2010-08-29 16:58:15 +00:00
// Copyright (c) 2009-2010 Satoshi Nakamoto
2014-12-17 02:47:57 +01:00
// Copyright (c) 2009-2014 The Bitcoin Core developers
2014-12-01 09:39:44 +08:00
// Distributed under the MIT software license, see the accompanying
2012-05-18 22:02:28 +08:00
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
2013-04-13 00:13:08 -05:00
# include "main.h"
2013-08-27 15:51:57 +10:00
2013-04-13 00:13:08 -05:00
# include "addrman.h"
2012-08-28 17:04:54 -04:00
# include "alert.h"
2015-02-05 01:11:44 +01:00
# include "arith_uint256.h"
2013-08-27 15:51:57 +10:00
# include "chainparams.h"
2011-09-08 16:50:58 -04:00
# include "checkpoints.h"
2013-08-27 15:51:57 +10:00
# include "checkqueue.h"
2015-06-24 07:25:30 +02:00
# include "consensus/consensus.h"
2015-01-24 15:57:12 +01:00
# include "consensus/validation.h"
2015-07-05 14:17:46 +02:00
# include "hash.h"
2011-05-15 16:52:31 -05:00
# include "init.h"
2014-10-30 15:50:15 -07:00
# include "merkleblock.h"
2013-08-27 15:51:57 +10:00
# include "net.h"
2015-06-24 07:25:30 +02:00
# include "policy/policy.h"
2014-03-10 08:46:53 -07:00
# include "pow.h"
2015-07-05 14:30:07 +02:00
# include "primitives/block.h"
# include "primitives/transaction.h"
# include "script/script.h"
# include "script/sigcache.h"
# include "script/standard.h"
# include "tinyformat.h"
2013-08-27 15:51:57 +10:00
# include "txdb.h"
# include "txmempool.h"
2012-04-15 22:10:54 +02:00
# include "ui_interface.h"
2014-10-27 14:42:49 +01:00
# include "undo.h"
2013-04-13 00:13:08 -05:00
# include "util.h"
2013-08-05 18:27:09 -07:00
# include "utilmoneystr.h"
2015-07-05 14:17:46 +02:00
# include "utilstrencodings.h"
2015-02-05 01:11:44 +01:00
# include "validationinterface.h"
2013-04-13 00:13:08 -05:00
2013-10-28 16:36:11 +10:00
# include <sstream>
2013-04-13 00:13:08 -05:00
# include <boost/algorithm/string/replace.hpp>
# include <boost/filesystem.hpp>
# include <boost/filesystem/fstream.hpp>
2015-03-26 11:20:59 -04:00
# include <boost/math/distributions/poisson.hpp>
Split up util.cpp/h
Split up util.cpp/h into:
- string utilities (hex, base32, base64): no internal dependencies, no dependency on boost (apart from foreach)
- money utilities (parsesmoney, formatmoney)
- time utilities (gettime*, sleep, format date):
- and the rest (logging, argument parsing, config file parsing)
The latter is basically the environment and OS handling,
and is stripped of all utility functions, so we may want to
rename it to something else than util.cpp/h for clarity (Matt suggested
osinterface).
Breaks dependency of sha256.cpp on all the things pulled in by util.
2014-08-21 16:11:09 +02:00
# include <boost/thread.hpp>
2010-08-29 16:58:15 +00:00
2014-10-06 13:04:02 +02:00
using namespace std ;
2010-08-29 16:58:15 +00:00
2013-12-02 11:33:44 -08:00
# if defined(NDEBUG)
# error "Bitcoin cannot be compiled without assertions."
# endif
2014-12-01 09:39:44 +08:00
/**
* Global state
*/
2010-08-29 16:58:15 +00:00
CCriticalSection cs_main ;
2014-09-04 02:02:44 +02:00
BlockMap mapBlockIndex ;
2013-10-10 23:07:44 +02:00
CChain chainActive ;
2014-07-12 00:03:10 +02:00
CBlockIndex * pindexBestHeader = NULL ;
2013-04-13 00:13:08 -05:00
int64_t nTimeBestReceived = 0 ;
2012-05-13 04:43:24 +00:00
CWaitableCriticalSection csBestBlock ;
CConditionVariable cvBlockChange ;
2012-12-01 23:04:14 +01:00
int nScriptCheckThreads = 0 ;
2012-09-13 14:33:52 +02:00
bool fImporting = false ;
2012-10-21 21:23:13 +02:00
bool fReindex = false ;
2013-01-11 01:47:57 +01:00
bool fTxIndex = false ;
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
bool fHavePruned = false ;
bool fPruneMode = false ;
2014-07-16 20:04:04 -04:00
bool fIsBareMultisigStd = true ;
2015-06-24 03:36:22 +00:00
bool fRequireStandard = true ;
2015-03-13 09:25:34 -07:00
bool fCheckBlockIndex = false ;
2015-04-22 23:22:36 -04:00
bool fCheckpointsEnabled = true ;
2015-05-04 01:38:08 +02:00
size_t nCoinCacheUsage = 5000 * 300 ;
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
uint64_t nPruneTarget = 0 ;
2015-06-12 12:00:39 +02:00
bool fAlerts = DEFAULT_ALERTS ;
2010-08-29 16:58:15 +00:00
2015-10-25 03:01:20 +01:00
/** Fees smaller than this (in satoshi) are considered zero fee (for relaying, mining and transaction creation) */
2015-10-13 01:06:59 -07:00
CFeeRate minRelayTxFee = CFeeRate ( 1000 ) ;
2014-07-03 14:25:32 -04:00
CTxMemPool mempool ( : : minRelayTxFee ) ;
2013-04-25 20:11:27 -04:00
2014-08-28 13:23:24 -04:00
struct COrphanTx {
CTransaction tx ;
NodeId fromPeer ;
} ;
2015-06-16 04:08:26 -04:00
map < uint256 , COrphanTx > mapOrphanTransactions GUARDED_BY ( cs_main ) ; ;
map < uint256 , set < uint256 > > mapOrphanTransactionsByPrev GUARDED_BY ( cs_main ) ; ;
void EraseOrphansFor ( NodeId peer ) EXCLUSIVE_LOCKS_REQUIRED ( cs_main ) ;
2010-08-29 16:58:15 +00:00
2014-11-24 14:51:10 +01:00
/**
* Returns true if there are nRequired or more blocks of minVersion or above
2015-04-01 16:10:37 +02:00
* in the last Consensus : : Params : : nMajorityWindow blocks , starting at pstart and going backwards .
2014-11-24 14:51:10 +01:00
*/
2015-04-01 16:10:37 +02:00
static bool IsSuperMajority ( int minVersion , const CBlockIndex * pstart , unsigned nRequired , const Consensus : : Params & consensusParams ) ;
2015-03-13 09:25:34 -07:00
static void CheckBlockIndex ( ) ;
2014-11-24 14:51:10 +01:00
2014-12-01 09:39:44 +08:00
/** Constant stuff for coinbase transactions we create: */
2012-02-06 15:48:00 -05:00
CScript COINBASE_FLAGS ;
2010-08-29 16:58:15 +00:00
2011-12-23 10:14:57 -05:00
const string strMessageMagic = " Bitcoin Signed Message: \n " ;
2013-10-14 02:13:44 +02:00
// Internal stuff
namespace {
2014-06-24 14:17:43 +02:00
2014-04-30 14:57:11 +08:00
struct CBlockIndexWorkComparator
{
2015-03-13 09:25:34 -07:00
bool operator ( ) ( CBlockIndex * pa , CBlockIndex * pb ) const {
2014-04-30 14:57:11 +08:00
// First sort by most total work, ...
if ( pa - > nChainWork > pb - > nChainWork ) return false ;
if ( pa - > nChainWork < pb - > nChainWork ) return true ;
// ... then by earliest time received, ...
if ( pa - > nSequenceId < pb - > nSequenceId ) return false ;
if ( pa - > nSequenceId > pb - > nSequenceId ) return true ;
// Use pointer address as tie breaker (should only happen with blocks
// loaded from disk, as those all have id 0).
if ( pa < pb ) return false ;
if ( pa > pb ) return true ;
// Identical blocks.
return false ;
}
} ;
CBlockIndex * pindexBestInvalid ;
2014-07-09 18:04:18 +02:00
2014-12-01 09:39:44 +08:00
/**
2015-03-13 09:25:34 -07:00
* The set of all CBlockIndex entries with BLOCK_VALID_TRANSACTIONS ( for itself and all ancestors ) and
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
* as good as our current tip or better . Entries may be failed , though , and pruning nodes may be
* missing the data for the block .
2014-12-01 09:39:44 +08:00
*/
2014-10-06 08:31:33 +02:00
set < CBlockIndex * , CBlockIndexWorkComparator > setBlockIndexCandidates ;
2014-12-01 09:39:44 +08:00
/** Number of nodes with fSyncStarted. */
2014-07-12 00:02:35 +02:00
int nSyncStarted = 0 ;
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
/** All pairs A->B, where A (or one if its ancestors) misses transactions, but B has transactions.
* Pruned nodes may have entries where B is missing data .
*/
2014-07-12 00:02:35 +02:00
multimap < CBlockIndex * , CBlockIndex * > mapBlocksUnlinked ;
2014-04-30 14:57:11 +08:00
CCriticalSection cs_LastBlockFile ;
2014-09-25 08:21:21 +02:00
std : : vector < CBlockFileInfo > vinfoBlockFile ;
2014-04-30 14:57:11 +08:00
int nLastBlockFile = 0 ;
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
/** Global flag to indicate we should check to see if there are
* block / undo files that should be deleted . Set on startup
* or if we allocate more file space when we ' re in prune mode
*/
bool fCheckForPruning = false ;
2014-04-30 14:57:11 +08:00
2014-12-01 09:39:44 +08:00
/**
* Every received block is assigned a unique and increasing identifier , so we
* know which one to give priority in case of a fork .
*/
2014-04-30 14:57:11 +08:00
CCriticalSection cs_nBlockSequenceId ;
2014-12-01 09:39:44 +08:00
/** Blocks loaded from disk are assigned id 0, so start the counter at 1. */
2014-04-30 14:57:11 +08:00
uint32_t nBlockSequenceId = 1 ;
2014-12-01 09:39:44 +08:00
/**
2015-04-28 14:47:17 +00:00
* Sources of received blocks , saved to be able to send them reject
* messages or ban them when processing happens afterwards . Protected by
* cs_main .
2014-12-01 09:39:44 +08:00
*/
2014-04-30 14:57:11 +08:00
map < uint256 , NodeId > mapBlockSource ;
2015-07-17 06:46:48 -04:00
/**
* Filter for transactions that were recently rejected by
* AcceptToMemoryPool . These are not rerequested until the chain tip
* changes , at which point the entire filter is reset . Protected by
* cs_main .
*
* Without this filter we ' d be re - requesting txs from each of our peers ,
* increasing bandwidth consumption considerably . For instance , with 100
* peers , half of which relay a tx we don ' t accept , that might be a 50 x
* bandwidth increase . A flooding attacker attempting to roll - over the
* filter using minimum - sized , 60 byte , transactions might manage to send
* 1000 / sec if we have fast peers , so we pick 120 , 000 to give our peers a
* two minute window to send invs to us .
*
* Decreasing the false positive rate is fairly cheap , so we pick one in a
* million to make it highly unlikely for users to have issues with this
* filter .
*
* Memory used : 1.7 MB
*/
boost : : scoped_ptr < CRollingBloomFilter > recentRejects ;
uint256 hashRecentRejectsChainTip ;
2014-12-01 09:39:44 +08:00
/** Blocks that are in flight, and that are in the queue to be downloaded. Protected by cs_main. */
2014-04-30 14:57:11 +08:00
struct QueuedBlock {
uint256 hash ;
2014-12-01 09:39:44 +08:00
CBlockIndex * pindex ; //! Optional.
int64_t nTime ; //! Time of "getdata" request in microseconds.
2015-01-06 17:05:46 +01:00
bool fValidatedHeaders ; //! Whether this block has validated headers at the time of request.
2015-04-06 13:10:33 -04:00
int64_t nTimeDisconnect ; //! The timeout for this block request (for disconnecting a slow peer)
2014-04-30 14:57:11 +08:00
} ;
map < uint256 , pair < NodeId , list < QueuedBlock > : : iterator > > mapBlocksInFlight ;
2014-06-24 14:17:43 +02:00
2015-01-06 17:05:46 +01:00
/** Number of blocks in flight with validated headers. */
int nQueuedValidatedHeaders = 0 ;
2014-12-01 09:39:44 +08:00
/** Number of preferable block download peers. */
2014-10-28 09:33:55 -07:00
int nPreferredDownload = 0 ;
Improve chainstate/blockindex disk writing policy
There are 3 pieces of data that are maintained on disk. The actual block
and undo data, the block index (which can refer to positions on disk),
and the chainstate (which refers to the best block hash).
Earlier, there was no guarantee that blocks were written to disk before
block index entries referring to them were written. This commit introduces
dirty flags for block index data, and delays writing entries until the actual
block data is flushed.
With this stricter ordering in writes, it is now safe to not always flush
after every block, so there is no need for the IsInitialBlockDownload()
check there - instead we just write whenever enough time has passed or
the cache size grows too large. Also updating the wallet's best known block
is delayed until this is done, otherwise the wallet may end up referring to an
unknown block.
In addition, only do a write inside the block processing loop if necessary
(because of cache size exceeded). Otherwise, move the writing to a point
after processing is done, after relaying.
2014-11-07 02:38:35 -08:00
2014-12-01 09:39:44 +08:00
/** Dirty block index entries. */
Improve chainstate/blockindex disk writing policy
There are 3 pieces of data that are maintained on disk. The actual block
and undo data, the block index (which can refer to positions on disk),
and the chainstate (which refers to the best block hash).
Earlier, there was no guarantee that blocks were written to disk before
block index entries referring to them were written. This commit introduces
dirty flags for block index data, and delays writing entries until the actual
block data is flushed.
With this stricter ordering in writes, it is now safe to not always flush
after every block, so there is no need for the IsInitialBlockDownload()
check there - instead we just write whenever enough time has passed or
the cache size grows too large. Also updating the wallet's best known block
is delayed until this is done, otherwise the wallet may end up referring to an
unknown block.
In addition, only do a write inside the block processing loop if necessary
(because of cache size exceeded). Otherwise, move the writing to a point
after processing is done, after relaying.
2014-11-07 02:38:35 -08:00
set < CBlockIndex * > setDirtyBlockIndex ;
2014-12-01 09:39:44 +08:00
/** Dirty block file entries. */
Improve chainstate/blockindex disk writing policy
There are 3 pieces of data that are maintained on disk. The actual block
and undo data, the block index (which can refer to positions on disk),
and the chainstate (which refers to the best block hash).
Earlier, there was no guarantee that blocks were written to disk before
block index entries referring to them were written. This commit introduces
dirty flags for block index data, and delays writing entries until the actual
block data is flushed.
With this stricter ordering in writes, it is now safe to not always flush
after every block, so there is no need for the IsInitialBlockDownload()
check there - instead we just write whenever enough time has passed or
the cache size grows too large. Also updating the wallet's best known block
is delayed until this is done, otherwise the wallet may end up referring to an
unknown block.
In addition, only do a write inside the block processing loop if necessary
(because of cache size exceeded). Otherwise, move the writing to a point
after processing is done, after relaying.
2014-11-07 02:38:35 -08:00
set < int > setDirtyFileInfo ;
2014-06-24 14:17:43 +02:00
} // anon namespace
2010-08-29 16:58:15 +00:00
2013-06-05 20:21:41 -07:00
//////////////////////////////////////////////////////////////////////////////
//
// Registration of network node signals.
//
2013-11-18 01:25:17 +01:00
namespace {
2013-11-16 19:28:24 +01:00
struct CBlockReject {
unsigned char chRejectCode ;
string strRejectReason ;
uint256 hashBlock ;
} ;
2014-12-01 09:39:44 +08:00
/**
* Maintain validation - specific state about nodes , protected by cs_main , instead
* by CNode ' s own locks . This simplifies asynchronous operation , where
* processing of incoming data is done after the ProcessMessage call returns ,
* and we ' re no longer holding the node ' s locks .
*/
2013-11-18 01:25:17 +01:00
struct CNodeState {
2015-03-05 04:01:22 -08:00
//! The peer's address
CService address ;
//! Whether we have a fully established connection.
bool fCurrentlyConnected ;
2014-12-01 09:39:44 +08:00
//! Accumulated misbehaviour score for this peer.
2013-11-18 01:25:17 +01:00
int nMisbehavior ;
2014-12-01 09:39:44 +08:00
//! Whether this peer should be disconnected and banned (unless whitelisted).
2013-11-18 01:25:17 +01:00
bool fShouldBan ;
2014-12-01 09:39:44 +08:00
//! String name of this peer (debugging/logging purposes).
2013-11-18 01:25:17 +01:00
std : : string name ;
2014-12-01 09:39:44 +08:00
//! List of asynchronously-determined block rejections to notify this peer about.
2013-11-16 19:28:24 +01:00
std : : vector < CBlockReject > rejects ;
2014-12-01 09:39:44 +08:00
//! The best known block we know this peer has announced.
2014-06-23 00:00:26 +02:00
CBlockIndex * pindexBestKnownBlock ;
2014-12-01 09:39:44 +08:00
//! The hash of the last unknown block this peer has announced.
2014-06-23 00:00:26 +02:00
uint256 hashLastUnknownBlock ;
2014-12-01 09:39:44 +08:00
//! The last full block we both have.
2014-07-12 00:02:35 +02:00
CBlockIndex * pindexLastCommonBlock ;
2014-12-01 09:39:44 +08:00
//! Whether we've started headers synchronization with this peer.
2014-07-12 00:02:35 +02:00
bool fSyncStarted ;
2014-12-01 09:39:44 +08:00
//! Since when we're stalling block download progress (in microseconds), or 0.
2014-07-12 00:02:35 +02:00
int64_t nStallingSince ;
2014-01-10 13:23:26 +01:00
list < QueuedBlock > vBlocksInFlight ;
int nBlocksInFlight ;
2015-04-06 13:10:33 -04:00
int nBlocksInFlightValidHeaders ;
2014-12-01 09:39:44 +08:00
//! Whether we consider this a preferred download peer.
2014-10-28 09:33:55 -07:00
bool fPreferredDownload ;
2013-11-18 01:25:17 +01:00
CNodeState ( ) {
2015-03-05 04:01:22 -08:00
fCurrentlyConnected = false ;
2013-11-18 01:25:17 +01:00
nMisbehavior = 0 ;
fShouldBan = false ;
2014-06-23 00:00:26 +02:00
pindexBestKnownBlock = NULL ;
2014-12-15 09:11:16 +01:00
hashLastUnknownBlock . SetNull ( ) ;
2014-07-12 00:02:35 +02:00
pindexLastCommonBlock = NULL ;
fSyncStarted = false ;
nStallingSince = 0 ;
2014-01-10 13:23:26 +01:00
nBlocksInFlight = 0 ;
2015-04-06 13:10:33 -04:00
nBlocksInFlightValidHeaders = 0 ;
2014-10-28 09:33:55 -07:00
fPreferredDownload = false ;
2013-11-18 01:25:17 +01:00
}
} ;
2014-12-01 09:39:44 +08:00
/** Map maintaining per-node state. Requires cs_main. */
2013-11-18 01:25:17 +01:00
map < NodeId , CNodeState > mapNodeState ;
// Requires cs_main.
CNodeState * State ( NodeId pnode ) {
map < NodeId , CNodeState > : : iterator it = mapNodeState . find ( pnode ) ;
if ( it = = mapNodeState . end ( ) )
return NULL ;
return & it - > second ;
}
int GetHeight ( )
2013-10-10 23:07:44 +02:00
{
LOCK ( cs_main ) ;
return chainActive . Height ( ) ;
}
2014-10-28 09:33:55 -07:00
void UpdatePreferredDownload ( CNode * node , CNodeState * state )
{
nPreferredDownload - = state - > fPreferredDownload ;
// Whether this node should be marked as a preferred download node.
state - > fPreferredDownload = ( ! node - > fInbound | | node - > fWhitelisted ) & & ! node - > fOneShot & & ! node - > fClient ;
nPreferredDownload + = state - > fPreferredDownload ;
}
2015-04-06 13:10:33 -04:00
// Returns time at which to timeout block request (nTime in microseconds)
2015-05-27 10:57:17 -04:00
int64_t GetBlockTimeout ( int64_t nTime , int nValidatedQueuedBefore , const Consensus : : Params & consensusParams )
2015-04-06 13:10:33 -04:00
{
2015-05-27 10:57:17 -04:00
return nTime + 500000 * consensusParams . nPowTargetSpacing * ( 4 + nValidatedQueuedBefore ) ;
2015-04-06 13:10:33 -04:00
}
2013-11-18 01:25:17 +01:00
void InitializeNode ( NodeId nodeid , const CNode * pnode ) {
LOCK ( cs_main ) ;
CNodeState & state = mapNodeState . insert ( std : : make_pair ( nodeid , CNodeState ( ) ) ) . first - > second ;
state . name = pnode - > addrName ;
2015-03-05 04:01:22 -08:00
state . address = pnode - > addr ;
2013-11-18 01:25:17 +01:00
}
void FinalizeNode ( NodeId nodeid ) {
LOCK ( cs_main ) ;
2014-01-10 13:23:26 +01:00
CNodeState * state = State ( nodeid ) ;
2014-07-12 00:02:35 +02:00
if ( state - > fSyncStarted )
nSyncStarted - - ;
2015-03-05 04:01:22 -08:00
if ( state - > nMisbehavior = = 0 & & state - > fCurrentlyConnected ) {
AddressCurrentlyConnected ( state - > address ) ;
}
2014-01-10 13:23:26 +01:00
BOOST_FOREACH ( const QueuedBlock & entry , state - > vBlocksInFlight )
mapBlocksInFlight . erase ( entry . hash ) ;
2014-08-28 13:23:24 -04:00
EraseOrphansFor ( nodeid ) ;
2014-10-28 09:33:55 -07:00
nPreferredDownload - = state - > fPreferredDownload ;
2014-01-10 13:23:26 +01:00
2013-11-18 01:25:17 +01:00
mapNodeState . erase ( nodeid ) ;
}
2014-01-10 13:23:26 +01:00
// Requires cs_main.
2015-04-09 13:21:11 -04:00
// Returns a bool indicating whether we requested this block.
bool MarkBlockAsReceived ( const uint256 & hash ) {
2014-01-10 13:23:26 +01:00
map < uint256 , pair < NodeId , list < QueuedBlock > : : iterator > > : : iterator itInFlight = mapBlocksInFlight . find ( hash ) ;
if ( itInFlight ! = mapBlocksInFlight . end ( ) ) {
CNodeState * state = State ( itInFlight - > second . first ) ;
2015-01-06 17:05:46 +01:00
nQueuedValidatedHeaders - = itInFlight - > second . second - > fValidatedHeaders ;
2015-04-06 13:10:33 -04:00
state - > nBlocksInFlightValidHeaders - = itInFlight - > second . second - > fValidatedHeaders ;
2014-01-10 13:23:26 +01:00
state - > vBlocksInFlight . erase ( itInFlight - > second . second ) ;
state - > nBlocksInFlight - - ;
2014-07-12 00:02:35 +02:00
state - > nStallingSince = 0 ;
2014-01-10 13:23:26 +01:00
mapBlocksInFlight . erase ( itInFlight ) ;
2015-04-09 13:21:11 -04:00
return true ;
2014-01-10 13:23:26 +01:00
}
2015-04-09 13:21:11 -04:00
return false ;
2014-01-10 13:23:26 +01:00
}
// Requires cs_main.
2015-05-27 10:57:17 -04:00
void MarkBlockAsInFlight ( NodeId nodeid , const uint256 & hash , const Consensus : : Params & consensusParams , CBlockIndex * pindex = NULL ) {
2014-01-10 13:23:26 +01:00
CNodeState * state = State ( nodeid ) ;
assert ( state ! = NULL ) ;
// Make sure it's not listed somewhere already.
MarkBlockAsReceived ( hash ) ;
2015-04-06 13:10:33 -04:00
int64_t nNow = GetTimeMicros ( ) ;
2015-05-27 10:57:17 -04:00
QueuedBlock newentry = { hash , pindex , nNow , pindex ! = NULL , GetBlockTimeout ( nNow , nQueuedValidatedHeaders , consensusParams ) } ;
2015-01-06 17:05:46 +01:00
nQueuedValidatedHeaders + = newentry . fValidatedHeaders ;
2014-01-10 13:23:26 +01:00
list < QueuedBlock > : : iterator it = state - > vBlocksInFlight . insert ( state - > vBlocksInFlight . end ( ) , newentry ) ;
state - > nBlocksInFlight + + ;
2015-04-06 13:10:33 -04:00
state - > nBlocksInFlightValidHeaders + = newentry . fValidatedHeaders ;
2014-01-10 13:23:26 +01:00
mapBlocksInFlight [ hash ] = std : : make_pair ( nodeid , it ) ;
}
2014-06-23 00:00:26 +02:00
/** Check whether the last unknown block a peer advertized is not yet known. */
void ProcessBlockAvailability ( NodeId nodeid ) {
CNodeState * state = State ( nodeid ) ;
assert ( state ! = NULL ) ;
2014-12-15 09:11:16 +01:00
if ( ! state - > hashLastUnknownBlock . IsNull ( ) ) {
2014-09-04 02:02:44 +02:00
BlockMap : : iterator itOld = mapBlockIndex . find ( state - > hashLastUnknownBlock ) ;
2014-06-23 00:00:26 +02:00
if ( itOld ! = mapBlockIndex . end ( ) & & itOld - > second - > nChainWork > 0 ) {
if ( state - > pindexBestKnownBlock = = NULL | | itOld - > second - > nChainWork > = state - > pindexBestKnownBlock - > nChainWork )
state - > pindexBestKnownBlock = itOld - > second ;
2014-12-15 09:11:16 +01:00
state - > hashLastUnknownBlock . SetNull ( ) ;
2014-06-23 00:00:26 +02:00
}
}
}
/** Update tracking information about which blocks a peer is assumed to have. */
void UpdateBlockAvailability ( NodeId nodeid , const uint256 & hash ) {
CNodeState * state = State ( nodeid ) ;
assert ( state ! = NULL ) ;
ProcessBlockAvailability ( nodeid ) ;
2014-09-04 02:02:44 +02:00
BlockMap : : iterator it = mapBlockIndex . find ( hash ) ;
2014-06-23 00:00:26 +02:00
if ( it ! = mapBlockIndex . end ( ) & & it - > second - > nChainWork > 0 ) {
// An actually better block was announced.
if ( state - > pindexBestKnownBlock = = NULL | | it - > second - > nChainWork > = state - > pindexBestKnownBlock - > nChainWork )
state - > pindexBestKnownBlock = it - > second ;
} else {
// An unknown block was announced; just assume that the latest one is the best one.
state - > hashLastUnknownBlock = hash ;
}
}
2014-07-12 00:02:35 +02:00
/** Find the last common ancestor two blocks have.
* Both pa and pb must be non - NULL . */
CBlockIndex * LastCommonAncestor ( CBlockIndex * pa , CBlockIndex * pb ) {
if ( pa - > nHeight > pb - > nHeight ) {
pa = pa - > GetAncestor ( pb - > nHeight ) ;
} else if ( pb - > nHeight > pa - > nHeight ) {
pb = pb - > GetAncestor ( pa - > nHeight ) ;
}
while ( pa ! = pb & & pa & & pb ) {
pa = pa - > pprev ;
pb = pb - > pprev ;
}
// Eventually all chain branches meet at the genesis block.
assert ( pa = = pb ) ;
return pa ;
}
/** Update pindexLastCommonBlock and add not-in-flight missing successors to vBlocks, until it has
* at most count entries . */
void FindNextBlocksToDownload ( NodeId nodeid , unsigned int count , std : : vector < CBlockIndex * > & vBlocks , NodeId & nodeStaller ) {
if ( count = = 0 )
return ;
vBlocks . reserve ( vBlocks . size ( ) + count ) ;
CNodeState * state = State ( nodeid ) ;
assert ( state ! = NULL ) ;
// Make sure pindexBestKnownBlock is up to date, we'll need it.
ProcessBlockAvailability ( nodeid ) ;
if ( state - > pindexBestKnownBlock = = NULL | | state - > pindexBestKnownBlock - > nChainWork < chainActive . Tip ( ) - > nChainWork ) {
// This peer has nothing interesting.
return ;
}
if ( state - > pindexLastCommonBlock = = NULL ) {
// Bootstrap quickly by guessing a parent of our best tip is the forking point.
// Guessing wrong in either direction is not a problem.
state - > pindexLastCommonBlock = chainActive [ std : : min ( state - > pindexBestKnownBlock - > nHeight , chainActive . Height ( ) ) ] ;
}
// If the peer reorganized, our previous pindexLastCommonBlock may not be an ancestor
2015-04-28 14:47:17 +00:00
// of its current tip anymore. Go back enough to fix that.
2014-07-12 00:02:35 +02:00
state - > pindexLastCommonBlock = LastCommonAncestor ( state - > pindexLastCommonBlock , state - > pindexBestKnownBlock ) ;
if ( state - > pindexLastCommonBlock = = state - > pindexBestKnownBlock )
return ;
std : : vector < CBlockIndex * > vToFetch ;
CBlockIndex * pindexWalk = state - > pindexLastCommonBlock ;
2014-10-14 15:41:23 -07:00
// Never fetch further than the best block we know the peer has, or more than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last
// linked block we have in common with this peer. The +1 is so we can detect stalling, namely if we would be able to
// download that next block if the window were 1 larger.
int nWindowEnd = state - > pindexLastCommonBlock - > nHeight + BLOCK_DOWNLOAD_WINDOW ;
int nMaxHeight = std : : min < int > ( state - > pindexBestKnownBlock - > nHeight , nWindowEnd + 1 ) ;
2014-07-12 00:02:35 +02:00
NodeId waitingfor = - 1 ;
while ( pindexWalk - > nHeight < nMaxHeight ) {
// Read up to 128 (or more, if more blocks than that are needed) successors of pindexWalk (towards
// pindexBestKnownBlock) into vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as expensive
// as iterating over ~100 CBlockIndex* entries anyway.
int nToFetch = std : : min ( nMaxHeight - pindexWalk - > nHeight , std : : max < int > ( count - vBlocks . size ( ) , 128 ) ) ;
vToFetch . resize ( nToFetch ) ;
pindexWalk = state - > pindexBestKnownBlock - > GetAncestor ( pindexWalk - > nHeight + nToFetch ) ;
vToFetch [ nToFetch - 1 ] = pindexWalk ;
for ( unsigned int i = nToFetch - 1 ; i > 0 ; i - - ) {
vToFetch [ i - 1 ] = vToFetch [ i ] - > pprev ;
}
// Iterate over those blocks in vToFetch (in forward direction), adding the ones that
// are not yet downloaded and not in flight to vBlocks. In the mean time, update
2015-06-04 13:00:26 -04:00
// pindexLastCommonBlock as long as all ancestors are already downloaded, or if it's
// already part of our chain (and therefore don't need it even if pruned).
2014-07-12 00:02:35 +02:00
BOOST_FOREACH ( CBlockIndex * pindex , vToFetch ) {
2014-12-11 13:35:14 +01:00
if ( ! pindex - > IsValid ( BLOCK_VALID_TREE ) ) {
// We consider the chain that this peer is on invalid.
return ;
}
2015-06-04 13:00:26 -04:00
if ( pindex - > nStatus & BLOCK_HAVE_DATA | | chainActive . Contains ( pindex ) ) {
2014-07-12 00:02:35 +02:00
if ( pindex - > nChainTx )
state - > pindexLastCommonBlock = pindex ;
} else if ( mapBlocksInFlight . count ( pindex - > GetBlockHash ( ) ) = = 0 ) {
// The block is not already downloaded, and not yet in flight.
2014-10-14 15:41:23 -07:00
if ( pindex - > nHeight > nWindowEnd ) {
2014-07-12 00:02:35 +02:00
// We reached the end of the window.
if ( vBlocks . size ( ) = = 0 & & waitingfor ! = nodeid ) {
// We aren't able to fetch anything, but we would be if the download window was one larger.
nodeStaller = waitingfor ;
}
return ;
}
vBlocks . push_back ( pindex ) ;
if ( vBlocks . size ( ) = = count ) {
return ;
}
} else if ( waitingfor = = - 1 ) {
// This is the first already-in-flight block.
waitingfor = mapBlocksInFlight [ pindex - > GetBlockHash ( ) ] . first ;
}
}
}
}
2014-06-24 14:17:43 +02:00
} // anon namespace
2013-11-18 01:25:17 +01:00
bool GetNodeStateStats ( NodeId nodeid , CNodeStateStats & stats ) {
LOCK ( cs_main ) ;
CNodeState * state = State ( nodeid ) ;
if ( state = = NULL )
return false ;
stats . nMisbehavior = state - > nMisbehavior ;
2014-06-23 00:00:26 +02:00
stats . nSyncHeight = state - > pindexBestKnownBlock ? state - > pindexBestKnownBlock - > nHeight : - 1 ;
2014-07-12 00:03:10 +02:00
stats . nCommonHeight = state - > pindexLastCommonBlock ? state - > pindexLastCommonBlock - > nHeight : - 1 ;
BOOST_FOREACH ( const QueuedBlock & queue , state - > vBlocksInFlight ) {
if ( queue . pindex )
stats . vHeightInFlight . push_back ( queue . pindex - > nHeight ) ;
}
2013-11-18 01:25:17 +01:00
return true ;
}
2013-06-05 20:21:41 -07:00
void RegisterNodeSignals ( CNodeSignals & nodeSignals )
{
2013-10-10 23:07:44 +02:00
nodeSignals . GetHeight . connect ( & GetHeight ) ;
2013-06-05 20:21:41 -07:00
nodeSignals . ProcessMessages . connect ( & ProcessMessages ) ;
nodeSignals . SendMessages . connect ( & SendMessages ) ;
2013-11-18 01:25:17 +01:00
nodeSignals . InitializeNode . connect ( & InitializeNode ) ;
nodeSignals . FinalizeNode . connect ( & FinalizeNode ) ;
2013-06-05 20:21:41 -07:00
}
CWallet class
* A new class CKeyStore manages private keys, and script.cpp depends on access to CKeyStore.
* A new class CWallet extends CKeyStore, and contains all former wallet-specific globals; CWallet depends on script.cpp, not the other way around.
* Wallet-specific functions in CTransaction/CTxIn/CTxOut (GetDebit, GetCredit, GetChange, IsMine, IsFromMe), are moved to CWallet, taking their former 'this' argument as an explicit parameter
* CWalletTx objects know which CWallet they belong to, for convenience, so they have their own direct (and caching) GetDebit/... functions.
* Some code was moved from CWalletDB to CWallet, such as handling of reserve keys.
* Main.cpp keeps a set of all 'registered' wallets, which should be informed about updates to the block chain, and does not have any notion about any 'main' wallet. Function in main.cpp that require a wallet (such as GenerateCoins), take an explicit CWallet* argument.
* The actual CWallet instance used by the application is defined in init.cpp as "CWallet* pwalletMain". rpc.cpp and ui.cpp use this variable.
* Functions in main.cpp and db.cpp that are not used by other modules are marked static.
* The code for handling the 'submitorder' message is removed, as it not really compatible with the idea that a node is independent from the wallet(s) connected to it, and obsolete anyway.
2011-06-01 18:28:20 +02:00
2013-06-05 20:21:41 -07:00
void UnregisterNodeSignals ( CNodeSignals & nodeSignals )
{
2013-10-10 23:07:44 +02:00
nodeSignals . GetHeight . disconnect ( & GetHeight ) ;
2013-06-05 20:21:41 -07:00
nodeSignals . ProcessMessages . disconnect ( & ProcessMessages ) ;
nodeSignals . SendMessages . disconnect ( & SendMessages ) ;
2013-11-18 01:25:17 +01:00
nodeSignals . InitializeNode . disconnect ( & InitializeNode ) ;
nodeSignals . FinalizeNode . disconnect ( & FinalizeNode ) ;
2013-06-05 20:21:41 -07:00
}
CWallet class
* A new class CKeyStore manages private keys, and script.cpp depends on access to CKeyStore.
* A new class CWallet extends CKeyStore, and contains all former wallet-specific globals; CWallet depends on script.cpp, not the other way around.
