
CBlockIndex* pindex = item.second;
vSortedByHeight.push_back(std::make_pair(pindex->nHeight, pindex));
}
sort(vSortedByHeight.begin(), vSortedByHeight.end());
for (const std::pair<int, CBlockIndex*>& item : vSortedByHeight)
{
if (ShutdownRequested()) return false;
CBlockIndex* pindex = item.second;
pindex->nChainWork = (pindex->pprev ? pindex->pprev->nChainWork : 0) + GetBlockProof(*pindex);
pindex->nTimeMax = (pindex->pprev ? std::max(pindex->pprev->nTimeMax, pindex->nTime) : pindex->nTime);
// We can link the chain of blocks for which we've received transactions at some point.
// Pruned nodes may have deleted the block.
if (pindex->nTx > 0) {
if (pindex->pprev) {
if (pindex->pprev->HaveTxsDownloaded()) {
pindex->nChainTx = pindex->pprev->nChainTx + pindex->nTx;
} else {
pindex->nChainTx = 0;
m_blocks_unlinked.insert(std::make_pair(pindex->pprev, pindex));
}
} else {
pindex->nChainTx = pindex->nTx;
}
}
if (!(pindex->nStatus & BLOCK_FAILED_MASK) && pindex->pprev && (pindex->pprev->nStatus & BLOCK_FAILED_MASK)) {
pindex->nStatus |= BLOCK_FAILED_CHILD;
setDirtyBlockIndex.insert(pindex);
}
if (pindex->IsAssumedValid() ||
(pindex->IsValid(BLOCK_VALID_TRANSACTIONS) &&
(pindex->HaveTxsDownloaded() || pindex->pprev == nullptr))) {
block_index_candidates.insert(pindex);
}
if (pindex->nStatus & BLOCK_FAILED_MASK && (!pindexBestInvalid || pindex->nChainWork > pindexBestInvalid->nChainWork))
pindexBestInvalid = pindex;
if (pindex->pprev)
pindex->BuildSkip();
if (pindex->IsValid(BLOCK_VALID_TREE) && (pindexBestHeader == nullptr || CBlockIndexWorkComparator()(pindexBestHeader, pindex)))
pindexBestHeader = pindex;
}
return true;
}
void BlockManager::Unload() {
m_failed_blocks.clear();
m_blocks_unlinked.clear();
for (const BlockMap::value_type& entry : m_block_index) {
delete entry.second;
}
m_block_index.clear();
}
2021-07-01 03:58:06 -04:00
bool BlockManager::LoadBlockIndexDB(std::set<CBlockIndex*, CBlockIndexWorkComparator>& setBlockIndexCandidates)
{
2021-07-01 03:58:06 -04:00
if (!LoadBlockIndex(
2021-07-01 04:24:58 -04:00
::Params().GetConsensus(),
setBlockIndexCandidates)) {
return false;
}
// Load block file info
2021-07-01 04:24:58 -04:00
m_block_tree_db->ReadLastBlockFile(nLastBlockFile);
vinfoBlockFile.resize(nLastBlockFile + 1);
LogPrintf("%s: last block file = %i\n", __func__, nLastBlockFile);
for (int nFile = 0; nFile <= nLastBlockFile; nFile++) {
2021-07-01 04:24:58 -04:00
m_block_tree_db->ReadBlockFileInfo(nFile, vinfoBlockFile[nFile]);
}
LogPrintf("%s: last block file info: %s\n", __func__, vinfoBlockFile[nLastBlockFile].ToString());
for (int nFile = nLastBlockFile + 1; true; nFile++) {
CBlockFileInfo info;
2021-07-01 04:24:58 -04:00
if (m_block_tree_db->ReadBlockFileInfo(nFile, info)) {
vinfoBlockFile.push_back(info);
} else {
break;
}
}
// Check presence of blk files
LogPrintf("Checking all blk files are present...\n");
std::set<int> setBlkDataFiles;
2021-07-01 03:58:06 -04:00
for (const std::pair<const uint256, CBlockIndex*>& item : m_block_index) {
CBlockIndex* pindex = item.second;
if (pindex->nStatus & BLOCK_HAVE_DATA) {
setBlkDataFiles.insert(pindex->nFile);
}
}
for (std::set<int>::iterator it = setBlkDataFiles.begin(); it != setBlkDataFiles.end(); it++)
{
FlatFilePos pos(*it, 0);
if (CAutoFile(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION).IsNull()) {
return false;
}
}
// Check whether we have ever pruned block & undo files
2021-07-01 04:24:58 -04:00
m_block_tree_db->ReadFlag("prunedblockfiles", fHavePruned);
if (fHavePruned)
LogPrintf("LoadBlockIndexDB(): Block files have previously been pruned\n");
// Check whether we need to continue reindexing
bool fReindexing = false;
2021-07-01 04:24:58 -04:00
m_block_tree_db->ReadReindexing(fReindexing);
2017-08-23 22:45:26 -03:00
if(fReindexing) fReindex = true;
return true;
}
void CChainState::LoadMempool(const ArgsManager& args)
{
if (!m_mempool) return;
if (args.GetBoolArg("-persistmempool", DEFAULT_PERSIST_MEMPOOL)) {
::LoadMempool(*m_mempool, *this);
}
m_mempool->SetIsLoaded(!ShutdownRequested());
}
bool CChainState::LoadChainTip()
{
AssertLockHeld(cs_main);
const CCoinsViewCache& coins_cache = CoinsTip();
assert(!coins_cache.GetBestBlock().IsNull()); // Never called when the coins view is empty
const CBlockIndex* tip = m_chain.Tip();
if (tip && tip->GetBlockHash() == coins_cache.GetBestBlock()) {
return true;
}
// Load pointer to end of best chain
CBlockIndex* pindex = m_blockman.LookupBlockIndex(coins_cache.GetBestBlock());
2018-01-11 21:23:09 -03:00
if (!pindex) {
return false;
2018-01-11 21:23:09 -03:00
}
m_chain.SetTip(pindex);
PruneBlockIndexCandidates();
tip = m_chain.Tip();
LogPrintf("Loaded best chain: hashBestChain=%s height=%d date=%s progress=%f\n",
tip->GetBlockHash().ToString(),
m_chain.Height(),
FormatISO8601DateTime(tip->GetBlockTime()),
GuessVerificationProgress(m_params.TxData(), tip));
return true;
}
2014-05-23 12:04:09 -04:00
CVerifyDB::CVerifyDB()
{
uiInterface.ShowProgress(_("Verifying blocks…").translated, 0, false);
2014-05-23 12:04:09 -04:00
}
CVerifyDB::~CVerifyDB()
{
uiInterface.ShowProgress("", 100, false);
2014-05-23 12:04:09 -04:00
}
bool CVerifyDB::VerifyDB(
CChainState& chainstate,
const Consensus::Params& consensus_params,
CCoinsView& coinsview,
int nCheckLevel, int nCheckDepth)
{
AssertLockHeld(cs_main);
if (chainstate.m_chain.Tip() == nullptr || chainstate.m_chain.Tip()->pprev == nullptr)
return true;
// Verify blocks in the best chain
if (nCheckDepth <= 0 || nCheckDepth > chainstate.m_chain.Height())
nCheckDepth = chainstate.m_chain.Height();
nCheckLevel = std::max(0, std::min(4, nCheckLevel));
LogPrintf("Verifying last %i blocks at level %i\n", nCheckDepth, nCheckLevel);
CCoinsViewCache coins(&coinsview);
CBlockIndex* pindex;
CBlockIndex* pindexFailure = nullptr;
int nGoodTransactions = 0;
BlockValidationState state;
int reportDone = 0;
LogPrintf("[0%%]..."); /* Continued */
const bool is_snapshot_cs{!chainstate.m_from_snapshot_blockhash};
for (pindex = chainstate.m_chain.Tip(); pindex && pindex->pprev; pindex = pindex->pprev) {
const int percentageDone = std::max(1, std::min(99, (int)(((double)(chainstate.m_chain.Height() - pindex->nHeight)) / (double)nCheckDepth * (nCheckLevel >= 4 ? 50 : 100))));
if (reportDone < percentageDone/10) {
// report every 10% step
LogPrintf("[%d%%]...", percentageDone); /* Continued */
reportDone = percentageDone/10;
}
uiInterface.ShowProgress(_("Verifying blocks…").translated, percentageDone, false);
if (pindex->nHeight <= chainstate.m_chain.Height()-nCheckDepth)
break;
if ((fPruneMode || is_snapshot_cs) && !(pindex->nStatus & BLOCK_HAVE_DATA)) {
// If pruning or running under an assumeutxo snapshot, only go
// back as far as we have data.