* Wallet-specific functions in CTransaction/CTxIn/CTxOut (GetDebit, GetCredit, GetChange, IsMine, IsFromMe), are moved to CWallet, taking their former 'this' argument as an explicit parameter
* CWalletTx objects know which CWallet they belong to, for convenience, so they have their own direct (and caching) GetDebit/... functions.
* Some code was moved from CWalletDB to CWallet, such as handling of reserve keys.
* Main.cpp keeps a set of all 'registered' wallets, which should be informed about updates to the block chain, and does not have any notion about any 'main' wallet. Function in main.cpp that require a wallet (such as GenerateCoins), take an explicit CWallet* argument.
* The actual CWallet instance used by the application is defined in init.cpp as "CWallet* pwalletMain". rpc.cpp and ui.cpp use this variable.
* Functions in main.cpp and db.cpp that are not used by other modules are marked static.
* The code for handling the 'submitorder' message is removed, as it not really compatible with the idea that a node is independent from the wallet(s) connected to it, and obsolete anyway.
2011-06-01 18:28:20 +02:00
2014-09-03 02:52:01 +02:00
CBlockIndex * FindForkInGlobalIndex ( const CChain & chain , const CBlockLocator & locator )
{
2013-05-07 13:59:29 +02:00
// Find the first block the caller has in the main chain
2013-10-12 15:18:08 +02:00
BOOST_FOREACH ( const uint256 & hash , locator . vHave ) {
2014-09-04 02:02:44 +02:00
BlockMap : : iterator mi = mapBlockIndex . find ( hash ) ;
2013-05-07 13:59:29 +02:00
if ( mi ! = mapBlockIndex . end ( ) )
{
CBlockIndex * pindex = ( * mi ) . second ;
2014-09-03 02:52:01 +02:00
if ( chain . Contains ( pindex ) )
2013-05-07 13:59:29 +02:00
return pindex ;
}
}
2014-09-03 02:52:01 +02:00
return chain . Genesis ( ) ;
2014-05-06 00:54:10 +02:00
}
2012-07-06 16:33:34 +02:00
CCoinsViewCache * pcoinsTip = NULL ;
2012-09-03 15:26:57 +02:00
CBlockTreeDB * pblocktree = NULL ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
2010-08-29 16:58:15 +00:00
//////////////////////////////////////////////////////////////////////////////
//
// mapOrphanTransactions
//
2015-06-16 04:08:26 -04:00
bool AddOrphanTx ( const CTransaction & tx , NodeId peer ) EXCLUSIVE_LOCKS_REQUIRED ( cs_main )
2010-08-29 16:58:15 +00:00
{
uint256 hash = tx . GetHash ( ) ;
if ( mapOrphanTransactions . count ( hash ) )
2012-05-15 15:53:30 -04:00
return false ;
// Ignore big transactions, to avoid a
// send-big-orphans memory exhaustion attack. If a peer has a legitimate
// large transaction with a missing parent then we assume
// it will rebroadcast it later, after the parent transaction(s)
// have been mined or received.
// 10,000 orphans, each of which is at most 5,000 bytes big is
// at most 500 megabytes of orphans:
2013-08-02 15:14:44 +10:00
unsigned int sz = tx . GetSerializeSize ( SER_NETWORK , CTransaction : : CURRENT_VERSION ) ;
if ( sz > 5000 )
2012-05-15 15:53:30 -04:00
{
2014-01-16 16:15:27 +01:00
LogPrint ( " mempool " , " ignoring large orphan tx (size: %u, hash: %s) \n " , sz , hash . ToString ( ) ) ;
2012-05-15 15:53:30 -04:00
return false ;
}
2012-02-29 10:14:18 -05:00
2014-08-28 13:23:24 -04:00
mapOrphanTransactions [ hash ] . tx = tx ;
mapOrphanTransactions [ hash ] . fromPeer = peer ;
2011-05-15 09:11:04 +02:00
BOOST_FOREACH ( const CTxIn & txin , tx . vin )
2013-08-02 15:14:44 +10:00
mapOrphanTransactionsByPrev [ txin . prevout . hash ] . insert ( hash ) ;
2012-05-15 15:53:30 -04:00
2014-08-28 13:23:24 -04:00
LogPrint ( " mempool " , " stored orphan tx %s (mapsz %u prevsz %u) \n " , hash . ToString ( ) ,
mapOrphanTransactions . size ( ) , mapOrphanTransactionsByPrev . size ( ) ) ;
2012-05-15 15:53:30 -04:00
return true ;
2010-08-29 16:58:15 +00:00
}
2015-06-16 04:08:26 -04:00
void static EraseOrphanTx ( uint256 hash ) EXCLUSIVE_LOCKS_REQUIRED ( cs_main )
2010-08-29 16:58:15 +00:00
{
2014-08-28 13:23:24 -04:00
map < uint256 , COrphanTx > : : iterator it = mapOrphanTransactions . find ( hash ) ;
2014-09-08 17:37:26 +02:00
if ( it = = mapOrphanTransactions . end ( ) )
2010-08-29 16:58:15 +00:00
return ;
2014-08-28 13:23:24 -04:00
BOOST_FOREACH ( const CTxIn & txin , it - > second . tx . vin )
2010-08-29 16:58:15 +00:00
{
2014-09-08 17:37:26 +02:00
map < uint256 , set < uint256 > > : : iterator itPrev = mapOrphanTransactionsByPrev . find ( txin . prevout . hash ) ;
2014-09-09 14:01:11 -04:00
if ( itPrev = = mapOrphanTransactionsByPrev . end ( ) )
continue ;
2014-09-08 17:37:26 +02:00
itPrev - > second . erase ( hash ) ;
if ( itPrev - > second . empty ( ) )
mapOrphanTransactionsByPrev . erase ( itPrev ) ;
2010-08-29 16:58:15 +00:00
}
2014-09-08 17:37:26 +02:00
mapOrphanTransactions . erase ( it ) ;
2010-08-29 16:58:15 +00:00
}
2014-08-28 13:23:24 -04:00
void EraseOrphansFor ( NodeId peer )
{
int nErased = 0 ;
map < uint256 , COrphanTx > : : iterator iter = mapOrphanTransactions . begin ( ) ;
while ( iter ! = mapOrphanTransactions . end ( ) )
{
map < uint256 , COrphanTx > : : iterator maybeErase = iter + + ; // increment to avoid iterator becoming invalid
if ( maybeErase - > second . fromPeer = = peer )
{
EraseOrphanTx ( maybeErase - > second . tx . GetHash ( ) ) ;
+ + nErased ;
}
}
if ( nErased > 0 ) LogPrint ( " mempool " , " Erased %d orphan tx from peer %d \n " , nErased , peer ) ;
}
2015-06-16 04:08:26 -04:00
unsigned int LimitOrphanTxSize ( unsigned int nMaxOrphans ) EXCLUSIVE_LOCKS_REQUIRED ( cs_main )
2012-02-29 10:14:18 -05:00
{
2012-04-23 14:14:03 -04:00
unsigned int nEvicted = 0 ;
2012-02-29 10:14:18 -05:00
while ( mapOrphanTransactions . size ( ) > nMaxOrphans )
{
// Evict a random orphan:
2012-05-17 12:13:14 -04:00
uint256 randomhash = GetRandHash ( ) ;
2014-08-28 13:23:24 -04:00
map < uint256 , COrphanTx > : : iterator it = mapOrphanTransactions . lower_bound ( randomhash ) ;
2012-02-29 10:14:18 -05:00
if ( it = = mapOrphanTransactions . end ( ) )
it = mapOrphanTransactions . begin ( ) ;
EraseOrphanTx ( it - > first ) ;
+ + nEvicted ;
}
return nEvicted ;
}
2010-08-29 16:58:15 +00:00
2013-04-13 00:13:08 -05:00
bool IsFinalTx ( const CTransaction & tx , int nBlockHeight , int64_t nBlockTime )
2013-01-08 04:17:15 -08:00
{
if ( tx . nLockTime = = 0 )
return true ;
2013-04-13 00:13:08 -05:00
if ( ( int64_t ) tx . nLockTime < ( ( int64_t ) tx . nLockTime < LOCKTIME_THRESHOLD ? ( int64_t ) nBlockHeight : nBlockTime ) )
2013-01-08 04:17:15 -08:00
return true ;
BOOST_FOREACH ( const CTxIn & txin , tx . vin )
if ( ! txin . IsFinal ( ) )
return false ;
return true ;
}
2015-11-03 17:12:36 +00:00
bool CheckFinalTx ( const CTransaction & tx , int flags )
2015-05-25 00:48:33 -04:00
{
AssertLockHeld ( cs_main ) ;
2015-11-03 17:12:36 +00:00
// By convention a negative value for flags indicates that the
// current network-enforced consensus rules should be used. In
// a future soft-fork scenario that would mean checking which
// rules would be enforced for the next block and setting the
// appropriate flags. At the present time no soft-forks are
// scheduled, so no flags are set.
flags = std : : max ( flags , 0 ) ;
// CheckFinalTx() uses chainActive.Height()+1 to evaluate
// nLockTime because when IsFinalTx() is called within
// CBlock::AcceptBlock(), the height of the block *being*
// evaluated is what is used. Thus if we want to know if a
// transaction can be part of the *next* block, we need to call
// IsFinalTx() with one more than chainActive.Height().
const int nBlockHeight = chainActive . Height ( ) + 1 ;
// Timestamps on the other hand don't get any special treatment,
// because we can't know what timestamp the next block will have,
// and there aren't timestamp applications where it matters.
// However this changes once median past time-locks are enforced:
const int64_t nBlockTime = ( flags & LOCKTIME_MEDIAN_TIME_PAST )
? chainActive . Tip ( ) - > GetMedianTimePast ( )
: GetAdjustedTime ( ) ;
return IsFinalTx ( tx , nBlockHeight , nBlockTime ) ;
2015-05-25 00:48:33 -04:00
}
2013-01-08 04:17:15 -08:00
unsigned int GetLegacySigOpCount ( const CTransaction & tx )
2012-01-04 21:40:52 -05:00
{
2012-04-23 14:14:03 -04:00
unsigned int nSigOps = 0 ;
2013-01-08 04:17:15 -08:00
BOOST_FOREACH ( const CTxIn & txin , tx . vin )
2012-01-04 21:40:52 -05:00
{
nSigOps + = txin . scriptSig . GetSigOpCount ( false ) ;
}
2013-01-08 04:17:15 -08:00
BOOST_FOREACH ( const CTxOut & txout , tx . vout )
2012-01-04 21:40:52 -05:00
{
nSigOps + = txout . scriptPubKey . GetSigOpCount ( false ) ;
}
return nSigOps ;
}
2010-08-29 16:58:15 +00:00
2014-07-19 17:14:23 +02:00
unsigned int GetP2SHSigOpCount ( const CTransaction & tx , const CCoinsViewCache & inputs )
2013-01-08 04:17:15 -08:00
{
if ( tx . IsCoinBase ( ) )
return 0 ;
unsigned int nSigOps = 0 ;
for ( unsigned int i = 0 ; i < tx . vin . size ( ) ; i + + )
{
const CTxOut & prevout = inputs . GetOutputFor ( tx . vin [ i ] ) ;
if ( prevout . scriptPubKey . IsPayToScriptHash ( ) )
nSigOps + = prevout . scriptPubKey . GetSigOpCount ( tx . vin [ i ] . scriptSig ) ;
}
return nSigOps ;
}
2010-08-29 16:58:15 +00:00
2013-01-08 04:17:15 -08:00
bool CheckTransaction ( const CTransaction & tx , CValidationState & state )
2010-09-30 16:23:07 +00:00
{
// Basic checks that don't depend on any context
2013-01-08 04:17:15 -08:00
if ( tx . vin . empty ( ) )
2015-08-06 09:59:09 +02:00
return state . DoS ( 10 , false , REJECT_INVALID , " bad-txns-vin-empty " ) ;
2013-01-08 04:17:15 -08:00
if ( tx . vout . empty ( ) )
2015-08-06 09:59:09 +02:00
return state . DoS ( 10 , false , REJECT_INVALID , " bad-txns-vout-empty " ) ;
2010-09-30 16:23:07 +00:00
// Size limits
2013-01-08 04:17:15 -08:00
if ( : : GetSerializeSize ( tx , SER_NETWORK , PROTOCOL_VERSION ) > MAX_BLOCK_SIZE )
2015-08-06 09:59:09 +02:00
return state . DoS ( 100 , false , REJECT_INVALID , " bad-txns-oversize " ) ;
2010-09-30 16:23:07 +00:00
// Check for negative or overflow output values
2014-04-22 15:46:19 -07:00
CAmount nValueOut = 0 ;
2013-01-08 04:17:15 -08:00
BOOST_FOREACH ( const CTxOut & txout , tx . vout )
2010-09-30 16:23:07 +00:00
{
if ( txout . nValue < 0 )
2015-08-06 09:59:09 +02:00
return state . DoS ( 100 , false , REJECT_INVALID , " bad-txns-vout-negative " ) ;
2010-09-30 16:23:07 +00:00
if ( txout . nValue > MAX_MONEY )
2015-08-06 09:59:09 +02:00
return state . DoS ( 100 , false , REJECT_INVALID , " bad-txns-vout-toolarge " ) ;
2010-09-30 16:23:07 +00:00
nValueOut + = txout . nValue ;
if ( ! MoneyRange ( nValueOut ) )
2015-08-06 09:59:09 +02:00
return state . DoS ( 100 , false , REJECT_INVALID , " bad-txns-txouttotal-toolarge " ) ;
2010-09-30 16:23:07 +00:00
}
2011-07-30 23:01:45 +02:00
// Check for duplicate inputs
set < COutPoint > vInOutPoints ;
2013-01-08 04:17:15 -08:00
BOOST_FOREACH ( const CTxIn & txin , tx . vin )
2011-07-30 23:01:45 +02:00
{
if ( vInOutPoints . count ( txin . prevout ) )
2015-08-06 09:59:09 +02:00
return state . DoS ( 100 , false , REJECT_INVALID , " bad-txns-inputs-duplicate " ) ;
2011-07-30 23:01:45 +02:00
vInOutPoints . insert ( txin . prevout ) ;
}
2013-01-08 04:17:15 -08:00
if ( tx . IsCoinBase ( ) )
2010-09-30 16:23:07 +00:00
{
2013-01-08 04:17:15 -08:00
if ( tx . vin [ 0 ] . scriptSig . size ( ) < 2 | | tx . vin [ 0 ] . scriptSig . size ( ) > 100 )
2015-08-06 09:59:09 +02:00
return state . DoS ( 100 , false , REJECT_INVALID , " bad-cb-length " ) ;
2010-09-30 16:23:07 +00:00
}
else
{
2013-01-08 04:17:15 -08:00
BOOST_FOREACH ( const CTxIn & txin , tx . vin )
2010-09-30 16:23:07 +00:00
if ( txin . prevout . IsNull ( ) )
2015-08-06 09:59:09 +02:00
return state . DoS ( 10 , false , REJECT_INVALID , " bad-txns-prevout-null " ) ;
2010-09-30 16:23:07 +00:00
}
return true ;
}
2015-10-02 14:17:27 -07:00
CAmount GetMinRelayFee ( const CTransaction & tx , const CTxMemPool & pool , unsigned int nBytes , bool fAllowFree )
2012-09-09 16:39:45 -04:00
{
2015-10-02 14:17:27 -07:00
uint256 hash = tx . GetHash ( ) ;
double dPriorityDelta = 0 ;
CAmount nFeeDelta = 0 ;
pool . ApplyDeltas ( hash , dPriorityDelta , nFeeDelta ) ;
if ( dPriorityDelta > 0 | | nFeeDelta > 0 )
return 0 ;
2012-07-11 18:52:41 +00:00
2014-04-22 15:46:19 -07:00
CAmount nMinFee = : : minRelayTxFee . GetFee ( nBytes ) ;
2012-09-09 16:39:45 -04:00
if ( fAllowFree )
{
2013-05-17 12:07:02 +02:00
// There is a free transaction area in blocks created by most miners,
// * If we are relaying we allow transactions up to DEFAULT_BLOCK_PRIORITY_SIZE - 1000
2013-09-18 12:04:29 +10:00
// to be considered to fall into this category. We don't want to encourage sending
// multiple transactions instead of one big transaction to avoid fees.
2014-05-27 15:44:57 -04:00
if ( nBytes < ( DEFAULT_BLOCK_PRIORITY_SIZE - 1000 ) )
2013-05-17 12:07:02 +02:00
nMinFee = 0 ;
2012-09-09 16:39:45 -04:00
}
if ( ! MoneyRange ( nMinFee ) )
nMinFee = MAX_MONEY ;
return nMinFee ;
}
2015-08-06 09:53:24 +02:00
/** Convert CValidationState to a human-readable message for logging */
static std : : string FormatStateMessage ( const CValidationState & state )
{
return strprintf ( " %s%s (code %i) " ,
state . GetRejectReason ( ) ,
state . GetDebugMessage ( ) . empty ( ) ? " " : " , " + state . GetDebugMessage ( ) ,
state . GetRejectCode ( ) ) ;
}
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
2013-08-27 15:51:57 +10:00
bool AcceptToMemoryPool ( CTxMemPool & pool , CValidationState & state , const CTransaction & tx , bool fLimitFree ,
2015-10-02 14:20:38 -07:00
bool * pfMissingInputs , bool fOverrideMempoolLimit , bool fRejectAbsurdFee )
2010-08-29 16:58:15 +00:00
{
2014-04-15 12:43:17 +02:00
AssertLockHeld ( cs_main ) ;
2010-08-29 16:58:15 +00:00
if ( pfMissingInputs )
* pfMissingInputs = false ;
2013-01-08 04:17:15 -08:00
if ( ! CheckTransaction ( tx , state ) )
2015-08-06 09:59:09 +02:00
return false ;
2010-09-30 16:23:07 +00:00
2010-08-29 16:58:15 +00:00
// Coinbase is only valid in a block, not as a loose transaction
2012-04-13 17:34:22 -04:00
if ( tx . IsCoinBase ( ) )
2015-08-06 09:59:09 +02:00
return state . DoS ( 100 , false , REJECT_INVALID , " coinbase " ) ;
2010-09-07 01:12:53 +00:00
2013-07-23 17:46:05 +02:00
// Rather not work on nonstandard transactions (unless -testnet/-regtest)
2013-06-23 02:05:25 -04:00
string reason ;
2015-06-24 03:36:22 +00:00
if ( fRequireStandard & & ! IsStandardTx ( tx , reason ) )
2015-08-06 09:59:09 +02:00
return state . DoS ( 0 , false , REJECT_NONSTANDARD , reason ) ;
2010-12-12 18:20:36 +00:00
2014-12-20 17:04:21 -05:00
// Only accept nLockTime-using transactions that can be mined in the next
// block; we don't want our mempool filled up with transactions that can't
// be mined yet.
2015-11-03 17:12:36 +00:00
if ( ! CheckFinalTx ( tx , STANDARD_LOCKTIME_VERIFY_FLAGS ) )
2015-08-06 09:59:09 +02:00
return state . DoS ( 0 , false , REJECT_NONSTANDARD , " non-final " ) ;
2014-12-20 17:04:21 -05:00
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// is it already in the memory pool?
2012-04-13 17:34:22 -04:00
uint256 hash = tx . GetHash ( ) ;
2013-08-27 15:51:57 +10:00
if ( pool . exists ( hash ) )
2015-08-06 09:51:36 +02:00
return state . Invalid ( false , REJECT_ALREADY_KNOWN , " txn-already-in-mempool " ) ;
2010-08-29 16:58:15 +00:00
// Check for conflicts with in-memory transactions
2013-08-27 15:51:57 +10:00
{
LOCK ( pool . cs ) ; // protect pool.mapNextTx
2012-04-17 20:12:48 +02:00
for ( unsigned int i = 0 ; i < tx . vin . size ( ) ; i + + )
2010-08-29 16:58:15 +00:00
{
2012-04-13 17:34:22 -04:00
COutPoint outpoint = tx . vin [ i ] . prevout ;
2014-07-17 14:09:55 +02:00
if ( pool . mapNextTx . count ( outpoint ) )
2010-08-29 16:58:15 +00:00
{
2014-07-17 14:09:55 +02:00
// Disable replacement feature for now
2015-08-06 09:51:36 +02:00
return state . Invalid ( false , REJECT_CONFLICT , " txn-mempool-conflict " ) ;
2010-08-29 16:58:15 +00:00
}
}
2013-08-27 15:51:57 +10:00
}
2010-08-29 16:58:15 +00:00
{
2012-10-23 01:16:26 +02:00
CCoinsView dummy ;
2014-09-24 03:19:04 +02:00
CCoinsViewCache view ( & dummy ) ;
2012-10-23 01:16:26 +02:00
2014-04-22 15:46:19 -07:00
CAmount nValueIn = 0 ;
2012-10-23 01:16:26 +02:00
{
2013-08-27 15:51:57 +10:00
LOCK ( pool . cs ) ;
2014-09-24 03:19:04 +02:00
CCoinsViewMemPool viewMemPool ( pcoinsTip , pool ) ;
2012-10-23 01:16:26 +02:00
view . SetBackend ( viewMemPool ) ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// do we already have it?
if ( view . HaveCoins ( hash ) )
2015-08-06 09:51:36 +02:00
return state . Invalid ( false , REJECT_ALREADY_KNOWN , " txn-already-known " ) ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// do all inputs exist?
2012-10-23 00:21:16 +02:00
// Note that this does not check for the presence of actual outputs (see the next check for that),
2015-04-28 14:48:28 +00:00
// and only helps with filling in pfMissingInputs (to determine missing vs spent).
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
BOOST_FOREACH ( const CTxIn txin , tx . vin ) {
if ( ! view . HaveCoins ( txin . prevout . hash ) ) {
if ( pfMissingInputs )
* pfMissingInputs = true ;
2015-08-06 09:51:36 +02:00
return false ; // fMissingInputs and !state.IsInvalid() is used to detect this condition, don't set state.Invalid()
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
}
2011-10-03 13:05:43 -04:00
}
2012-10-23 00:21:16 +02:00
// are the actual inputs available?
2013-01-08 04:17:15 -08:00
if ( ! view . HaveInputs ( tx ) )
2015-08-06 09:59:09 +02:00
return state . Invalid ( false , REJECT_DUPLICATE , " bad-txns-inputs-spent " ) ;
2012-11-11 13:11:42 +01:00
2012-10-23 01:16:26 +02:00
// Bring the best block into scope
view . GetBestBlock ( ) ;
2014-03-17 08:19:54 -04:00
nValueIn = view . GetValueIn ( tx ) ;
2012-10-23 01:16:26 +02:00
// we have all inputs cached now, so switch back to dummy, so we don't need to keep lock on mempool
view . SetBackend ( dummy ) ;
}
2012-07-08 19:04:05 +02:00
2012-01-04 21:40:52 -05:00
// Check for non-standard pay-to-script-hash in inputs
2015-06-24 03:36:22 +00:00
if ( fRequireStandard & & ! AreInputsStandard ( tx , view ) )
2015-08-06 09:51:36 +02:00
return state . Invalid ( false , REJECT_NONSTANDARD , " bad-txns-nonstandard-inputs " ) ;
2011-10-03 13:05:43 -04:00
2014-05-08 00:18:57 -04:00
// Check that the transaction doesn't have an excessive number of
// sigops, making it impossible to mine. Since the coinbase transaction
2015-01-01 11:35:29 +00:00
// itself can contain sigops MAX_STANDARD_TX_SIGOPS is less than
2014-05-08 00:18:57 -04:00
// MAX_BLOCK_SIGOPS; we still consider this an invalid rather than
// merely non-standard transaction.
unsigned int nSigOps = GetLegacySigOpCount ( tx ) ;
nSigOps + = GetP2SHSigOpCount ( tx , view ) ;
2015-01-01 11:35:29 +00:00
if ( nSigOps > MAX_STANDARD_TX_SIGOPS )
2015-08-06 09:59:09 +02:00
return state . DoS ( 0 , false , REJECT_NONSTANDARD , " bad-txns-too-many-sigops " , false ,
strprintf ( " %d > %d " , nSigOps , MAX_STANDARD_TX_SIGOPS ) ) ;
2012-01-20 17:07:40 -05:00
2014-04-22 15:46:19 -07:00
CAmount nValueOut = tx . GetValueOut ( ) ;
CAmount nFees = nValueIn - nValueOut ;
2013-11-11 17:35:14 +10:00
double dPriority = view . GetPriority ( tx , chainActive . Height ( ) ) ;
2015-10-02 14:17:27 -07:00
CTxMemPoolEntry entry ( tx , nFees , GetTime ( ) , dPriority , chainActive . Height ( ) , pool . HasNoInputsOf ( tx ) ) ;
2013-11-11 17:35:14 +10:00
unsigned int nSize = entry . GetTxSize ( ) ;
2012-01-10 20:18:00 -05:00
// Don't accept it if it can't get into a block
2015-10-02 14:17:27 -07:00
CAmount txMinFee = GetMinRelayFee ( tx , pool , nSize , true ) ;
2013-01-14 16:52:33 -05:00
if ( fLimitFree & & nFees < txMinFee )
2015-08-06 09:59:09 +02:00
return state . DoS ( 0 , false , REJECT_INSUFFICIENTFEE , " insufficient fee " , false ,
strprintf ( " %d < %d " , nFees , txMinFee ) ) ;
2012-01-04 21:40:52 -05:00
2015-10-02 14:19:55 -07:00
CAmount mempoolRejectFee = pool . GetMinFee ( GetArg ( " -maxmempool " , DEFAULT_MAX_MEMPOOL_SIZE ) * 1000000 ) . GetFee ( nSize ) ;
if ( mempoolRejectFee > 0 & & nFees < mempoolRejectFee ) {
return state . DoS ( 0 , false , REJECT_INSUFFICIENTFEE , " mempool min fee not met " , false , strprintf ( " %d < %d " , nFees , mempoolRejectFee ) ) ;
} else if ( GetBoolArg ( " -relaypriority " , true ) & & nFees < : : minRelayTxFee . GetFee ( nSize ) & & ! AllowFree ( view . GetPriority ( tx , chainActive . Height ( ) + 1 ) ) ) {
// Require that free transactions have sufficient priority to be mined in the next block.
2014-12-23 23:50:21 +01:00
return state . DoS ( 0 , false , REJECT_INSUFFICIENTFEE , " insufficient priority " ) ;
}
2014-11-25 18:54:36 +01:00
// Continuously rate-limit free (really, very-low-fee) transactions
2011-03-13 14:38:07 -04:00
// This mitigates 'penny-flooding' -- sending thousands of free transactions just to
2012-07-26 03:25:26 +00:00
// be annoying or make others' transactions take longer to confirm.
2014-07-03 14:25:32 -04:00
if ( fLimitFree & & nFees < : : minRelayTxFee . GetFee ( nSize ) )
2010-12-12 18:20:36 +00:00
{
2014-07-17 14:09:55 +02:00
static CCriticalSection csFreeLimiter ;
2011-03-11 11:50:16 -05:00
static double dFreeCount ;
2014-07-17 14:09:55 +02:00
static int64_t nLastTime ;
int64_t nNow = GetTime ( ) ;
LOCK ( csFreeLimiter ) ;
2013-01-14 16:52:33 -05:00
2014-07-17 14:09:55 +02:00
// Use an exponentially decaying ~10-minute window:
dFreeCount * = pow ( 1.0 - 1.0 / 600.0 , ( double ) ( nNow - nLastTime ) ) ;
nLastTime = nNow ;
// -limitfreerelay unit is thousand-bytes-per-minute
// At default rate it would take over a month to fill 1GB
if ( dFreeCount > = GetArg ( " -limitfreerelay " , 15 ) * 10 * 1000 )
2015-08-06 09:59:09 +02:00
return state . DoS ( 0 , false , REJECT_INSUFFICIENTFEE , " rate limited free transaction " ) ;
2013-08-27 15:51:57 +10:00
LogPrint ( " mempool " , " Rate limit dFreeCount: %g => %g \n " , dFreeCount , dFreeCount + nSize ) ;
2014-07-17 14:09:55 +02:00
dFreeCount + = nSize ;
2010-12-12 18:20:36 +00:00
}
2012-01-10 20:18:00 -05:00
2015-01-31 02:54:55 +00:00
if ( fRejectAbsurdFee & & nFees > : : minRelayTxFee . GetFee ( nSize ) * 10000 )
2015-08-06 09:59:09 +02:00
return state . Invalid ( false ,
REJECT_HIGHFEE , " absurdly-high-fee " ,
strprintf ( " %d > %d " , nFees , : : minRelayTxFee . GetFee ( nSize ) * 10000 ) ) ;
2013-08-28 15:41:46 -07:00
2015-07-15 14:47:45 -04:00
// Calculate in-mempool ancestors, up to a limit.
CTxMemPool : : setEntries setAncestors ;
size_t nLimitAncestors = GetArg ( " -limitancestorcount " , DEFAULT_ANCESTOR_LIMIT ) ;
size_t nLimitAncestorSize = GetArg ( " -limitancestorsize " , DEFAULT_ANCESTOR_SIZE_LIMIT ) * 1000 ;
size_t nLimitDescendants = GetArg ( " -limitdescendantcount " , DEFAULT_DESCENDANT_LIMIT ) ;
size_t nLimitDescendantSize = GetArg ( " -limitdescendantsize " , DEFAULT_DESCENDANT_SIZE_LIMIT ) * 1000 ;
std : : string errString ;
if ( ! pool . CalculateMemPoolAncestors ( entry , setAncestors , nLimitAncestors , nLimitAncestorSize , nLimitDescendants , nLimitDescendantSize , errString ) ) {
return state . DoS ( 0 , false , REJECT_NONSTANDARD , " too-long-mempool-chain " , false , errString ) ;
}
2012-01-10 20:18:00 -05:00
// Check against previous transactions
// This is done last to help prevent CPU exhaustion denial-of-service attacks.
2014-09-14 04:48:32 +02:00
if ( ! CheckInputs ( tx , state , view , true , STANDARD_SCRIPT_VERIFY_FLAGS , true ) )
2015-08-06 09:59:09 +02:00
return false ;
2014-11-10 02:52:28 -05:00
// Check again against just the consensus-critical mandatory script
// verification flags, in case of bugs in the standard flags that cause
// transactions to pass as valid when they're actually invalid. For
// instance the STRICTENC flag was incorrectly allowing certain
// CHECKSIG NOT scripts to pass, even though they were invalid.
//
// There is a similar check in CreateNewBlock() to prevent creating
// invalid blocks, however allowing such transactions into the mempool
// can be exploited as a DoS attack.
if ( ! CheckInputs ( tx , state , view , true , MANDATORY_SCRIPT_VERIFY_FLAGS , true ) )
{
2015-08-06 09:59:09 +02:00
return error ( " %s: BUG! PLEASE REPORT THIS! ConnectInputs failed against MANDATORY but not STANDARD flags %s, %s " ,
__func__ , hash . ToString ( ) , FormatStateMessage ( state ) ) ;
2014-11-10 02:52:28 -05:00
}
2014-07-17 14:08:01 +02:00
// Store transaction in memory
2015-07-15 14:47:45 -04:00
pool . addUnchecked ( hash , entry , setAncestors , ! IsInitialBlockDownload ( ) ) ;
2015-10-02 14:19:55 -07:00
// trim mempool and check if tx was trimmed
2015-10-02 14:20:38 -07:00
if ( ! fOverrideMempoolLimit ) {
int expired = pool . Expire ( GetTime ( ) - GetArg ( " -mempoolexpiry " , DEFAULT_MEMPOOL_EXPIRY ) * 60 * 60 ) ;
if ( expired ! = 0 )
LogPrint ( " mempool " , " Expired %i transactions from the memory pool \n " , expired ) ;
pool . TrimToSize ( GetArg ( " -maxmempool " , DEFAULT_MAX_MEMPOOL_SIZE ) * 1000000 ) ;
if ( ! pool . exists ( tx . GetHash ( ) ) )
return state . DoS ( 0 , false , REJECT_INSUFFICIENTFEE , " mempool full " ) ;
}
2014-06-25 23:41:44 -07:00
}
2014-08-17 17:38:26 +02:00
SyncWithWallets ( tx , NULL ) ;
2014-06-25 23:41:44 -07:00
2014-07-17 14:08:01 +02:00
return true ;
2014-06-25 23:41:44 -07:00
}
2014-12-01 09:39:44 +08:00
/** Return transaction in tx, and if it was found inside a block, its hash is placed in hashBlock */
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
bool GetTransaction ( const uint256 & hash , CTransaction & txOut , uint256 & hashBlock , bool fAllowSlow )
2012-02-15 17:49:04 +01:00
{
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
CBlockIndex * pindexSlow = NULL ;
2015-09-17 17:43:34 -04:00
LOCK ( cs_main ) ;
if ( mempool . lookup ( hash , txOut ) )
2012-02-15 17:49:04 +01:00
{
2015-09-17 17:43:34 -04:00
return true ;
}
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
2015-09-17 17:43:34 -04:00
if ( fTxIndex ) {
CDiskTxPos postx ;
if ( pblocktree - > ReadTxIndex ( hash , postx ) ) {
CAutoFile file ( OpenBlockFile ( postx , true ) , SER_DISK , CLIENT_VERSION ) ;
if ( file . IsNull ( ) )
return error ( " %s: OpenBlockFile failed " , __func__ ) ;
CBlockHeader header ;
try {
file > > header ;
fseek ( file . Get ( ) , postx . nTxOffset , SEEK_CUR ) ;
file > > txOut ;
} catch ( const std : : exception & e ) {
return error ( " %s: Deserialize or I/O error - %s " , __func__ , e . what ( ) ) ;
2013-01-11 01:47:57 +01:00
}
2015-09-17 17:43:34 -04:00
hashBlock = header . GetHash ( ) ;
if ( txOut . GetHash ( ) ! = hash )
return error ( " %s: txid mismatch " , __func__ ) ;
return true ;
2013-01-11 01:47:57 +01:00
}
2015-09-17 17:43:34 -04:00
}
2013-01-11 01:47:57 +01:00
2015-09-17 17:43:34 -04:00
if ( fAllowSlow ) { // use coin database to locate block that contains transaction, and scan it
int nHeight = - 1 ;
{
CCoinsViewCache & view = * pcoinsTip ;
const CCoins * coins = view . AccessCoins ( hash ) ;
if ( coins )
nHeight = coins - > nHeight ;
2012-02-15 17:49:04 +01:00
}
2015-09-17 17:43:34 -04:00
if ( nHeight > 0 )
pindexSlow = chainActive [ nHeight ] ;
2012-02-15 17:49:04 +01:00
}
2010-08-29 16:58:15 +00:00
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
if ( pindexSlow ) {
CBlock block ;
2013-06-23 18:10:02 -07:00
if ( ReadBlockFromDisk ( block , pindexSlow ) ) {
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
BOOST_FOREACH ( const CTransaction & tx , block . vtx ) {
if ( tx . GetHash ( ) = = hash ) {
txOut = tx ;
hashBlock = pindexSlow - > GetBlockHash ( ) ;
return true ;
}
}
}
}
2010-08-29 16:58:15 +00:00
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
return false ;
}
2010-08-29 16:58:15 +00:00
//////////////////////////////////////////////////////////////////////////////
//
// CBlock and CBlockIndex
//
2015-08-08 18:18:41 +02:00
bool WriteBlockToDisk ( const CBlock & block , CDiskBlockPos & pos , const CMessageHeader : : MessageStartChars & messageStart )
2013-06-23 17:47:47 -07:00
{
// Open history file to append
2014-09-25 19:25:19 -04:00
CAutoFile fileout ( OpenBlockFile ( pos ) , SER_DISK , CLIENT_VERSION ) ;
2014-10-13 20:48:34 -03:00
if ( fileout . IsNull ( ) )
2015-01-08 11:44:25 +01:00
return error ( " WriteBlockToDisk: OpenBlockFile failed " ) ;
2013-06-23 17:47:47 -07:00
// Write index header
unsigned int nSize = fileout . GetSerializeSize ( block ) ;
2015-04-19 23:48:25 +02:00
fileout < < FLATDATA ( messageStart ) < < nSize ;
2013-06-23 17:47:47 -07:00
// Write block
2014-10-20 12:45:50 +02:00
long fileOutPos = ftell ( fileout . Get ( ) ) ;
2013-06-23 17:47:47 -07:00
if ( fileOutPos < 0 )
2015-01-08 11:44:25 +01:00
return error ( " WriteBlockToDisk: ftell failed " ) ;
2013-06-23 17:47:47 -07:00
pos . nPos = ( unsigned int ) fileOutPos ;
fileout < < block ;
return true ;
}
2013-06-23 18:21:33 -07:00
bool ReadBlockFromDisk ( CBlock & block , const CDiskBlockPos & pos )
{
block . SetNull ( ) ;
// Open history file to read
2014-09-25 19:25:19 -04:00
CAutoFile filein ( OpenBlockFile ( pos , true ) , SER_DISK , CLIENT_VERSION ) ;
2014-10-13 20:48:34 -03:00
if ( filein . IsNull ( ) )
2015-01-26 09:47:59 +01:00
return error ( " ReadBlockFromDisk: OpenBlockFile failed for %s " , pos . ToString ( ) ) ;
2013-06-23 18:21:33 -07:00
// Read block
try {
filein > > block ;
}
2014-12-07 13:29:06 +01:00
catch ( const std : : exception & e ) {
2015-01-26 09:47:59 +01:00
return error ( " %s: Deserialize or I/O error - %s at %s " , __func__ , e . what ( ) , pos . ToString ( ) ) ;
2013-06-23 18:21:33 -07:00
}
// Check the header
2015-02-15 02:21:42 +01:00
if ( ! CheckProofOfWork ( block . GetHash ( ) , block . nBits , Params ( ) . GetConsensus ( ) ) )
2015-01-26 09:47:59 +01:00
return error ( " ReadBlockFromDisk: Errors in block header at %s " , pos . ToString ( ) ) ;
2013-06-23 18:21:33 -07:00
return true ;
}
2013-06-23 18:10:02 -07:00
bool ReadBlockFromDisk ( CBlock & block , const CBlockIndex * pindex )
2010-08-29 16:58:15 +00:00
{
2013-06-23 18:10:02 -07:00
if ( ! ReadBlockFromDisk ( block , pindex - > GetBlockPos ( ) ) )
2010-08-29 16:58:15 +00:00
return false ;
2013-06-23 18:10:02 -07:00
if ( block . GetHash ( ) ! = pindex - > GetBlockHash ( ) )
2015-01-26 09:47:59 +01:00
return error ( " ReadBlockFromDisk(CBlock&, CBlockIndex*): GetHash() doesn't match index for %s at %s " ,
pindex - > ToString ( ) , pindex - > GetBlockPos ( ) . ToString ( ) ) ;
2010-08-29 16:58:15 +00:00
return true ;
}
2015-04-01 16:03:11 +02:00
CAmount GetBlockSubsidy ( int nHeight , const Consensus : : Params & consensusParams )
2010-08-29 16:58:15 +00:00
{
2015-04-01 16:03:11 +02:00
int halvings = nHeight / consensusParams . nSubsidyHalvingInterval ;
2014-03-10 19:02:36 -05:00
// Force block reward to zero when right shift is undefined.
if ( halvings > = 64 )
2015-04-01 16:03:11 +02:00
return 0 ;
2010-08-29 16:58:15 +00:00
2015-04-01 16:03:11 +02:00
CAmount nSubsidy = 50 * COIN ;
2013-05-07 15:16:25 +02:00
// Subsidy is cut in half every 210,000 blocks which will occur approximately every 4 years.