LogPrintf("VerifyDB(): block verification stopping at height %d (pruning, no data)\n", pindex->nHeight);
break;
}
CBlock block;
// check level 0: read from disk
if (!ReadBlockFromDisk(block, pindex, consensus_params))
return error("VerifyDB(): *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
// check level 1: verify block validity
if (nCheckLevel >= 1 && !CheckBlock(block, state, consensus_params))
return error("%s: *** found bad block at %d, hash=%s (%s)\n", __func__,
pindex->nHeight, pindex->GetBlockHash().ToString(), state.ToString());
// check level 2: verify undo validity
if (nCheckLevel >= 2 && pindex) {
CBlockUndo undo;
if (!pindex->GetUndoPos().IsNull()) {
if (!UndoReadFromDisk(undo, pindex)) {
return error("VerifyDB(): *** found bad undo data at %d, hash=%s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
}
}
}
// check level 3: check for inconsistencies during memory-only disconnect of tip blocks
size_t curr_coins_usage = coins.DynamicMemoryUsage() + chainstate.CoinsTip().DynamicMemoryUsage();
if (nCheckLevel >= 3 && curr_coins_usage <= chainstate.m_coinstip_cache_size_bytes) {
assert(coins.GetBestBlock() == pindex->GetBlockHash());
DisconnectResult res = chainstate.DisconnectBlock(block, pindex, coins);
if (res == DISCONNECT_FAILED) {
return error("VerifyDB(): *** irrecoverable inconsistency in block data at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
}
if (res == DISCONNECT_UNCLEAN) {
nGoodTransactions = 0;
pindexFailure = pindex;
} else {
nGoodTransactions += block.vtx.size();
}
}
if (ShutdownRequested()) return true;
}
if (pindexFailure)
return error("VerifyDB(): *** coin database inconsistencies found (last %i blocks, %i good transactions before that)\n", chainstate.m_chain.Height() - pindexFailure->nHeight + 1, nGoodTransactions);
// store block count as we move pindex at check level >= 4
int block_count = chainstate.m_chain.Height() - pindex->nHeight;
// check level 4: try reconnecting blocks
if (nCheckLevel >= 4) {
while (pindex != chainstate.m_chain.Tip()) {
const int percentageDone = std::max(1, std::min(99, 100 - (int)(((double)(chainstate.m_chain.Height() - pindex->nHeight)) / (double)nCheckDepth * 50)));
if (reportDone < percentageDone/10) {
// report every 10% step
LogPrintf("[%d%%]...", percentageDone); /* Continued */
reportDone = percentageDone/10;
}
uiInterface.ShowProgress(_("Verifying blocks…").translated, percentageDone, false);
pindex = chainstate.m_chain.Next(pindex);
CBlock block;
if (!ReadBlockFromDisk(block, pindex, consensus_params))
return error("VerifyDB(): *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
if (!chainstate.ConnectBlock(block, state, pindex, coins)) {
return error("VerifyDB(): *** found unconnectable block at %d, hash=%s (%s)", pindex->nHeight, pindex->GetBlockHash().ToString(), state.ToString());
}
if (ShutdownRequested()) return true;
}
}
LogPrintf("[DONE].\n");
LogPrintf("No coin database inconsistencies in last %i blocks (%i transactions)\n", block_count, nGoodTransactions);
return true;
}
/** Apply the effects of a block on the utxo cache, ignoring that it may already have been applied. */
bool CChainState::RollforwardBlock(const CBlockIndex* pindex, CCoinsViewCache& inputs)
{
// TODO: merge with ConnectBlock
CBlock block;
if (!ReadBlockFromDisk(block, pindex, m_params.GetConsensus())) {
return error("ReplayBlock(): ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
}
for (const CTransactionRef& tx : block.vtx) {
if (!tx->IsCoinBase()) {
for (const CTxIn &txin : tx->vin) {
inputs.SpendCoin(txin.prevout);
}
}
// Pass check = true as every addition may be an overwrite.
AddCoins(inputs, *tx, pindex->nHeight, true);
}
return true;
}
bool CChainState::ReplayBlocks()
{
LOCK(cs_main);
CCoinsView& db = this->CoinsDB();
CCoinsViewCache cache(&db);
std::vector<uint256> hashHeads = db.GetHeadBlocks();
if (hashHeads.empty()) return true; // We're already in a consistent state.
if (hashHeads.size() != 2) return error("ReplayBlocks(): unknown inconsistent state");
uiInterface.ShowProgress(_("Replaying blocks…").translated, 0, false);
LogPrintf("Replaying blocks\n");
const CBlockIndex* pindexOld = nullptr; // Old tip during the interrupted flush.
const CBlockIndex* pindexNew; // New tip during the interrupted flush.
const CBlockIndex* pindexFork = nullptr; // Latest block common to both the old and the new tip.
if (m_blockman.m_block_index.count(hashHeads[0]) == 0) {
return error("ReplayBlocks(): reorganization to unknown block requested");
}
pindexNew = m_blockman.m_block_index[hashHeads[0]];
if (!hashHeads[1].IsNull()) { // The old tip is allowed to be 0, indicating it's the first flush.
if (m_blockman.m_block_index.count(hashHeads[1]) == 0) {
return error("ReplayBlocks(): reorganization from unknown block requested");
}
pindexOld = m_blockman.m_block_index[hashHeads[1]];
pindexFork = LastCommonAncestor(pindexOld, pindexNew);
assert(pindexFork != nullptr);
}
// Rollback along the old branch.
while (pindexOld != pindexFork) {
if (pindexOld->nHeight > 0) { // Never disconnect the genesis block.
CBlock block;
if (!ReadBlockFromDisk(block, pindexOld, m_params.GetConsensus())) {
return error("RollbackBlock(): ReadBlockFromDisk() failed at %d, hash=%s", pindexOld->nHeight, pindexOld->GetBlockHash().ToString());
}
LogPrintf("Rolling back %s (%i)\n", pindexOld->GetBlockHash().ToString(), pindexOld->nHeight);
DisconnectResult res = DisconnectBlock(block, pindexOld, cache);
if (res == DISCONNECT_FAILED) {
return error("RollbackBlock(): DisconnectBlock failed at %d, hash=%s", pindexOld->nHeight, pindexOld->GetBlockHash().ToString());
}
// If DISCONNECT_UNCLEAN is returned, it means a non-existing UTXO was deleted, or an existing UTXO was
// overwritten. It corresponds to cases where the block-to-be-disconnect never had all its operations
// applied to the UTXO set. However, as both writing a UTXO and deleting a UTXO are idempotent operations,
// the result is still a version of the UTXO set with the effects of that block undone.