2014-03-10 19:02:36 -05:00
nSubsidy > > = halvings ;
2015-04-01 16:03:11 +02:00
return nSubsidy ;
2010-08-29 16:58:15 +00:00
}
bool IsInitialBlockDownload ( )
{
2015-04-22 18:19:11 -04:00
const CChainParams & chainParams = Params ( ) ;
2014-04-15 17:38:25 +02:00
LOCK ( cs_main ) ;
2015-04-22 23:22:36 -04:00
if ( fImporting | | fReindex )
return true ;
if ( fCheckpointsEnabled & & chainActive . Height ( ) < Checkpoints : : GetTotalBlocksEstimate ( chainParams . Checkpoints ( ) ) )
2010-08-29 16:58:15 +00:00
return true ;
2014-11-05 20:52:27 -03:00
static bool lockIBDState = false ;
if ( lockIBDState )
return false ;
bool state = ( chainActive . Height ( ) < pindexBestHeader - > nHeight - 24 * 6 | |
2015-04-09 11:50:18 +00:00
pindexBestHeader - > GetBlockTime ( ) < GetTime ( ) - chainParams . MaxTipAge ( ) ) ;
2014-11-05 20:52:27 -03:00
if ( ! state )
lockIBDState = true ;
return state ;
2010-08-29 16:58:15 +00:00
}
2013-05-07 18:33:52 +02:00
bool fLargeWorkForkFound = false ;
2013-05-18 03:09:28 +02:00
bool fLargeWorkInvalidChainFound = false ;
2013-05-07 18:33:52 +02:00
CBlockIndex * pindexBestForkTip = NULL , * pindexBestForkBase = NULL ;
void CheckForkWarningConditions ( )
{
2014-04-15 12:43:17 +02:00
AssertLockHeld ( cs_main ) ;
2013-09-03 22:06:02 -04:00
// Before we get past initial download, we cannot reliably alert about forks
// (we assume we don't get stuck on a fork before the last checkpoint)
if ( IsInitialBlockDownload ( ) )
return ;
2013-05-07 18:33:52 +02:00
// If our best fork is no longer within 72 blocks (+/- 12 hours if no one mines it)
// of our head, drop it
2013-10-10 23:07:44 +02:00
if ( pindexBestForkTip & & chainActive . Height ( ) - pindexBestForkTip - > nHeight > = 72 )
2013-05-07 18:33:52 +02:00
pindexBestForkTip = NULL ;
2014-10-29 17:00:02 +01:00
if ( pindexBestForkTip | | ( pindexBestInvalid & & pindexBestInvalid - > nChainWork > chainActive . Tip ( ) - > nChainWork + ( GetBlockProof ( * chainActive . Tip ( ) ) * 6 ) ) )
2013-05-07 18:33:52 +02:00
{
2014-10-27 23:00:55 -04:00
if ( ! fLargeWorkForkFound & & pindexBestForkBase )
2013-05-07 18:37:37 +02:00
{
2014-10-07 13:11:48 -04:00
std : : string warning = std : : string ( " 'Warning: Large-work fork detected, forking after block " ) +
pindexBestForkBase - > phashBlock - > ToString ( ) + std : : string ( " ' " ) ;
CAlert : : Notify ( warning , true ) ;
2013-05-07 18:37:37 +02:00
}
2014-10-27 23:00:55 -04:00
if ( pindexBestForkTip & & pindexBestForkBase )
2013-05-18 03:09:28 +02:00
{
2015-02-24 18:32:34 +01:00
LogPrintf ( " %s: Warning: Large valid fork found \n forking the chain at height %d (%s) \n lasting to height %d (%s). \n Chain state database corruption likely. \n " , __func__ ,
2014-01-16 16:15:27 +01:00
pindexBestForkBase - > nHeight , pindexBestForkBase - > phashBlock - > ToString ( ) ,
pindexBestForkTip - > nHeight , pindexBestForkTip - > phashBlock - > ToString ( ) ) ;
2013-05-18 03:09:28 +02:00
fLargeWorkForkFound = true ;
}
else
{
2015-02-24 18:32:34 +01:00
LogPrintf ( " %s: Warning: Found invalid chain at least ~6 blocks longer than our best chain. \n Chain state database corruption likely. \n " , __func__ ) ;
2013-05-18 03:09:28 +02:00
fLargeWorkInvalidChainFound = true ;
}
}
else
{
2013-05-07 18:33:52 +02:00
fLargeWorkForkFound = false ;
2013-05-18 03:09:28 +02:00
fLargeWorkInvalidChainFound = false ;
}
2013-05-07 18:33:52 +02:00
}
void CheckForkWarningConditionsOnNewFork ( CBlockIndex * pindexNewForkTip )
{
2014-04-15 12:43:17 +02:00
AssertLockHeld ( cs_main ) ;
2013-05-07 18:33:52 +02:00
// If we are on a fork that is sufficiently large, set a warning flag
CBlockIndex * pfork = pindexNewForkTip ;
2013-10-10 23:07:44 +02:00
CBlockIndex * plonger = chainActive . Tip ( ) ;
2013-05-07 18:33:52 +02:00
while ( pfork & & pfork ! = plonger )
{
while ( plonger & & plonger - > nHeight > pfork - > nHeight )
plonger = plonger - > pprev ;
if ( pfork = = plonger )
break ;
pfork = pfork - > pprev ;
}
2015-04-28 14:48:28 +00:00
// We define a condition where we should warn the user about as a fork of at least 7 blocks
// with a tip within 72 blocks (+/- 12 hours if no one mines it) of ours
2013-05-07 18:33:52 +02:00
// We use 7 blocks rather arbitrarily as it represents just under 10% of sustained network
// hash rate operating on the fork.
// or a chain that is entirely longer than ours and invalid (note that this should be detected by both)
// We define it this way because it allows us to only store the highest fork tip (+ base) which meets
// the 7-block condition and from this always have the most-likely-to-cause-warning fork
if ( pfork & & ( ! pindexBestForkTip | | ( pindexBestForkTip & & pindexNewForkTip - > nHeight > pindexBestForkTip - > nHeight ) ) & &
2014-10-29 17:00:02 +01:00
pindexNewForkTip - > nChainWork - pfork - > nChainWork > ( GetBlockProof ( * pfork ) * 7 ) & &
2013-10-10 23:07:44 +02:00
chainActive . Height ( ) - pindexNewForkTip - > nHeight < 72 )
2013-05-07 18:33:52 +02:00
{
pindexBestForkTip = pindexNewForkTip ;
pindexBestForkBase = pfork ;
}
CheckForkWarningConditions ( ) ;
}
2014-01-10 13:23:26 +01:00
// Requires cs_main.
2013-11-16 19:28:24 +01:00
void Misbehaving ( NodeId pnode , int howmuch )
{
if ( howmuch = = 0 )
return ;
CNodeState * state = State ( pnode ) ;
if ( state = = NULL )
return ;
state - > nMisbehavior + = howmuch ;
2014-06-21 13:34:36 +02:00
int banscore = GetArg ( " -banscore " , 100 ) ;
if ( state - > nMisbehavior > = banscore & & state - > nMisbehavior - howmuch < banscore )
2013-11-16 19:28:24 +01:00
{
2015-02-24 18:32:34 +01:00
LogPrintf ( " %s: %s (%d -> %d) BAN THRESHOLD EXCEEDED \n " , __func__ , state - > name , state - > nMisbehavior - howmuch , state - > nMisbehavior ) ;
2013-11-16 19:28:24 +01:00
state - > fShouldBan = true ;
} else
2015-02-24 18:32:34 +01:00
LogPrintf ( " %s: %s (%d -> %d) \n " , __func__ , state - > name , state - > nMisbehavior - howmuch , state - > nMisbehavior ) ;
2013-11-16 19:28:24 +01:00
}
CWallet class
* A new class CKeyStore manages private keys, and script.cpp depends on access to CKeyStore.
* A new class CWallet extends CKeyStore, and contains all former wallet-specific globals; CWallet depends on script.cpp, not the other way around.
* Wallet-specific functions in CTransaction/CTxIn/CTxOut (GetDebit, GetCredit, GetChange, IsMine, IsFromMe), are moved to CWallet, taking their former 'this' argument as an explicit parameter
* CWalletTx objects know which CWallet they belong to, for convenience, so they have their own direct (and caching) GetDebit/... functions.
* Some code was moved from CWalletDB to CWallet, such as handling of reserve keys.
* Main.cpp keeps a set of all 'registered' wallets, which should be informed about updates to the block chain, and does not have any notion about any 'main' wallet. Function in main.cpp that require a wallet (such as GenerateCoins), take an explicit CWallet* argument.
* The actual CWallet instance used by the application is defined in init.cpp as "CWallet* pwalletMain". rpc.cpp and ui.cpp use this variable.
* Functions in main.cpp and db.cpp that are not used by other modules are marked static.
* The code for handling the 'submitorder' message is removed, as it not really compatible with the idea that a node is independent from the wallet(s) connected to it, and obsolete anyway.
2011-06-01 18:28:20 +02:00
void static InvalidChainFound ( CBlockIndex * pindexNew )
2010-08-29 16:58:15 +00:00
{
2013-10-13 22:15:48 +02:00
if ( ! pindexBestInvalid | | pindexNew - > nChainWork > pindexBestInvalid - > nChainWork )
pindexBestInvalid = pindexNew ;
2014-07-29 10:53:38 -04:00
2015-02-24 18:32:34 +01:00
LogPrintf ( " %s: invalid block=%s height=%d log2_work=%.8g date=%s \n " , __func__ ,
2014-01-16 16:15:27 +01:00
pindexNew - > GetBlockHash ( ) . ToString ( ) , pindexNew - > nHeight ,
2013-03-28 23:51:50 +01:00
log ( pindexNew - > nChainWork . getdouble ( ) ) / log ( 2.0 ) , DateTimeStrFormat ( " %Y-%m-%d %H:%M:%S " ,
2014-01-16 16:15:27 +01:00
pindexNew - > GetBlockTime ( ) ) ) ;
2015-07-04 20:14:03 +01:00
CBlockIndex * tip = chainActive . Tip ( ) ;
assert ( tip ) ;
2015-02-24 18:32:34 +01:00
LogPrintf ( " %s: current best=%s height=%d log2_work=%.8g date=%s \n " , __func__ ,
2015-07-04 20:14:03 +01:00
tip - > GetBlockHash ( ) . ToString ( ) , chainActive . Height ( ) , log ( tip - > nChainWork . getdouble ( ) ) / log ( 2.0 ) ,
DateTimeStrFormat ( " %Y-%m-%d %H:%M:%S " , tip - > GetBlockTime ( ) ) ) ;
2013-05-07 18:33:52 +02:00
CheckForkWarningConditions ( ) ;
2010-08-29 16:58:15 +00:00
}
2013-11-16 19:28:24 +01:00
void static InvalidBlockFound ( CBlockIndex * pindex , const CValidationState & state ) {
int nDoS = 0 ;
if ( state . IsInvalid ( nDoS ) ) {
std : : map < uint256 , NodeId > : : iterator it = mapBlockSource . find ( pindex - > GetBlockHash ( ) ) ;
if ( it ! = mapBlockSource . end ( ) & & State ( it - > second ) ) {
2015-08-06 09:51:36 +02:00
assert ( state . GetRejectCode ( ) < REJECT_INTERNAL ) ; // Blocks are never rejected with internal reject codes
2015-08-05 19:02:19 +02:00
CBlockReject reject = { ( unsigned char ) state . GetRejectCode ( ) , state . GetRejectReason ( ) . substr ( 0 , MAX_REJECT_MESSAGE_LENGTH ) , pindex - > GetBlockHash ( ) } ;
2013-11-16 19:28:24 +01:00
State ( it - > second ) - > rejects . push_back ( reject ) ;
if ( nDoS > 0 )
Misbehaving ( it - > second , nDoS ) ;
2012-08-19 00:33:01 +02:00
}
2013-11-16 19:28:24 +01:00
}
if ( ! state . CorruptionPossible ( ) ) {
pindex - > nStatus | = BLOCK_FAILED_VALID ;
Improve chainstate/blockindex disk writing policy
There are 3 pieces of data that are maintained on disk. The actual block
and undo data, the block index (which can refer to positions on disk),
and the chainstate (which refers to the best block hash).
Earlier, there was no guarantee that blocks were written to disk before
block index entries referring to them were written. This commit introduces
dirty flags for block index data, and delays writing entries until the actual
block data is flushed.
With this stricter ordering in writes, it is now safe to not always flush
after every block, so there is no need for the IsInitialBlockDownload()
check there - instead we just write whenever enough time has passed or
the cache size grows too large. Also updating the wallet's best known block
is delayed until this is done, otherwise the wallet may end up referring to an
unknown block.
In addition, only do a write inside the block processing loop if necessary
(because of cache size exceeded). Otherwise, move the writing to a point
after processing is done, after relaying.
2014-11-07 02:38:35 -08:00
setDirtyBlockIndex . insert ( pindex ) ;
2014-10-06 08:31:33 +02:00
setBlockIndexCandidates . erase ( pindex ) ;
2013-11-16 19:28:24 +01:00
InvalidChainFound ( pindex ) ;
}
2012-08-19 00:33:01 +02:00
}
2014-06-09 10:02:00 +02:00
void UpdateCoins ( const CTransaction & tx , CValidationState & state , CCoinsViewCache & inputs , CTxUndo & txundo , int nHeight )
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
{
// mark inputs spent
2013-01-08 04:17:15 -08:00
if ( ! tx . IsCoinBase ( ) ) {
2014-09-03 15:54:37 +02:00
txundo . vprevout . reserve ( tx . vin . size ( ) ) ;
2014-09-03 09:01:24 +02:00
BOOST_FOREACH ( const CTxIn & txin , tx . vin ) {
2014-10-19 02:57:02 +02:00
CCoinsModifier coins = inputs . ModifyCoins ( txin . prevout . hash ) ;
unsigned nPos = txin . prevout . n ;
if ( nPos > = coins - > vout . size ( ) | | coins - > vout [ nPos ] . IsNull ( ) )
assert ( false ) ;
// mark an outpoint spent, and construct undo information
txundo . vprevout . push_back ( CTxInUndo ( coins - > vout [ nPos ] ) ) ;
coins - > Spend ( nPos ) ;
if ( coins - > vout . size ( ) = = 0 ) {
CTxInUndo & undo = txundo . vprevout . back ( ) ;
undo . nHeight = coins - > nHeight ;
undo . fCoinBase = coins - > fCoinBase ;
undo . nVersion = coins - > nVersion ;
}
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
}
}
// add outputs
2014-09-03 09:01:24 +02:00
inputs . ModifyCoins ( tx . GetHash ( ) ) - > FromTx ( tx , nHeight ) ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
}
2014-10-27 16:07:50 +01:00
void UpdateCoins ( const CTransaction & tx , CValidationState & state , CCoinsViewCache & inputs , int nHeight )
{
CTxUndo txundo ;
UpdateCoins ( tx , state , inputs , txundo , nHeight ) ;
}
2014-11-29 16:01:37 +01:00
bool CScriptCheck : : operator ( ) ( ) {
2012-12-01 22:30:06 +01:00
const CScript & scriptSig = ptxTo - > vin [ nIn ] . scriptSig ;
2015-01-27 10:01:31 -04:00
if ( ! VerifyScript ( scriptSig , scriptPubKey , nFlags , CachingTransactionSignatureChecker ( ptxTo , nIn , cacheStore ) , & error ) ) {
2015-08-06 09:59:09 +02:00
return false ;
2014-11-29 16:01:37 +01:00
}
2012-12-01 22:30:06 +01:00
return true ;
}
2015-04-24 16:45:16 +02:00
int GetSpendHeight ( const CCoinsViewCache & inputs )
2010-08-29 16:58:15 +00:00
{
2015-04-24 16:45:16 +02:00
LOCK ( cs_main ) ;
CBlockIndex * pindexPrev = mapBlockIndex . find ( inputs . GetBestBlock ( ) ) - > second ;
return pindexPrev - > nHeight + 1 ;
}
2012-12-01 23:04:14 +01:00
2015-04-24 16:45:16 +02:00
namespace Consensus {
bool CheckTxInputs ( const CTransaction & tx , CValidationState & state , const CCoinsViewCache & inputs , int nSpendHeight )
{
2012-07-08 19:04:05 +02:00
// This doesn't trigger the DoS code on purpose; if it did, it would make it easier
// for an attacker to attempt to split the network.
2013-01-08 04:17:15 -08:00
if ( ! inputs . HaveInputs ( tx ) )
2015-08-06 09:59:09 +02:00
return state . Invalid ( false , 0 , " " , " Inputs unavailable " ) ;
2012-07-08 19:04:05 +02:00
2014-04-22 15:46:19 -07:00
CAmount nValueIn = 0 ;
CAmount nFees = 0 ;
2013-01-08 04:17:15 -08:00
for ( unsigned int i = 0 ; i < tx . vin . size ( ) ; i + + )
2010-08-29 16:58:15 +00:00
{
2013-01-08 04:17:15 -08:00
const COutPoint & prevout = tx . vin [ i ] . prevout ;
2014-09-02 21:21:15 +02:00
const CCoins * coins = inputs . AccessCoins ( prevout . hash ) ;
assert ( coins ) ;
2010-08-29 16:58:15 +00:00
// If prev is coinbase, check that it's matured
2014-09-02 21:21:15 +02:00
if ( coins - > IsCoinBase ( ) ) {
if ( nSpendHeight - coins - > nHeight < COINBASE_MATURITY )
2015-08-06 09:59:09 +02:00
return state . Invalid ( false ,
REJECT_INVALID , " bad-txns-premature-spend-of-coinbase " ,
strprintf ( " tried to spend coinbase at depth %d " , nSpendHeight - coins - > nHeight ) ) ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
}
2010-08-29 16:58:15 +00:00
2012-05-16 11:26:56 -04:00
// Check for negative or overflow input values
2014-09-02 21:21:15 +02:00
nValueIn + = coins - > vout [ prevout . n ] . nValue ;
if ( ! MoneyRange ( coins - > vout [ prevout . n ] . nValue ) | | ! MoneyRange ( nValueIn ) )
2015-08-06 09:59:09 +02:00
return state . DoS ( 100 , false , REJECT_INVALID , " bad-txns-inputvalues-outofrange " ) ;
2012-05-16 11:26:56 -04:00
}
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
2013-11-11 16:03:51 +10:00
if ( nValueIn < tx . GetValueOut ( ) )
2015-08-06 09:59:09 +02:00
return state . DoS ( 100 , false , REJECT_INVALID , " bad-txns-in-belowout " , false ,
strprintf ( " value in (%s) < value out (%s) " , FormatMoney ( nValueIn ) , FormatMoney ( tx . GetValueOut ( ) ) ) ) ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// Tally transaction fees
2014-04-22 15:46:19 -07:00
CAmount nTxFee = nValueIn - tx . GetValueOut ( ) ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
if ( nTxFee < 0 )
2015-08-06 09:59:09 +02:00
return state . DoS ( 100 , false , REJECT_INVALID , " bad-txns-fee-negative " ) ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
nFees + = nTxFee ;
if ( ! MoneyRange ( nFees ) )
2015-08-06 09:59:09 +02:00
return state . DoS ( 100 , false , REJECT_INVALID , " bad-txns-fee-outofrange " ) ;
2015-04-24 16:45:16 +02:00
return true ;
}
} // namespace Consensus
bool CheckInputs ( const CTransaction & tx , CValidationState & state , const CCoinsViewCache & inputs , bool fScriptChecks , unsigned int flags , bool cacheStore , std : : vector < CScriptCheck > * pvChecks )
{
if ( ! tx . IsCoinBase ( ) )
{
if ( ! Consensus : : CheckTxInputs ( tx , state , inputs , GetSpendHeight ( inputs ) ) )
return false ;
if ( pvChecks )
pvChecks - > reserve ( tx . vin . size ( ) ) ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
2012-05-16 11:26:56 -04:00
// The first loop above does all the inexpensive checks.
// Only if ALL inputs pass do we perform expensive ECDSA signature checks.
// Helps prevent CPU exhaustion attacks.
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// Skip ECDSA signature verification when connecting blocks
2012-10-05 19:22:21 +02:00
// before the last block chain checkpoint. This is safe because block merkle hashes are
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// still computed and checked, and any change will be caught at the next checkpoint.
2012-12-01 22:51:10 +01:00
if ( fScriptChecks ) {
2013-01-08 04:17:15 -08:00
for ( unsigned int i = 0 ; i < tx . vin . size ( ) ; i + + ) {
const COutPoint & prevout = tx . vin [ i ] . prevout ;
2014-09-02 21:21:15 +02:00
const CCoins * coins = inputs . AccessCoins ( prevout . hash ) ;
assert ( coins ) ;
2012-01-10 20:18:00 -05:00
2011-09-02 16:59:47 -04:00
// Verify signature
2014-09-14 04:48:32 +02:00
CScriptCheck check ( * coins , tx , i , flags , cacheStore ) ;
2012-12-01 23:04:14 +01:00
if ( pvChecks ) {
pvChecks - > push_back ( CScriptCheck ( ) ) ;
check . swap ( pvChecks - > back ( ) ) ;
2013-04-18 22:17:05 +02:00
} else if ( ! check ( ) ) {
2014-03-10 22:36:46 -04:00
if ( flags & STANDARD_NOT_MANDATORY_VERIFY_FLAGS ) {
// Check whether the failure was caused by a
// non-mandatory script verification check, such as
// non-standard DER encodings or non-null dummy
// arguments; if so, don't trigger DoS protection to
// avoid splitting the network between upgraded and
// non-upgraded nodes.
2014-09-02 21:21:15 +02:00
CScriptCheck check ( * coins , tx , i ,
2014-09-14 04:48:32 +02:00
flags & ~ STANDARD_NOT_MANDATORY_VERIFY_FLAGS , cacheStore ) ;
2013-04-18 22:17:05 +02:00
if ( check ( ) )
2014-11-29 16:01:37 +01:00
return state . Invalid ( false , REJECT_NONSTANDARD , strprintf ( " non-mandatory-script-verify-flag (%s) " , ScriptErrorString ( check . GetScriptError ( ) ) ) ) ;
2013-04-18 22:17:05 +02:00
}
2014-03-10 22:36:46 -04:00
// Failures of other flags indicate a transaction that is
// invalid in new blocks, e.g. a invalid P2SH. We DoS ban
// such nodes as they are not following the protocol. That
// said during an upgrade careful thought should be taken
// as to the correct behavior - we may want to continue
// peering with non-upgraded nodes even after a soft-fork
// super-majority vote has passed.
2014-11-29 16:01:37 +01:00
return state . DoS ( 100 , false , REJECT_INVALID , strprintf ( " mandatory-script-verify-flag-failed (%s) " , ScriptErrorString ( check . GetScriptError ( ) ) ) ) ;
2013-04-18 22:17:05 +02:00
}
2011-11-08 13:20:29 -05:00
}
2010-08-29 16:58:15 +00:00
}
}
return true ;
}
2014-12-03 00:39:03 +01:00
namespace {
2015-04-19 23:48:25 +02:00
bool UndoWriteToDisk ( const CBlockUndo & blockundo , CDiskBlockPos & pos , const uint256 & hashBlock , const CMessageHeader : : MessageStartChars & messageStart )
2014-12-03 00:39:03 +01:00
{
// Open history file to append
CAutoFile fileout ( OpenUndoFile ( pos ) , SER_DISK , CLIENT_VERSION ) ;
if ( fileout . IsNull ( ) )
2015-01-08 11:44:25 +01:00
return error ( " %s: OpenUndoFile failed " , __func__ ) ;
2014-12-03 00:39:03 +01:00
// Write index header
unsigned int nSize = fileout . GetSerializeSize ( blockundo ) ;
2015-04-19 23:48:25 +02:00
fileout < < FLATDATA ( messageStart ) < < nSize ;
2014-12-03 00:39:03 +01:00
// Write undo data
long fileOutPos = ftell ( fileout . Get ( ) ) ;
if ( fileOutPos < 0 )
2015-01-08 11:44:25 +01:00
return error ( " %s: ftell failed " , __func__ ) ;
2014-12-03 00:39:03 +01:00
pos . nPos = ( unsigned int ) fileOutPos ;
fileout < < blockundo ;
// calculate & write checksum
CHashWriter hasher ( SER_GETHASH , PROTOCOL_VERSION ) ;
hasher < < hashBlock ;
hasher < < blockundo ;
fileout < < hasher . GetHash ( ) ;
return true ;
}
bool UndoReadFromDisk ( CBlockUndo & blockundo , const CDiskBlockPos & pos , const uint256 & hashBlock )
{
// Open history file to read
CAutoFile filein ( OpenUndoFile ( pos , true ) , SER_DISK , CLIENT_VERSION ) ;
if ( filein . IsNull ( ) )
2015-01-08 11:44:25 +01:00
return error ( " %s: OpenBlockFile failed " , __func__ ) ;
2014-12-03 00:39:03 +01:00
// Read block
uint256 hashChecksum ;
try {
filein > > blockundo ;
filein > > hashChecksum ;
}
catch ( const std : : exception & e ) {
2015-01-08 11:44:25 +01:00
return error ( " %s: Deserialize or I/O error - %s " , __func__ , e . what ( ) ) ;
2014-12-03 00:39:03 +01:00
}
// Verify checksum
CHashWriter hasher ( SER_GETHASH , PROTOCOL_VERSION ) ;
hasher < < hashBlock ;
hasher < < blockundo ;
if ( hashChecksum ! = hasher . GetHash ( ) )
2015-01-08 11:44:25 +01:00
return error ( " %s: Checksum mismatch " , __func__ ) ;
2014-12-03 00:39:03 +01:00
return true ;
}
2015-01-16 18:57:14 -05:00
/** Abort with a message */
bool AbortNode ( const std : : string & strMessage , const std : : string & userMessage = " " )
{
strMiscWarning = strMessage ;
LogPrintf ( " *** %s \n " , strMessage ) ;
uiInterface . ThreadSafeMessageBox (
2015-08-09 00:17:27 +01:00
userMessage . empty ( ) ? _ ( " Error: A fatal internal error occurred, see debug.log for details " ) : userMessage ,
2015-01-16 18:57:14 -05:00
" " , CClientUIInterface : : MSG_ERROR ) ;
StartShutdown ( ) ;
return false ;
}
bool AbortNode ( CValidationState & state , const std : : string & strMessage , const std : : string & userMessage = " " )
{
AbortNode ( strMessage , userMessage ) ;
return state . Error ( strMessage ) ;
}
2014-12-03 00:39:03 +01:00
} // anon namespace
2010-08-29 16:58:15 +00:00
2015-02-03 15:44:39 +01:00
/**
* Apply the undo operation of a CTxInUndo to the given chain state .
* @ param undo The undo object .
* @ param view The coins view to which to apply the changes .
* @ param out The out point that corresponds to the tx input .
* @ return True on success .
*/
static bool ApplyTxInUndo ( const CTxInUndo & undo , CCoinsViewCache & view , const COutPoint & out )
{
bool fClean = true ;
CCoinsModifier coins = view . ModifyCoins ( out . hash ) ;
if ( undo . nHeight ! = 0 ) {
// undo data contains height: this is the last output of the prevout tx being spent
if ( ! coins - > IsPruned ( ) )
fClean = fClean & & error ( " %s: undo data overwriting existing transaction " , __func__ ) ;
coins - > Clear ( ) ;
coins - > fCoinBase = undo . fCoinBase ;
coins - > nHeight = undo . nHeight ;
coins - > nVersion = undo . nVersion ;
} else {
if ( coins - > IsPruned ( ) )
fClean = fClean & & error ( " %s: undo data adding output to missing transaction " , __func__ ) ;
}
if ( coins - > IsAvailable ( out . n ) )
fClean = fClean & & error ( " %s: undo data overwriting existing output " , __func__ ) ;
if ( coins - > vout . size ( ) < out . n + 1 )
coins - > vout . resize ( out . n + 1 ) ;
coins - > vout [ out . n ] = undo . txout ;
return fClean ;
}
2015-08-08 18:18:41 +02:00
bool DisconnectBlock ( const CBlock & block , CValidationState & state , const CBlockIndex * pindex , CCoinsViewCache & view , bool * pfClean )
2010-08-29 16:58:15 +00:00
{
2013-11-05 02:27:39 +01:00
assert ( pindex - > GetBlockHash ( ) = = view . GetBestBlock ( ) ) ;
2010-08-29 16:58:15 +00:00
2012-12-30 15:29:39 +01:00
if ( pfClean )
* pfClean = false ;
bool fClean = true ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
CBlockUndo blockUndo ;
2012-12-30 23:41:41 +01:00
CDiskBlockPos pos = pindex - > GetUndoPos ( ) ;
if ( pos . IsNull ( ) )
2015-01-08 11:44:25 +01:00
return error ( " DisconnectBlock() : no undo data available " ) ;
2014-10-27 14:35:52 +01:00
if ( ! UndoReadFromDisk ( blockUndo , pos , pindex - > pprev - > GetBlockHash ( ) ) )
2015-01-08 11:44:25 +01:00
return error ( " DisconnectBlock() : failure reading undo data " ) ;
2010-08-29 16:58:15 +00:00
2013-06-23 18:32:58 -07:00
if ( blockUndo . vtxundo . size ( ) + 1 ! = block . vtx . size ( ) )
2015-01-08 11:44:25 +01:00
return error ( " DisconnectBlock() : block and undo data inconsistent " ) ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// undo transactions in reverse order
2013-06-23 18:32:58 -07:00
for ( int i = block . vtx . size ( ) - 1 ; i > = 0 ; i - - ) {
const CTransaction & tx = block . vtx [ i ] ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
uint256 hash = tx . GetHash ( ) ;
2013-10-26 21:26:29 +02:00
// Check that all outputs are available and match the outputs in the block itself
2015-02-03 15:44:39 +01:00
// exactly.
2014-09-03 09:01:24 +02:00
{
CCoinsModifier outs = view . ModifyCoins ( hash ) ;
outs - > ClearUnspendable ( ) ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
2014-09-03 09:01:24 +02:00
CCoins outsBlock ( tx , pindex - > nHeight ) ;
2013-09-09 02:11:11 -07:00
// The CCoins serialization does not serialize negative numbers.
// No network rules currently depend on the version here, so an inconsistency is harmless
// but it must be corrected before txout nversion ever influences a network rule.
if ( outsBlock . nVersion < 0 )
2014-09-03 09:01:24 +02:00
outs - > nVersion = outsBlock . nVersion ;
if ( * outs ! = outsBlock )
2015-01-08 11:44:25 +01:00
fClean = fClean & & error ( " DisconnectBlock(): added transaction mismatch? database corrupted " ) ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// remove outputs
2014-09-03 09:01:24 +02:00
outs - > Clear ( ) ;
}
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// restore inputs
if ( i > 0 ) { // not coinbases
const CTxUndo & txundo = blockUndo . vtxundo [ i - 1 ] ;
2012-12-30 15:29:39 +01:00
if ( txundo . vprevout . size ( ) ! = tx . vin . size ( ) )
2015-01-08 11:44:25 +01:00
return error ( " DisconnectBlock() : transaction and undo data inconsistent " ) ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
for ( unsigned int j = tx . vin . size ( ) ; j - - > 0 ; ) {
const COutPoint & out = tx . vin [ j ] . prevout ;
const CTxInUndo & undo = txundo . vprevout [ j ] ;
2015-02-03 15:44:39 +01:00
if ( ! ApplyTxInUndo ( undo , view , out ) )
fClean = false ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
}
}
}
// move best block pointer to prevout block
2013-11-05 02:27:39 +01:00
view . SetBestBlock ( pindex - > pprev - > GetBlockHash ( ) ) ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
2012-12-30 15:29:39 +01:00
if ( pfClean ) {
* pfClean = fClean ;
return true ;
}
2015-02-03 15:44:39 +01:00
return fClean ;
2010-08-29 16:58:15 +00:00
}
2013-01-30 04:17:33 +01:00
void static FlushBlockFile ( bool fFinalize = false )
2012-09-06 03:21:18 +02:00
{
LOCK ( cs_LastBlockFile ) ;
2012-12-03 10:14:54 +01:00
CDiskBlockPos posOld ( nLastBlockFile , 0 ) ;
2012-09-06 03:21:18 +02:00
FILE * fileOld = OpenBlockFile ( posOld ) ;
2012-12-01 11:36:53 +01:00
if ( fileOld ) {
2013-01-30 04:17:33 +01:00
if ( fFinalize )
2014-09-25 08:21:21 +02:00
TruncateFile ( fileOld , vinfoBlockFile [ nLastBlockFile ] . nSize ) ;
2012-12-01 11:36:53 +01:00
FileCommit ( fileOld ) ;
fclose ( fileOld ) ;
}
2012-09-06 03:21:18 +02:00
fileOld = OpenUndoFile ( posOld ) ;
2012-12-01 11:36:53 +01:00
if ( fileOld ) {
2013-01-30 04:17:33 +01:00
if ( fFinalize )
2014-09-25 08:21:21 +02:00
TruncateFile ( fileOld , vinfoBlockFile [ nLastBlockFile ] . nUndoSize ) ;
2012-12-01 11:36:53 +01:00
FileCommit ( fileOld ) ;
fclose ( fileOld ) ;
}
2012-09-06 03:21:18 +02:00
}
2013-01-27 00:14:11 +01:00
bool FindUndoPos ( CValidationState & state , int nFile , CDiskBlockPos & pos , unsigned int nAddSize ) ;
2012-08-13 19:11:05 +02:00
2012-12-01 23:04:14 +01:00
static CCheckQueue < CScriptCheck > scriptcheckqueue ( 128 ) ;
2013-03-06 22:31:26 -05:00
void ThreadScriptCheck ( ) {
2012-12-01 23:04:14 +01:00
RenameThread ( " bitcoin-scriptch " ) ;
scriptcheckqueue . Thread ( ) ;
}
2015-03-26 11:20:59 -04:00
//
// Called periodically asynchronously; alerts if it smells like
// we're being fed a bad chain (blocks being generated much
// too slowly or too quickly).
//
2015-06-08 16:34:58 -04:00
void PartitionCheck ( bool ( * initialDownloadCheck ) ( ) , CCriticalSection & cs , const CBlockIndex * const & bestHeader ,
int64_t nPowTargetSpacing )
2015-03-26 11:20:59 -04:00
{
2015-06-08 16:34:58 -04:00
if ( bestHeader = = NULL | | initialDownloadCheck ( ) ) return ;
2015-03-26 11:20:59 -04:00
static int64_t lastAlertTime = 0 ;
int64_t now = GetAdjustedTime ( ) ;
if ( lastAlertTime > now - 60 * 60 * 24 ) return ; // Alert at most once per day
const int SPAN_HOURS = 4 ;
const int SPAN_SECONDS = SPAN_HOURS * 60 * 60 ;
int BLOCKS_EXPECTED = SPAN_SECONDS / nPowTargetSpacing ;
boost : : math : : poisson_distribution < double > poisson ( BLOCKS_EXPECTED ) ;
std : : string strWarning ;
int64_t startTime = GetAdjustedTime ( ) - SPAN_SECONDS ;
LOCK ( cs ) ;
2015-06-08 16:34:58 -04:00
const CBlockIndex * i = bestHeader ;
int nBlocks = 0 ;
while ( i - > GetBlockTime ( ) > = startTime ) {
+ + nBlocks ;
i = i - > pprev ;
if ( i = = NULL ) return ; // Ran out of chain, we must not be fully sync'ed
}
2015-03-26 11:20:59 -04:00
// How likely is it to find that many by chance?
double p = boost : : math : : pdf ( poisson , nBlocks ) ;
LogPrint ( " partitioncheck " , " %s : Found %d blocks in the last %d hours \n " , __func__ , nBlocks , SPAN_HOURS ) ;
LogPrint ( " partitioncheck " , " %s : likelihood: %g \n " , __func__ , p ) ;
// Aim for one false-positive about every fifty years of normal running:
const int FIFTY_YEARS = 50 * 365 * 24 * 60 * 60 ;
double alertThreshold = 1.0 / ( FIFTY_YEARS / SPAN_SECONDS ) ;
if ( p < = alertThreshold & & nBlocks < BLOCKS_EXPECTED )
{
// Many fewer blocks than expected: alert!
strWarning = strprintf ( _ ( " WARNING: check your network connection, %d blocks received in the last %d hours (%d expected) " ) ,
nBlocks , SPAN_HOURS , BLOCKS_EXPECTED ) ;
}
else if ( p < = alertThreshold & & nBlocks > BLOCKS_EXPECTED )
{
// Many more blocks than expected: alert!
strWarning = strprintf ( _ ( " WARNING: abnormally high number of blocks generated, %d blocks received in the last %d hours (%d expected) " ) ,
nBlocks , SPAN_HOURS , BLOCKS_EXPECTED ) ;
}
if ( ! strWarning . empty ( ) )
{
strMiscWarning = strWarning ;
CAlert : : Notify ( strWarning , true ) ;
lastAlertTime = now ;
}
}
2014-07-26 22:49:17 +02:00
static int64_t nTimeVerify = 0 ;
static int64_t nTimeConnect = 0 ;
static int64_t nTimeIndex = 0 ;
static int64_t nTimeCallbacks = 0 ;
static int64_t nTimeTotal = 0 ;
2014-10-20 02:10:03 +00:00
bool ConnectBlock ( const CBlock & block , CValidationState & state , CBlockIndex * pindex , CCoinsViewCache & view , bool fJustCheck )
2010-08-29 16:58:15 +00:00
{
2015-04-09 15:58:34 +02:00
const CChainParams & chainparams = Params ( ) ;
2014-04-23 08:55:24 +02:00
AssertLockHeld ( cs_main ) ;
2010-08-29 16:58:15 +00:00
// Check it again in case a previous version let a bad block in
2013-06-23 19:14:11 -07:00
if ( ! CheckBlock ( block , state , ! fJustCheck , ! fJustCheck ) )
2010-08-29 16:58:15 +00:00
return false ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// verify that the view's current state corresponds to the previous block
2014-12-15 09:11:16 +01:00
uint256 hashPrevBlock = pindex - > pprev = = NULL ? uint256 ( ) : pindex - > pprev - > GetBlockHash ( ) ;
2013-11-05 02:27:39 +01:00
assert ( hashPrevBlock = = view . GetBestBlock ( ) ) ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
2013-01-19 00:35:17 +01:00
// Special case for the genesis block, skipping connection of its transactions
// (its coinbase is unspendable)
2015-04-09 15:58:34 +02:00
if ( block . GetHash ( ) = = chainparams . GetConsensus ( ) . hashGenesisBlock ) {
2014-12-31 03:28:05 +00:00
if ( ! fJustCheck )
view . SetBestBlock ( pindex - > GetBlockHash ( ) ) ;
2013-01-19 00:35:17 +01:00
return true ;
}
2015-03-19 05:34:06 -07:00
bool fScriptChecks = true ;
if ( fCheckpointsEnabled ) {
CBlockIndex * pindexLastCheckpoint = Checkpoints : : GetLastCheckpoint ( chainparams . Checkpoints ( ) ) ;
if ( pindexLastCheckpoint & & pindexLastCheckpoint - > GetAncestor ( pindex - > nHeight ) = = pindex ) {
// This block is an ancestor of a checkpoint: disable script checks
fScriptChecks = false ;
}
}
2012-12-01 22:51:10 +01:00
2012-02-17 17:58:02 +01:00
// Do not allow blocks that contain transactions which 'overwrite' older transactions,
// unless those are already completely spent.
// If such overwrites are allowed, coinbases and transactions depending upon those
// can be duplicated to remove the ability to spend the first instance -- even after
// being sent to another address.
// See BIP30 and http://r6.ca/blog/20120206T005236Z.html for more information.
// This logic is not necessary for memory pool transactions, as AcceptToMemoryPool
2012-07-26 03:25:26 +00:00
// already refuses previously-known transaction ids entirely.
2015-04-28 14:48:28 +00:00
// This rule was originally applied to all blocks with a timestamp after March 15, 2012, 0:00 UTC.
2012-09-09 20:11:04 -04:00
// Now that the whole chain is irreversibly beyond that time it is applied to all blocks except the
2015-04-28 14:47:17 +00:00
// two in the chain that violate it. This prevents exploiting the issue against nodes during their
2012-09-09 20:11:04 -04:00
// initial block download.
2012-10-24 01:41:52 -04:00
bool fEnforceBIP30 = ( ! pindex - > phashBlock ) | | // Enforce on CreateNewBlock invocations which don't have a hash.
2014-12-16 14:50:05 +01:00
! ( ( pindex - > nHeight = = 91842 & & pindex - > GetBlockHash ( ) = = uint256S ( " 0x00000000000a4d0a398161ffc163c503763b1f4360639393e0e4c8e300e0caec " ) ) | |
( pindex - > nHeight = = 91880 & & pindex - > GetBlockHash ( ) = = uint256S ( " 0x00000000000743f190a18c5577a3c2d2a1f610ae9601ac046a38084ccb7cd721 " ) ) ) ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
if ( fEnforceBIP30 ) {
2014-06-09 10:02:00 +02:00
BOOST_FOREACH ( const CTransaction & tx , block . vtx ) {
2014-09-02 21:21:15 +02:00
const CCoins * coins = view . AccessCoins ( tx . GetHash ( ) ) ;
if ( coins & & ! coins - > IsPruned ( ) )
2015-01-08 11:44:25 +01:00
return state . DoS ( 100 , error ( " ConnectBlock(): tried to overwrite transaction " ) ,
2012-09-10 02:02:35 +00:00
REJECT_INVALID , " bad-txns-BIP30 " ) ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
}
}
2012-02-17 17:58:02 +01:00
2012-06-22 11:50:52 -04:00
// BIP16 didn't become active until Apr 1 2012
2013-04-13 00:13:08 -05:00
int64_t nBIP16SwitchTime = 1333238400 ;
2014-06-28 23:36:06 +02:00
bool fStrictPayToScriptHash = ( pindex - > GetBlockTime ( ) > = nBIP16SwitchTime ) ;
2012-01-20 17:07:40 -05:00
2014-09-14 04:48:32 +02:00
unsigned int flags = fStrictPayToScriptHash ? SCRIPT_VERIFY_P2SH : SCRIPT_VERIFY_NONE ;
2012-12-08 22:49:04 +01:00
2015-06-28 14:30:50 -04:00
// Start enforcing the DERSIG (BIP66) rules, for block.nVersion=3 blocks,
// when 75% of the network has upgraded:
2015-04-01 16:10:37 +02:00
if ( block . nVersion > = 3 & & IsSuperMajority ( 3 , pindex - > pprev , chainparams . GetConsensus ( ) . nMajorityEnforceBlockUpgrade , chainparams . GetConsensus ( ) ) ) {
2015-01-19 18:37:21 -05:00
flags | = SCRIPT_VERIFY_DERSIG ;
}
2015-06-28 14:30:50 -04:00
// Start enforcing CHECKLOCKTIMEVERIFY, (BIP65) for block.nVersion=4
// blocks, when 75% of the network has upgraded:
if ( block . nVersion > = 4 & & IsSuperMajority ( 4 , pindex - > pprev , chainparams . GetConsensus ( ) . nMajorityEnforceBlockUpgrade , chainparams . GetConsensus ( ) ) ) {
flags | = SCRIPT_VERIFY_CHECKLOCKTIMEVERIFY ;
}
2012-06-23 14:17:13 +02:00
CBlockUndo blockundo ;
2012-12-01 23:04:14 +01:00
CCheckQueueControl < CScriptCheck > control ( fScriptChecks & & nScriptCheckThreads ? & scriptcheckqueue : NULL ) ;
2014-07-26 22:49:17 +02:00
int64_t nTimeStart = GetTimeMicros ( ) ;
2014-04-22 15:46:19 -07:00
CAmount nFees = 0 ;
2012-12-01 20:10:23 +01:00
int nInputs = 0 ;
2012-04-23 14:14:03 -04:00
unsigned int nSigOps = 0 ;
2013-06-23 18:50:06 -07:00
CDiskTxPos pos ( pindex - > GetBlockPos ( ) , GetSizeOfCompactSize ( block . vtx . size ( ) ) ) ;
2013-01-11 01:47:57 +01:00
std : : vector < std : : pair < uint256 , CDiskTxPos > > vPos ;
2013-06-23 18:50:06 -07:00
vPos . reserve ( block . vtx . size ( ) ) ;
2014-09-03 15:54:37 +02:00
blockundo . vtxundo . reserve ( block . vtx . size ( ) - 1 ) ;
2013-06-23 18:50:06 -07:00
for ( unsigned int i = 0 ; i < block . vtx . size ( ) ; i + + )
2010-08-29 16:58:15 +00:00
{
2013-06-23 18:50:06 -07:00
const CTransaction & tx = block . vtx [ i ] ;
2012-07-08 00:06:34 +02:00
2012-12-01 20:10:23 +01:00
nInputs + = tx . vin . size ( ) ;
2013-01-08 04:17:15 -08:00
nSigOps + = GetLegacySigOpCount ( tx ) ;
2012-01-20 17:07:40 -05:00
if ( nSigOps > MAX_BLOCK_SIGOPS )
2015-01-08 11:44:25 +01:00
return state . DoS ( 100 , error ( " ConnectBlock(): too many sigops " ) ,
2012-09-10 02:02:35 +00:00
REJECT_INVALID , " bad-blk-sigops " ) ;
2012-01-20 17:07:40 -05:00
2012-01-10 20:18:00 -05:00
if ( ! tx . IsCoinBase ( ) )
{
2013-01-08 04:17:15 -08:00
if ( ! view . HaveInputs ( tx ) )
2015-01-08 11:44:25 +01:00
return state . DoS ( 100 , error ( " ConnectBlock(): inputs missing/spent " ) ,
2012-09-10 02:02:35 +00:00
REJECT_INVALID , " bad-txns-inputs-missingorspent " ) ;
2012-01-04 21:40:52 -05:00
2012-01-20 17:07:40 -05:00
if ( fStrictPayToScriptHash )
{
// Add in sigops done by pay-to-script-hash inputs;
// this is to prevent a "rogue miner" from creating
// an incredibly-expensive-to-validate block.
2013-01-08 04:17:15 -08:00
nSigOps + = GetP2SHSigOpCount ( tx , view ) ;
2012-01-20 17:07:40 -05:00
if ( nSigOps > MAX_BLOCK_SIGOPS )
2015-01-08 11:44:25 +01:00
return state . DoS ( 100 , error ( " ConnectBlock(): too many sigops " ) ,
2012-09-10 02:02:35 +00:00
REJECT_INVALID , " bad-blk-sigops " ) ;
2012-01-20 17:07:40 -05:00
}
2012-01-04 21:40:52 -05:00
2013-11-11 16:03:51 +10:00
nFees + = view . GetValueIn ( tx ) - tx . GetValueOut ( ) ;
2012-06-23 14:17:13 +02:00
2012-12-01 23:04:14 +01:00
std : : vector < CScriptCheck > vChecks ;
2014-09-14 04:48:32 +02:00
if ( ! CheckInputs ( tx , state , view , fScriptChecks , flags , false , nScriptCheckThreads ? & vChecks : NULL ) )
2015-08-06 10:02:12 +02:00
return error ( " ConnectBlock(): CheckInputs on %s failed with %s " ,
tx . GetHash ( ) . ToString ( ) , FormatStateMessage ( state ) ) ;
2012-12-01 23:04:14 +01:00
control . Add ( vChecks ) ;
2012-01-10 20:18:00 -05:00
}
2014-09-03 15:54:37 +02:00
CTxUndo undoDummy ;
if ( i > 0 ) {
blockundo . vtxundo . push_back ( CTxUndo ( ) ) ;
}
UpdateCoins ( tx , state , view , i = = 0 ? undoDummy : blockundo . vtxundo . back ( ) , pindex - > nHeight ) ;
2012-12-01 20:10:23 +01:00
2014-06-09 10:02:00 +02:00
vPos . push_back ( std : : make_pair ( tx . GetHash ( ) , pos ) ) ;
2013-01-11 01:47:57 +01:00
pos . nTxOffset + = : : GetSerializeSize ( tx , SER_DISK , CLIENT_VERSION ) ;
2010-08-29 16:58:15 +00:00
}
2014-07-26 22:49:17 +02:00
int64_t nTime1 = GetTimeMicros ( ) ; nTimeConnect + = nTime1 - nTimeStart ;
LogPrint ( " bench " , " - Connect %u transactions: %.2fms (%.3fms/tx, %.3fms/txin) [%.2fs] \n " , ( unsigned ) block . vtx . size ( ) , 0.001 * ( nTime1 - nTimeStart ) , 0.001 * ( nTime1 - nTimeStart ) / block . vtx . size ( ) , nInputs < = 1 ? 0 : 0.001 * ( nTime1 - nTimeStart ) / ( nInputs - 1 ) , nTimeConnect * 0.000001 ) ;
2011-10-03 13:05:43 -04:00
2015-04-01 16:03:11 +02:00
CAmount blockReward = nFees + GetBlockSubsidy ( pindex - > nHeight , chainparams . GetConsensus ( ) ) ;
if ( block . vtx [ 0 ] . GetValueOut ( ) > blockReward )
2013-10-28 16:36:11 +10:00
return state . DoS ( 100 ,
2015-01-08 11:44:25 +01:00
error ( " ConnectBlock(): coinbase pays too much (actual=%d vs limit=%d) " ,
2015-04-01 16:03:11 +02:00
block . vtx [ 0 ] . GetValueOut ( ) , blockReward ) ,
2014-02-10 16:31:06 +01:00
REJECT_INVALID , " bad-cb-amount " ) ;
2012-10-22 21:46:00 +02:00
2012-12-01 23:04:14 +01:00
if ( ! control . Wait ( ) )
2013-01-27 00:14:11 +01:00
return state . DoS ( 100 , false ) ;
2014-07-26 22:49:17 +02:00
int64_t nTime2 = GetTimeMicros ( ) ; nTimeVerify + = nTime2 - nTimeStart ;
LogPrint ( " bench " , " - Verify %u txins: %.2fms (%.3fms/txin) [%.2fs] \n " , nInputs - 1 , 0.001 * ( nTime2 - nTimeStart ) , nInputs < = 1 ? 0 : 0.001 * ( nTime2 - nTimeStart ) / ( nInputs - 1 ) , nTimeVerify * 0.000001 ) ;
2012-12-01 23:04:14 +01:00
2012-05-09 17:24:44 +00:00
if ( fJustCheck )
return true ;
2012-08-13 19:11:05 +02:00
// Write undo information to disk
2014-03-13 03:48:27 +01:00
if ( pindex - > GetUndoPos ( ) . IsNull ( ) | | ! pindex - > IsValid ( BLOCK_VALID_SCRIPTS ) )
2012-08-13 19:11:05 +02:00
{
2012-08-19 00:33:01 +02:00
if ( pindex - > GetUndoPos ( ) . IsNull ( ) ) {
CDiskBlockPos pos ;
2013-01-27 00:14:11 +01:00
if ( ! FindUndoPos ( state , pindex - > nFile , pos , : : GetSerializeSize ( blockundo , SER_DISK , CLIENT_VERSION ) + 40 ) )
2015-01-08 11:44:25 +01:00
return error ( " ConnectBlock() : FindUndoPos failed " ) ;
2015-04-19 23:48:25 +02:00
if ( ! UndoWriteToDisk ( blockundo , pos , pindex - > pprev - > GetBlockHash ( ) , chainparams . MessageStart ( ) ) )
2015-01-16 18:57:14 -05:00
return AbortNode ( state , " Failed to write undo data " ) ;
2012-08-19 00:33:01 +02:00
// update nUndoPos in block index
pindex - > nUndoPos = pos . nPos ;
pindex - > nStatus | = BLOCK_HAVE_UNDO ;
}
2014-03-13 03:48:27 +01:00
pindex - > RaiseValidity ( BLOCK_VALID_SCRIPTS ) ;
Improve chainstate/blockindex disk writing policy
There are 3 pieces of data that are maintained on disk. The actual block
and undo data, the block index (which can refer to positions on disk),
and the chainstate (which refers to the best block hash).
Earlier, there was no guarantee that blocks were written to disk before
block index entries referring to them were written. This commit introduces
dirty flags for block index data, and delays writing entries until the actual
block data is flushed.
With this stricter ordering in writes, it is now safe to not always flush
after every block, so there is no need for the IsInitialBlockDownload()
check there - instead we just write whenever enough time has passed or
the cache size grows too large. Also updating the wallet's best known block
is delayed until this is done, otherwise the wallet may end up referring to an
unknown block.
In addition, only do a write inside the block processing loop if necessary
(because of cache size exceeded). Otherwise, move the writing to a point
after processing is done, after relaying.
2014-11-07 02:38:35 -08:00
setDirtyBlockIndex . insert ( pindex ) ;
2010-08-29 16:58:15 +00:00
}
2013-01-11 01:47:57 +01:00
if ( fTxIndex )
2013-01-27 00:14:11 +01:00
if ( ! pblocktree - > WriteTxIndex ( vPos ) )
2015-01-16 18:57:14 -05:00
return AbortNode ( state , " Failed to write transaction index " ) ;
2013-01-11 01:47:57 +01:00
2012-10-05 19:22:21 +02:00
// add this block to the view's block chain
2014-09-03 09:25:32 +02:00
view . SetBestBlock ( pindex - > GetBlockHash ( ) ) ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
2014-07-26 22:49:17 +02:00
int64_t nTime3 = GetTimeMicros ( ) ; nTimeIndex + = nTime3 - nTime2 ;
LogPrint ( " bench " , " - Index writing: %.2fms [%.2fs] \n " , 0.001 * ( nTime3 - nTime2 ) , nTimeIndex * 0.000001 ) ;
2014-05-07 16:45:33 +02:00
// Watch for changes to the previous coinbase transaction.
static uint256 hashPrevBestCoinBase ;
2015-02-05 01:11:44 +01:00
GetMainSignals ( ) . UpdatedTransaction ( hashPrevBestCoinBase ) ;
2014-06-09 10:02:00 +02:00
hashPrevBestCoinBase = block . vtx [ 0 ] . GetHash ( ) ;
2014-05-07 16:45:33 +02:00
2014-07-26 22:49:17 +02:00
int64_t nTime4 = GetTimeMicros ( ) ; nTimeCallbacks + = nTime4 - nTime3 ;
LogPrint ( " bench " , " - Callbacks: %.2fms [%.2fs] \n " , 0.001 * ( nTime4 - nTime3 ) , nTimeCallbacks * 0.000001 ) ;
2010-08-29 16:58:15 +00:00
return true ;
}
2014-11-14 18:19:26 +01:00
enum FlushStateMode {
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
FLUSH_STATE_NONE ,
2014-11-14 18:19:26 +01:00
FLUSH_STATE_IF_NEEDED ,
FLUSH_STATE_PERIODIC ,
FLUSH_STATE_ALWAYS
} ;
Improve chainstate/blockindex disk writing policy
There are 3 pieces of data that are maintained on disk. The actual block
and undo data, the block index (which can refer to positions on disk),
and the chainstate (which refers to the best block hash).
Earlier, there was no guarantee that blocks were written to disk before
block index entries referring to them were written. This commit introduces
dirty flags for block index data, and delays writing entries until the actual
block data is flushed.
With this stricter ordering in writes, it is now safe to not always flush
after every block, so there is no need for the IsInitialBlockDownload()
check there - instead we just write whenever enough time has passed or
the cache size grows too large. Also updating the wallet's best known block
is delayed until this is done, otherwise the wallet may end up referring to an
unknown block.
In addition, only do a write inside the block processing loop if necessary
(because of cache size exceeded). Otherwise, move the writing to a point
after processing is done, after relaying.
2014-11-07 02:38:35 -08:00
/**
* Update the on - disk chain state .
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
* The caches and indexes are flushed depending on the mode we ' re called with
* if they ' re too large , if it ' s been a while since the last write ,
* or always and in all cases if we ' re in prune mode and are deleting files .
Improve chainstate/blockindex disk writing policy
There are 3 pieces of data that are maintained on disk. The actual block
and undo data, the block index (which can refer to positions on disk),
and the chainstate (which refers to the best block hash).
Earlier, there was no guarantee that blocks were written to disk before
block index entries referring to them were written. This commit introduces
dirty flags for block index data, and delays writing entries until the actual
block data is flushed.
With this stricter ordering in writes, it is now safe to not always flush
after every block, so there is no need for the IsInitialBlockDownload()
check there - instead we just write whenever enough time has passed or
the cache size grows too large. Also updating the wallet's best known block
is delayed until this is done, otherwise the wallet may end up referring to an
unknown block.
In addition, only do a write inside the block processing loop if necessary
(because of cache size exceeded). Otherwise, move the writing to a point
after processing is done, after relaying.
2014-11-07 02:38:35 -08:00
*/
2014-11-14 18:19:26 +01:00
bool static FlushStateToDisk ( CValidationState & state , FlushStateMode mode ) {
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
LOCK2 ( cs_main , cs_LastBlockFile ) ;
2013-11-16 19:28:24 +01:00
static int64_t nLastWrite = 0 ;
2015-05-04 22:00:19 +02:00
static int64_t nLastFlush = 0 ;
static int64_t nLastSetChain = 0 ;
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
std : : set < int > setFilesToPrune ;
bool fFlushForPrune = false ;
2015-01-04 19:11:44 +01:00
try {
2015-10-19 14:43:04 -04:00
if ( fPruneMode & & fCheckForPruning & & ! fReindex ) {
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
FindFilesToPrune ( setFilesToPrune ) ;
2015-05-13 11:13:13 -04:00
fCheckForPruning = false ;
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
if ( ! setFilesToPrune . empty ( ) ) {
fFlushForPrune = true ;
if ( ! fHavePruned ) {
pblocktree - > WriteFlag ( " prunedblockfiles " , true ) ;
fHavePruned = true ;
}
}
}
2015-05-04 22:00:19 +02:00
int64_t nNow = GetTimeMicros ( ) ;
// Avoid writing/flushing immediately after startup.
if ( nLastWrite = = 0 ) {
nLastWrite = nNow ;
}
if ( nLastFlush = = 0 ) {
nLastFlush = nNow ;
}
if ( nLastSetChain = = 0 ) {
nLastSetChain = nNow ;
}
size_t cacheSize = pcoinsTip - > DynamicMemoryUsage ( ) ;
// The cache is large and close to the limit, but we have time now (not in the middle of a block processing).
bool fCacheLarge = mode = = FLUSH_STATE_PERIODIC & & cacheSize * ( 10.0 / 9 ) > nCoinCacheUsage ;
// The cache is over the limit, we have to write now.
bool fCacheCritical = mode = = FLUSH_STATE_IF_NEEDED & & cacheSize > nCoinCacheUsage ;
// It's been a while since we wrote the block index to disk. Do this frequently, so we don't need to redownload after a crash.
bool fPeriodicWrite = mode = = FLUSH_STATE_PERIODIC & & nNow > nLastWrite + ( int64_t ) DATABASE_WRITE_INTERVAL * 1000000 ;
// It's been very long since we flushed the cache. Do this infrequently, to optimize cache usage.
bool fPeriodicFlush = mode = = FLUSH_STATE_PERIODIC & & nNow > nLastFlush + ( int64_t ) DATABASE_FLUSH_INTERVAL * 1000000 ;
// Combine all conditions that result in a full cache flush.
bool fDoFullFlush = ( mode = = FLUSH_STATE_ALWAYS ) | | fCacheLarge | | fCacheCritical | | fPeriodicFlush | | fFlushForPrune ;
// Write blocks and block index to disk.
if ( fDoFullFlush | | fPeriodicWrite ) {
2015-05-11 11:18:39 -04:00
// Depend on nMinDiskSpace to ensure we can write block index
if ( ! CheckDiskSpace ( 0 ) )
2012-09-10 02:02:35 +00:00
return state . Error ( " out of disk space " ) ;
Improve chainstate/blockindex disk writing policy
There are 3 pieces of data that are maintained on disk. The actual block
and undo data, the block index (which can refer to positions on disk),
and the chainstate (which refers to the best block hash).
Earlier, there was no guarantee that blocks were written to disk before
block index entries referring to them were written. This commit introduces
dirty flags for block index data, and delays writing entries until the actual
block data is flushed.
With this stricter ordering in writes, it is now safe to not always flush
after every block, so there is no need for the IsInitialBlockDownload()
check there - instead we just write whenever enough time has passed or
the cache size grows too large. Also updating the wallet's best known block
is delayed until this is done, otherwise the wallet may end up referring to an
unknown block.
In addition, only do a write inside the block processing loop if necessary
(because of cache size exceeded). Otherwise, move the writing to a point
after processing is done, after relaying.
2014-11-07 02:38:35 -08:00
// First make sure all block and undo data is flushed to disk.
2012-09-06 03:21:18 +02:00
FlushBlockFile ( ) ;
Improve chainstate/blockindex disk writing policy
There are 3 pieces of data that are maintained on disk. The actual block
and undo data, the block index (which can refer to positions on disk),
and the chainstate (which refers to the best block hash).
Earlier, there was no guarantee that blocks were written to disk before
block index entries referring to them were written. This commit introduces
dirty flags for block index data, and delays writing entries until the actual
block data is flushed.
With this stricter ordering in writes, it is now safe to not always flush
after every block, so there is no need for the IsInitialBlockDownload()
check there - instead we just write whenever enough time has passed or
the cache size grows too large. Also updating the wallet's best known block
is delayed until this is done, otherwise the wallet may end up referring to an
unknown block.
In addition, only do a write inside the block processing loop if necessary
(because of cache size exceeded). Otherwise, move the writing to a point
after processing is done, after relaying.
2014-11-07 02:38:35 -08:00
// Then update all block file information (which may refer to block and undo files).
2014-11-25 16:26:20 +01:00
{
std : : vector < std : : pair < int , const CBlockFileInfo * > > vFiles ;
vFiles . reserve ( setDirtyFileInfo . size ( ) ) ;
for ( set < int > : : iterator it = setDirtyFileInfo . begin ( ) ; it ! = setDirtyFileInfo . end ( ) ; ) {
vFiles . push_back ( make_pair ( * it , & vinfoBlockFile [ * it ] ) ) ;
setDirtyFileInfo . erase ( it + + ) ;
}
std : : vector < const CBlockIndex * > vBlocks ;
vBlocks . reserve ( setDirtyBlockIndex . size ( ) ) ;
for ( set < CBlockIndex * > : : iterator it = setDirtyBlockIndex . begin ( ) ; it ! = setDirtyBlockIndex . end ( ) ; ) {
vBlocks . push_back ( * it ) ;
setDirtyBlockIndex . erase ( it + + ) ;
}
if ( ! pblocktree - > WriteBatchSync ( vFiles , nLastBlockFile , vBlocks ) ) {
2015-01-16 18:57:14 -05:00
return AbortNode ( state , " Files to write to block index database " ) ;
Improve chainstate/blockindex disk writing policy
There are 3 pieces of data that are maintained on disk. The actual block
and undo data, the block index (which can refer to positions on disk),
and the chainstate (which refers to the best block hash).
Earlier, there was no guarantee that blocks were written to disk before
block index entries referring to them were written. This commit introduces
dirty flags for block index data, and delays writing entries until the actual
block data is flushed.
With this stricter ordering in writes, it is now safe to not always flush
after every block, so there is no need for the IsInitialBlockDownload()
check there - instead we just write whenever enough time has passed or
the cache size grows too large. Also updating the wallet's best known block
is delayed until this is done, otherwise the wallet may end up referring to an
unknown block.
In addition, only do a write inside the block processing loop if necessary
(because of cache size exceeded). Otherwise, move the writing to a point
after processing is done, after relaying.
2014-11-07 02:38:35 -08:00
}
}
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
// Finally remove any pruned files
2015-05-13 11:13:13 -04:00
if ( fFlushForPrune )
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
UnlinkPrunedFiles ( setFilesToPrune ) ;
2015-05-04 22:00:19 +02:00
nLastWrite = nNow ;
}
// Flush best chain related state. This can only be done if the blocks / block index write was also done.
if ( fDoFullFlush ) {
2015-05-11 11:18:39 -04:00
// Typical CCoins structures on disk are around 128 bytes in size.
// Pushing a new one to the database can cause it to be written
// twice (once in the log, and once in the tables). This is already
// an overestimation, as most will delete an existing entry or
// overwrite one. Still, use a conservative safety factor of 2.
if ( ! CheckDiskSpace ( 128 * 2 * 2 * pcoinsTip - > GetCacheSize ( ) ) )
return state . Error ( " out of disk space " ) ;
2015-05-04 22:00:19 +02:00
// Flush the chainstate (which may refer to block index entries).
if ( ! pcoinsTip - > Flush ( ) )
2015-01-16 18:57:14 -05:00
return AbortNode ( state , " Failed to write to coin database " ) ;
2015-05-04 22:00:19 +02:00
nLastFlush = nNow ;
}
if ( ( mode = = FLUSH_STATE_ALWAYS | | mode = = FLUSH_STATE_PERIODIC ) & & nNow > nLastSetChain + ( int64_t ) DATABASE_WRITE_INTERVAL * 1000000 ) {
Improve chainstate/blockindex disk writing policy
There are 3 pieces of data that are maintained on disk. The actual block
and undo data, the block index (which can refer to positions on disk),
and the chainstate (which refers to the best block hash).
Earlier, there was no guarantee that blocks were written to disk before
block index entries referring to them were written. This commit introduces
dirty flags for block index data, and delays writing entries until the actual
block data is flushed.
With this stricter ordering in writes, it is now safe to not always flush
after every block, so there is no need for the IsInitialBlockDownload()
check there - instead we just write whenever enough time has passed or
the cache size grows too large. Also updating the wallet's best known block
is delayed until this is done, otherwise the wallet may end up referring to an
unknown block.
In addition, only do a write inside the block processing loop if necessary
(because of cache size exceeded). Otherwise, move the writing to a point
after processing is done, after relaying.
2014-11-07 02:38:35 -08:00
// Update best block in wallet (so we can detect restored wallets).
2015-05-04 22:00:19 +02:00
GetMainSignals ( ) . SetBestChain ( chainActive . GetLocator ( ) ) ;
nLastSetChain = nNow ;
2012-09-06 03:21:18 +02:00
}
2015-01-04 19:11:44 +01:00
} catch ( const std : : runtime_error & e ) {
2015-01-16 18:57:14 -05:00
return AbortNode ( state , std : : string ( " System error while flushing: " ) + e . what ( ) ) ;
2015-01-04 19:11:44 +01:00
}
2013-11-16 18:40:55 +01:00
return true ;
}
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
Improve chainstate/blockindex disk writing policy
There are 3 pieces of data that are maintained on disk. The actual block
and undo data, the block index (which can refer to positions on disk),
and the chainstate (which refers to the best block hash).
Earlier, there was no guarantee that blocks were written to disk before
block index entries referring to them were written. This commit introduces
dirty flags for block index data, and delays writing entries until the actual
block data is flushed.
With this stricter ordering in writes, it is now safe to not always flush
after every block, so there is no need for the IsInitialBlockDownload()
check there - instead we just write whenever enough time has passed or
the cache size grows too large. Also updating the wallet's best known block
is delayed until this is done, otherwise the wallet may end up referring to an
unknown block.
In addition, only do a write inside the block processing loop if necessary
(because of cache size exceeded). Otherwise, move the writing to a point
after processing is done, after relaying.
2014-11-07 02:38:35 -08:00
void FlushStateToDisk ( ) {
CValidationState state ;
2014-11-14 18:19:26 +01:00
FlushStateToDisk ( state , FLUSH_STATE_ALWAYS ) ;
Improve chainstate/blockindex disk writing policy
There are 3 pieces of data that are maintained on disk. The actual block
and undo data, the block index (which can refer to positions on disk),
and the chainstate (which refers to the best block hash).
Earlier, there was no guarantee that blocks were written to disk before
block index entries referring to them were written. This commit introduces
dirty flags for block index data, and delays writing entries until the actual
block data is flushed.
With this stricter ordering in writes, it is now safe to not always flush
after every block, so there is no need for the IsInitialBlockDownload()
check there - instead we just write whenever enough time has passed or
the cache size grows too large. Also updating the wallet's best known block
is delayed until this is done, otherwise the wallet may end up referring to an
unknown block.
In addition, only do a write inside the block processing loop if necessary
(because of cache size exceeded). Otherwise, move the writing to a point
after processing is done, after relaying.