}
pindexOld = pindexOld->pprev;
}
// Roll forward from the forking point to the new tip.
int nForkHeight = pindexFork ? pindexFork->nHeight : 0;
for (int nHeight = nForkHeight + 1; nHeight <= pindexNew->nHeight; ++nHeight) {
const CBlockIndex* pindex = pindexNew->GetAncestor(nHeight);
LogPrintf("Rolling forward %s (%i)\n", pindex->GetBlockHash().ToString(), nHeight);
uiInterface.ShowProgress(_("Replaying blocks…").translated, (int) ((nHeight - nForkHeight) * 100.0 / (pindexNew->nHeight - nForkHeight)) , false);
if (!RollforwardBlock(pindex, cache)) return false;
}
cache.SetBestBlock(pindexNew->GetBlockHash());
cache.Flush();
uiInterface.ShowProgress("", 100, false);
return true;
}
bool CChainState::NeedsRedownload() const
{
AssertLockHeld(cs_main);
// At and above m_params.SegwitHeight, segwit consensus rules must be validated
CBlockIndex* block{m_chain.Tip()};
while (block != nullptr && DeploymentActiveAt(*block, m_params.GetConsensus(), Consensus::DEPLOYMENT_SEGWIT)) {
if (!(block->nStatus & BLOCK_OPT_WITNESS)) {
// block is insufficiently validated for a segwit client
return true;
}
block = block->pprev;
}
return false;
}
void CChainState::UnloadBlockIndex() {
nBlockSequenceId = 1;
setBlockIndexCandidates.clear();
}
// May NOT be used after any connections are up as much
// of the peer-processing logic assumes a consistent
// block index state
void UnloadBlockIndex(CTxMemPool* mempool, ChainstateManager& chainman)
{
LOCK(cs_main);
chainman.Unload();
pindexBestInvalid = nullptr;
pindexBestHeader = nullptr;
if (mempool) mempool->clear();
vinfoBlockFile.clear();
nLastBlockFile = 0;
setDirtyBlockIndex.clear();
setDirtyFileInfo.clear();
g_versionbitscache.Clear();
for (int b = 0; b < VERSIONBITS_NUM_BITS; b++) {
warningcache[b].clear();
}
fHavePruned = false;
}
bool ChainstateManager::LoadBlockIndex()
{
AssertLockHeld(cs_main);
// Load block index from databases
bool needs_init = fReindex;
if (!fReindex) {
2021-07-01 03:58:06 -04:00
bool ret = m_blockman.LoadBlockIndexDB(ActiveChainstate().setBlockIndexCandidates);
if (!ret) return false;
needs_init = m_blockman.m_block_index.empty();
}
if (needs_init) {
// Everything here is for *new* reindex/DBs. Thus, though
// LoadBlockIndexDB may have set fReindex if we shut down
// mid-reindex previously, we don't check fReindex and
// instead only check it prior to LoadBlockIndexDB to set
// needs_init.
LogPrintf("Initializing databases...\n");
}
return true;
}
bool CChainState::LoadGenesisBlock()
{
LOCK(cs_main);
// Check whether we're already initialized by checking for genesis in
// m_blockman.m_block_index. Note that we can't use m_chain here, since it is
// set based on the coins db, not the block index db, which is the only
// thing loaded at this point.
if (m_blockman.m_block_index.count(m_params.GenesisBlock().GetHash()))
return true;
try {
const CBlock& block = m_params.GenesisBlock();
FlatFilePos blockPos = SaveBlockToDisk(block, 0, m_chain, m_params, nullptr);
2017-04-25 22:35:02 -03:00
if (blockPos.IsNull())
return error("%s: writing genesis block to disk failed", __func__);
CBlockIndex *pindex = m_blockman.AddToBlockIndex(block);
ReceivedBlockTransactions(block, pindex, blockPos);
} catch (const std::runtime_error& e) {
return error("%s: failed to write genesis block: %s", __func__, e.what());
}
return true;
}
void CChainState::LoadExternalBlockFile(FILE* fileIn, FlatFilePos* dbp)
{
// Map of disk positions for blocks with unknown parent (only used for reindex)
static std::multimap<uint256, FlatFilePos> mapBlocksUnknownParent;
int64_t nStart = GetTimeMillis();
int nLoaded = 0;
2013-01-28 21:44:19 -03:00
try {
// This takes over fileIn and calls fclose() on it in the CBufferedFile destructor
CBufferedFile blkdat(fileIn, 2*MAX_BLOCK_SERIALIZED_SIZE, MAX_BLOCK_SERIALIZED_SIZE+8, SER_DISK, CLIENT_VERSION);
uint64_t nRewind = blkdat.GetPos();
while (!blkdat.eof()) {
2020-04-27 15:36:05 -04:00
if (ShutdownRequested()) return;
blkdat.SetPos(nRewind);
nRewind++; // start one byte further next time, in case of failure
blkdat.SetLimit(); // remove former limit
unsigned int nSize = 0;
try {
// locate a header
unsigned char buf[CMessageHeader::MESSAGE_START_SIZE];
blkdat.FindByte(m_params.MessageStart()[0]);
nRewind = blkdat.GetPos()+1;
blkdat >> buf;
if (memcmp(buf, m_params.MessageStart(), CMessageHeader::MESSAGE_START_SIZE)) {
continue;
}
// read size
blkdat >> nSize;
if (nSize < 80 || nSize > MAX_BLOCK_SERIALIZED_SIZE)
continue;
} catch (const std::exception&) {
// no valid block header found; don't complain
break;
}
try {
// read block
uint64_t nBlockPos = blkdat.GetPos();
if (dbp)
dbp->nPos = nBlockPos;
blkdat.SetLimit(nBlockPos + nSize);
std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
CBlock& block = *pblock;
blkdat >> block;
nRewind = blkdat.GetPos();
uint256 hash = block.GetHash();
{
LOCK(cs_main);
// detect out of order blocks, and store them for later
if (hash != m_params.GetConsensus().hashGenesisBlock && !m_blockman.LookupBlockIndex(block.hashPrevBlock)) {
LogPrint(BCLog::REINDEX, "%s: Out of order block %s, parent %s not known\n", __func__, hash.ToString(),
block.hashPrevBlock.ToString());
if (dbp)
mapBlocksUnknownParent.insert(std::make_pair(block.hashPrevBlock, *dbp));
continue;
}
// process in case the block isn't known yet
CBlockIndex* pindex = m_blockman.LookupBlockIndex(hash);
2018-01-11 21:23:09 -03:00
if (!pindex || (pindex->nStatus & BLOCK_HAVE_DATA) == 0) {
BlockValidationState state;
if (AcceptBlock(pblock, state, nullptr, true, dbp, nullptr)) {
2018-01-11 21:23:09 -03:00
nLoaded++;
}
if (state.IsError()) {
break;
}
} else if (hash != m_params.GetConsensus().hashGenesisBlock && pindex->nHeight % 1000 == 0) {
LogPrint(BCLog::REINDEX, "Block Import: already had block %s at height %d\n", hash.ToString(), pindex->nHeight);
}
}
2016-04-28 11:18:45 -03:00
// Activate the genesis block so normal node progress can continue
if (hash == m_params.GetConsensus().hashGenesisBlock) {
BlockValidationState state;
if (!ActivateBestChain(state, nullptr)) {
2016-04-28 11:18:45 -03:00
break;
}
}
NotifyHeaderTip(*this);
2016-04-28 11:18:45 -03:00
// Recursively process earlier encountered successors of this block
std::deque<uint256> queue;
queue.push_back(hash);
while (!queue.empty()) {
uint256 head = queue.front();
queue.pop_front();
std::pair<std::multimap<uint256, FlatFilePos>::iterator, std::multimap<uint256, FlatFilePos>::iterator> range = mapBlocksUnknownParent.equal_range(head);
while (range.first != range.second) {
std::multimap<uint256, FlatFilePos>::iterator it = range.first;
std::shared_ptr<CBlock> pblockrecursive = std::make_shared<CBlock>();
if (ReadBlockFromDisk(*pblockrecursive, it->second, m_params.GetConsensus())) {
LogPrint(BCLog::REINDEX, "%s: Processing out of order child %s of %s\n", __func__, pblockrecursive->GetHash().ToString(),
head.ToString());
LOCK(cs_main);
BlockValidationState dummy;
if (AcceptBlock(pblockrecursive, dummy, nullptr, true, &it->second, nullptr)) {
nLoaded++;
queue.push_back(pblockrecursive->GetHash());
}
}
range.first++;
mapBlocksUnknownParent.erase(it);
NotifyHeaderTip(*this);
}
}
} catch (const std::exception& e) {
LogPrintf("%s: Deserialize or I/O error - %s\n", __func__, e.what());
}
}
} catch (const std::runtime_error& e) {
AbortNode(std::string("System error: ") + e.what());
}
2020-04-27 15:36:05 -04:00
LogPrintf("Loaded %i blocks from external file in %dms\n", nLoaded, GetTimeMillis() - nStart);
}
void CChainState::CheckBlockIndex()
{
if (!fCheckBlockIndex) {
return;
}
LOCK(cs_main);
// During a reindex, we read the genesis block and call CheckBlockIndex before ActivateBestChain,
// so we have the genesis block in m_blockman.m_block_index but no active chain. (A few of the
// tests when iterating the block tree require that m_chain has been initialized.)