2014-11-07 02:38:35 -08:00
}
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
void PruneAndFlush ( ) {
CValidationState state ;
fCheckForPruning = true ;
FlushStateToDisk ( state , FLUSH_STATE_NONE ) ;
}
2014-12-01 09:39:44 +08:00
/** Update chainActive and related internal data structures. */
2013-11-16 18:40:55 +01:00
void static UpdateTip ( CBlockIndex * pindexNew ) {
2015-04-22 18:19:11 -04:00
const CChainParams & chainParams = Params ( ) ;
2013-10-10 23:07:44 +02:00
chainActive . SetTip ( pindexNew ) ;
2010-08-29 16:58:15 +00:00
// New best block
nTimeBestReceived = GetTime ( ) ;
2013-08-27 15:51:57 +10:00
mempool . AddTransactionsUpdated ( 1 ) ;
2012-05-13 04:43:24 +00:00
2015-05-04 01:56:42 +02:00
LogPrintf ( " %s: new best=%s height=%d log2_work=%.8g tx=%lu date=%s progress=%f cache=%.1fMiB(%utx) \n " , __func__ ,
2013-11-16 18:40:55 +01:00
chainActive . Tip ( ) - > GetBlockHash ( ) . ToString ( ) , chainActive . Height ( ) , log ( chainActive . Tip ( ) - > nChainWork . getdouble ( ) ) / log ( 2.0 ) , ( unsigned long ) chainActive . Tip ( ) - > nChainTx ,
2014-01-16 16:15:27 +01:00
DateTimeStrFormat ( " %Y-%m-%d %H:%M:%S " , chainActive . Tip ( ) - > GetBlockTime ( ) ) ,
2015-05-04 01:56:42 +02:00
Checkpoints : : GuessVerificationProgress ( chainParams . Checkpoints ( ) , chainActive . Tip ( ) ) , pcoinsTip - > DynamicMemoryUsage ( ) * ( 1.0 / ( 1 < < 20 ) ) , pcoinsTip - > GetCacheSize ( ) ) ;
2010-08-29 16:58:15 +00:00
2012-05-13 04:43:24 +00:00
cvBlockChange . notify_all ( ) ;
2012-06-27 13:51:51 -04:00
// Check the version of the last 100 blocks to see if we need to upgrade:
2014-10-07 14:22:58 -04:00
static bool fWarned = false ;
if ( ! IsInitialBlockDownload ( ) & & ! fWarned )
2012-06-27 13:51:51 -04:00
{
int nUpgraded = 0 ;
2013-10-10 23:07:44 +02:00
const CBlockIndex * pindex = chainActive . Tip ( ) ;
2012-06-27 13:51:51 -04:00
for ( int i = 0 ; i < 100 & & pindex ! = NULL ; i + + )
{
if ( pindex - > nVersion > CBlock : : CURRENT_VERSION )
+ + nUpgraded ;
pindex = pindex - > pprev ;
}
if ( nUpgraded > 0 )
2015-02-24 18:32:34 +01:00
LogPrintf ( " %s: %d of last 100 blocks above version %d \n " , __func__ , nUpgraded , ( int ) CBlock : : CURRENT_VERSION ) ;
2012-06-27 13:51:51 -04:00
if ( nUpgraded > 100 / 2 )
2014-10-07 14:22:58 -04:00
{
2012-06-27 13:51:51 -04:00
// strMiscWarning is read by GetWarnings(), called by Qt and the JSON-RPC code to warn the user:
2015-04-28 14:48:28 +00:00
strMiscWarning = _ ( " Warning: This version is obsolete; upgrade required! " ) ;
2014-10-07 14:22:58 -04:00
CAlert : : Notify ( strMiscWarning , true ) ;
fWarned = true ;
}
2012-06-27 13:51:51 -04:00
}
2013-11-16 19:28:24 +01:00
}
2012-06-27 13:51:51 -04:00
2015-10-02 14:20:38 -07:00
/** Disconnect chainActive's tip. You want to manually re-limit mempool size after this */
2013-11-16 19:28:24 +01:00
bool static DisconnectTip ( CValidationState & state ) {
CBlockIndex * pindexDelete = chainActive . Tip ( ) ;
assert ( pindexDelete ) ;
mempool . check ( pcoinsTip ) ;
// Read block from disk.
CBlock block ;
if ( ! ReadBlockFromDisk ( block , pindexDelete ) )
2015-01-16 18:57:14 -05:00
return AbortNode ( state , " Failed to read block " ) ;
2013-11-16 19:28:24 +01:00
// Apply the block atomically to the chain state.
int64_t nStart = GetTimeMicros ( ) ;
2012-01-03 15:24:28 -05:00
{
2014-09-24 03:19:04 +02:00
CCoinsViewCache view ( pcoinsTip ) ;
2013-11-16 19:28:24 +01:00
if ( ! DisconnectBlock ( block , state , pindexDelete , view ) )
2015-01-08 11:44:25 +01:00
return error ( " DisconnectTip() : DisconnectBlock % s failed " , pindexDelete->GetBlockHash().ToString()) ;
2013-11-16 19:28:24 +01:00
assert ( view . Flush ( ) ) ;
2012-01-03 15:24:28 -05:00
}
2014-07-26 22:49:17 +02:00
LogPrint ( " bench " , " - Disconnect block: %.2fms \n " , ( GetTimeMicros ( ) - nStart ) * 0.001 ) ;
2013-11-16 19:28:24 +01:00
// Write the chain state to disk, if necessary.
2014-11-14 18:19:26 +01:00
if ( ! FlushStateToDisk ( state , FLUSH_STATE_IF_NEEDED ) )
2013-11-16 19:28:24 +01:00
return false ;
2014-02-15 16:38:28 -05:00
// Resurrect mempool transactions from the disconnected block.
2015-07-15 14:47:45 -04:00
std : : vector < uint256 > vHashUpdate ;
2013-11-16 19:28:24 +01:00
BOOST_FOREACH ( const CTransaction & tx , block . vtx ) {
// ignore validation errors in resurrected transactions
2014-02-15 16:38:28 -05:00
list < CTransaction > removed ;
2014-05-10 14:54:20 +02:00
CValidationState stateDummy ;
2015-10-02 14:20:38 -07:00
if ( tx . IsCoinBase ( ) | | ! AcceptToMemoryPool ( mempool , stateDummy , tx , false , NULL , true ) ) {
2014-11-11 16:41:44 -08:00
mempool . remove ( tx , removed , true ) ;
2015-07-15 14:47:45 -04:00
} else if ( mempool . exists ( tx . GetHash ( ) ) ) {
vHashUpdate . push_back ( tx . GetHash ( ) ) ;
}
2013-11-16 19:28:24 +01:00
}
2015-07-15 14:47:45 -04:00
// AcceptToMemoryPool/addUnchecked all assume that new mempool entries have
// no in-mempool children, which is generally not true when adding
// previously-confirmed transactions back to the mempool.
// UpdateTransactionsFromBlock finds descendants of any transactions in this
// block that were added back and cleans up the mempool state.
mempool . UpdateTransactionsFromBlock ( vHashUpdate ) ;
2014-11-11 20:57:54 -08:00
mempool . removeCoinbaseSpends ( pcoinsTip , pindexDelete - > nHeight ) ;
2013-11-16 19:28:24 +01:00
mempool . check ( pcoinsTip ) ;
// Update chainActive and related variables.
UpdateTip ( pindexDelete - > pprev ) ;
2014-02-15 16:38:28 -05:00
// Let wallets know transactions went from 1-confirmed to
// 0-confirmed or conflicted:
BOOST_FOREACH ( const CTransaction & tx , block . vtx ) {
2014-06-09 10:02:00 +02:00
SyncWithWallets ( tx , NULL ) ;
2014-02-15 16:38:28 -05:00
}
2013-11-16 19:28:24 +01:00
return true ;
2013-11-16 18:40:55 +01:00
}
2012-01-03 15:24:28 -05:00
2014-07-26 22:49:17 +02:00
static int64_t nTimeReadFromDisk = 0 ;
static int64_t nTimeConnectTotal = 0 ;
static int64_t nTimeFlush = 0 ;
static int64_t nTimeChainState = 0 ;
static int64_t nTimePostConnect = 0 ;
2015-05-31 15:36:44 +02:00
/**
2014-12-01 09:39:44 +08:00
* Connect a new block to chainActive . pblock is either NULL or a pointer to a CBlock
* corresponding to pindexNew , to bypass loading it again from disk .
*/
2015-08-08 18:18:41 +02:00
bool static ConnectTip ( CValidationState & state , CBlockIndex * pindexNew , const CBlock * pblock ) {
2013-11-16 19:28:24 +01:00
assert ( pindexNew - > pprev = = chainActive . Tip ( ) ) ;
2013-11-05 02:47:07 +01:00
mempool . check ( pcoinsTip ) ;
2013-11-16 19:28:24 +01:00
// Read block from disk.
2014-07-26 22:49:17 +02:00
int64_t nTime1 = GetTimeMicros ( ) ;
2013-11-16 19:28:24 +01:00
CBlock block ;
2014-08-26 02:26:41 +02:00
if ( ! pblock ) {
if ( ! ReadBlockFromDisk ( block , pindexNew ) )
2015-01-16 18:57:14 -05:00
return AbortNode ( state , " Failed to read block " ) ;
2014-08-26 02:26:41 +02:00
pblock = & block ;
}
2013-11-16 19:28:24 +01:00
// Apply the block atomically to the chain state.
2014-07-26 22:49:17 +02:00
int64_t nTime2 = GetTimeMicros ( ) ; nTimeReadFromDisk + = nTime2 - nTime1 ;
int64_t nTime3 ;
LogPrint ( " bench " , " - Load block from disk: %.2fms [%.2fs] \n " , ( nTime2 - nTime1 ) * 0.001 , nTimeReadFromDisk * 0.000001 ) ;
2010-08-29 16:58:15 +00:00
{
2014-09-24 03:19:04 +02:00
CCoinsViewCache view ( pcoinsTip ) ;
2014-10-20 03:55:04 +00:00
bool rv = ConnectBlock ( * pblock , state , pindexNew , view ) ;
2015-02-05 01:11:44 +01:00
GetMainSignals ( ) . BlockChecked ( * pblock , state ) ;
2014-10-20 03:55:04 +00:00
if ( ! rv ) {
2013-11-16 19:28:24 +01:00
if ( state . IsInvalid ( ) )
InvalidBlockFound ( pindexNew , state ) ;
2015-01-08 11:44:25 +01:00
return error ( " ConnectTip() : ConnectBlock % s failed " , pindexNew->GetBlockHash().ToString()) ;
2013-01-27 01:24:06 +01:00
}
2015-06-30 23:10:27 +03:00
mapBlockSource . erase ( pindexNew - > GetBlockHash ( ) ) ;
2014-07-26 22:49:17 +02:00
nTime3 = GetTimeMicros ( ) ; nTimeConnectTotal + = nTime3 - nTime2 ;
LogPrint ( " bench " , " - Connect total: %.2fms [%.2fs] \n " , ( nTime3 - nTime2 ) * 0.001 , nTimeConnectTotal * 0.000001 ) ;
2013-11-16 19:28:24 +01:00
assert ( view . Flush ( ) ) ;
2010-08-29 16:58:15 +00:00
}
2014-07-26 22:49:17 +02:00
int64_t nTime4 = GetTimeMicros ( ) ; nTimeFlush + = nTime4 - nTime3 ;
LogPrint ( " bench " , " - Flush: %.2fms [%.2fs] \n " , ( nTime4 - nTime3 ) * 0.001 , nTimeFlush * 0.000001 ) ;
2013-11-16 19:28:24 +01:00
// Write the chain state to disk, if necessary.
2014-11-14 18:19:26 +01:00
if ( ! FlushStateToDisk ( state , FLUSH_STATE_IF_NEEDED ) )
2013-11-16 19:28:24 +01:00
return false ;
2014-07-26 22:49:17 +02:00
int64_t nTime5 = GetTimeMicros ( ) ; nTimeChainState + = nTime5 - nTime4 ;
LogPrint ( " bench " , " - Writing chainstate: %.2fms [%.2fs] \n " , ( nTime5 - nTime4 ) * 0.001 , nTimeChainState * 0.000001 ) ;
2013-11-16 19:28:24 +01:00
// Remove conflicting transactions from the mempool.
2014-02-15 16:38:28 -05:00
list < CTransaction > txConflicted ;
2014-08-26 16:28:32 -04:00
mempool . removeForBlock ( pblock - > vtx , pindexNew - > nHeight , txConflicted , ! IsInitialBlockDownload ( ) ) ;
2013-11-16 19:28:24 +01:00
mempool . check ( pcoinsTip ) ;
// Update chainActive & related variables.
UpdateTip ( pindexNew ) ;
2014-02-15 16:38:28 -05:00
// Tell wallet about transactions that went from mempool
// to conflicted:
BOOST_FOREACH ( const CTransaction & tx , txConflicted ) {
2014-06-09 10:02:00 +02:00
SyncWithWallets ( tx , NULL ) ;
2014-02-15 16:38:28 -05:00
}
// ... and about transactions that got confirmed:
2014-08-26 02:26:41 +02:00
BOOST_FOREACH ( const CTransaction & tx , pblock - > vtx ) {
SyncWithWallets ( tx , pblock ) ;
2014-02-15 16:38:28 -05:00
}
2014-08-10 18:01:55 +02:00
2014-07-26 22:49:17 +02:00
int64_t nTime6 = GetTimeMicros ( ) ; nTimePostConnect + = nTime6 - nTime5 ; nTimeTotal + = nTime6 - nTime1 ;
LogPrint ( " bench " , " - Connect postprocess: %.2fms [%.2fs] \n " , ( nTime6 - nTime5 ) * 0.001 , nTimePostConnect * 0.000001 ) ;
LogPrint ( " bench " , " - Connect block: %.2fms [%.2fs] \n " , ( nTime6 - nTime1 ) * 0.001 , nTimeTotal * 0.000001 ) ;
2010-08-29 16:58:15 +00:00
return true ;
}
2014-12-01 09:39:44 +08:00
/**
* Return the tip of the chain with the most work in it , that isn ' t
* known to be invalid ( it ' s however far from certain to be valid ) .
*/
2014-05-06 00:54:10 +02:00
static CBlockIndex * FindMostWorkChain ( ) {
2013-11-16 19:28:24 +01:00
do {
2014-05-06 00:54:10 +02:00
CBlockIndex * pindexNew = NULL ;
2013-11-16 19:28:24 +01:00
// Find the best candidate header.
{
2014-10-06 08:31:33 +02:00
std : : set < CBlockIndex * , CBlockIndexWorkComparator > : : reverse_iterator it = setBlockIndexCandidates . rbegin ( ) ;
if ( it = = setBlockIndexCandidates . rend ( ) )
2014-05-06 00:54:10 +02:00
return NULL ;
2013-11-16 19:28:24 +01:00
pindexNew = * it ;
}
// Check whether all blocks on the path between the currently active chain and the candidate are valid.
// Just going until the active chain is an optimization, as we know all blocks in it are valid already.
CBlockIndex * pindexTest = pindexNew ;
bool fInvalidAncestor = false ;
while ( pindexTest & & ! chainActive . Contains ( pindexTest ) ) {
2014-07-12 00:02:35 +02:00
assert ( pindexTest - > nChainTx | | pindexTest - > nHeight = = 0 ) ;
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
// Pruned nodes may have entries in setBlockIndexCandidates for
// which block files have been deleted. Remove those as candidates
// for the most work chain if we come across them; we can't switch
// to a chain unless we have all the non-active-chain parent blocks.
bool fFailedChain = pindexTest - > nStatus & BLOCK_FAILED_MASK ;
bool fMissingData = ! ( pindexTest - > nStatus & BLOCK_HAVE_DATA ) ;
if ( fFailedChain | | fMissingData ) {
// Candidate chain is not usable (either invalid or missing data)
if ( fFailedChain & & ( pindexBestInvalid = = NULL | | pindexNew - > nChainWork > pindexBestInvalid - > nChainWork ) )
2014-03-13 03:48:27 +01:00
pindexBestInvalid = pindexNew ;
CBlockIndex * pindexFailed = pindexNew ;
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
// Remove the entire chain from the set.
2013-11-16 19:28:24 +01:00
while ( pindexTest ! = pindexFailed ) {
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
if ( fFailedChain ) {
pindexFailed - > nStatus | = BLOCK_FAILED_CHILD ;
} else if ( fMissingData ) {
// If we're missing data, then add back to mapBlocksUnlinked,
// so that if the block arrives in the future we can try adding
// to setBlockIndexCandidates again.
mapBlocksUnlinked . insert ( std : : make_pair ( pindexFailed - > pprev , pindexFailed ) ) ;
}
2014-10-06 08:31:33 +02:00
setBlockIndexCandidates . erase ( pindexFailed ) ;
2013-11-16 19:28:24 +01:00
pindexFailed = pindexFailed - > pprev ;
}
2014-10-06 08:31:33 +02:00
setBlockIndexCandidates . erase ( pindexTest ) ;
2013-11-16 19:28:24 +01:00
fInvalidAncestor = true ;
break ;
2013-01-27 00:14:11 +01:00
}
2013-11-16 19:28:24 +01:00
pindexTest = pindexTest - > pprev ;
2010-08-29 16:58:15 +00:00
}
2014-05-06 00:54:10 +02:00
if ( ! fInvalidAncestor )
return pindexNew ;
2013-11-16 19:28:24 +01:00
} while ( true ) ;
}
2010-08-29 16:58:15 +00:00
2014-12-01 09:39:44 +08:00
/** Delete all entries in setBlockIndexCandidates that are worse than the current tip. */
2014-11-01 17:42:12 -04:00
static void PruneBlockIndexCandidates ( ) {
// Note that we can't delete the current block itself, as we may need to return to it later in case a
// reorganization to a better block fails.
std : : set < CBlockIndex * , CBlockIndexWorkComparator > : : iterator it = setBlockIndexCandidates . begin ( ) ;
2014-11-20 12:43:50 +01:00
while ( it ! = setBlockIndexCandidates . end ( ) & & setBlockIndexCandidates . value_comp ( ) ( * it , chainActive . Tip ( ) ) ) {
2014-11-01 17:42:12 -04:00
setBlockIndexCandidates . erase ( it + + ) ;
}
2014-11-20 12:43:50 +01:00
// Either the current tip or a successor of it we're working towards is left in setBlockIndexCandidates.
assert ( ! setBlockIndexCandidates . empty ( ) ) ;
2014-11-01 17:42:12 -04:00
}
2014-12-01 09:39:44 +08:00
/**
* Try to make some progress towards making pindexMostWork the active block .
* pblock is either NULL or a pointer to a CBlock corresponding to pindexMostWork .
*/
2015-08-08 18:18:41 +02:00
static bool ActivateBestChainStep ( CValidationState & state , CBlockIndex * pindexMostWork , const CBlock * pblock ) {
2014-05-06 01:23:13 +02:00
AssertLockHeld ( cs_main ) ;
2014-05-07 16:45:33 +02:00
bool fInvalidFound = false ;
2014-08-03 18:12:19 +02:00
const CBlockIndex * pindexOldTip = chainActive . Tip ( ) ;
const CBlockIndex * pindexFork = chainActive . FindFork ( pindexMostWork ) ;
2010-08-29 16:58:15 +00:00
2014-05-06 01:23:13 +02:00
// Disconnect active blocks which are no longer in the best chain.
2015-10-02 14:20:38 -07:00
bool fBlocksDisconnected = false ;
2014-05-06 01:23:13 +02:00
while ( chainActive . Tip ( ) & & chainActive . Tip ( ) ! = pindexFork ) {
if ( ! DisconnectTip ( state ) )
return false ;
2015-10-02 14:20:38 -07:00
fBlocksDisconnected = true ;
2014-05-06 01:23:13 +02:00
}
2013-11-16 19:28:24 +01:00
2014-05-06 01:23:13 +02:00
// Build list of new blocks to connect.
std : : vector < CBlockIndex * > vpindexToConnect ;
2014-10-10 13:13:47 -07:00
bool fContinue = true ;
int nHeight = pindexFork ? pindexFork - > nHeight : - 1 ;
while ( fContinue & & nHeight ! = pindexMostWork - > nHeight ) {
// Don't iterate the entire list of potential improvements toward the best tip, as we likely only need
// a few blocks along the way.
int nTargetHeight = std : : min ( nHeight + 32 , pindexMostWork - > nHeight ) ;
vpindexToConnect . clear ( ) ;
vpindexToConnect . reserve ( nTargetHeight - nHeight ) ;
CBlockIndex * pindexIter = pindexMostWork - > GetAncestor ( nTargetHeight ) ;
while ( pindexIter & & pindexIter - > nHeight ! = nHeight ) {
2014-08-26 02:26:41 +02:00
vpindexToConnect . push_back ( pindexIter ) ;
pindexIter = pindexIter - > pprev ;
2014-05-06 01:23:13 +02:00
}
2014-10-10 13:13:47 -07:00
nHeight = nTargetHeight ;
2014-05-06 00:54:10 +02:00
2014-05-06 01:23:13 +02:00
// Connect new blocks.
BOOST_REVERSE_FOREACH ( CBlockIndex * pindexConnect , vpindexToConnect ) {
2014-08-26 02:26:41 +02:00
if ( ! ConnectTip ( state , pindexConnect , pindexConnect = = pindexMostWork ? pblock : NULL ) ) {
2014-05-06 01:23:13 +02:00
if ( state . IsInvalid ( ) ) {
// The block violates a consensus rule.
if ( ! state . CorruptionPossible ( ) )
InvalidChainFound ( vpindexToConnect . back ( ) ) ;
state = CValidationState ( ) ;
2014-05-07 16:45:33 +02:00
fInvalidFound = true ;
2014-10-10 13:13:47 -07:00
fContinue = false ;
2014-05-06 01:23:13 +02:00
break ;
} else {
// A system error occurred (disk space, database error, ...).
return false ;
}
} else {
2014-11-01 17:42:12 -04:00
PruneBlockIndexCandidates ( ) ;
2014-05-06 01:23:13 +02:00
if ( ! pindexOldTip | | chainActive . Tip ( ) - > nChainWork > pindexOldTip - > nChainWork ) {
// We're in a better position than we were. Return temporarily to release the lock.
2014-10-10 13:13:47 -07:00
fContinue = false ;
2014-05-06 01:23:13 +02:00
break ;
2013-11-16 19:28:24 +01:00
}
}
2012-11-24 14:26:51 +01:00
}
2014-10-10 13:13:47 -07:00
}
2010-08-29 16:58:15 +00:00
2015-10-02 14:20:38 -07:00
if ( fBlocksDisconnected )
mempool . TrimToSize ( GetArg ( " -maxmempool " , DEFAULT_MAX_MEMPOOL_SIZE ) * 1000000 ) ;
2014-05-07 16:45:33 +02:00
// Callbacks/notifications for a new best chain.
if ( fInvalidFound )
CheckForkWarningConditionsOnNewFork ( vpindexToConnect . back ( ) ) ;
else
CheckForkWarningConditions ( ) ;
2010-08-29 16:58:15 +00:00
return true ;
}
2014-12-01 09:39:44 +08:00
/**
* Make the best chain active , in multiple steps . The result is either failure
* or an activated best chain . pblock is either NULL or a pointer to a block
* that is already loaded ( to avoid loading it again from disk ) .
*/
2015-08-08 18:18:41 +02:00
bool ActivateBestChain ( CValidationState & state , const CBlock * pblock ) {
2014-05-07 16:45:33 +02:00
CBlockIndex * pindexNewTip = NULL ;
CBlockIndex * pindexMostWork = NULL ;
2015-04-22 18:19:11 -04:00
const CChainParams & chainParams = Params ( ) ;
2014-05-06 01:23:13 +02:00
do {
boost : : this_thread : : interruption_point ( ) ;
2014-05-07 16:45:33 +02:00
bool fInitialDownload ;
{
LOCK ( cs_main ) ;
pindexMostWork = FindMostWorkChain ( ) ;
2014-05-06 01:23:13 +02:00
2014-05-07 16:45:33 +02:00
// Whether we have anything to do at all.
if ( pindexMostWork = = NULL | | pindexMostWork = = chainActive . Tip ( ) )
return true ;
2014-05-06 01:23:13 +02:00
2014-08-26 02:26:41 +02:00
if ( ! ActivateBestChainStep ( state , pindexMostWork , pblock & & pblock - > GetHash ( ) = = pindexMostWork - > GetBlockHash ( ) ? pblock : NULL ) )
2014-05-07 16:45:33 +02:00
return false ;
2014-05-06 01:23:13 +02:00
2014-05-07 16:45:33 +02:00
pindexNewTip = chainActive . Tip ( ) ;
fInitialDownload = IsInitialBlockDownload ( ) ;
}
// When we reach this point, we switched to a new tip (stored in pindexNewTip).
// Notifications/callbacks that can run without cs_main
if ( ! fInitialDownload ) {
uint256 hashNewTip = pindexNewTip - > GetBlockHash ( ) ;
// Relay inventory, but don't relay old inventory during initial block download.
2015-04-22 23:22:36 -04:00
int nBlockEstimate = 0 ;
if ( fCheckpointsEnabled )
nBlockEstimate = Checkpoints : : GetTotalBlocksEstimate ( chainParams . Checkpoints ( ) ) ;
2015-05-15 17:07:11 -04:00
{
2014-10-06 13:04:02 +02:00
LOCK ( cs_vNodes ) ;
BOOST_FOREACH ( CNode * pnode , vNodes )
if ( chainActive . Height ( ) > ( pnode - > nStartingHeight ! = - 1 ? pnode - > nStartingHeight - 2000 : nBlockEstimate ) )
pnode - > PushInventory ( CInv ( MSG_BLOCK , hashNewTip ) ) ;
2014-05-07 16:45:33 +02:00
}
Improve chainstate/blockindex disk writing policy
There are 3 pieces of data that are maintained on disk. The actual block
and undo data, the block index (which can refer to positions on disk),
and the chainstate (which refers to the best block hash).
Earlier, there was no guarantee that blocks were written to disk before
block index entries referring to them were written. This commit introduces
dirty flags for block index data, and delays writing entries until the actual
block data is flushed.
With this stricter ordering in writes, it is now safe to not always flush
after every block, so there is no need for the IsInitialBlockDownload()
check there - instead we just write whenever enough time has passed or
the cache size grows too large. Also updating the wallet's best known block
is delayed until this is done, otherwise the wallet may end up referring to an
unknown block.
In addition, only do a write inside the block processing loop if necessary
(because of cache size exceeded). Otherwise, move the writing to a point
after processing is done, after relaying.
2014-11-07 02:38:35 -08:00
// Notify external listeners about the new tip.
2015-09-16 16:42:23 +02:00
GetMainSignals ( ) . UpdatedBlockTip ( pindexNewTip ) ;
2014-08-14 12:32:34 -04:00
uiInterface . NotifyBlockTip ( hashNewTip ) ;
2014-05-07 16:45:33 +02:00
}
} while ( pindexMostWork ! = chainActive . Tip ( ) ) ;
2015-03-13 09:25:34 -07:00
CheckBlockIndex ( ) ;
2014-05-06 01:23:13 +02:00
Improve chainstate/blockindex disk writing policy
There are 3 pieces of data that are maintained on disk. The actual block
and undo data, the block index (which can refer to positions on disk),
and the chainstate (which refers to the best block hash).
Earlier, there was no guarantee that blocks were written to disk before
block index entries referring to them were written. This commit introduces
dirty flags for block index data, and delays writing entries until the actual
block data is flushed.
With this stricter ordering in writes, it is now safe to not always flush
after every block, so there is no need for the IsInitialBlockDownload()
check there - instead we just write whenever enough time has passed or
the cache size grows too large. Also updating the wallet's best known block
is delayed until this is done, otherwise the wallet may end up referring to an
unknown block.
In addition, only do a write inside the block processing loop if necessary
(because of cache size exceeded). Otherwise, move the writing to a point
after processing is done, after relaying.
2014-11-07 02:38:35 -08:00
// Write changes periodically to disk, after relay.
2014-11-14 18:19:26 +01:00
if ( ! FlushStateToDisk ( state , FLUSH_STATE_PERIODIC ) ) {
Improve chainstate/blockindex disk writing policy
There are 3 pieces of data that are maintained on disk. The actual block
and undo data, the block index (which can refer to positions on disk),
and the chainstate (which refers to the best block hash).
Earlier, there was no guarantee that blocks were written to disk before
block index entries referring to them were written. This commit introduces
dirty flags for block index data, and delays writing entries until the actual
block data is flushed.
With this stricter ordering in writes, it is now safe to not always flush
after every block, so there is no need for the IsInitialBlockDownload()
check there - instead we just write whenever enough time has passed or
the cache size grows too large. Also updating the wallet's best known block
is delayed until this is done, otherwise the wallet may end up referring to an
unknown block.
In addition, only do a write inside the block processing loop if necessary
(because of cache size exceeded). Otherwise, move the writing to a point
after processing is done, after relaying.
2014-11-07 02:38:35 -08:00
return false ;
}
2014-05-06 01:23:13 +02:00
return true ;
}
2014-03-13 03:48:27 +01:00
2014-11-19 09:39:42 +01:00
bool InvalidateBlock ( CValidationState & state , CBlockIndex * pindex ) {
AssertLockHeld ( cs_main ) ;
// Mark the block itself as invalid.
pindex - > nStatus | = BLOCK_FAILED_VALID ;
2014-11-25 12:33:43 +01:00
setDirtyBlockIndex . insert ( pindex ) ;
2014-11-19 09:39:42 +01:00
setBlockIndexCandidates . erase ( pindex ) ;
while ( chainActive . Contains ( pindex ) ) {
CBlockIndex * pindexWalk = chainActive . Tip ( ) ;
pindexWalk - > nStatus | = BLOCK_FAILED_CHILD ;
2014-11-25 12:33:43 +01:00
setDirtyBlockIndex . insert ( pindexWalk ) ;
2014-11-19 09:39:42 +01:00
setBlockIndexCandidates . erase ( pindexWalk ) ;
// ActivateBestChain considers blocks already in chainActive
// unconditionally valid already, so force disconnect away from it.
if ( ! DisconnectTip ( state ) ) {
return false ;
}
}
2015-10-02 14:20:38 -07:00
mempool . TrimToSize ( GetArg ( " -maxmempool " , DEFAULT_MAX_MEMPOOL_SIZE ) * 1000000 ) ;
2014-11-19 09:39:42 +01:00
// The resulting new best tip may not be in setBlockIndexCandidates anymore, so
2015-04-28 14:47:17 +00:00
// add it again.
2014-11-19 09:39:42 +01:00
BlockMap : : iterator it = mapBlockIndex . begin ( ) ;
while ( it ! = mapBlockIndex . end ( ) ) {
2015-03-12 16:03:23 -04:00
if ( it - > second - > IsValid ( BLOCK_VALID_TRANSACTIONS ) & & it - > second - > nChainTx & & ! setBlockIndexCandidates . value_comp ( ) ( it - > second , chainActive . Tip ( ) ) ) {
2015-03-11 11:56:44 -04:00
setBlockIndexCandidates . insert ( it - > second ) ;
2014-11-19 09:39:42 +01:00
}
it + + ;
}
InvalidChainFound ( pindex ) ;
return true ;
}
bool ReconsiderBlock ( CValidationState & state , CBlockIndex * pindex ) {
AssertLockHeld ( cs_main ) ;
int nHeight = pindex - > nHeight ;
// Remove the invalidity flag from this block and all its descendants.
BlockMap : : iterator it = mapBlockIndex . begin ( ) ;
while ( it ! = mapBlockIndex . end ( ) ) {
if ( ! it - > second - > IsValid ( ) & & it - > second - > GetAncestor ( nHeight ) = = pindex ) {
it - > second - > nStatus & = ~ BLOCK_FAILED_MASK ;
2014-11-25 12:33:43 +01:00
setDirtyBlockIndex . insert ( it - > second ) ;
2014-11-19 09:39:42 +01:00
if ( it - > second - > IsValid ( BLOCK_VALID_TRANSACTIONS ) & & it - > second - > nChainTx & & setBlockIndexCandidates . value_comp ( ) ( chainActive . Tip ( ) , it - > second ) ) {
setBlockIndexCandidates . insert ( it - > second ) ;
}
if ( it - > second = = pindexBestInvalid ) {
// Reset invalid block marker if it was pointing to one of those.
pindexBestInvalid = NULL ;
}
}
it + + ;
}
// Remove the invalidity flag from all ancestors too.
while ( pindex ! = NULL ) {
2014-11-25 12:33:43 +01:00
if ( pindex - > nStatus & BLOCK_FAILED_MASK ) {
pindex - > nStatus & = ~ BLOCK_FAILED_MASK ;
setDirtyBlockIndex . insert ( pindex ) ;
2014-11-19 09:39:42 +01:00
}
pindex = pindex - > pprev ;
}
return true ;
}
2014-07-12 00:02:35 +02:00
CBlockIndex * AddToBlockIndex ( const CBlockHeader & block )
2010-08-29 16:58:15 +00:00
{
// Check for duplicate
2013-06-23 19:00:18 -07:00
uint256 hash = block . GetHash ( ) ;
2014-09-04 02:02:44 +02:00
BlockMap : : iterator it = mapBlockIndex . find ( hash ) ;
2014-03-13 03:48:27 +01:00
if ( it ! = mapBlockIndex . end ( ) )
return it - > second ;
2010-08-29 16:58:15 +00:00
// Construct new block index object
2013-06-23 19:00:18 -07:00
CBlockIndex * pindexNew = new CBlockIndex ( block ) ;
2014-04-05 22:11:16 -07:00
assert ( pindexNew ) ;
2014-07-12 00:02:35 +02:00
// We assign the sequence id to blocks only when the full data is available,
// to avoid miners withholding blocks but broadcasting headers, to get a
// competitive advantage.
pindexNew - > nSequenceId = 0 ;
2014-09-04 02:02:44 +02:00
BlockMap : : iterator mi = mapBlockIndex . insert ( make_pair ( hash , pindexNew ) ) . first ;
2010-08-29 16:58:15 +00:00
pindexNew - > phashBlock = & ( ( * mi ) . first ) ;
2014-09-04 02:02:44 +02:00
BlockMap : : iterator miPrev = mapBlockIndex . find ( block . hashPrevBlock ) ;
2010-08-29 16:58:15 +00:00
if ( miPrev ! = mapBlockIndex . end ( ) )
{
pindexNew - > pprev = ( * miPrev ) . second ;
pindexNew - > nHeight = pindexNew - > pprev - > nHeight + 1 ;
2014-06-25 00:56:47 +02:00
pindexNew - > BuildSkip ( ) ;
2010-08-29 16:58:15 +00:00
}
2014-10-29 17:00:02 +01:00
pindexNew - > nChainWork = ( pindexNew - > pprev ? pindexNew - > pprev - > nChainWork : 0 ) + GetBlockProof ( * pindexNew ) ;
2014-03-13 03:48:27 +01:00
pindexNew - > RaiseValidity ( BLOCK_VALID_TREE ) ;
2014-07-12 00:02:35 +02:00
if ( pindexBestHeader = = NULL | | pindexBestHeader - > nChainWork < pindexNew - > nChainWork )
pindexBestHeader = pindexNew ;
Improve chainstate/blockindex disk writing policy
There are 3 pieces of data that are maintained on disk. The actual block
and undo data, the block index (which can refer to positions on disk),
and the chainstate (which refers to the best block hash).
Earlier, there was no guarantee that blocks were written to disk before
block index entries referring to them were written. This commit introduces
dirty flags for block index data, and delays writing entries until the actual
block data is flushed.
With this stricter ordering in writes, it is now safe to not always flush
after every block, so there is no need for the IsInitialBlockDownload()
check there - instead we just write whenever enough time has passed or
the cache size grows too large. Also updating the wallet's best known block
is delayed until this is done, otherwise the wallet may end up referring to an
unknown block.
In addition, only do a write inside the block processing loop if necessary
(because of cache size exceeded). Otherwise, move the writing to a point
after processing is done, after relaying.
2014-11-07 02:38:35 -08:00
setDirtyBlockIndex . insert ( pindexNew ) ;
2014-03-13 03:48:27 +01:00
return pindexNew ;
}
2014-12-01 09:39:44 +08:00
/** Mark a block as having its data received and checked (up to BLOCK_VALID_TRANSACTIONS). */
2014-03-13 03:48:27 +01:00
bool ReceivedBlockTransactions ( const CBlock & block , CValidationState & state , CBlockIndex * pindexNew , const CDiskBlockPos & pos )
{
pindexNew - > nTx = block . vtx . size ( ) ;
2014-07-12 00:02:35 +02:00
pindexNew - > nChainTx = 0 ;
2012-08-19 00:33:01 +02:00
pindexNew - > nFile = pos . nFile ;
pindexNew - > nDataPos = pos . nPos ;
2012-08-13 19:11:05 +02:00
pindexNew - > nUndoPos = 0 ;
2014-03-13 03:48:27 +01:00
pindexNew - > nStatus | = BLOCK_HAVE_DATA ;
2014-07-12 00:02:35 +02:00
pindexNew - > RaiseValidity ( BLOCK_VALID_TRANSACTIONS ) ;
Improve chainstate/blockindex disk writing policy
There are 3 pieces of data that are maintained on disk. The actual block
and undo data, the block index (which can refer to positions on disk),
and the chainstate (which refers to the best block hash).