if (m_chain.Height() < 0) {
assert(m_blockman.m_block_index.size() <= 1);
return;
}
// Build forward-pointing map of the entire block tree.
std::multimap<CBlockIndex*,CBlockIndex*> forward;
for (const std::pair<const uint256, CBlockIndex*>& entry : m_blockman.m_block_index) {
forward.insert(std::make_pair(entry.second->pprev, entry.second));
}
assert(forward.size() == m_blockman.m_block_index.size());
std::pair<std::multimap<CBlockIndex*,CBlockIndex*>::iterator,std::multimap<CBlockIndex*,CBlockIndex*>::iterator> rangeGenesis = forward.equal_range(nullptr);
CBlockIndex *pindex = rangeGenesis.first->second;
rangeGenesis.first++;
assert(rangeGenesis.first == rangeGenesis.second); // There is only one index entry with parent nullptr.
// Iterate over the entire block tree, using depth-first search.
// Along the way, remember whether there are blocks on the path from genesis
// block being explored which are the first to have certain properties.
size_t nNodes = 0;
int nHeight = 0;
CBlockIndex* pindexFirstInvalid = nullptr; // Oldest ancestor of pindex which is invalid.
CBlockIndex* pindexFirstMissing = nullptr; // Oldest ancestor of pindex which does not have BLOCK_HAVE_DATA.
CBlockIndex* pindexFirstNeverProcessed = nullptr; // Oldest ancestor of pindex for which nTx == 0.
CBlockIndex* pindexFirstNotTreeValid = nullptr; // Oldest ancestor of pindex which does not have BLOCK_VALID_TREE (regardless of being valid or not).
CBlockIndex* pindexFirstNotTransactionsValid = nullptr; // Oldest ancestor of pindex which does not have BLOCK_VALID_TRANSACTIONS (regardless of being valid or not).
CBlockIndex* pindexFirstNotChainValid = nullptr; // Oldest ancestor of pindex which does not have BLOCK_VALID_CHAIN (regardless of being valid or not).
CBlockIndex* pindexFirstNotScriptsValid = nullptr; // Oldest ancestor of pindex which does not have BLOCK_VALID_SCRIPTS (regardless of being valid or not).
while (pindex != nullptr) {
nNodes++;
if (pindexFirstInvalid == nullptr && pindex->nStatus & BLOCK_FAILED_VALID) pindexFirstInvalid = pindex;
// Assumed-valid index entries will not have data since we haven't downloaded the
// full block yet.
if (pindexFirstMissing == nullptr && !(pindex->nStatus & BLOCK_HAVE_DATA) && !pindex->IsAssumedValid()) {
pindexFirstMissing = pindex;
}
if (pindexFirstNeverProcessed == nullptr && pindex->nTx == 0) pindexFirstNeverProcessed = pindex;
if (pindex->pprev != nullptr && pindexFirstNotTreeValid == nullptr && (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_TREE) pindexFirstNotTreeValid = pindex;
if (pindex->pprev != nullptr && !pindex->IsAssumedValid()) {
// Skip validity flag checks for BLOCK_ASSUMED_VALID index entries, since these
// *_VALID_MASK flags will not be present for index entries we are temporarily assuming
// valid.
if (pindexFirstNotTransactionsValid == nullptr &&
(pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_TRANSACTIONS) {
pindexFirstNotTransactionsValid = pindex;
}
if (pindexFirstNotChainValid == nullptr &&
(pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_CHAIN) {
pindexFirstNotChainValid = pindex;
}
if (pindexFirstNotScriptsValid == nullptr &&
(pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_SCRIPTS) {
pindexFirstNotScriptsValid = pindex;
}
}
// Begin: actual consistency checks.
if (pindex->pprev == nullptr) {
// Genesis block checks.
assert(pindex->GetBlockHash() == m_params.GetConsensus().hashGenesisBlock); // Genesis block's hash must match.
assert(pindex == m_chain.Genesis()); // The current active chain's genesis block must be this block.
}
if (!pindex->HaveTxsDownloaded()) assert(pindex->nSequenceId <= 0); // nSequenceId can't be set positive for blocks that aren't linked (negative is used for preciousblock)
// VALID_TRANSACTIONS is equivalent to nTx > 0 for all nodes (whether or not pruning has occurred).
// HAVE_DATA is only equivalent to nTx > 0 (or VALID_TRANSACTIONS) if no pruning has occurred.
// Unless these indexes are assumed valid and pending block download on a
// background chainstate.
if (!fHavePruned && !pindex->IsAssumedValid()) {
// If we've never pruned, then HAVE_DATA should be equivalent to nTx > 0
assert(!(pindex->nStatus & BLOCK_HAVE_DATA) == (pindex->nTx == 0));
assert(pindexFirstMissing == pindexFirstNeverProcessed);
} else {
// If we have pruned, then we can only say that HAVE_DATA implies nTx > 0
if (pindex->nStatus & BLOCK_HAVE_DATA) assert(pindex->nTx > 0);
}
if (pindex->nStatus & BLOCK_HAVE_UNDO) assert(pindex->nStatus & BLOCK_HAVE_DATA);
if (pindex->IsAssumedValid()) {
// Assumed-valid blocks should have some nTx value.
assert(pindex->nTx > 0);
// Assumed-valid blocks should connect to the main chain.
assert((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_TREE);
} else {
// Otherwise there should only be an nTx value if we have
// actually seen a block's transactions.
assert(((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_TRANSACTIONS) == (pindex->nTx > 0)); // This is pruning-independent.
}
// All parents having had data (at some point) is equivalent to all parents being VALID_TRANSACTIONS, which is equivalent to HaveTxsDownloaded().
assert((pindexFirstNeverProcessed == nullptr) == pindex->HaveTxsDownloaded());
assert((pindexFirstNotTransactionsValid == nullptr) == pindex->HaveTxsDownloaded());
assert(pindex->nHeight == nHeight); // nHeight must be consistent.
assert(pindex->pprev == nullptr || pindex->nChainWork >= pindex->pprev->nChainWork); // For every block except the genesis block, the chainwork must be larger than the parent's.
assert(nHeight < 2 || (pindex->pskip && (pindex->pskip->nHeight < nHeight))); // The pskip pointer must point back for all but the first 2 blocks.
assert(pindexFirstNotTreeValid == nullptr); // All m_blockman.m_block_index entries must at least be TREE valid
if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_TREE) assert(pindexFirstNotTreeValid == nullptr); // TREE valid implies all parents are TREE valid
if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_CHAIN) assert(pindexFirstNotChainValid == nullptr); // CHAIN valid implies all parents are CHAIN valid
if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_SCRIPTS) assert(pindexFirstNotScriptsValid == nullptr); // SCRIPTS valid implies all parents are SCRIPTS valid
if (pindexFirstInvalid == nullptr) {
// Checks for not-invalid blocks.
assert((pindex->nStatus & BLOCK_FAILED_MASK) == 0); // The failed mask cannot be set for blocks without invalid parents.
}
if (!CBlockIndexWorkComparator()(pindex, m_chain.Tip()) && pindexFirstNeverProcessed == nullptr) {
if (pindexFirstInvalid == nullptr) {
const bool is_active = this == &m_chainman.ActiveChainstate();
// If this block sorts at least as good as the current tip and
// is valid and we have all data for its parents, it must be in
// setBlockIndexCandidates. m_chain.Tip() must also be there
// even if some data has been pruned.
//
// Don't perform this check for the background chainstate since
// its setBlockIndexCandidates shouldn't have some entries (i.e. those past the
// snapshot block) which do exist in the block index for the active chainstate.
if (is_active && (pindexFirstMissing == nullptr || pindex == m_chain.Tip())) {
assert(setBlockIndexCandidates.count(pindex));
}
// If some parent is missing, then it could be that this block was in
// setBlockIndexCandidates but had to be removed because of the missing data.
// In this case it must be in m_blocks_unlinked -- see test below.
}
} else { // If this block sorts worse than the current tip or some ancestor's block has never been seen, it cannot be in setBlockIndexCandidates.
assert(setBlockIndexCandidates.count(pindex) == 0);
}
// Check whether this block is in m_blocks_unlinked.
std::pair<std::multimap<CBlockIndex*,CBlockIndex*>::iterator,std::multimap<CBlockIndex*,CBlockIndex*>::iterator> rangeUnlinked = m_blockman.m_blocks_unlinked.equal_range(pindex->pprev);
bool foundInUnlinked = false;
while (rangeUnlinked.first != rangeUnlinked.second) {
assert(rangeUnlinked.first->first == pindex->pprev);
if (rangeUnlinked.first->second == pindex) {
foundInUnlinked = true;
break;
}
rangeUnlinked.first++;
}
if (pindex->pprev && (pindex->nStatus & BLOCK_HAVE_DATA) && pindexFirstNeverProcessed != nullptr && pindexFirstInvalid == nullptr) {
// If this block has block data available, some parent was never received, and has no invalid parents, it must be in m_blocks_unlinked.
assert(foundInUnlinked);
}
if (!(pindex->nStatus & BLOCK_HAVE_DATA)) assert(!foundInUnlinked); // Can't be in m_blocks_unlinked if we don't HAVE_DATA
if (pindexFirstMissing == nullptr) assert(!foundInUnlinked); // We aren't missing data for any parent -- cannot be in m_blocks_unlinked.
if (pindex->pprev && (pindex->nStatus & BLOCK_HAVE_DATA) && pindexFirstNeverProcessed == nullptr && pindexFirstMissing != nullptr) {
// We HAVE_DATA for this block, have received data for all parents at some point, but we're currently missing data for some parent.
assert(fHavePruned); // We must have pruned.
// This block may have entered m_blocks_unlinked if:
// - it has a descendant that at some point had more work than the
// tip, and
// - we tried switching to that descendant but were missing
// data for some intermediate block between m_chain and the
// tip.
// So if this block is itself better than m_chain.Tip() and it wasn't in
// setBlockIndexCandidates, then it must be in m_blocks_unlinked.
if (!CBlockIndexWorkComparator()(pindex, m_chain.Tip()) && setBlockIndexCandidates.count(pindex) == 0) {
if (pindexFirstInvalid == nullptr) {
assert(foundInUnlinked);
}
}
}
// assert(pindex->GetBlockHash() == pindex->GetBlockHeader().GetHash()); // Perhaps too slow
// End: actual consistency checks.
// Try descending into the first subnode.
std::pair<std::multimap<CBlockIndex*,CBlockIndex*>::iterator,std::multimap<CBlockIndex*,CBlockIndex*>::iterator> range = forward.equal_range(pindex);
if (range.first != range.second) {
// A subnode was found.
pindex = range.first->second;
nHeight++;
continue;
}
// This is a leaf node.
// Move upwards until we reach a node of which we have not yet visited the last child.
while (pindex) {
// We are going to either move to a parent or a sibling of pindex.
// If pindex was the first with a certain property, unset the corresponding variable.
if (pindex == pindexFirstInvalid) pindexFirstInvalid = nullptr;
if (pindex == pindexFirstMissing) pindexFirstMissing = nullptr;
if (pindex == pindexFirstNeverProcessed) pindexFirstNeverProcessed = nullptr;
if (pindex == pindexFirstNotTreeValid) pindexFirstNotTreeValid = nullptr;
if (pindex == pindexFirstNotTransactionsValid) pindexFirstNotTransactionsValid = nullptr;
if (pindex == pindexFirstNotChainValid) pindexFirstNotChainValid = nullptr;
if (pindex == pindexFirstNotScriptsValid) pindexFirstNotScriptsValid = nullptr;
// Find our parent.
CBlockIndex* pindexPar = pindex->pprev;
// Find which child we just visited.
std::pair<std::multimap<CBlockIndex*,CBlockIndex*>::iterator,std::multimap<CBlockIndex*,CBlockIndex*>::iterator> rangePar = forward.equal_range(pindexPar);
while (rangePar.first->second != pindex) {
assert(rangePar.first != rangePar.second); // Our parent must have at least the node we're coming from as child.
rangePar.first++;
}
// Proceed to the next one.
rangePar.first++;
if (rangePar.first != rangePar.second) {
// Move to the sibling.
pindex = rangePar.first->second;
break;
} else {
// Move up further.
pindex = pindexPar;
nHeight--;
continue;
}
}
}
// Check that we actually traversed the entire map.
assert(nNodes == forward.size());
}
std::string CChainState::ToString()
{
CBlockIndex* tip = m_chain.Tip();
return strprintf("Chainstate [%s] @ height %d (%s)",
m_from_snapshot_blockhash ? "snapshot" : "ibd",
tip ? tip->nHeight : -1, tip ? tip->GetBlockHash().ToString() : "null");
}
bool CChainState::ResizeCoinsCaches(size_t coinstip_size, size_t coinsdb_size)
{
if (coinstip_size == m_coinstip_cache_size_bytes &&
coinsdb_size == m_coinsdb_cache_size_bytes) {
// Cache sizes are unchanged, no need to continue.
return true;
}
size_t old_coinstip_size = m_coinstip_cache_size_bytes;
m_coinstip_cache_size_bytes = coinstip_size;
m_coinsdb_cache_size_bytes = coinsdb_size;
CoinsDB().ResizeCache(coinsdb_size);
LogPrintf("[%s] resized coinsdb cache to %.1f MiB\n",
this->ToString(), coinsdb_size * (1.0 / 1024 / 1024));
LogPrintf("[%s] resized coinstip cache to %.1f MiB\n",
this->ToString(), coinstip_size * (1.0 / 1024 / 1024));
BlockValidationState state;
bool ret;
if (coinstip_size > old_coinstip_size) {
// Likely no need to flush if cache sizes have grown.