Earlier, there was no guarantee that blocks were written to disk before
block index entries referring to them were written. This commit introduces
dirty flags for block index data, and delays writing entries until the actual
block data is flushed.
With this stricter ordering in writes, it is now safe to not always flush
after every block, so there is no need for the IsInitialBlockDownload()
check there - instead we just write whenever enough time has passed or
the cache size grows too large. Also updating the wallet's best known block
is delayed until this is done, otherwise the wallet may end up referring to an
unknown block.
In addition, only do a write inside the block processing loop if necessary
(because of cache size exceeded). Otherwise, move the writing to a point
after processing is done, after relaying.
2014-11-07 02:38:35 -08:00
setDirtyBlockIndex . insert ( pindexNew ) ;
2014-03-13 03:48:27 +01:00
2014-07-12 00:02:35 +02:00
if ( pindexNew - > pprev = = NULL | | pindexNew - > pprev - > nChainTx ) {
// If pindexNew is the genesis block or all parents are BLOCK_VALID_TRANSACTIONS.
deque < CBlockIndex * > queue ;
queue . push_back ( pindexNew ) ;
2010-08-29 16:58:15 +00:00
2014-07-12 00:02:35 +02:00
// Recursively process any descendant blocks that now may be eligible to be connected.
while ( ! queue . empty ( ) ) {
CBlockIndex * pindex = queue . front ( ) ;
queue . pop_front ( ) ;
pindex - > nChainTx = ( pindex - > pprev ? pindex - > pprev - > nChainTx : 0 ) + pindex - > nTx ;
2015-04-13 12:26:28 -04:00
{
LOCK ( cs_nBlockSequenceId ) ;
pindex - > nSequenceId = nBlockSequenceId + + ;
}
2015-03-13 09:25:34 -07:00
if ( chainActive . Tip ( ) = = NULL | | ! setBlockIndexCandidates . value_comp ( ) ( pindex , chainActive . Tip ( ) ) ) {
setBlockIndexCandidates . insert ( pindex ) ;
}
2014-07-12 00:02:35 +02:00
std : : pair < std : : multimap < CBlockIndex * , CBlockIndex * > : : iterator , std : : multimap < CBlockIndex * , CBlockIndex * > : : iterator > range = mapBlocksUnlinked . equal_range ( pindex ) ;
while ( range . first ! = range . second ) {
std : : multimap < CBlockIndex * , CBlockIndex * > : : iterator it = range . first ;
queue . push_back ( it - > second ) ;
range . first + + ;
mapBlocksUnlinked . erase ( it ) ;
}
}
} else {
if ( pindexNew - > pprev & & pindexNew - > pprev - > IsValid ( BLOCK_VALID_TREE ) ) {
mapBlocksUnlinked . insert ( std : : make_pair ( pindexNew - > pprev , pindexNew ) ) ;
}
}
2010-08-29 16:58:15 +00:00
2014-05-07 17:10:35 +02:00
return true ;
2010-08-29 16:58:15 +00:00
}
2013-04-13 00:13:08 -05:00
bool FindBlockPos ( CValidationState & state , CDiskBlockPos & pos , unsigned int nAddSize , unsigned int nHeight , uint64_t nTime , bool fKnown = false )
2012-08-13 19:11:05 +02:00
{
LOCK ( cs_LastBlockFile ) ;
2014-09-25 08:21:21 +02:00
unsigned int nFile = fKnown ? pos . nFile : nLastBlockFile ;
if ( vinfoBlockFile . size ( ) < = nFile ) {
vinfoBlockFile . resize ( nFile + 1 ) ;
}
if ( ! fKnown ) {
while ( vinfoBlockFile [ nFile ] . nSize + nAddSize > = MAX_BLOCKFILE_SIZE ) {
nFile + + ;
if ( vinfoBlockFile . size ( ) < = nFile ) {
vinfoBlockFile . resize ( nFile + 1 ) ;
}
2012-10-21 21:23:13 +02:00
}
2014-09-25 08:21:21 +02:00
pos . nFile = nFile ;
pos . nPos = vinfoBlockFile [ nFile ] . nSize ;
2012-08-13 19:11:05 +02:00
}
2015-11-05 00:16:49 +01:00
if ( nFile ! = nLastBlockFile ) {
if ( ! fKnown ) {
LogPrintf ( " Leaving block file %i: %s \n " , nFile , vinfoBlockFile [ nFile ] . ToString ( ) ) ;
}
FlushBlockFile ( ! fKnown ) ;
nLastBlockFile = nFile ;
}
2014-09-25 08:21:21 +02:00
vinfoBlockFile [ nFile ] . AddBlock ( nHeight , nTime ) ;
2015-03-06 20:26:09 -05:00
if ( fKnown )
vinfoBlockFile [ nFile ] . nSize = std : : max ( pos . nPos + nAddSize , vinfoBlockFile [ nFile ] . nSize ) ;
else
vinfoBlockFile [ nFile ] . nSize + = nAddSize ;
2012-08-13 19:11:05 +02:00
2012-10-21 21:23:13 +02:00
if ( ! fKnown ) {
unsigned int nOldChunks = ( pos . nPos + BLOCKFILE_CHUNK_SIZE - 1 ) / BLOCKFILE_CHUNK_SIZE ;
2014-09-25 08:21:21 +02:00
unsigned int nNewChunks = ( vinfoBlockFile [ nFile ] . nSize + BLOCKFILE_CHUNK_SIZE - 1 ) / BLOCKFILE_CHUNK_SIZE ;
2012-10-21 21:23:13 +02:00
if ( nNewChunks > nOldChunks ) {
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
if ( fPruneMode )
fCheckForPruning = true ;
2012-12-04 07:48:57 +01:00
if ( CheckDiskSpace ( nNewChunks * BLOCKFILE_CHUNK_SIZE - pos . nPos ) ) {
FILE * file = OpenBlockFile ( pos ) ;
if ( file ) {
2013-09-18 20:38:08 +10:00
LogPrintf ( " Pre-allocating up to position 0x%x in blk%05u.dat \n " , nNewChunks * BLOCKFILE_CHUNK_SIZE , pos . nFile ) ;
2012-12-04 07:48:57 +01:00
AllocateFileRange ( file , pos . nPos , nNewChunks * BLOCKFILE_CHUNK_SIZE - pos . nPos ) ;
fclose ( file ) ;
}
2012-10-21 21:23:13 +02:00
}
2012-12-04 07:48:57 +01:00
else
2012-09-10 02:02:35 +00:00
return state . Error ( " out of disk space " ) ;
2012-08-16 02:21:28 +02:00
}
}
Improve chainstate/blockindex disk writing policy
There are 3 pieces of data that are maintained on disk. The actual block
and undo data, the block index (which can refer to positions on disk),
and the chainstate (which refers to the best block hash).
Earlier, there was no guarantee that blocks were written to disk before
block index entries referring to them were written. This commit introduces
dirty flags for block index data, and delays writing entries until the actual
block data is flushed.
With this stricter ordering in writes, it is now safe to not always flush
after every block, so there is no need for the IsInitialBlockDownload()
check there - instead we just write whenever enough time has passed or
the cache size grows too large. Also updating the wallet's best known block
is delayed until this is done, otherwise the wallet may end up referring to an
unknown block.
In addition, only do a write inside the block processing loop if necessary
(because of cache size exceeded). Otherwise, move the writing to a point
after processing is done, after relaying.
2014-11-07 02:38:35 -08:00
setDirtyFileInfo . insert ( nFile ) ;
2012-08-13 19:11:05 +02:00
return true ;
}
2013-01-27 00:14:11 +01:00
bool FindUndoPos ( CValidationState & state , int nFile , CDiskBlockPos & pos , unsigned int nAddSize )
2012-08-13 19:11:05 +02:00
{
pos . nFile = nFile ;
LOCK ( cs_LastBlockFile ) ;
2012-08-16 02:21:28 +02:00
unsigned int nNewSize ;
2014-09-25 08:21:21 +02:00
pos . nPos = vinfoBlockFile [ nFile ] . nUndoSize ;
nNewSize = vinfoBlockFile [ nFile ] . nUndoSize + = nAddSize ;
Improve chainstate/blockindex disk writing policy
There are 3 pieces of data that are maintained on disk. The actual block
and undo data, the block index (which can refer to positions on disk),
and the chainstate (which refers to the best block hash).
Earlier, there was no guarantee that blocks were written to disk before
block index entries referring to them were written. This commit introduces
dirty flags for block index data, and delays writing entries until the actual
block data is flushed.
With this stricter ordering in writes, it is now safe to not always flush
after every block, so there is no need for the IsInitialBlockDownload()
check there - instead we just write whenever enough time has passed or
the cache size grows too large. Also updating the wallet's best known block
is delayed until this is done, otherwise the wallet may end up referring to an
unknown block.
In addition, only do a write inside the block processing loop if necessary
(because of cache size exceeded). Otherwise, move the writing to a point
after processing is done, after relaying.
2014-11-07 02:38:35 -08:00
setDirtyFileInfo . insert ( nFile ) ;
2012-08-16 02:21:28 +02:00
unsigned int nOldChunks = ( pos . nPos + UNDOFILE_CHUNK_SIZE - 1 ) / UNDOFILE_CHUNK_SIZE ;
unsigned int nNewChunks = ( nNewSize + UNDOFILE_CHUNK_SIZE - 1 ) / UNDOFILE_CHUNK_SIZE ;
if ( nNewChunks > nOldChunks ) {
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
if ( fPruneMode )
fCheckForPruning = true ;
2012-12-04 07:48:57 +01:00
if ( CheckDiskSpace ( nNewChunks * UNDOFILE_CHUNK_SIZE - pos . nPos ) ) {
FILE * file = OpenUndoFile ( pos ) ;
if ( file ) {
2013-09-18 20:38:08 +10:00
LogPrintf ( " Pre-allocating up to position 0x%x in rev%05u.dat \n " , nNewChunks * UNDOFILE_CHUNK_SIZE , pos . nFile ) ;
2012-12-04 07:48:57 +01:00
AllocateFileRange ( file , pos . nPos , nNewChunks * UNDOFILE_CHUNK_SIZE - pos . nPos ) ;
fclose ( file ) ;
}
2012-08-16 02:21:28 +02:00
}
2012-12-04 07:48:57 +01:00
else
2012-09-10 02:02:35 +00:00
return state . Error ( " out of disk space " ) ;
2012-08-13 19:11:05 +02:00
}
return true ;
}
2014-03-11 17:36:21 +01:00
bool CheckBlockHeader ( const CBlockHeader & block , CValidationState & state , bool fCheckPOW )
2010-08-29 16:58:15 +00:00
{
2010-09-19 21:20:34 +00:00
// Check proof of work matches claimed amount
2015-02-15 02:21:42 +01:00
if ( fCheckPOW & & ! CheckProofOfWork ( block . GetHash ( ) , block . nBits , Params ( ) . GetConsensus ( ) ) )
2015-01-08 11:44:25 +01:00
return state . DoS ( 50 , error ( " CheckBlockHeader(): proof of work failed " ) ,
2012-09-10 02:02:35 +00:00
REJECT_INVALID , " high-hash " ) ;
2010-09-19 21:20:34 +00:00
2010-08-29 16:58:15 +00:00
// Check timestamp
2013-06-23 19:14:11 -07:00
if ( block . GetBlockTime ( ) > GetAdjustedTime ( ) + 2 * 60 * 60 )
2015-01-08 11:44:25 +01:00
return state . Invalid ( error ( " CheckBlockHeader(): block timestamp too far in the future " ) ,
2012-09-10 02:02:35 +00:00
REJECT_INVALID , " time-too-new " ) ;
2010-08-29 16:58:15 +00:00
2014-03-11 17:36:21 +01:00
return true ;
}
2013-06-23 19:14:11 -07:00
bool CheckBlock ( const CBlock & block , CValidationState & state , bool fCheckPOW , bool fCheckMerkleRoot )
2010-08-29 16:58:15 +00:00
{
2014-07-12 00:02:35 +02:00
// These are checks that are independent of context.
2010-08-29 16:58:15 +00:00
2015-08-15 23:32:38 +02:00
if ( block . fChecked )
return true ;
2014-11-20 08:28:19 +01:00
// Check that the header is valid (particularly PoW). This is mostly
// redundant with the call in AcceptBlockHeader.
2014-03-11 17:36:21 +01:00
if ( ! CheckBlockHeader ( block , state , fCheckPOW ) )
return false ;
2014-07-12 00:02:35 +02:00
// Check the merkle root.
if ( fCheckMerkleRoot ) {
bool mutated ;
2015-08-11 21:03:31 +02:00
uint256 hashMerkleRoot2 = block . ComputeMerkleRoot ( & mutated ) ;
2014-07-12 00:02:35 +02:00
if ( block . hashMerkleRoot ! = hashMerkleRoot2 )
2015-01-08 11:44:25 +01:00
return state . DoS ( 100 , error ( " CheckBlock(): hashMerkleRoot mismatch " ) ,
2014-07-12 00:02:35 +02:00
REJECT_INVALID , " bad-txnmrklroot " , true ) ;
// Check for merkle tree malleability (CVE-2012-2459): repeating sequences
// of transactions in a block without affecting the merkle root of a block,
// while still invalidating it.
if ( mutated )
2015-01-08 11:44:25 +01:00
return state . DoS ( 100 , error ( " CheckBlock(): duplicate transaction " ) ,
2014-07-12 00:02:35 +02:00
REJECT_INVALID , " bad-txns-duplicate " , true ) ;
}
// All potential-corruption validation must be done before we do any
// transaction validation, as otherwise we may mark the header as invalid
// because we receive the wrong transactions for it.
2010-08-29 16:58:15 +00:00
// Size limits
2013-06-23 19:14:11 -07:00
if ( block . vtx . empty ( ) | | block . vtx . size ( ) > MAX_BLOCK_SIZE | | : : GetSerializeSize ( block , SER_NETWORK , PROTOCOL_VERSION ) > MAX_BLOCK_SIZE )
2015-01-08 11:44:25 +01:00
return state . DoS ( 100 , error ( " CheckBlock(): size limits failed " ) ,
2012-09-10 02:02:35 +00:00
REJECT_INVALID , " bad-blk-length " ) ;
2010-08-29 16:58:15 +00:00
// First transaction must be coinbase, the rest must not be
2013-06-23 19:14:11 -07:00
if ( block . vtx . empty ( ) | | ! block . vtx [ 0 ] . IsCoinBase ( ) )
2015-01-08 11:44:25 +01:00
return state . DoS ( 100 , error ( " CheckBlock(): first tx is not coinbase " ) ,
2012-09-10 02:02:35 +00:00
REJECT_INVALID , " bad-cb-missing " ) ;
2013-06-23 19:14:11 -07:00
for ( unsigned int i = 1 ; i < block . vtx . size ( ) ; i + + )
if ( block . vtx [ i ] . IsCoinBase ( ) )
2015-01-08 11:44:25 +01:00
return state . DoS ( 100 , error ( " CheckBlock(): more than one coinbase " ) ,
2012-09-10 02:02:35 +00:00
REJECT_INVALID , " bad-cb-multiple " ) ;
2010-08-29 16:58:15 +00:00
// Check transactions
2013-06-23 19:14:11 -07:00
BOOST_FOREACH ( const CTransaction & tx , block . vtx )
2013-01-08 04:17:15 -08:00
if ( ! CheckTransaction ( tx , state ) )
2015-08-06 10:02:12 +02:00
return error ( " CheckBlock(): CheckTransaction of %s failed with %s " ,
tx . GetHash ( ) . ToString ( ) ,
FormatStateMessage ( state ) ) ;
2010-08-29 16:58:15 +00:00
2012-04-23 14:14:03 -04:00
unsigned int nSigOps = 0 ;
2013-06-23 19:14:11 -07:00
BOOST_FOREACH ( const CTransaction & tx , block . vtx )
2011-10-03 13:05:43 -04:00
{
2013-01-08 04:17:15 -08:00
nSigOps + = GetLegacySigOpCount ( tx ) ;
2011-10-03 13:05:43 -04:00
}
if ( nSigOps > MAX_BLOCK_SIGOPS )
2015-01-08 11:44:25 +01:00
return state . DoS ( 100 , error ( " CheckBlock(): out-of-bounds SigOpCount " ) ,
2012-09-10 02:02:35 +00:00
REJECT_INVALID , " bad-blk-sigops " , true ) ;
2010-08-29 16:58:15 +00:00
2015-08-15 23:32:38 +02:00
if ( fCheckPOW & & fCheckMerkleRoot )
block . fChecked = true ;
2010-08-29 16:58:15 +00:00
return true ;
}
2015-03-30 13:48:04 +02:00
static bool CheckIndexAgainstCheckpoint ( const CBlockIndex * pindexPrev , CValidationState & state , const CChainParams & chainparams , const uint256 & hash )
2014-10-19 23:09:50 +00:00
{
2015-03-30 13:48:04 +02:00
if ( * pindexPrev - > phashBlock = = chainparams . GetConsensus ( ) . hashGenesisBlock )
2014-10-19 23:09:50 +00:00
return true ;
int nHeight = pindexPrev - > nHeight + 1 ;
2015-03-30 13:48:04 +02:00
// Don't accept any forks from the main chain prior to last checkpoint
CBlockIndex * pcheckpoint = Checkpoints : : GetLastCheckpoint ( chainparams . Checkpoints ( ) ) ;
if ( pcheckpoint & & nHeight < pcheckpoint - > nHeight )
return state . DoS ( 100 , error ( " %s: forked chain older than last checkpoint (height %d) " , __func__ , nHeight ) ) ;
return true ;
}
2014-10-19 23:09:50 +00:00
2015-03-30 13:48:04 +02:00
bool ContextualCheckBlockHeader ( const CBlockHeader & block , CValidationState & state , CBlockIndex * const pindexPrev )
{
const Consensus : : Params & consensusParams = Params ( ) . GetConsensus ( ) ;
2014-10-19 23:09:50 +00:00
// Check proof of work
2015-04-22 18:19:11 -04:00
if ( block . nBits ! = GetNextWorkRequired ( pindexPrev , & block , consensusParams ) )
2015-01-08 11:44:25 +01:00
return state . DoS ( 100 , error ( " %s: incorrect proof of work " , __func__ ) ,
2014-10-19 23:09:50 +00:00
REJECT_INVALID , " bad-diffbits " ) ;
// Check timestamp against prev
if ( block . GetBlockTime ( ) < = pindexPrev - > GetMedianTimePast ( ) )
2015-01-08 11:44:25 +01:00
return state . Invalid ( error ( " %s: block's timestamp is too early " , __func__ ) ,
2014-10-19 23:09:50 +00:00
REJECT_INVALID , " time-too-old " ) ;
// Reject block.nVersion=1 blocks when 95% (75% on testnet) of the network has upgraded:
2015-04-01 16:10:37 +02:00
if ( block . nVersion < 2 & & IsSuperMajority ( 2 , pindexPrev , consensusParams . nMajorityRejectBlockOutdated , consensusParams ) )
2015-01-08 11:44:25 +01:00
return state . Invalid ( error ( " %s: rejected nVersion=1 block " , __func__ ) ,
2014-10-19 23:09:50 +00:00
REJECT_OBSOLETE , " bad-version " ) ;
2015-01-19 18:37:21 -05:00
// Reject block.nVersion=2 blocks when 95% (75% on testnet) of the network has upgraded:
2015-04-01 16:10:37 +02:00
if ( block . nVersion < 3 & & IsSuperMajority ( 3 , pindexPrev , consensusParams . nMajorityRejectBlockOutdated , consensusParams ) )
2015-01-19 18:37:21 -05:00
return state . Invalid ( error ( " %s : rejected nVersion=2 block " , __func__ ) ,
REJECT_OBSOLETE , " bad-version " ) ;
2015-06-28 14:30:50 -04:00
// Reject block.nVersion=3 blocks when 95% (75% on testnet) of the network has upgraded:
if ( block . nVersion < 4 & & IsSuperMajority ( 4 , pindexPrev , consensusParams . nMajorityRejectBlockOutdated , consensusParams ) )
return state . Invalid ( error ( " %s : rejected nVersion=3 block " , __func__ ) ,
REJECT_OBSOLETE , " bad-version " ) ;
2015-01-19 18:37:21 -05:00
2014-10-19 23:09:50 +00:00
return true ;
}
bool ContextualCheckBlock ( const CBlock & block , CValidationState & state , CBlockIndex * const pindexPrev )
{
const int nHeight = pindexPrev = = NULL ? 0 : pindexPrev - > nHeight + 1 ;
2015-04-01 16:10:37 +02:00
const Consensus : : Params & consensusParams = Params ( ) . GetConsensus ( ) ;
2014-10-19 23:09:50 +00:00
// Check that all transactions are finalized
2015-11-03 17:12:36 +00:00
BOOST_FOREACH ( const CTransaction & tx , block . vtx ) {
int nLockTimeFlags = 0 ;
int64_t nLockTimeCutoff = ( nLockTimeFlags & LOCKTIME_MEDIAN_TIME_PAST )
? pindexPrev - > GetMedianTimePast ( )
: block . GetBlockTime ( ) ;
if ( ! IsFinalTx ( tx , nHeight , nLockTimeCutoff ) ) {
2015-01-08 11:44:25 +01:00
return state . DoS ( 10 , error ( " %s: contains a non-final transaction " , __func__ ) , REJECT_INVALID , " bad-txns-nonfinal " ) ;
2014-10-19 23:09:50 +00:00
}
2015-11-03 17:12:36 +00:00
}
2014-10-19 23:09:50 +00:00
// Enforce block.nVersion=2 rule that the coinbase starts with serialized block height
// if 750 of the last 1,000 blocks are version 2 or greater (51/100 if testnet):
2015-04-01 16:10:37 +02:00
if ( block . nVersion > = 2 & & IsSuperMajority ( 2 , pindexPrev , consensusParams . nMajorityEnforceBlockUpgrade , consensusParams ) )
2014-10-19 23:09:50 +00:00
{
CScript expect = CScript ( ) < < nHeight ;
if ( block . vtx [ 0 ] . vin [ 0 ] . scriptSig . size ( ) < expect . size ( ) | |
! std : : equal ( expect . begin ( ) , expect . end ( ) , block . vtx [ 0 ] . vin [ 0 ] . scriptSig . begin ( ) ) ) {
2015-01-08 11:44:25 +01:00
return state . DoS ( 100 , error ( " %s: block height mismatch in coinbase " , __func__ ) , REJECT_INVALID , " bad-cb-height " ) ;
2014-10-19 23:09:50 +00:00
}
}
return true ;
}
2014-07-12 00:02:35 +02:00
bool AcceptBlockHeader ( const CBlockHeader & block , CValidationState & state , CBlockIndex * * ppindex )
2010-08-29 16:58:15 +00:00
{
2015-04-09 15:58:34 +02:00
const CChainParams & chainparams = Params ( ) ;
2014-04-15 12:43:17 +02:00
AssertLockHeld ( cs_main ) ;
2010-08-29 16:58:15 +00:00
// Check for duplicate
2013-06-23 19:27:02 -07:00
uint256 hash = block . GetHash ( ) ;
2014-09-04 02:02:44 +02:00
BlockMap : : iterator miSelf = mapBlockIndex . find ( hash ) ;
2014-03-13 03:48:27 +01:00
CBlockIndex * pindex = NULL ;
2015-06-17 21:23:53 +02:00
if ( hash ! = chainparams . GetConsensus ( ) . hashGenesisBlock ) {
2010-08-29 16:58:15 +00:00
2015-06-17 21:23:53 +02:00
if ( miSelf ! = mapBlockIndex . end ( ) ) {
// Block header is already known.
pindex = miSelf - > second ;
if ( ppindex )
* ppindex = pindex ;
if ( pindex - > nStatus & BLOCK_FAILED_MASK )
return state . Invalid ( error ( " %s: block is marked invalid " , __func__ ) , 0 , " duplicate " ) ;
return true ;
}
2014-11-20 08:28:19 +01:00
2015-06-17 21:23:53 +02:00
if ( ! CheckBlockHeader ( block , state ) )
return false ;
// Get prev block index
CBlockIndex * pindexPrev = NULL ;
2014-09-04 02:02:44 +02:00
BlockMap : : iterator mi = mapBlockIndex . find ( block . hashPrevBlock ) ;
2012-11-10 14:26:34 +01:00
if ( mi = = mapBlockIndex . end ( ) )
2015-01-08 11:44:25 +01:00
return state . DoS ( 10 , error ( " %s: prev block not found " , __func__ ) , 0 , " bad-prevblk " ) ;
2012-11-10 14:26:34 +01:00
pindexPrev = ( * mi ) . second ;
2014-12-11 13:35:14 +01:00
if ( pindexPrev - > nStatus & BLOCK_FAILED_MASK )
2015-01-08 11:44:25 +01:00
return state . DoS ( 100 , error ( " %s: prev block invalid " , __func__ ) , REJECT_INVALID , " bad-prevblk " ) ;
2014-03-13 03:48:27 +01:00
2015-06-17 21:23:53 +02:00
assert ( pindexPrev ) ;
if ( fCheckpointsEnabled & & ! CheckIndexAgainstCheckpoint ( pindexPrev , state , chainparams , hash ) )
return error ( " %s: CheckIndexAgainstCheckpoint() : % s " , __func__, state.GetRejectReason().c_str()) ;
2014-10-19 23:09:50 +00:00
2015-06-17 21:23:53 +02:00
if ( ! ContextualCheckBlockHeader ( block , state , pindexPrev ) )
return false ;
}
2014-03-13 03:48:27 +01:00
if ( pindex = = NULL )
pindex = AddToBlockIndex ( block ) ;
if ( ppindex )
* ppindex = pindex ;
return true ;
}
2015-08-08 18:18:41 +02:00
bool AcceptBlock ( const CBlock & block , CValidationState & state , CBlockIndex * * ppindex , bool fRequested , CDiskBlockPos * dbp )
2014-03-13 03:48:27 +01:00
{
2015-04-19 23:48:25 +02:00
const CChainParams & chainparams = Params ( ) ;
2014-03-13 03:48:27 +01:00
AssertLockHeld ( cs_main ) ;
CBlockIndex * & pindex = * ppindex ;
if ( ! AcceptBlockHeader ( block , state , & pindex ) )
return false ;
2015-04-09 13:21:11 -04:00
// Try to process all requested blocks that we don't have, but only
// process an unrequested block if it's new and has enough work to
2015-06-02 15:17:36 -04:00
// advance our tip, and isn't too many blocks ahead.
2015-04-09 13:21:11 -04:00
bool fAlreadyHave = pindex - > nStatus & BLOCK_HAVE_DATA ;
bool fHasMoreWork = ( chainActive . Tip ( ) ? pindex - > nChainWork > chainActive . Tip ( ) - > nChainWork : true ) ;
2015-06-02 15:17:36 -04:00
// Blocks that are too out-of-order needlessly limit the effectiveness of
// pruning, because pruning will not delete block files that contain any
// blocks which are too close in height to the tip. Apply this test
// regardless of whether pruning is enabled; it should generally be safe to
// not process unrequested blocks.
2015-07-11 06:52:35 -04:00
bool fTooFarAhead = ( pindex - > nHeight > int ( chainActive . Height ( ) + MIN_BLOCKS_TO_KEEP ) ) ;
2015-04-09 13:21:11 -04:00
// TODO: deal better with return value and error conditions for duplicate
// and unrequested blocks.
if ( fAlreadyHave ) return true ;
if ( ! fRequested ) { // If we didn't ask for it:
if ( pindex - > nTx ! = 0 ) return true ; // This is a previously-processed block that was pruned
if ( ! fHasMoreWork ) return true ; // Don't process less-work chains
2015-06-02 15:17:36 -04:00
if ( fTooFarAhead ) return true ; // Block height is too high
2014-07-12 00:02:35 +02:00
}
2014-10-19 23:09:50 +00:00
if ( ( ! CheckBlock ( block , state ) ) | | ! ContextualCheckBlock ( block , state , pindex - > pprev ) ) {
2014-07-14 18:24:21 -07:00
if ( state . IsInvalid ( ) & & ! state . CorruptionPossible ( ) ) {
2014-03-13 03:48:27 +01:00
pindex - > nStatus | = BLOCK_FAILED_VALID ;
Improve chainstate/blockindex disk writing policy
There are 3 pieces of data that are maintained on disk. The actual block
and undo data, the block index (which can refer to positions on disk),
and the chainstate (which refers to the best block hash).
Earlier, there was no guarantee that blocks were written to disk before
block index entries referring to them were written. This commit introduces
dirty flags for block index data, and delays writing entries until the actual
block data is flushed.
With this stricter ordering in writes, it is now safe to not always flush
after every block, so there is no need for the IsInitialBlockDownload()
check there - instead we just write whenever enough time has passed or
the cache size grows too large. Also updating the wallet's best known block
is delayed until this is done, otherwise the wallet may end up referring to an
unknown block.
In addition, only do a write inside the block processing loop if necessary
(because of cache size exceeded). Otherwise, move the writing to a point
after processing is done, after relaying.
2014-11-07 02:38:35 -08:00
setDirtyBlockIndex . insert ( pindex ) ;
2014-03-13 03:48:27 +01:00
}
return false ;
}
int nHeight = pindex - > nHeight ;
2010-08-29 16:58:15 +00:00
// Write block to history file
2013-01-29 01:44:19 +01:00
try {
2013-06-23 19:27:02 -07:00
unsigned int nBlockSize = : : GetSerializeSize ( block , SER_DISK , CLIENT_VERSION ) ;
2013-01-29 01:44:19 +01:00
CDiskBlockPos blockPos ;
if ( dbp ! = NULL )
blockPos = * dbp ;
2014-06-28 23:36:06 +02:00
if ( ! FindBlockPos ( state , blockPos , nBlockSize + 8 , nHeight , block . GetBlockTime ( ) , dbp ! = NULL ) )
2015-01-08 11:44:25 +01:00
return error ( " AcceptBlock() : FindBlockPos failed " ) ;
2013-01-29 01:44:19 +01:00
if ( dbp = = NULL )
2015-04-19 23:48:25 +02:00
if ( ! WriteBlockToDisk ( block , blockPos , chainparams . MessageStart ( ) ) )
2015-01-16 18:57:14 -05:00
AbortNode ( state , " Failed to write block " ) ;
2014-03-13 03:48:27 +01:00
if ( ! ReceivedBlockTransactions ( block , state , pindex , blockPos ) )
2015-01-08 11:44:25 +01:00
return error ( " AcceptBlock() : ReceivedBlockTransactions failed " ) ;
2014-12-07 13:29:06 +01:00
} catch ( const std : : runtime_error & e ) {
2015-01-16 18:57:14 -05:00
return AbortNode ( state , std : : string ( " System error: " ) + e . what ( ) ) ;
2013-01-29 01:44:19 +01:00
}
2010-08-29 16:58:15 +00:00
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
if ( fCheckForPruning )
FlushStateToDisk ( state , FLUSH_STATE_NONE ) ; // we just allocated more disk space for block files
2010-08-29 16:58:15 +00:00
return true ;
}
2015-04-01 16:10:37 +02:00
static bool IsSuperMajority ( int minVersion , const CBlockIndex * pstart , unsigned nRequired , const Consensus : : Params & consensusParams )
2012-06-27 19:30:39 -04:00
{
unsigned int nFound = 0 ;
2015-04-01 16:10:37 +02:00
for ( int i = 0 ; i < consensusParams . nMajorityWindow & & nFound < nRequired & & pstart ! = NULL ; i + + )
2012-06-27 19:30:39 -04:00
{
if ( pstart - > nVersion > = minVersion )
+ + nFound ;
pstart = pstart - > pprev ;
}
return ( nFound > = nRequired ) ;
}
2014-06-25 00:56:47 +02:00
2015-08-08 18:18:41 +02:00
bool ProcessNewBlock ( CValidationState & state , const CNode * pfrom , const CBlock * pblock , bool fForceProcessing , CDiskBlockPos * dbp )
2010-08-29 16:58:15 +00:00
{
// Preliminary checks
2014-07-12 00:02:35 +02:00
bool checked = CheckBlock ( * pblock , state ) ;
2010-08-29 16:58:15 +00:00
{
2014-07-12 00:02:35 +02:00
LOCK ( cs_main ) ;
2015-04-09 13:21:11 -04:00
bool fRequested = MarkBlockAsReceived ( pblock - > GetHash ( ) ) ;
fRequested | = fForceProcessing ;
2014-07-12 00:02:35 +02:00
if ( ! checked ) {
2015-01-08 11:44:25 +01:00
return error ( " %s: CheckBlock FAILED " , __func__ ) ;
2012-08-21 19:18:53 +02:00
}
2010-08-29 16:58:15 +00:00
2014-07-12 00:02:35 +02:00
// Store to disk
CBlockIndex * pindex = NULL ;
2015-04-09 13:21:11 -04:00
bool ret = AcceptBlock ( * pblock , state , & pindex , fRequested , dbp ) ;
2014-07-12 00:02:35 +02:00
if ( pindex & & pfrom ) {
mapBlockSource [ pindex - > GetBlockHash ( ) ] = pfrom - > GetId ( ) ;
2010-08-29 16:58:15 +00:00
}
2015-03-13 09:25:34 -07:00
CheckBlockIndex ( ) ;
2014-07-12 00:02:35 +02:00
if ( ! ret )
2015-01-08 11:44:25 +01:00
return error ( " %s: AcceptBlock FAILED " , __func__ ) ;
2014-05-07 17:10:35 +02:00
}
2014-08-26 02:26:41 +02:00
if ( ! ActivateBestChain ( state , pblock ) )
2015-01-08 11:44:25 +01:00
return error ( " %s: ActivateBestChain failed " , __func__ ) ;
2014-05-07 17:10:35 +02:00
2010-08-29 16:58:15 +00:00
return true ;
}
2014-10-20 02:10:03 +00:00
bool TestBlockValidity ( CValidationState & state , const CBlock & block , CBlockIndex * const pindexPrev , bool fCheckPOW , bool fCheckMerkleRoot )
{
2015-03-30 13:48:04 +02:00
const CChainParams & chainparams = Params ( ) ;
2014-10-20 02:10:03 +00:00
AssertLockHeld ( cs_main ) ;
2015-03-30 13:48:04 +02:00
assert ( pindexPrev & & pindexPrev = = chainActive . Tip ( ) ) ;
if ( fCheckpointsEnabled & & ! CheckIndexAgainstCheckpoint ( pindexPrev , state , chainparams , block . GetHash ( ) ) )
return error ( " %s: CheckIndexAgainstCheckpoint() : % s " , __func__, state.GetRejectReason().c_str()) ;
2014-10-20 02:10:03 +00:00
CCoinsViewCache viewNew ( pcoinsTip ) ;
CBlockIndex indexDummy ( block ) ;
indexDummy . pprev = pindexPrev ;
indexDummy . nHeight = pindexPrev - > nHeight + 1 ;
// NOTE: CheckBlockHeader is called by CheckBlock
if ( ! ContextualCheckBlockHeader ( block , state , pindexPrev ) )
return false ;
if ( ! CheckBlock ( block , state , fCheckPOW , fCheckMerkleRoot ) )
return false ;
if ( ! ContextualCheckBlock ( block , state , pindexPrev ) )
return false ;
if ( ! ConnectBlock ( block , state , & indexDummy , viewNew , true ) )
return false ;
assert ( state . IsValid ( ) ) ;
return true ;
}
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
/**
* BLOCK PRUNING CODE
*/
/* Calculate the amount of disk space the block & undo files currently use */
uint64_t CalculateCurrentUsage ( )
{
uint64_t retval = 0 ;
BOOST_FOREACH ( const CBlockFileInfo & file , vinfoBlockFile ) {
retval + = file . nSize + file . nUndoSize ;
}
return retval ;
}
/* Prune a block file (modify associated database entries)*/
void PruneOneBlockFile ( const int fileNumber )
{
for ( BlockMap : : iterator it = mapBlockIndex . begin ( ) ; it ! = mapBlockIndex . end ( ) ; + + it ) {
CBlockIndex * pindex = it - > second ;
if ( pindex - > nFile = = fileNumber ) {
pindex - > nStatus & = ~ BLOCK_HAVE_DATA ;
pindex - > nStatus & = ~ BLOCK_HAVE_UNDO ;
pindex - > nFile = 0 ;
pindex - > nDataPos = 0 ;
pindex - > nUndoPos = 0 ;
setDirtyBlockIndex . insert ( pindex ) ;
// Prune from mapBlocksUnlinked -- any block we prune would have
// to be downloaded again in order to consider its chain, at which
// point it would be considered as a candidate for
// mapBlocksUnlinked or setBlockIndexCandidates.