ret = FlushStateToDisk(state, FlushStateMode::IF_NEEDED);
} else {
// Otherwise, flush state to disk and deallocate the in-memory coins map.
ret = FlushStateToDisk(state, FlushStateMode::ALWAYS);
CoinsTip().ReallocateCache();
}
return ret;
}
static const uint64_t MEMPOOL_DUMP_VERSION = 1;
bool LoadMempool(CTxMemPool& pool, CChainState& active_chainstate, FopenFn mockable_fopen_function)
2016-10-31 03:53:38 -03:00
{
int64_t nExpiryTimeout = gArgs.GetIntArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60;
FILE* filestr{mockable_fopen_function(gArgs.GetDataDirNet() / "mempool.dat", "rb")};
2016-10-31 03:53:38 -03:00
CAutoFile file(filestr, SER_DISK, CLIENT_VERSION);
if (file.IsNull()) {
LogPrintf("Failed to open mempool file from disk. Continuing anyway.\n");
return false;
}
int64_t count = 0;
int64_t expired = 0;
2016-10-31 03:53:38 -03:00
int64_t failed = 0;
int64_t already_there = 0;
int64_t unbroadcast = 0;
2016-10-31 03:53:38 -03:00
int64_t nNow = GetTime();
try {
uint64_t version;
file >> version;
if (version != MEMPOOL_DUMP_VERSION) {
return false;
}
uint64_t num;
file >> num;
while (num--) {
CTransactionRef tx;
2016-10-31 03:53:38 -03:00
int64_t nTime;
int64_t nFeeDelta;
file >> tx;
2016-10-31 03:53:38 -03:00
file >> nTime;
file >> nFeeDelta;
CAmount amountdelta = nFeeDelta;
if (amountdelta) {
pool.PrioritiseTransaction(tx->GetHash(), amountdelta);
2016-10-31 03:53:38 -03:00
}
if (nTime > nNow - nExpiryTimeout) {
2016-10-31 03:53:38 -03:00
LOCK(cs_main);
const auto& accepted = AcceptToMemoryPool(active_chainstate, tx, nTime, /*bypass_limits=*/false, /*test_accept=*/false);
if (accepted.m_result_type == MempoolAcceptResult::ResultType::VALID) {
2016-10-31 03:53:38 -03:00
++count;
} else {
// mempool may contain the transaction already, e.g. from
// wallet(s) having loaded it while we were processing
// mempool transactions; consider these as valid, instead of
// failed, but mark them as 'already there'
if (pool.exists(GenTxid::Txid(tx->GetHash()))) {
++already_there;
} else {
++failed;
}
2016-10-31 03:53:38 -03:00
}
} else {
++expired;
2016-10-31 03:53:38 -03:00
}
if (ShutdownRequested())
return false;
2016-10-31 03:53:38 -03:00
}
std::map<uint256, CAmount> mapDeltas;
file >> mapDeltas;
for (const auto& i : mapDeltas) {
pool.PrioritiseTransaction(i.first, i.second);
2016-10-31 03:53:38 -03:00
}
std::set<uint256> unbroadcast_txids;
file >> unbroadcast_txids;
unbroadcast = unbroadcast_txids.size();
for (const auto& txid : unbroadcast_txids) {
// Ensure transactions were accepted to mempool then add to
// unbroadcast set.
if (pool.get(txid) != nullptr) pool.AddUnbroadcastTx(txid);
}
2016-10-31 03:53:38 -03:00
} catch (const std::exception& e) {
LogPrintf("Failed to deserialize mempool data on disk: %s. Continuing anyway.\n", e.what());
return false;
}
LogPrintf("Imported mempool transactions from disk: %i succeeded, %i failed, %i expired, %i already there, %i waiting for initial broadcast\n", count, failed, expired, already_there, unbroadcast);
2016-10-31 03:53:38 -03:00
return true;
}
bool DumpMempool(const CTxMemPool& pool, FopenFn mockable_fopen_function, bool skip_file_commit)
2016-10-31 03:53:38 -03:00
{
int64_t start = GetTimeMicros();
std::map<uint256, CAmount> mapDeltas;
std::vector<TxMempoolInfo> vinfo;
std::set<uint256> unbroadcast_txids;
2016-10-31 03:53:38 -03:00
2018-03-30 13:48:20 -03:00
static Mutex dump_mutex;
LOCK(dump_mutex);
2016-10-31 03:53:38 -03:00
{
LOCK(pool.cs);
for (const auto &i : pool.mapDeltas) {
mapDeltas[i.first] = i.second;
2016-10-31 03:53:38 -03:00
}
vinfo = pool.infoAll();
unbroadcast_txids = pool.GetUnbroadcastTxs();
2016-10-31 03:53:38 -03:00
}
int64_t mid = GetTimeMicros();
try {
FILE* filestr{mockable_fopen_function(gArgs.GetDataDirNet() / "mempool.dat.new", "wb")};
2016-10-31 03:53:38 -03:00
if (!filestr) {
2017-08-21 08:22:23 -03:00
return false;
2016-10-31 03:53:38 -03:00
}
CAutoFile file(filestr, SER_DISK, CLIENT_VERSION);
uint64_t version = MEMPOOL_DUMP_VERSION;
file << version;
file << (uint64_t)vinfo.size();
for (const auto& i : vinfo) {
file << *(i.tx);
file << int64_t{count_seconds(i.m_time)};
file << int64_t{i.nFeeDelta};
2016-10-31 03:53:38 -03:00
mapDeltas.erase(i.tx->GetHash());
}
file << mapDeltas;
LogPrintf("Writing %d unbroadcast transactions to disk.\n", unbroadcast_txids.size());
file << unbroadcast_txids;
if (!skip_file_commit && !FileCommit(file.Get()))
throw std::runtime_error("FileCommit failed");
2016-10-31 03:53:38 -03:00
file.fclose();
if (!RenameOver(gArgs.GetDataDirNet() / "mempool.dat.new", gArgs.GetDataDirNet() / "mempool.dat")) {
throw std::runtime_error("Rename failed");
}
2016-10-31 03:53:38 -03:00
int64_t last = GetTimeMicros();
LogPrintf("Dumped mempool: %gs to copy, %gs to dump\n", (mid-start)*MICRO, (last-mid)*MICRO);
2016-10-31 03:53:38 -03:00
} catch (const std::exception& e) {
LogPrintf("Failed to dump mempool: %s. Continuing anyway.\n", e.what());
2017-08-21 08:22:23 -03:00
return false;
2016-10-31 03:53:38 -03:00
}
2017-08-21 08:22:23 -03:00
return true;
2016-10-31 03:53:38 -03:00
}
//! Guess how far we are in the verification process at the given block index
//! require cs_main if pindex has not been validated yet (because nChainTx might be unset)
double GuessVerificationProgress(const ChainTxData& data, const CBlockIndex *pindex) {
if (pindex == nullptr)
return 0.0;
int64_t nNow = time(nullptr);
2017-01-04 18:09:20 -03:00
double fTxTotal;
if (pindex->nChainTx <= data.nTxCount) {
fTxTotal = data.nTxCount + (nNow - data.nTime) * data.dTxRate;
} else {
fTxTotal = pindex->nChainTx + (nNow - pindex->GetBlockTime()) * data.dTxRate;
}
return std::min<double>(pindex->nChainTx / fTxTotal, 1.0);
}
std::optional<uint256> ChainstateManager::SnapshotBlockhash() const
{
LOCK(::cs_main);
if (m_active_chainstate && m_active_chainstate->m_from_snapshot_blockhash) {
// If a snapshot chainstate exists, it will always be our active.
return m_active_chainstate->m_from_snapshot_blockhash;
}
return std::nullopt;
}
std::vector<CChainState*> ChainstateManager::GetAll()
{
LOCK(::cs_main);
std::vector<CChainState*> out;
if (!IsSnapshotValidated() && m_ibd_chainstate) {
out.push_back(m_ibd_chainstate.get());
}
if (m_snapshot_chainstate) {
out.push_back(m_snapshot_chainstate.get());
}
return out;
}
CChainState& ChainstateManager::InitializeChainstate(
CTxMemPool* mempool, const std::optional<uint256>& snapshot_blockhash)
{
bool is_snapshot = snapshot_blockhash.has_value();
std::unique_ptr<CChainState>& to_modify =
is_snapshot ? m_snapshot_chainstate : m_ibd_chainstate;
if (to_modify) {
throw std::logic_error("should not be overwriting a chainstate");
}
to_modify.reset(new CChainState(mempool, m_blockman, *this, snapshot_blockhash));
// Snapshot chainstates and initial IBD chaintates always become active.
if (is_snapshot || (!is_snapshot && !m_active_chainstate)) {
LogPrintf("Switching active chainstate to %s\n", to_modify->ToString());
m_active_chainstate = to_modify.get();
} else {
throw std::logic_error("unexpected chainstate activation");
}
return *to_modify;
}
const AssumeutxoData* ExpectedAssumeutxo(
const int height, const CChainParams& chainparams)
{
const MapAssumeutxo& valid_assumeutxos_map = chainparams.Assumeutxo();
const auto assumeutxo_found = valid_assumeutxos_map.find(height);
if (assumeutxo_found != valid_assumeutxos_map.end()) {
return &assumeutxo_found->second;
}
return nullptr;
}
bool ChainstateManager::ActivateSnapshot(
CAutoFile& coins_file,
const SnapshotMetadata& metadata,
bool in_memory)
{
uint256 base_blockhash = metadata.m_base_blockhash;
if (this->SnapshotBlockhash()) {
LogPrintf("[snapshot] can't activate a snapshot-based chainstate more than once\n");
return false;
}
int64_t current_coinsdb_cache_size{0};
int64_t current_coinstip_cache_size{0};
// Cache percentages to allocate to each chainstate.
//
// These particular percentages don't matter so much since they will only be
// relevant during snapshot activation; caches are rebalanced at the conclusion of
// this function. We want to give (essentially) all available cache capacity to the
// snapshot to aid the bulk load later in this function.
static constexpr double IBD_CACHE_PERC = 0.01;
static constexpr double SNAPSHOT_CACHE_PERC = 0.99;
{
LOCK(::cs_main);
// Resize the coins caches to ensure we're not exceeding memory limits.
//
// Allocate the majority of the cache to the incoming snapshot chainstate, since
// (optimistically) getting to its tip will be the top priority. We'll need to call
// `MaybeRebalanceCaches()` once we're done with this function to ensure
// the right allocation (including the possibility that no snapshot was activated
// and that we should restore the active chainstate caches to their original size).
//
current_coinsdb_cache_size = this->ActiveChainstate().m_coinsdb_cache_size_bytes;
current_coinstip_cache_size = this->ActiveChainstate().m_coinstip_cache_size_bytes;
// Temporarily resize the active coins cache to make room for the newly-created
// snapshot chain.
this->ActiveChainstate().ResizeCoinsCaches(
static_cast<size_t>(current_coinstip_cache_size * IBD_CACHE_PERC),
static_cast<size_t>(current_coinsdb_cache_size * IBD_CACHE_PERC));
}
auto snapshot_chainstate = WITH_LOCK(::cs_main,
return std::make_unique<CChainState>(
/* mempool */ nullptr, m_blockman, *this, base_blockhash));
{
LOCK(::cs_main);
snapshot_chainstate->InitCoinsDB(
static_cast<size_t>(current_coinsdb_cache_size * SNAPSHOT_CACHE_PERC),
in_memory, false, "chainstate");
snapshot_chainstate->InitCoinsCache(
static_cast<size_t>(current_coinstip_cache_size * SNAPSHOT_CACHE_PERC));
}
const bool snapshot_ok = this->PopulateAndValidateSnapshot(
*snapshot_chainstate, coins_file, metadata);
if (!snapshot_ok) {
WITH_LOCK(::cs_main, this->MaybeRebalanceCaches());
return false;
}
{
LOCK(::cs_main);
assert(!m_snapshot_chainstate);
m_snapshot_chainstate.swap(snapshot_chainstate);
const bool chaintip_loaded = m_snapshot_chainstate->LoadChainTip();
assert(chaintip_loaded);
m_active_chainstate = m_snapshot_chainstate.get();
LogPrintf("[snapshot] successfully activated snapshot %s\n", base_blockhash.ToString());
LogPrintf("[snapshot] (%.2f MB)\n",
m_snapshot_chainstate->CoinsTip().DynamicMemoryUsage() / (1000 * 1000));
this->MaybeRebalanceCaches();
}
return true;
}
bool ChainstateManager::PopulateAndValidateSnapshot(
CChainState& snapshot_chainstate,
CAutoFile& coins_file,
const SnapshotMetadata& metadata)
{
// It's okay to release cs_main before we're done using `coins_cache` because we know
// that nothing else will be referencing the newly created snapshot_chainstate yet.
CCoinsViewCache& coins_cache = *WITH_LOCK(::cs_main, return &snapshot_chainstate.CoinsTip());
uint256 base_blockhash = metadata.m_base_blockhash;
CBlockIndex* snapshot_start_block = WITH_LOCK(::cs_main, return m_blockman.LookupBlockIndex(base_blockhash));
if (!snapshot_start_block) {
// Needed for GetUTXOStats and ExpectedAssumeutxo to determine the height and to avoid a crash when base_blockhash.IsNull()
LogPrintf("[snapshot] Did not find snapshot start blockheader %s\n",
base_blockhash.ToString());
return false;
}
int base_height = snapshot_start_block->nHeight;
auto maybe_au_data = ExpectedAssumeutxo(base_height, ::Params());
if (!maybe_au_data) {
LogPrintf("[snapshot] assumeutxo height in snapshot metadata not recognized " /* Continued */
"(%d) - refusing to load snapshot\n", base_height);
return false;
}
const AssumeutxoData& au_data = *maybe_au_data;
COutPoint outpoint;
Coin coin;
const uint64_t coins_count = metadata.m_coins_count;
uint64_t coins_left = metadata.m_coins_count;
LogPrintf("[snapshot] loading coins from snapshot %s\n", base_blockhash.ToString());
int64_t flush_now{0};
int64_t coins_processed{0};
while (coins_left > 0) {
try {
coins_file >> outpoint;
coins_file >> coin;
} catch (const std::ios_base::failure&) {
LogPrintf("[snapshot] bad snapshot format or truncated snapshot after deserializing %d coins\n",
coins_count - coins_left);
return false;
}
if (coin.nHeight > base_height ||
outpoint.n >= std::numeric_limits<decltype(outpoint.n)>::max() // Avoid integer wrap-around in coinstats.cpp:ApplyHash
) {
LogPrintf("[snapshot] bad snapshot data after deserializing %d coins\n",
coins_count - coins_left);
return false;
}
coins_cache.EmplaceCoinInternalDANGER(std::move(outpoint), std::move(coin));
--coins_left;
++coins_processed;
if (coins_processed % 1000000 == 0) {
LogPrintf("[snapshot] %d coins loaded (%.2f%%, %.2f MB)\n",
coins_processed,
static_cast<float>(coins_processed) * 100 / static_cast<float>(coins_count),
coins_cache.DynamicMemoryUsage() / (1000 * 1000));
}
// Batch write and flush (if we need to) every so often.