std : : pair < std : : multimap < CBlockIndex * , CBlockIndex * > : : iterator , std : : multimap < CBlockIndex * , CBlockIndex * > : : iterator > range = mapBlocksUnlinked . equal_range ( pindex - > pprev ) ;
while ( range . first ! = range . second ) {
std : : multimap < CBlockIndex * , CBlockIndex * > : : iterator it = range . first ;
range . first + + ;
if ( it - > second = = pindex ) {
mapBlocksUnlinked . erase ( it ) ;
}
}
}
}
vinfoBlockFile [ fileNumber ] . SetNull ( ) ;
setDirtyFileInfo . insert ( fileNumber ) ;
}
void UnlinkPrunedFiles ( std : : set < int > & setFilesToPrune )
{
for ( set < int > : : iterator it = setFilesToPrune . begin ( ) ; it ! = setFilesToPrune . end ( ) ; + + it ) {
CDiskBlockPos pos ( * it , 0 ) ;
boost : : filesystem : : remove ( GetBlockPosFilename ( pos , " blk " ) ) ;
boost : : filesystem : : remove ( GetBlockPosFilename ( pos , " rev " ) ) ;
LogPrintf ( " Prune: %s deleted blk/rev (%05u) \n " , __func__ , * it ) ;
}
}
/* Calculate the block/rev files that should be deleted to remain under target*/
void FindFilesToPrune ( std : : set < int > & setFilesToPrune )
{
LOCK2 ( cs_main , cs_LastBlockFile ) ;
if ( chainActive . Tip ( ) = = NULL | | nPruneTarget = = 0 ) {
return ;
}
if ( chainActive . Tip ( ) - > nHeight < = Params ( ) . PruneAfterHeight ( ) ) {
return ;
}
2015-04-23 09:40:21 -04:00
unsigned int nLastBlockWeCanPrune = chainActive . Tip ( ) - > nHeight - MIN_BLOCKS_TO_KEEP ;
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
uint64_t nCurrentUsage = CalculateCurrentUsage ( ) ;
// We don't check to prune until after we've allocated new space for files
// So we should leave a buffer under our target to account for another allocation
// before the next pruning.
uint64_t nBuffer = BLOCKFILE_CHUNK_SIZE + UNDOFILE_CHUNK_SIZE ;
uint64_t nBytesToPrune ;
int count = 0 ;
if ( nCurrentUsage + nBuffer > = nPruneTarget ) {
for ( int fileNumber = 0 ; fileNumber < nLastBlockFile ; fileNumber + + ) {
nBytesToPrune = vinfoBlockFile [ fileNumber ] . nSize + vinfoBlockFile [ fileNumber ] . nUndoSize ;
if ( vinfoBlockFile [ fileNumber ] . nSize = = 0 )
continue ;
if ( nCurrentUsage + nBuffer < nPruneTarget ) // are we below our target?
break ;
2015-06-02 15:24:53 -04:00
// don't prune files that could have a block within MIN_BLOCKS_TO_KEEP of the main chain's tip but keep scanning
2015-04-23 09:40:21 -04:00
if ( vinfoBlockFile [ fileNumber ] . nHeightLast > nLastBlockWeCanPrune )
2015-06-02 15:24:53 -04:00
continue ;
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
PruneOneBlockFile ( fileNumber ) ;
// Queue up the files for removal
setFilesToPrune . insert ( fileNumber ) ;
nCurrentUsage - = nBytesToPrune ;
count + + ;
}
}
2015-04-23 09:40:21 -04:00
LogPrint ( " prune " , " Prune: target=%dMiB actual=%dMiB diff=%dMiB max_prune_height=%d removed %d blk/rev pairs \n " ,
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
nPruneTarget / 1024 / 1024 , nCurrentUsage / 1024 / 1024 ,
( ( int64_t ) nPruneTarget - ( int64_t ) nCurrentUsage ) / 1024 / 1024 ,
2015-04-23 09:40:21 -04:00
nLastBlockWeCanPrune , count ) ;
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
}
2013-04-13 00:13:08 -05:00
bool CheckDiskSpace ( uint64_t nAdditionalBytes )
2010-08-29 16:58:15 +00:00
{
2014-12-19 15:21:29 -05:00
uint64_t nFreeBytesAvailable = boost : : filesystem : : space ( GetDataDir ( ) ) . available ;
2010-08-29 16:58:15 +00:00
2012-05-14 07:49:17 +02:00
// Check for nMinDiskSpace bytes (currently 50MB)
if ( nFreeBytesAvailable < nMinDiskSpace + nAdditionalBytes )
2014-10-02 22:17:57 +02:00
return AbortNode ( " Disk space is low! " , _ ( " Error: Disk space is low! " ) ) ;
2013-01-27 01:24:06 +01:00
2010-08-29 16:58:15 +00:00
return true ;
}
2012-08-13 19:11:05 +02:00
FILE * OpenDiskFile ( const CDiskBlockPos & pos , const char * prefix , bool fReadOnly )
2012-09-04 21:40:26 -04:00
{
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
if ( pos . IsNull ( ) )
2010-08-29 16:58:15 +00:00
return NULL ;
2014-09-08 13:29:14 -04:00
boost : : filesystem : : path path = GetBlockPosFilename ( pos , prefix ) ;
2012-08-13 19:11:05 +02:00
boost : : filesystem : : create_directories ( path . parent_path ( ) ) ;
FILE * file = fopen ( path . string ( ) . c_str ( ) , " rb+ " ) ;
if ( ! file & & ! fReadOnly )
file = fopen ( path . string ( ) . c_str ( ) , " wb+ " ) ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
if ( ! file ) {
2014-01-16 16:15:27 +01:00
LogPrintf ( " Unable to open file %s \n " , path . string ( ) ) ;
2010-08-29 16:58:15 +00:00
return NULL ;
Ultraprune
This switches bitcoin's transaction/block verification logic to use a
"coin database", which contains all unredeemed transaction output scripts,
amounts and heights.
The name ultraprune comes from the fact that instead of a full transaction
index, we only (need to) keep an index with unspent outputs. For now, the
blocks themselves are kept as usual, although they are only necessary for
serving, rescanning and reorganizing.
The basic datastructures are CCoins (representing the coins of a single
transaction), and CCoinsView (representing a state of the coins database).
There are several implementations for CCoinsView. A dummy, one backed by
the coins database (coins.dat), one backed by the memory pool, and one
that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock,
DisconnectBlock, ... now operate on a generic CCoinsView.
The block switching logic now builds a single cached CCoinsView with
changes to be committed to the database before any changes are made.
This means no uncommitted changes are ever read from the database, and
should ease the transition to another database layer which does not
support transactions (but does support atomic writes), like LevelDB.
For the getrawtransaction() RPC call, access to a txid-to-disk index
would be preferable. As this index is not necessary or even useful
for any other part of the implementation, it is not provided. Instead,
getrawtransaction() uses the coin database to find the block height,
and then scans that block to find the requested transaction. This is
slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
}
2012-08-13 19:11:05 +02:00
if ( pos . nPos ) {
if ( fseek ( file , pos . nPos , SEEK_SET ) ) {
2014-01-16 16:15:27 +01:00
LogPrintf ( " Unable to seek to position %u of %s \n " , pos . nPos , path . string ( ) ) ;
2012-08-13 19:11:05 +02:00
fclose ( file ) ;
return NULL ;
}
}
2010-08-29 16:58:15 +00:00
return file ;
}
2012-08-13 19:11:05 +02:00
FILE * OpenBlockFile ( const CDiskBlockPos & pos , bool fReadOnly ) {
return OpenDiskFile ( pos , " blk " , fReadOnly ) ;
}
2013-01-18 15:07:05 +01:00
FILE * OpenUndoFile ( const CDiskBlockPos & pos , bool fReadOnly ) {
2012-08-13 19:11:05 +02:00
return OpenDiskFile ( pos , " rev " , fReadOnly ) ;
}
2014-09-08 13:29:14 -04:00
boost : : filesystem : : path GetBlockPosFilename ( const CDiskBlockPos & pos , const char * prefix )
{
2014-09-15 09:56:10 -04:00
return GetDataDir ( ) / " blocks " / strprintf ( " %s%05u.dat " , prefix , pos . nFile ) ;
2014-09-08 13:29:14 -04:00
}
2012-09-03 21:14:03 +02:00
CBlockIndex * InsertBlockIndex ( uint256 hash )
{
2014-12-15 09:11:16 +01:00
if ( hash . IsNull ( ) )
2012-09-03 21:14:03 +02:00
return NULL ;
// Return existing
2014-09-04 02:02:44 +02:00
BlockMap : : iterator mi = mapBlockIndex . find ( hash ) ;
2012-09-03 21:14:03 +02:00
if ( mi ! = mapBlockIndex . end ( ) )
return ( * mi ) . second ;
// Create new
CBlockIndex * pindexNew = new CBlockIndex ( ) ;
if ( ! pindexNew )
2015-01-08 11:44:25 +01:00
throw runtime_error ( " LoadBlockIndex() : new CBlockIndex failed " ) ;
2012-09-03 21:14:03 +02:00
mi = mapBlockIndex . insert ( make_pair ( hash , pindexNew ) ) . first ;
pindexNew - > phashBlock = & ( ( * mi ) . first ) ;
return pindexNew ;
}
bool static LoadBlockIndexDB ( )
{
2015-04-22 18:19:11 -04:00
const CChainParams & chainparams = Params ( ) ;
2012-09-03 21:14:03 +02:00
if ( ! pblocktree - > LoadBlockIndexGuts ( ) )
return false ;
2013-03-09 12:02:57 -05:00
boost : : this_thread : : interruption_point ( ) ;
2012-09-03 21:14:03 +02:00
2013-03-28 23:51:50 +01:00
// Calculate nChainWork
2012-09-03 21:14:03 +02:00
vector < pair < int , CBlockIndex * > > vSortedByHeight ;
vSortedByHeight . reserve ( mapBlockIndex . size ( ) ) ;
BOOST_FOREACH ( const PAIRTYPE ( uint256 , CBlockIndex * ) & item , mapBlockIndex )
{
CBlockIndex * pindex = item . second ;
vSortedByHeight . push_back ( make_pair ( pindex - > nHeight , pindex ) ) ;
}
sort ( vSortedByHeight . begin ( ) , vSortedByHeight . end ( ) ) ;
BOOST_FOREACH ( const PAIRTYPE ( int , CBlockIndex * ) & item , vSortedByHeight )
{
CBlockIndex * pindex = item . second ;
2014-10-29 17:00:02 +01:00
pindex - > nChainWork = ( pindex - > pprev ? pindex - > pprev - > nChainWork : 0 ) + GetBlockProof ( * pindex ) ;
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
// We can link the chain of blocks for which we've received transactions at some point.
// Pruned nodes may have deleted the block.
if ( pindex - > nTx > 0 ) {
2014-07-12 00:02:35 +02:00
if ( pindex - > pprev ) {
if ( pindex - > pprev - > nChainTx ) {
pindex - > nChainTx = pindex - > pprev - > nChainTx + pindex - > nTx ;
} else {
pindex - > nChainTx = 0 ;
mapBlocksUnlinked . insert ( std : : make_pair ( pindex - > pprev , pindex ) ) ;
}
} else {
pindex - > nChainTx = pindex - > nTx ;
}
}
if ( pindex - > IsValid ( BLOCK_VALID_TRANSACTIONS ) & & ( pindex - > nChainTx | | pindex - > pprev = = NULL ) )
2014-10-06 08:31:33 +02:00
setBlockIndexCandidates . insert ( pindex ) ;
2013-10-13 22:15:48 +02:00
if ( pindex - > nStatus & BLOCK_FAILED_MASK & & ( ! pindexBestInvalid | | pindex - > nChainWork > pindexBestInvalid - > nChainWork ) )
pindexBestInvalid = pindex ;
2014-06-25 00:56:47 +02:00
if ( pindex - > pprev )
pindex - > BuildSkip ( ) ;
2014-07-12 00:02:35 +02:00
if ( pindex - > IsValid ( BLOCK_VALID_TREE ) & & ( pindexBestHeader = = NULL | | CBlockIndexWorkComparator ( ) ( pindexBestHeader , pindex ) ) )
pindexBestHeader = pindex ;
2012-09-03 21:14:03 +02:00
}
// Load block file info
pblocktree - > ReadLastBlockFile ( nLastBlockFile ) ;
2014-09-25 08:21:21 +02:00
vinfoBlockFile . resize ( nLastBlockFile + 1 ) ;
2014-10-21 16:17:13 -07:00
LogPrintf ( " %s: last block file = %i \n " , __func__ , nLastBlockFile ) ;
2014-09-25 08:21:21 +02:00
for ( int nFile = 0 ; nFile < = nLastBlockFile ; nFile + + ) {
pblocktree - > ReadBlockFileInfo ( nFile , vinfoBlockFile [ nFile ] ) ;
}
2014-10-21 16:17:13 -07:00
LogPrintf ( " %s: last block file info: %s \n " , __func__ , vinfoBlockFile [ nLastBlockFile ] . ToString ( ) ) ;
2014-09-25 08:21:21 +02:00
for ( int nFile = nLastBlockFile + 1 ; true ; nFile + + ) {
CBlockFileInfo info ;
if ( pblocktree - > ReadBlockFileInfo ( nFile , info ) ) {
vinfoBlockFile . push_back ( info ) ;
} else {
break ;
}
}
2012-10-05 19:22:21 +02:00
2014-05-11 07:05:04 -05:00
// Check presence of blk files
LogPrintf ( " Checking all blk files are present... \n " ) ;
set < int > setBlkDataFiles ;
BOOST_FOREACH ( const PAIRTYPE ( uint256 , CBlockIndex * ) & item , mapBlockIndex )
{
CBlockIndex * pindex = item . second ;
if ( pindex - > nStatus & BLOCK_HAVE_DATA ) {
setBlkDataFiles . insert ( pindex - > nFile ) ;
}
}
for ( std : : set < int > : : iterator it = setBlkDataFiles . begin ( ) ; it ! = setBlkDataFiles . end ( ) ; it + + )
{
CDiskBlockPos pos ( * it , 0 ) ;
2014-10-20 12:45:50 +02:00
if ( CAutoFile ( OpenBlockFile ( pos , true ) , SER_DISK , CLIENT_VERSION ) . IsNull ( ) ) {
2014-05-11 07:05:04 -05:00
return false ;
}
}
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
// Check whether we have ever pruned block & undo files
pblocktree - > ReadFlag ( " prunedblockfiles " , fHavePruned ) ;
if ( fHavePruned )
LogPrintf ( " LoadBlockIndexDB(): Block files have previously been pruned \n " ) ;
2012-12-02 21:59:22 +01:00
// Check whether we need to continue reindexing
bool fReindexing = false ;
pblocktree - > ReadReindexing ( fReindexing ) ;
fReindex | = fReindexing ;
2013-01-11 01:47:57 +01:00
// Check whether we have a transaction index
pblocktree - > ReadFlag ( " txindex " , fTxIndex ) ;
2015-02-25 18:40:32 +01:00
LogPrintf ( " %s: transaction index %s \n " , __func__ , fTxIndex ? " enabled " : " disabled " ) ;
2013-01-11 01:47:57 +01:00
2013-10-13 22:15:48 +02:00
// Load pointer to end of best chain
2014-09-04 02:02:44 +02:00
BlockMap : : iterator it = mapBlockIndex . find ( pcoinsTip - > GetBestBlock ( ) ) ;
2013-11-05 02:27:39 +01:00
if ( it = = mapBlockIndex . end ( ) )
2012-12-02 21:59:22 +01:00
return true ;
2013-11-05 02:27:39 +01:00
chainActive . SetTip ( it - > second ) ;
2014-11-01 17:42:12 -04:00
PruneBlockIndexCandidates ( ) ;
2015-02-25 18:40:32 +01:00
LogPrintf ( " %s: hashBestChain=%s height=%d date=%s progress=%f \n " , __func__ ,
2014-01-16 16:15:27 +01:00
chainActive . Tip ( ) - > GetBlockHash ( ) . ToString ( ) , chainActive . Height ( ) ,
2014-02-18 11:04:06 -08:00
DateTimeStrFormat ( " %Y-%m-%d %H:%M:%S " , chainActive . Tip ( ) - > GetBlockTime ( ) ) ,
2015-04-22 18:19:11 -04:00
Checkpoints : : GuessVerificationProgress ( chainparams . Checkpoints ( ) , chainActive . Tip ( ) ) ) ;
2012-09-03 21:14:03 +02:00
2013-01-03 15:29:07 +01:00
return true ;
}
2014-05-23 18:04:09 +02:00
CVerifyDB : : CVerifyDB ( )
{
uiInterface . ShowProgress ( _ ( " Verifying blocks... " ) , 0 ) ;
}
CVerifyDB : : ~ CVerifyDB ( )
{
uiInterface . ShowProgress ( " " , 100 ) ;
}
2014-08-27 09:20:33 +02:00
bool CVerifyDB : : VerifyDB ( CCoinsView * coinsview , int nCheckLevel , int nCheckDepth )
2013-06-19 11:32:49 -04:00
{
2014-05-07 15:12:31 +02:00
LOCK ( cs_main ) ;
2013-10-10 23:07:44 +02:00
if ( chainActive . Tip ( ) = = NULL | | chainActive . Tip ( ) - > pprev = = NULL )
2013-01-03 15:29:07 +01:00
return true ;
2012-09-03 21:14:03 +02:00
// Verify blocks in the best chain
2013-06-19 11:53:02 -04:00
if ( nCheckDepth < = 0 )
2012-09-03 21:14:03 +02:00
nCheckDepth = 1000000000 ; // suffices until the year 19000
2013-10-10 23:07:44 +02:00
if ( nCheckDepth > chainActive . Height ( ) )
nCheckDepth = chainActive . Height ( ) ;
2013-01-03 15:29:07 +01:00
nCheckLevel = std : : max ( 0 , std : : min ( 4 , nCheckLevel ) ) ;
2013-09-18 20:38:08 +10:00
LogPrintf ( " Verifying last %i blocks at level %i \n " , nCheckDepth , nCheckLevel ) ;
2014-09-24 03:19:04 +02:00
CCoinsViewCache coins ( coinsview ) ;
2013-10-10 23:07:44 +02:00
CBlockIndex * pindexState = chainActive . Tip ( ) ;
2013-01-03 15:29:07 +01:00
CBlockIndex * pindexFailure = NULL ;
int nGoodTransactions = 0 ;
2013-01-27 00:14:11 +01:00
CValidationState state ;
2013-10-10 23:07:44 +02:00
for ( CBlockIndex * pindex = chainActive . Tip ( ) ; pindex & & pindex - > pprev ; pindex = pindex - > pprev )
2012-09-03 21:14:03 +02:00
{
2013-03-09 12:02:57 -05:00
boost : : this_thread : : interruption_point ( ) ;
2014-05-23 18:04:09 +02:00
uiInterface . ShowProgress ( _ ( " Verifying blocks... " ) , std : : max ( 1 , std : : min ( 99 , ( int ) ( ( ( double ) ( chainActive . Height ( ) - pindex - > nHeight ) ) / ( double ) nCheckDepth * ( nCheckLevel > = 4 ? 50 : 100 ) ) ) ) ) ;
2013-10-10 23:07:44 +02:00
if ( pindex - > nHeight < chainActive . Height ( ) - nCheckDepth )
2012-09-03 21:14:03 +02:00
break ;
CBlock block ;
2013-01-03 15:29:07 +01:00
// check level 0: read from disk
2013-06-23 18:10:02 -07:00
if ( ! ReadBlockFromDisk ( block , pindex ) )
2015-01-08 11:44:25 +01:00
return error ( " VerifyDB() : * * * ReadBlockFromDisk failed at % d , hash = % s " , pindex->nHeight, pindex->GetBlockHash().ToString()) ;
2012-09-03 21:14:03 +02:00
// check level 1: verify block validity
2013-06-23 19:14:11 -07:00
if ( nCheckLevel > = 1 & & ! CheckBlock ( block , state ) )
2015-01-08 11:44:25 +01:00
return error ( " VerifyDB() : * * * found bad block at % d , hash = % s \ n " , pindex->nHeight, pindex->GetBlockHash().ToString()) ;
2013-01-03 15:29:07 +01:00
// check level 2: verify undo validity
if ( nCheckLevel > = 2 & & pindex ) {
CBlockUndo undo ;
CDiskBlockPos pos = pindex - > GetUndoPos ( ) ;
if ( ! pos . IsNull ( ) ) {
2014-10-27 14:35:52 +01:00
if ( ! UndoReadFromDisk ( undo , pos , pindex - > pprev - > GetBlockHash ( ) ) )
2015-01-08 11:44:25 +01:00
return error ( " VerifyDB() : * * * found bad undo data at % d , hash = % s \ n " , pindex->nHeight, pindex->GetBlockHash().ToString()) ;
2013-01-03 15:29:07 +01:00
}
}
// check level 3: check for inconsistencies during memory-only disconnect of tip blocks
2015-05-04 01:38:08 +02:00
if ( nCheckLevel > = 3 & & pindex = = pindexState & & ( coins . DynamicMemoryUsage ( ) + pcoinsTip - > DynamicMemoryUsage ( ) ) < = nCoinCacheUsage ) {
2013-01-03 15:29:07 +01:00
bool fClean = true ;
2013-06-23 18:32:58 -07:00
if ( ! DisconnectBlock ( block , state , pindex , coins , & fClean ) )
2015-01-08 11:44:25 +01:00
return error ( " VerifyDB() : * * * irrecoverable inconsistency in block data at % d , hash = % s " , pindex->nHeight, pindex->GetBlockHash().ToString()) ;
2013-01-03 15:29:07 +01:00
pindexState = pindex - > pprev ;
if ( ! fClean ) {
nGoodTransactions = 0 ;
pindexFailure = pindex ;
} else
nGoodTransactions + = block . vtx . size ( ) ;
2012-09-03 21:14:03 +02:00
}
2014-12-28 22:39:53 +01:00
if ( ShutdownRequested ( ) )
return true ;
2012-09-03 21:14:03 +02:00
}
2013-01-03 15:29:07 +01:00
if ( pindexFailure )
2015-01-08 11:44:25 +01:00
return error ( " VerifyDB() : * * * coin database inconsistencies found ( last % i blocks , % i good transactions before that ) \ n " , chainActive.Height() - pindexFailure->nHeight + 1, nGoodTransactions) ;
2013-01-03 15:29:07 +01:00
// check level 4: try reconnecting blocks
if ( nCheckLevel > = 4 ) {
CBlockIndex * pindex = pindexState ;
2013-10-10 23:07:44 +02:00
while ( pindex ! = chainActive . Tip ( ) ) {
2013-03-09 12:02:57 -05:00
boost : : this_thread : : interruption_point ( ) ;
2014-05-23 18:04:09 +02:00
uiInterface . ShowProgress ( _ ( " Verifying blocks... " ) , std : : max ( 1 , std : : min ( 99 , 100 - ( int ) ( ( ( double ) ( chainActive . Height ( ) - pindex - > nHeight ) ) / ( double ) nCheckDepth * 50 ) ) ) ) ;
2013-10-10 23:07:44 +02:00
pindex = chainActive . Next ( pindex ) ;
2013-04-04 11:30:55 +02:00
CBlock block ;
2013-06-23 18:10:02 -07:00
if ( ! ReadBlockFromDisk ( block , pindex ) )
2015-01-08 11:44:25 +01:00
return error ( " VerifyDB() : * * * ReadBlockFromDisk failed at % d , hash = % s " , pindex->nHeight, pindex->GetBlockHash().ToString()) ;
2013-06-23 18:50:06 -07:00
if ( ! ConnectBlock ( block , state , pindex , coins ) )
2015-01-08 11:44:25 +01:00
return error ( " VerifyDB() : * * * found unconnectable block at % d , hash = % s " , pindex->nHeight, pindex->GetBlockHash().ToString()) ;
2013-01-03 15:29:07 +01:00
}
2012-09-03 21:14:03 +02:00
}
2013-10-10 23:07:44 +02:00
LogPrintf ( " No coin database inconsistencies in last %i blocks (%i transactions) \n " , chainActive . Height ( ) - pindexState - > nHeight , nGoodTransactions ) ;
2013-01-03 15:29:07 +01:00
2012-09-03 21:14:03 +02:00
return true ;
}
2013-02-16 17:58:45 +01:00
void UnloadBlockIndex ( )
{
2015-03-03 07:49:12 -08:00
LOCK ( cs_main ) ;
2014-10-06 08:31:33 +02:00
setBlockIndexCandidates . clear ( ) ;
2013-10-10 23:07:44 +02:00
chainActive . SetTip ( NULL ) ;
2013-10-13 22:15:48 +02:00
pindexBestInvalid = NULL ;
2015-03-03 07:49:12 -08:00
pindexBestHeader = NULL ;
mempool . clear ( ) ;
mapOrphanTransactions . clear ( ) ;
mapOrphanTransactionsByPrev . clear ( ) ;
nSyncStarted = 0 ;
mapBlocksUnlinked . clear ( ) ;
vinfoBlockFile . clear ( ) ;
nLastBlockFile = 0 ;
nBlockSequenceId = 1 ;
mapBlockSource . clear ( ) ;
mapBlocksInFlight . clear ( ) ;
nQueuedValidatedHeaders = 0 ;
nPreferredDownload = 0 ;
setDirtyBlockIndex . clear ( ) ;
setDirtyFileInfo . clear ( ) ;
mapNodeState . clear ( ) ;
2015-07-17 06:46:48 -04:00
recentRejects . reset ( NULL ) ;
2015-03-03 07:49:12 -08:00
BOOST_FOREACH ( BlockMap : : value_type & entry , mapBlockIndex ) {
delete entry . second ;
}
mapBlockIndex . clear ( ) ;
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
fHavePruned = false ;
2013-02-16 17:58:45 +01:00
}
2012-10-21 21:23:13 +02:00
bool LoadBlockIndex ( )
2010-08-29 16:58:15 +00:00
{
2012-09-03 15:26:57 +02:00
// Load block index from databases
2013-01-11 01:47:57 +01:00
if ( ! fReindex & & ! LoadBlockIndexDB ( ) )
2010-08-29 16:58:15 +00:00
return false ;
2013-01-30 21:43:36 +01:00
return true ;
}
2013-01-11 01:47:57 +01:00
2013-01-30 21:43:36 +01:00
bool InitBlockIndex ( ) {
2015-04-19 23:48:25 +02:00
const CChainParams & chainparams = Params ( ) ;
2014-04-15 17:38:25 +02:00
LOCK ( cs_main ) ;
2015-07-31 17:55:05 +02:00
// Initialize global variables that cannot be constructed at startup.
recentRejects . reset ( new CRollingBloomFilter ( 120000 , 0.000001 ) ) ;
2013-01-30 21:43:36 +01:00
// Check whether we're already initialized
2013-10-10 23:07:44 +02:00
if ( chainActive . Genesis ( ) ! = NULL )
2013-01-30 21:43:36 +01:00
return true ;
// Use the provided setting for -txindex in the new database
fTxIndex = GetBoolArg ( " -txindex " , false ) ;
pblocktree - > WriteFlag ( " txindex " , fTxIndex ) ;
2013-09-18 20:38:08 +10:00
LogPrintf ( " Initializing databases... \n " ) ;
2013-01-30 21:43:36 +01:00
// Only add the genesis block if not reindexing (in which case we reuse the one already on disk)
if ( ! fReindex ) {
try {
2013-05-07 15:16:25 +02:00
CBlock & block = const_cast < CBlock & > ( Params ( ) . GenesisBlock ( ) ) ;
// Start new block file
2013-01-30 21:43:36 +01:00
unsigned int nBlockSize = : : GetSerializeSize ( block , SER_DISK , CLIENT_VERSION ) ;
CDiskBlockPos blockPos ;
CValidationState state ;
2014-06-28 23:36:06 +02:00
if ( ! FindBlockPos ( state , blockPos , nBlockSize + 8 , 0 , block . GetBlockTime ( ) ) )
2015-01-08 11:44:25 +01:00
return error ( " LoadBlockIndex() : FindBlockPos failed " ) ;
2015-04-19 23:48:25 +02:00
if ( ! WriteBlockToDisk ( block , blockPos , chainparams . MessageStart ( ) ) )
2015-01-08 11:44:25 +01:00
return error ( " LoadBlockIndex() : writing genesis block to disk failed " ) ;
2014-03-13 03:48:27 +01:00
CBlockIndex * pindex = AddToBlockIndex ( block ) ;
if ( ! ReceivedBlockTransactions ( block , state , pindex , blockPos ) )
2015-01-08 11:44:25 +01:00
return error ( " LoadBlockIndex() : genesis block not accepted " ) ;
2014-08-26 02:26:41 +02:00
if ( ! ActivateBestChain ( state , & block ) )
2015-01-08 11:44:25 +01:00
return error ( " LoadBlockIndex() : genesis block cannot be activated " ) ;
2014-11-25 18:54:36 +01:00
// Force a chainstate write so that when we VerifyDB in a moment, it doesn't check stale data
2014-11-14 18:19:26 +01:00
return FlushStateToDisk ( state , FLUSH_STATE_ALWAYS ) ;
2014-12-07 13:29:06 +01:00
} catch ( const std : : runtime_error & e ) {
2015-01-08 11:44:25 +01:00
return error ( " LoadBlockIndex() : failed to initialize block database : % s " , e.what()) ;
2013-01-30 21:43:36 +01:00
}
2010-08-29 16:58:15 +00:00
}
return true ;
}
2012-10-21 21:23:13 +02:00
bool LoadExternalBlockFile ( FILE * fileIn , CDiskBlockPos * dbp )
2012-02-20 20:50:26 +01:00
{
2015-04-09 15:58:34 +02:00
const CChainParams & chainparams = Params ( ) ;
2014-10-07 18:06:30 +02:00
// Map of disk positions for blocks with unknown parent (only used for reindex)
static std : : multimap < uint256 , CDiskBlockPos > mapBlocksUnknownParent ;
2013-04-13 00:13:08 -05:00
int64_t nStart = GetTimeMillis ( ) ;
2012-08-17 00:14:40 +02:00
2012-02-20 20:50:26 +01:00
int nLoaded = 0 ;
2013-01-29 01:44:19 +01:00
try {
2014-09-25 08:53:43 +02:00
// This takes over fileIn and calls fclose() on it in the CBufferedFile destructor
2012-10-27 22:01:38 +02:00
CBufferedFile blkdat ( fileIn , 2 * MAX_BLOCK_SIZE , MAX_BLOCK_SIZE + 8 , SER_DISK , CLIENT_VERSION ) ;
2013-04-13 00:13:08 -05:00
uint64_t nRewind = blkdat . GetPos ( ) ;
2014-08-01 22:57:55 +02:00
while ( ! blkdat . eof ( ) ) {
2013-03-06 22:31:26 -05:00
boost : : this_thread : : interruption_point ( ) ;
2012-10-27 22:01:38 +02:00
blkdat . SetPos ( nRewind ) ;
nRewind + + ; // start one byte further next time, in case of failure
blkdat . SetLimit ( ) ; // remove former limit
2012-10-21 21:23:13 +02:00
unsigned int nSize = 0 ;
2012-10-27 22:01:38 +02:00
try {
// locate a header
2014-04-24 14:32:11 +02:00
unsigned char buf [ MESSAGE_START_SIZE ] ;
2013-05-07 15:16:25 +02:00
blkdat . FindByte ( Params ( ) . MessageStart ( ) [ 0 ] ) ;
2012-10-27 22:01:38 +02:00
nRewind = blkdat . GetPos ( ) + 1 ;
blkdat > > FLATDATA ( buf ) ;
2014-04-24 14:32:11 +02:00
if ( memcmp ( buf , Params ( ) . MessageStart ( ) , MESSAGE_START_SIZE ) )
2012-10-27 22:01:38 +02:00
continue ;
// read size
2012-02-20 20:50:26 +01:00
blkdat > > nSize ;
2012-10-27 22:01:38 +02:00
if ( nSize < 80 | | nSize > MAX_BLOCK_SIZE )
continue ;
2014-12-07 13:29:06 +01:00
} catch ( const std : : exception & ) {
2012-10-21 21:23:13 +02:00
// no valid block header found; don't complain
break ;
}
try {
2012-10-27 22:01:38 +02:00
// read block
2013-04-13 00:13:08 -05:00
uint64_t nBlockPos = blkdat . GetPos ( ) ;
2014-10-07 18:06:30 +02:00
if ( dbp )
dbp - > nPos = nBlockPos ;
2012-10-21 21:23:13 +02:00
blkdat . SetLimit ( nBlockPos + nSize ) ;
2014-10-07 21:15:32 +02:00
blkdat . SetPos ( nBlockPos ) ;
CBlock block ;
blkdat > > block ;
2014-10-07 18:06:30 +02:00
nRewind = blkdat . GetPos ( ) ;
2014-10-07 21:15:32 +02:00
// detect out of order blocks, and store them for later
uint256 hash = block . GetHash ( ) ;
2015-04-09 15:58:34 +02:00
if ( hash ! = chainparams . GetConsensus ( ) . hashGenesisBlock & & mapBlockIndex . find ( block . hashPrevBlock ) = = mapBlockIndex . end ( ) ) {
2014-10-07 18:06:30 +02:00
LogPrint ( " reindex " , " %s: Out of order block %s, parent %s not known \n " , __func__ , hash . ToString ( ) ,
2014-10-07 21:15:32 +02:00
block . hashPrevBlock . ToString ( ) ) ;
2014-10-07 18:06:30 +02:00
if ( dbp )
2014-10-07 21:15:32 +02:00
mapBlocksUnknownParent . insert ( std : : make_pair ( block . hashPrevBlock , * dbp ) ) ;
2014-10-07 18:06:30 +02:00
continue ;
}
2014-10-07 21:15:32 +02:00
// process in case the block isn't known yet
2014-10-29 17:01:18 -07:00
if ( mapBlockIndex . count ( hash ) = = 0 | | ( mapBlockIndex [ hash ] - > nStatus & BLOCK_HAVE_DATA ) = = 0 ) {
2014-10-07 21:15:32 +02:00
CValidationState state ;
2015-04-09 13:21:11 -04:00
if ( ProcessNewBlock ( state , NULL , & block , true , dbp ) )
2014-10-07 21:15:32 +02:00
nLoaded + + ;
if ( state . IsError ( ) )
break ;
2015-04-09 15:58:34 +02:00
} else if ( hash ! = chainparams . GetConsensus ( ) . hashGenesisBlock & & mapBlockIndex [ hash ] - > nHeight % 1000 = = 0 ) {
2014-10-29 17:02:48 -07:00
LogPrintf ( " Block Import: already had block %s at height %d \n " , hash . ToString ( ) , mapBlockIndex [ hash ] - > nHeight ) ;
2014-10-07 21:15:32 +02:00
}
2014-10-07 18:06:30 +02:00
// Recursively process earlier encountered successors of this block
deque < uint256 > queue ;
queue . push_back ( hash ) ;
while ( ! queue . empty ( ) ) {
uint256 head = queue . front ( ) ;
queue . pop_front ( ) ;
std : : pair < std : : multimap < uint256 , CDiskBlockPos > : : iterator , std : : multimap < uint256 , CDiskBlockPos > : : iterator > range = mapBlocksUnknownParent . equal_range ( head ) ;
while ( range . first ! = range . second ) {
std : : multimap < uint256 , CDiskBlockPos > : : iterator it = range . first ;
if ( ReadBlockFromDisk ( block , it - > second ) )
{
LogPrintf ( " %s: Processing out of order child %s of %s \n " , __func__ , block . GetHash ( ) . ToString ( ) ,
head . ToString ( ) ) ;
CValidationState dummy ;
2015-04-09 13:21:11 -04:00
if ( ProcessNewBlock ( dummy , NULL , & block , true , & it - > second ) )
2014-10-07 18:06:30 +02:00
{
nLoaded + + ;
queue . push_back ( block . GetHash ( ) ) ;
}
}
range . first + + ;
mapBlocksUnknownParent . erase ( it ) ;
}
2012-02-20 20:50:26 +01:00
}
2014-12-07 13:29:06 +01:00
} catch ( const std : : exception & e ) {
2015-07-31 16:41:06 +02:00
LogPrintf ( " %s: Deserialize or I/O error - %s \n " , __func__ , e . what ( ) ) ;
2012-02-20 20:50:26 +01:00
}
}
2014-12-07 13:29:06 +01:00
} catch ( const std : : runtime_error & e ) {
2014-10-02 22:17:57 +02:00
AbortNode ( std : : string ( " System error: " ) + e . what ( ) ) ;
2012-02-20 20:50:26 +01:00
}
2012-10-21 21:23:13 +02:00
if ( nLoaded > 0 )
2014-02-24 09:08:56 +01:00
LogPrintf ( " Loaded %i blocks from external file in %dms \n " , nLoaded , GetTimeMillis ( ) - nStart ) ;
2012-02-20 20:50:26 +01:00
return nLoaded > 0 ;
}
2010-08-29 16:58:15 +00:00
2015-03-13 09:25:34 -07:00
void static CheckBlockIndex ( )
{
2015-04-09 15:58:34 +02:00
const Consensus : : Params & consensusParams = Params ( ) . GetConsensus ( ) ;
2015-03-13 09:25:34 -07:00
if ( ! fCheckBlockIndex ) {
return ;
}
LOCK ( cs_main ) ;
2015-04-09 11:08:39 -04:00
// During a reindex, we read the genesis block and call CheckBlockIndex before ActivateBestChain,
// so we have the genesis block in mapBlockIndex but no active chain. (A few of the tests when
// iterating the block tree require that chainActive has been initialized.)
if ( chainActive . Height ( ) < 0 ) {
assert ( mapBlockIndex . size ( ) < = 1 ) ;
return ;
}
2015-03-13 09:25:34 -07:00
// Build forward-pointing map of the entire block tree.
std : : multimap < CBlockIndex * , CBlockIndex * > forward ;
for ( BlockMap : : iterator it = mapBlockIndex . begin ( ) ; it ! = mapBlockIndex . end ( ) ; it + + ) {
forward . insert ( std : : make_pair ( it - > second - > pprev , it - > second ) ) ;
}
assert ( forward . size ( ) = = mapBlockIndex . size ( ) ) ;
std : : pair < std : : multimap < CBlockIndex * , CBlockIndex * > : : iterator , std : : multimap < CBlockIndex * , CBlockIndex * > : : iterator > rangeGenesis = forward . equal_range ( NULL ) ;
CBlockIndex * pindex = rangeGenesis . first - > second ;
rangeGenesis . first + + ;
assert ( rangeGenesis . first = = rangeGenesis . second ) ; // There is only one index entry with parent NULL.