//
// If our average Coin size is roughly 41 bytes, checking every 120,000 coins
// means <5MB of memory imprecision.
if (coins_processed % 120000 == 0) {
if (ShutdownRequested()) {
return false;
}
const auto snapshot_cache_state = WITH_LOCK(::cs_main,
return snapshot_chainstate.GetCoinsCacheSizeState());
if (snapshot_cache_state >=
CoinsCacheSizeState::CRITICAL) {
LogPrintf("[snapshot] flushing coins cache (%.2f MB)... ", /* Continued */
coins_cache.DynamicMemoryUsage() / (1000 * 1000));
flush_now = GetTimeMillis();
// This is a hack - we don't know what the actual best block is, but that
// doesn't matter for the purposes of flushing the cache here. We'll set this
// to its correct value (`base_blockhash`) below after the coins are loaded.
coins_cache.SetBestBlock(GetRandHash());
coins_cache.Flush();
LogPrintf("done (%.2fms)\n", GetTimeMillis() - flush_now);
}
}
}
// Important that we set this. This and the coins_cache accesses above are
// sort of a layer violation, but either we reach into the innards of
// CCoinsViewCache here or we have to invert some of the CChainState to
// embed them in a snapshot-activation-specific CCoinsViewCache bulk load
// method.
coins_cache.SetBestBlock(base_blockhash);
bool out_of_coins{false};
try {
coins_file >> outpoint;
} catch (const std::ios_base::failure&) {
// We expect an exception since we should be out of coins.
out_of_coins = true;
}
if (!out_of_coins) {
LogPrintf("[snapshot] bad snapshot - coins left over after deserializing %d coins\n",
coins_count);
return false;
}
LogPrintf("[snapshot] loaded %d (%.2f MB) coins from snapshot %s\n",
coins_count,
coins_cache.DynamicMemoryUsage() / (1000 * 1000),
base_blockhash.ToString());
LogPrintf("[snapshot] flushing snapshot chainstate to disk\n");
// No need to acquire cs_main since this chainstate isn't being used yet.
coins_cache.Flush(); // TODO: if #17487 is merged, add erase=false here for better performance.
assert(coins_cache.GetBestBlock() == base_blockhash);
CCoinsStats stats{CoinStatsHashType::HASH_SERIALIZED};
auto breakpoint_fnc = [] { /* TODO insert breakpoint here? */ };
// As above, okay to immediately release cs_main here since no other context knows
// about the snapshot_chainstate.
CCoinsViewDB* snapshot_coinsdb = WITH_LOCK(::cs_main, return &snapshot_chainstate.CoinsDB());
if (!GetUTXOStats(snapshot_coinsdb, WITH_LOCK(::cs_main, return std::ref(m_blockman)), stats, breakpoint_fnc)) {
LogPrintf("[snapshot] failed to generate coins stats\n");
return false;
}
// Assert that the deserialized chainstate contents match the expected assumeutxo value.
if (AssumeutxoHash{stats.hashSerialized} != au_data.hash_serialized) {
LogPrintf("[snapshot] bad snapshot content hash: expected %s, got %s\n",
au_data.hash_serialized.ToString(), stats.hashSerialized.ToString());
return false;
}
snapshot_chainstate.m_chain.SetTip(snapshot_start_block);
// The remainder of this function requires modifying data protected by cs_main.
LOCK(::cs_main);
// Fake various pieces of CBlockIndex state:
CBlockIndex* index = nullptr;
for (int i = 0; i <= snapshot_chainstate.m_chain.Height(); ++i) {
index = snapshot_chainstate.m_chain[i];
// Fake nTx so that LoadBlockIndex() loads assumed-valid CBlockIndex
// entries (among other things)
if (!index->nTx) {
index->nTx = 1;
}
// Fake nChainTx so that GuessVerificationProgress reports accurately
index->nChainTx = index->pprev ? index->pprev->nChainTx + index->nTx : 1;
// Mark unvalidated block index entries beneath the snapshot base block as assumed-valid.
if (!index->IsValid(BLOCK_VALID_SCRIPTS)) {
// This flag will be removed once the block is fully validated by a
// background chainstate.
index->nStatus |= BLOCK_ASSUMED_VALID;
}
// Fake BLOCK_OPT_WITNESS so that CChainState::NeedsRedownload()
// won't ask to rewind the entire assumed-valid chain on startup.
if (index->pprev && DeploymentActiveAt(*index, ::Params().GetConsensus(), Consensus::DEPLOYMENT_SEGWIT)) {
index->nStatus |= BLOCK_OPT_WITNESS;
}
setDirtyBlockIndex.insert(index);
// Changes to the block index will be flushed to disk after this call
// returns in `ActivateSnapshot()`, when `MaybeRebalanceCaches()` is
// called, since we've added a snapshot chainstate and therefore will
// have to downsize the IBD chainstate, which will result in a call to
// `FlushStateToDisk(ALWAYS)`.
}
assert(index);
index->nChainTx = au_data.nChainTx;
snapshot_chainstate.setBlockIndexCandidates.insert(snapshot_start_block);
LogPrintf("[snapshot] validated snapshot (%.2f MB)\n",
coins_cache.DynamicMemoryUsage() / (1000 * 1000));
return true;
}
CChainState& ChainstateManager::ActiveChainstate() const
{
LOCK(::cs_main);
assert(m_active_chainstate);
return *m_active_chainstate;
}
bool ChainstateManager::IsSnapshotActive() const
{
LOCK(::cs_main);
return m_snapshot_chainstate && m_active_chainstate == m_snapshot_chainstate.get();
}
void ChainstateManager::Unload()
{
for (CChainState* chainstate : this->GetAll()) {
chainstate->m_chain.SetTip(nullptr);
chainstate->UnloadBlockIndex();
}
m_blockman.Unload();
}
void ChainstateManager::Reset()
{
LOCK(::cs_main);
m_ibd_chainstate.reset();
m_snapshot_chainstate.reset();
m_active_chainstate = nullptr;
m_snapshot_validated = false;
}
void ChainstateManager::MaybeRebalanceCaches()
{
if (m_ibd_chainstate && !m_snapshot_chainstate) {
LogPrintf("[snapshot] allocating all cache to the IBD chainstate\n");
// Allocate everything to the IBD chainstate.
m_ibd_chainstate->ResizeCoinsCaches(m_total_coinstip_cache, m_total_coinsdb_cache);
}
else if (m_snapshot_chainstate && !m_ibd_chainstate) {
LogPrintf("[snapshot] allocating all cache to the snapshot chainstate\n");
// Allocate everything to the snapshot chainstate.
m_snapshot_chainstate->ResizeCoinsCaches(m_total_coinstip_cache, m_total_coinsdb_cache);
}
else if (m_ibd_chainstate && m_snapshot_chainstate) {
// If both chainstates exist, determine who needs more cache based on IBD status.
//
// Note: shrink caches first so that we don't inadvertently overwhelm available memory.
if (m_snapshot_chainstate->IsInitialBlockDownload()) {
m_ibd_chainstate->ResizeCoinsCaches(
m_total_coinstip_cache * 0.05, m_total_coinsdb_cache * 0.05);
m_snapshot_chainstate->ResizeCoinsCaches(
m_total_coinstip_cache * 0.95, m_total_coinsdb_cache * 0.95);
} else {
m_snapshot_chainstate->ResizeCoinsCaches(
m_total_coinstip_cache * 0.05, m_total_coinsdb_cache * 0.05);
m_ibd_chainstate->ResizeCoinsCaches(
m_total_coinstip_cache * 0.95, m_total_coinsdb_cache * 0.95);
}
}
}