// Iterate over the entire block tree, using depth-first search.
// Along the way, remember whether there are blocks on the path from genesis
// block being explored which are the first to have certain properties.
size_t nNodes = 0 ;
int nHeight = 0 ;
CBlockIndex * pindexFirstInvalid = NULL ; // Oldest ancestor of pindex which is invalid.
CBlockIndex * pindexFirstMissing = NULL ; // Oldest ancestor of pindex which does not have BLOCK_HAVE_DATA.
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
CBlockIndex * pindexFirstNeverProcessed = NULL ; // Oldest ancestor of pindex for which nTx == 0.
2015-03-13 09:25:34 -07:00
CBlockIndex * pindexFirstNotTreeValid = NULL ; // Oldest ancestor of pindex which does not have BLOCK_VALID_TREE (regardless of being valid or not).
2015-04-01 13:12:50 -04:00
CBlockIndex * pindexFirstNotTransactionsValid = NULL ; // Oldest ancestor of pindex which does not have BLOCK_VALID_TRANSACTIONS (regardless of being valid or not).
2015-03-13 09:25:34 -07:00
CBlockIndex * pindexFirstNotChainValid = NULL ; // Oldest ancestor of pindex which does not have BLOCK_VALID_CHAIN (regardless of being valid or not).
CBlockIndex * pindexFirstNotScriptsValid = NULL ; // Oldest ancestor of pindex which does not have BLOCK_VALID_SCRIPTS (regardless of being valid or not).
while ( pindex ! = NULL ) {
nNodes + + ;
if ( pindexFirstInvalid = = NULL & & pindex - > nStatus & BLOCK_FAILED_VALID ) pindexFirstInvalid = pindex ;
if ( pindexFirstMissing = = NULL & & ! ( pindex - > nStatus & BLOCK_HAVE_DATA ) ) pindexFirstMissing = pindex ;
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
if ( pindexFirstNeverProcessed = = NULL & & pindex - > nTx = = 0 ) pindexFirstNeverProcessed = pindex ;
2015-03-13 09:25:34 -07:00
if ( pindex - > pprev ! = NULL & & pindexFirstNotTreeValid = = NULL & & ( pindex - > nStatus & BLOCK_VALID_MASK ) < BLOCK_VALID_TREE ) pindexFirstNotTreeValid = pindex ;
2015-04-01 13:12:50 -04:00
if ( pindex - > pprev ! = NULL & & pindexFirstNotTransactionsValid = = NULL & & ( pindex - > nStatus & BLOCK_VALID_MASK ) < BLOCK_VALID_TRANSACTIONS ) pindexFirstNotTransactionsValid = pindex ;
2015-03-13 09:25:34 -07:00
if ( pindex - > pprev ! = NULL & & pindexFirstNotChainValid = = NULL & & ( pindex - > nStatus & BLOCK_VALID_MASK ) < BLOCK_VALID_CHAIN ) pindexFirstNotChainValid = pindex ;
if ( pindex - > pprev ! = NULL & & pindexFirstNotScriptsValid = = NULL & & ( pindex - > nStatus & BLOCK_VALID_MASK ) < BLOCK_VALID_SCRIPTS ) pindexFirstNotScriptsValid = pindex ;
// Begin: actual consistency checks.
if ( pindex - > pprev = = NULL ) {
// Genesis block checks.
2015-04-09 15:58:34 +02:00
assert ( pindex - > GetBlockHash ( ) = = consensusParams . hashGenesisBlock ) ; // Genesis block's hash must match.
2015-03-13 09:25:34 -07:00
assert ( pindex = = chainActive . Genesis ( ) ) ; // The current active chain's genesis block must be this block.
}
2015-04-13 12:26:28 -04:00
if ( pindex - > nChainTx = = 0 ) assert ( pindex - > nSequenceId = = 0 ) ; // nSequenceId can't be set for blocks that aren't linked
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
// VALID_TRANSACTIONS is equivalent to nTx > 0 for all nodes (whether or not pruning has occurred).
// HAVE_DATA is only equivalent to nTx > 0 (or VALID_TRANSACTIONS) if no pruning has occurred.
if ( ! fHavePruned ) {
// If we've never pruned, then HAVE_DATA should be equivalent to nTx > 0
assert ( ! ( pindex - > nStatus & BLOCK_HAVE_DATA ) = = ( pindex - > nTx = = 0 ) ) ;
assert ( pindexFirstMissing = = pindexFirstNeverProcessed ) ;
} else {
// If we have pruned, then we can only say that HAVE_DATA implies nTx > 0
if ( pindex - > nStatus & BLOCK_HAVE_DATA ) assert ( pindex - > nTx > 0 ) ;
}
if ( pindex - > nStatus & BLOCK_HAVE_UNDO ) assert ( pindex - > nStatus & BLOCK_HAVE_DATA ) ;
assert ( ( ( pindex - > nStatus & BLOCK_VALID_MASK ) > = BLOCK_VALID_TRANSACTIONS ) = = ( pindex - > nTx > 0 ) ) ; // This is pruning-independent.
// All parents having had data (at some point) is equivalent to all parents being VALID_TRANSACTIONS, which is equivalent to nChainTx being set.
assert ( ( pindexFirstNeverProcessed ! = NULL ) = = ( pindex - > nChainTx = = 0 ) ) ; // nChainTx != 0 is used to signal that all parent blocks have been processed (but may have been pruned).
2015-04-01 13:12:50 -04:00
assert ( ( pindexFirstNotTransactionsValid ! = NULL ) = = ( pindex - > nChainTx = = 0 ) ) ;
2015-03-13 09:25:34 -07:00
assert ( pindex - > nHeight = = nHeight ) ; // nHeight must be consistent.
assert ( pindex - > pprev = = NULL | | pindex - > nChainWork > = pindex - > pprev - > nChainWork ) ; // For every block except the genesis block, the chainwork must be larger than the parent's.
assert ( nHeight < 2 | | ( pindex - > pskip & & ( pindex - > pskip - > nHeight < nHeight ) ) ) ; // The pskip pointer must point back for all but the first 2 blocks.
assert ( pindexFirstNotTreeValid = = NULL ) ; // All mapBlockIndex entries must at least be TREE valid
if ( ( pindex - > nStatus & BLOCK_VALID_MASK ) > = BLOCK_VALID_TREE ) assert ( pindexFirstNotTreeValid = = NULL ) ; // TREE valid implies all parents are TREE valid
if ( ( pindex - > nStatus & BLOCK_VALID_MASK ) > = BLOCK_VALID_CHAIN ) assert ( pindexFirstNotChainValid = = NULL ) ; // CHAIN valid implies all parents are CHAIN valid
if ( ( pindex - > nStatus & BLOCK_VALID_MASK ) > = BLOCK_VALID_SCRIPTS ) assert ( pindexFirstNotScriptsValid = = NULL ) ; // SCRIPTS valid implies all parents are SCRIPTS valid
if ( pindexFirstInvalid = = NULL ) {
// Checks for not-invalid blocks.
assert ( ( pindex - > nStatus & BLOCK_FAILED_MASK ) = = 0 ) ; // The failed mask cannot be set for blocks without invalid parents.
}
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
if ( ! CBlockIndexWorkComparator ( ) ( pindex , chainActive . Tip ( ) ) & & pindexFirstNeverProcessed = = NULL ) {
if ( pindexFirstInvalid = = NULL ) {
// If this block sorts at least as good as the current tip and
// is valid and we have all data for its parents, it must be in
// setBlockIndexCandidates. chainActive.Tip() must also be there
// even if some data has been pruned.
if ( pindexFirstMissing = = NULL | | pindex = = chainActive . Tip ( ) ) {
assert ( setBlockIndexCandidates . count ( pindex ) ) ;
}
// If some parent is missing, then it could be that this block was in
// setBlockIndexCandidates but had to be removed because of the missing data.
// In this case it must be in mapBlocksUnlinked -- see test below.
2015-03-13 09:25:34 -07:00
}
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
} else { // If this block sorts worse than the current tip or some ancestor's block has never been seen, it cannot be in setBlockIndexCandidates.
2015-03-13 09:25:34 -07:00
assert ( setBlockIndexCandidates . count ( pindex ) = = 0 ) ;
}
// Check whether this block is in mapBlocksUnlinked.
std : : pair < std : : multimap < CBlockIndex * , CBlockIndex * > : : iterator , std : : multimap < CBlockIndex * , CBlockIndex * > : : iterator > rangeUnlinked = mapBlocksUnlinked . equal_range ( pindex - > pprev ) ;
bool foundInUnlinked = false ;
while ( rangeUnlinked . first ! = rangeUnlinked . second ) {
assert ( rangeUnlinked . first - > first = = pindex - > pprev ) ;
if ( rangeUnlinked . first - > second = = pindex ) {
foundInUnlinked = true ;
break ;
}
rangeUnlinked . first + + ;
}
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
if ( pindex - > pprev & & ( pindex - > nStatus & BLOCK_HAVE_DATA ) & & pindexFirstNeverProcessed ! = NULL & & pindexFirstInvalid = = NULL ) {
// If this block has block data available, some parent was never received, and has no invalid parents, it must be in mapBlocksUnlinked.
assert ( foundInUnlinked ) ;
}
if ( ! ( pindex - > nStatus & BLOCK_HAVE_DATA ) ) assert ( ! foundInUnlinked ) ; // Can't be in mapBlocksUnlinked if we don't HAVE_DATA
if ( pindexFirstMissing = = NULL ) assert ( ! foundInUnlinked ) ; // We aren't missing data for any parent -- cannot be in mapBlocksUnlinked.
if ( pindex - > pprev & & ( pindex - > nStatus & BLOCK_HAVE_DATA ) & & pindexFirstNeverProcessed = = NULL & & pindexFirstMissing ! = NULL ) {
// We HAVE_DATA for this block, have received data for all parents at some point, but we're currently missing data for some parent.
assert ( fHavePruned ) ; // We must have pruned.
// This block may have entered mapBlocksUnlinked if:
// - it has a descendant that at some point had more work than the
// tip, and
// - we tried switching to that descendant but were missing
// data for some intermediate block between chainActive and the
// tip.
// So if this block is itself better than chainActive.Tip() and it wasn't in
// setBlockIndexCandidates, then it must be in mapBlocksUnlinked.
if ( ! CBlockIndexWorkComparator ( ) ( pindex , chainActive . Tip ( ) ) & & setBlockIndexCandidates . count ( pindex ) = = 0 ) {
if ( pindexFirstInvalid = = NULL ) {
assert ( foundInUnlinked ) ;
}
2015-03-13 09:25:34 -07:00
}
}
// assert(pindex->GetBlockHash() == pindex->GetBlockHeader().GetHash()); // Perhaps too slow
// End: actual consistency checks.
// Try descending into the first subnode.
std : : pair < std : : multimap < CBlockIndex * , CBlockIndex * > : : iterator , std : : multimap < CBlockIndex * , CBlockIndex * > : : iterator > range = forward . equal_range ( pindex ) ;
if ( range . first ! = range . second ) {
// A subnode was found.
pindex = range . first - > second ;
nHeight + + ;
continue ;
}
// This is a leaf node.
// Move upwards until we reach a node of which we have not yet visited the last child.
while ( pindex ) {
// We are going to either move to a parent or a sibling of pindex.
// If pindex was the first with a certain property, unset the corresponding variable.
if ( pindex = = pindexFirstInvalid ) pindexFirstInvalid = NULL ;
if ( pindex = = pindexFirstMissing ) pindexFirstMissing = NULL ;
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
if ( pindex = = pindexFirstNeverProcessed ) pindexFirstNeverProcessed = NULL ;
2015-03-13 09:25:34 -07:00
if ( pindex = = pindexFirstNotTreeValid ) pindexFirstNotTreeValid = NULL ;
2015-04-01 13:12:50 -04:00
if ( pindex = = pindexFirstNotTransactionsValid ) pindexFirstNotTransactionsValid = NULL ;
2015-03-13 09:25:34 -07:00
if ( pindex = = pindexFirstNotChainValid ) pindexFirstNotChainValid = NULL ;
if ( pindex = = pindexFirstNotScriptsValid ) pindexFirstNotScriptsValid = NULL ;
// Find our parent.
CBlockIndex * pindexPar = pindex - > pprev ;
// Find which child we just visited.
std : : pair < std : : multimap < CBlockIndex * , CBlockIndex * > : : iterator , std : : multimap < CBlockIndex * , CBlockIndex * > : : iterator > rangePar = forward . equal_range ( pindexPar ) ;
while ( rangePar . first - > second ! = pindex ) {
assert ( rangePar . first ! = rangePar . second ) ; // Our parent must have at least the node we're coming from as child.
rangePar . first + + ;
}
// Proceed to the next one.
rangePar . first + + ;
if ( rangePar . first ! = rangePar . second ) {
// Move to the sibling.
pindex = rangePar . first - > second ;
break ;
} else {
// Move up further.
pindex = pindexPar ;
nHeight - - ;
continue ;
}
}
}
// Check that we actually traversed the entire map.
assert ( nNodes = = forward . size ( ) ) ;
}
2010-08-29 16:58:15 +00:00
//////////////////////////////////////////////////////////////////////////////
//
// CAlert
//
2015-05-31 15:36:44 +02:00
std : : string GetWarnings ( const std : : string & strFor )
2010-08-29 16:58:15 +00:00
{
int nPriority = 0 ;
string strStatusBar ;
string strRPC ;
2012-10-24 21:47:07 +02:00
if ( ! CLIENT_VERSION_IS_RELEASE )
strStatusBar = _ ( " This is a pre-release test build - use at your own risk - do not use for mining or merchant applications " ) ;
2014-11-23 13:10:31 +01:00
if ( GetBoolArg ( " -testsafemode " , false ) )
strStatusBar = strRPC = " testsafemode enabled " ;
2010-08-29 16:58:15 +00:00
// Misc warnings like out of disk space and clock is wrong
if ( strMiscWarning ! = " " )
{
nPriority = 1000 ;
strStatusBar = strMiscWarning ;
}
2013-05-07 18:33:52 +02:00
if ( fLargeWorkForkFound )
2010-08-29 16:58:15 +00:00
{
nPriority = 2000 ;
2013-05-18 03:09:28 +02:00
strStatusBar = strRPC = _ ( " Warning: The network does not appear to fully agree! Some miners appear to be experiencing issues. " ) ;
}
else if ( fLargeWorkInvalidChainFound )
2010-08-29 16:58:15 +00:00
{
nPriority = 2000 ;
2013-05-18 03:09:28 +02:00
strStatusBar = strRPC = _ ( " Warning: We do not appear to fully agree with our peers! You may need to upgrade, or other nodes may need to upgrade. " ) ;
2010-08-29 16:58:15 +00:00
}
// Alerts
{
2012-04-06 18:39:12 +02:00
LOCK ( cs_mapAlerts ) ;
2011-05-15 09:11:04 +02:00
BOOST_FOREACH ( PAIRTYPE ( const uint256 , CAlert ) & item , mapAlerts )
2010-08-29 16:58:15 +00:00
{
const CAlert & alert = item . second ;
if ( alert . AppliesToMe ( ) & & alert . nPriority > nPriority )
{
nPriority = alert . nPriority ;
strStatusBar = alert . strStatusBar ;
}
}
}
if ( strFor = = " statusbar " )
return strStatusBar ;
else if ( strFor = = " rpc " )
return strRPC ;
2015-01-08 11:44:25 +01:00
assert ( ! " GetWarnings(): invalid parameter " ) ;
2010-08-29 16:58:15 +00:00
return " error " ;
}
//////////////////////////////////////////////////////////////////////////////
//
// Messages
//
2015-06-16 04:08:26 -04:00
bool static AlreadyHave ( const CInv & inv ) EXCLUSIVE_LOCKS_REQUIRED ( cs_main )
2010-08-29 16:58:15 +00:00
{
switch ( inv . type )
{
2012-04-13 18:24:55 -04:00
case MSG_TX :
{
2015-07-31 17:55:05 +02:00
assert ( recentRejects ) ;
2015-07-17 06:46:48 -04:00
if ( chainActive . Tip ( ) - > GetBlockHash ( ) ! = hashRecentRejectsChainTip )
{
// If the chain tip has changed previously rejected transactions
// might be now valid, e.g. due to a nLockTime'd tx becoming valid,
// or a double-spend. Reset the rejects filter and give those
// txs a second chance.
hashRecentRejectsChainTip = chainActive . Tip ( ) - > GetBlockHash ( ) ;
recentRejects - > reset ( ) ;
}
return recentRejects - > contains ( inv . hash ) | |
mempool . exists ( inv . hash ) | |
mapOrphanTransactions . count ( inv . hash ) | |
pcoinsTip - > HaveCoins ( inv . hash ) ;
2012-04-13 18:24:55 -04:00
}
case MSG_BLOCK :
2014-07-12 00:02:35 +02:00
return mapBlockIndex . count ( inv . hash ) ;
2010-08-29 16:58:15 +00:00
}
// Don't know what it is, just say we already got one
return true ;
}
2013-03-29 23:49:38 +01:00
void static ProcessGetData ( CNode * pfrom )
{
std : : deque < CInv > : : iterator it = pfrom - > vRecvGetData . begin ( ) ;
vector < CInv > vNotFound ;
2013-07-25 02:34:42 +02:00
LOCK ( cs_main ) ;
2013-03-29 23:49:38 +01:00
while ( it ! = pfrom - > vRecvGetData . end ( ) ) {
// Don't bother if send buffer is too full to respond anyway
if ( pfrom - > nSendSize > = SendBufferSize ( ) )
break ;
const CInv & inv = * it ;
{
2013-03-09 12:02:57 -05:00
boost : : this_thread : : interruption_point ( ) ;
2013-03-29 23:49:38 +01:00
it + + ;
if ( inv . type = = MSG_BLOCK | | inv . type = = MSG_FILTERED_BLOCK )
{
2014-01-19 17:59:57 -06:00
bool send = false ;
2014-09-04 02:02:44 +02:00
BlockMap : : iterator mi = mapBlockIndex . find ( inv . hash ) ;
2013-03-29 23:49:38 +01:00
if ( mi ! = mapBlockIndex . end ( ) )
{
2015-02-24 04:27:25 -08:00
if ( chainActive . Contains ( mi - > second ) ) {
2014-02-10 16:31:06 +01:00
send = true ;
2015-02-24 04:27:25 -08:00
} else {
2015-03-17 06:35:59 -07:00
static const int nOneMonth = 30 * 24 * 60 * 60 ;
2015-02-24 04:27:25 -08:00
// To prevent fingerprinting attacks, only send blocks outside of the active
2015-03-17 06:35:59 -07:00
// chain if they are valid, and no more than a month older (both in time, and in
// best equivalent proof of work) than the best header chain we know about.
2015-02-24 04:27:25 -08:00
send = mi - > second - > IsValid ( BLOCK_VALID_SCRIPTS ) & & ( pindexBestHeader ! = NULL ) & &
2015-03-17 06:35:59 -07:00
( pindexBestHeader - > GetBlockTime ( ) - mi - > second - > GetBlockTime ( ) < nOneMonth ) & &
( GetBlockProofEquivalentTime ( * pindexBestHeader , * mi - > second , * pindexBestHeader , Params ( ) . GetConsensus ( ) ) < nOneMonth ) ;
2015-02-24 04:27:25 -08:00
if ( ! send ) {
2015-02-24 18:32:34 +01:00
LogPrintf ( " %s: ignoring request from peer=%i for old block that isn't in the main chain \n " , __func__ , pfrom - > GetId ( ) ) ;
2015-02-24 04:27:25 -08:00
}
2014-01-19 17:59:57 -06:00
}
}
2015-09-02 17:03:27 +02:00
// disconnect node in case we have reached the outbound limit for serving historical blocks
static const int nOneWeek = 7 * 24 * 60 * 60 ; // assume > 1 week = historical
if ( send & & CNode : : OutboundTargetReached ( true ) & & ( ( ( pindexBestHeader ! = NULL ) & & ( pindexBestHeader - > GetBlockTime ( ) - mi - > second - > GetBlockTime ( ) > nOneWeek ) ) | | inv . type = = MSG_FILTERED_BLOCK ) )
{
LogPrint ( " net " , " historical block serving limit reached, disconnect peer=%d \n " , pfrom - > GetId ( ) ) ;
//disconnect node
pfrom - > fDisconnect = true ;
send = false ;
}
Add block pruning functionality
This adds a -prune=N option to bitcoind, which if set to N>0 will enable block
file pruning. When pruning is enabled, block and undo files will be deleted to
try to keep total space used by those files to below the prune target (N, in
MB) specified by the user, subject to some constraints:
- The last 288 blocks on the main chain are always kept (MIN_BLOCKS_TO_KEEP),
- N must be at least 550MB (chosen as a value for the target that could
reasonably be met, with some assumptions about block sizes, orphan rates,
etc; see comment in main.h),
- No blocks are pruned until chainActive is at least 100,000 blocks long (on
mainnet; defined separately for mainnet, testnet, and regtest in chainparams
as nPruneAfterHeight).
This unsets NODE_NETWORK if pruning is enabled.
Also included is an RPC test for pruning (pruning.py).
Thanks to @rdponticelli for earlier work on this feature; this is based in
part off that work.
2015-02-23 14:27:44 -05:00
// Pruned nodes may have deleted the block, so check whether
// it's available before trying to send.
if ( send & & ( mi - > second - > nStatus & BLOCK_HAVE_DATA ) )
2014-01-19 17:59:57 -06:00
{
// Send block from disk
2013-03-29 23:49:38 +01:00
CBlock block ;
2014-06-04 12:27:44 +02:00
if ( ! ReadBlockFromDisk ( block , ( * mi ) . second ) )
assert ( ! " cannot load block from disk " ) ;
2013-03-29 23:49:38 +01:00
if ( inv . type = = MSG_BLOCK )
pfrom - > PushMessage ( " block " , block ) ;
else // MSG_FILTERED_BLOCK)
{
LOCK ( pfrom - > cs_filter ) ;
if ( pfrom - > pfilter )
{
CMerkleBlock merkleBlock ( block , * pfrom - > pfilter ) ;
pfrom - > PushMessage ( " merkleblock " , merkleBlock ) ;
// CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see
// This avoids hurting performance by pointlessly requiring a round-trip
2015-04-28 14:48:28 +00:00
// Note that there is currently no way for a node to request any single transactions we didn't send here -
2013-03-29 23:49:38 +01:00
// they must either disconnect and retry or request the full block.
// Thus, the protocol spec specified allows for us to provide duplicate txn here,
// however we MUST always provide at least what the remote peer needs
typedef std : : pair < unsigned int , uint256 > PairType ;
BOOST_FOREACH ( PairType & pair , merkleBlock . vMatchedTxn )
if ( ! pfrom - > setInventoryKnown . count ( CInv ( MSG_TX , pair . second ) ) )
pfrom - > PushMessage ( " tx " , block . vtx [ pair . first ] ) ;
}
// else
// no response
}
2015-04-28 14:47:17 +00:00
// Trigger the peer node to send a getblocks request for the next batch of inventory
2013-03-29 23:49:38 +01:00
if ( inv . hash = = pfrom - > hashContinue )
{
// Bypass PushInventory, this must send even if redundant,
// and we want it right after the last block so they don't
// wait for other stuff first.
vector < CInv > vInv ;
2013-10-10 23:07:44 +02:00
vInv . push_back ( CInv ( MSG_BLOCK , chainActive . Tip ( ) - > GetBlockHash ( ) ) ) ;
2013-03-29 23:49:38 +01:00
pfrom - > PushMessage ( " inv " , vInv ) ;
2014-12-15 09:11:16 +01:00
pfrom - > hashContinue . SetNull ( ) ;
2013-03-29 23:49:38 +01:00
}
}
}
else if ( inv . IsKnownType ( ) )
{
// Send stream from relay memory
bool pushed = false ;
{
LOCK ( cs_mapRelay ) ;
map < CInv , CDataStream > : : iterator mi = mapRelay . find ( inv ) ;
if ( mi ! = mapRelay . end ( ) ) {
pfrom - > PushMessage ( inv . GetCommand ( ) , ( * mi ) . second ) ;
pushed = true ;
}
}
if ( ! pushed & & inv . type = = MSG_TX ) {
2013-08-27 15:51:57 +10:00
CTransaction tx ;
if ( mempool . lookup ( inv . hash , tx ) ) {
2013-03-29 23:49:38 +01:00
CDataStream ss ( SER_NETWORK , PROTOCOL_VERSION ) ;
ss . reserve ( 1000 ) ;
ss < < tx ;
pfrom - > PushMessage ( " tx " , ss ) ;
pushed = true ;
}
}
if ( ! pushed ) {
vNotFound . push_back ( inv ) ;
}
}
// Track requests for our stuff.
2015-02-05 01:11:44 +01:00
GetMainSignals ( ) . Inventory ( inv . hash ) ;
2013-11-11 16:20:39 +01:00
2013-10-28 13:20:21 -07:00
if ( inv . type = = MSG_BLOCK | | inv . type = = MSG_FILTERED_BLOCK )
break ;
2013-03-29 23:49:38 +01:00
}
}
pfrom - > vRecvGetData . erase ( pfrom - > vRecvGetData . begin ( ) , it ) ;
if ( ! vNotFound . empty ( ) ) {
// Let the peer know that we didn't find what it asked for, so it doesn't
// have to wait around forever. Currently only SPV clients actually care
// about this message: it's needed when they are recursively walking the
// dependencies of relevant unconfirmed transactions. SPV clients want to
// do that because they want to know about (and store and rebroadcast and
// risk analyze) the dependencies of transactions relevant to them, without
// having to download the entire memory pool.
pfrom - > PushMessage ( " notfound " , vNotFound ) ;
}
}
2014-07-06 16:06:46 +02:00
bool static ProcessMessage ( CNode * pfrom , string strCommand , CDataStream & vRecv , int64_t nTimeReceived )
2010-08-29 16:58:15 +00:00
{
2015-04-10 18:35:09 +02:00
const CChainParams & chainparams = Params ( ) ;
2010-08-29 16:58:15 +00:00
RandAddSeedPerfmon ( ) ;
2015-02-08 00:59:58 +00:00
LogPrint ( " net " , " received: %s (%u bytes) peer=%d \n " , SanitizeString ( strCommand ) , vRecv . size ( ) , pfrom - > id ) ;
2010-08-29 16:58:15 +00:00
if ( mapArgs . count ( " -dropmessagestest " ) & & GetRand ( atoi ( mapArgs [ " -dropmessagestest " ] ) ) = = 0 )
{
2013-09-18 20:38:08 +10:00
LogPrintf ( " dropmessagestest DROPPING RECV MESSAGE \n " ) ;
2010-08-29 16:58:15 +00:00
return true ;
}
if ( strCommand = = " version " )
{
// Each connection can only send one version message
if ( pfrom - > nVersion ! = 0 )
2011-09-06 17:41:51 -04:00
{
2013-10-28 16:36:11 +10:00
pfrom - > PushMessage ( " reject " , strCommand , REJECT_DUPLICATE , string ( " Duplicate version message " ) ) ;
2013-11-18 01:25:17 +01:00
Misbehaving ( pfrom - > GetId ( ) , 1 ) ;
2010-08-29 16:58:15 +00:00
return false ;
2011-09-06 17:41:51 -04:00
}
2010-08-29 16:58:15 +00:00
2013-04-13 00:13:08 -05:00
int64_t nTime ;
2010-08-29 16:58:15 +00:00
CAddress addrMe ;
CAddress addrFrom ;
2013-04-13 00:13:08 -05:00
uint64_t nNonce = 1 ;
2010-08-29 16:58:15 +00:00
vRecv > > pfrom - > nVersion > > pfrom - > nServices > > nTime > > addrMe ;
2013-10-25 23:21:21 -10:00
if ( pfrom - > nVersion < MIN_PEER_PROTO_VERSION )
2012-02-20 01:33:31 +01:00
{
2013-10-25 23:21:21 -10:00
// disconnect from peers older than this proto version
2014-02-26 17:55:04 -08:00
LogPrintf ( " peer=%d using obsolete version %i; disconnecting \n " , pfrom - > id , pfrom - > nVersion ) ;
2013-10-28 16:36:11 +10:00
pfrom - > PushMessage ( " reject " , strCommand , REJECT_OBSOLETE ,
strprintf ( " Version must be %d or greater " , MIN_PEER_PROTO_VERSION ) ) ;
2012-02-20 01:33:31 +01:00
pfrom - > fDisconnect = true ;
return false ;
}
2010-08-29 16:58:15 +00:00
if ( pfrom - > nVersion = = 10300 )
pfrom - > nVersion = 300 ;
2012-02-20 01:33:31 +01:00
if ( ! vRecv . empty ( ) )
2010-08-29 16:58:15 +00:00
vRecv > > addrFrom > > nNonce ;
2013-11-26 12:52:21 +01:00
if ( ! vRecv . empty ( ) ) {
2015-07-31 18:05:42 +02:00
vRecv > > LIMITED_STRING ( pfrom - > strSubVer , MAX_SUBVERSION_LENGTH ) ;
2013-11-26 12:52:21 +01:00
pfrom - > cleanSubVer = SanitizeString ( pfrom - > strSubVer ) ;
}
2012-02-20 01:33:31 +01:00
if ( ! vRecv . empty ( ) )
2010-08-29 16:58:15 +00:00
vRecv > > pfrom - > nStartingHeight ;
2012-08-20 21:10:25 -04:00
if ( ! vRecv . empty ( ) )
vRecv > > pfrom - > fRelayTxes ; // set to true after we get the first filter* message
else
pfrom - > fRelayTxes = true ;
2010-08-29 16:58:15 +00:00
// Disconnect if we connected to ourself
if ( nNonce = = nLocalHostNonce & & nNonce > 1 )
{
2014-01-16 16:15:27 +01:00
LogPrintf ( " connected to self at %s, disconnecting \n " , pfrom - > addr . ToString ( ) ) ;
2010-08-29 16:58:15 +00:00
pfrom - > fDisconnect = true ;
return true ;
}
2014-07-20 23:32:25 -07:00
pfrom - > addrLocal = addrMe ;
if ( pfrom - > fInbound & & addrMe . IsRoutable ( ) )
{
SeenLocal ( addrMe ) ;
}
2011-01-24 10:42:17 -05:00
// Be shy and don't send version until we hear
if ( pfrom - > fInbound )
pfrom - > PushVersion ( ) ;
2010-08-29 16:58:15 +00:00
pfrom - > fClient = ! ( pfrom - > nServices & NODE_NETWORK ) ;
2014-10-28 09:33:55 -07:00
// Potentially mark this peer as a preferred download peer.
UpdatePreferredDownload ( pfrom , State ( pfrom - > GetId ( ) ) ) ;
2010-08-29 16:58:15 +00:00
// Change version
2012-02-20 01:33:31 +01:00
pfrom - > PushMessage ( " verack " ) ;
2013-03-24 16:52:24 +01:00
pfrom - > ssSend . SetVersion ( min ( pfrom - > nVersion , PROTOCOL_VERSION ) ) ;
2010-08-29 16:58:15 +00:00
2010-10-23 17:43:53 +00:00
if ( ! pfrom - > fInbound )
{
// Advertise our address
2014-05-29 12:33:17 +02:00
if ( fListen & & ! IsInitialBlockDownload ( ) )
2010-10-23 17:43:53 +00:00
{
2012-02-12 13:45:24 +01:00
CAddress addr = GetLocalAddress ( & pfrom - > addr ) ;
if ( addr . IsRoutable ( ) )
2014-07-20 23:32:25 -07:00
{
pfrom - > PushAddress ( addr ) ;
} else if ( IsPeerAddrLocalGood ( pfrom ) ) {
addr . SetIP ( pfrom - > addrLocal ) ;
2012-02-12 13:45:24 +01:00
pfrom - > PushAddress ( addr ) ;
2014-07-20 23:32:25 -07:00
}
2010-10-23 17:43:53 +00:00
}
// Get recent addresses
2012-04-24 02:15:00 +02:00
if ( pfrom - > fOneShot | | pfrom - > nVersion > = CADDR_TIME_VERSION | | addrman . size ( ) < 1000 )
2010-10-23 17:43:53 +00:00
{
pfrom - > PushMessage ( " getaddr " ) ;
pfrom - > fGetAddr = true ;
}
2012-01-04 23:39:45 +01:00
addrman . Good ( pfrom - > addr ) ;
} else {
if ( ( ( CNetAddr ) pfrom - > addr ) = = ( CNetAddr ) addrFrom )
{
addrman . Add ( addrFrom , addrFrom ) ;
addrman . Good ( addrFrom ) ;
}
2010-10-23 17:43:53 +00:00
}
2010-08-29 16:58:15 +00:00
// Relay alerts
2012-04-06 18:39:12 +02:00
{
LOCK ( cs_mapAlerts ) ;
2011-05-15 09:11:04 +02:00
BOOST_FOREACH ( PAIRTYPE ( const uint256 , CAlert ) & item , mapAlerts )
2010-08-29 16:58:15 +00:00
item . second . RelayTo ( pfrom ) ;
2012-04-06 18:39:12 +02:00
}
2010-08-29 16:58:15 +00:00
pfrom - > fSuccessfullyConnected = true ;
2014-07-31 11:43:50 -04:00
string remoteAddr ;
if ( fLogIPs )
remoteAddr = " , peeraddr= " + pfrom - > addr . ToString ( ) ;
LogPrintf ( " receive version message: %s: version %d, blocks=%d, us=%s, peer=%d%s \n " ,
pfrom - > cleanSubVer , pfrom - > nVersion ,
pfrom - > nStartingHeight , addrMe . ToString ( ) , pfrom - > id ,
remoteAddr ) ;
2011-09-28 21:35:58 +02:00
2014-12-15 11:06:15 +01:00
int64_t nTimeOffset = nTime - GetTime ( ) ;
pfrom - > nTimeOffset = nTimeOffset ;
AddTimeData ( pfrom - > addr , nTimeOffset ) ;
2010-08-29 16:58:15 +00:00
}
else if ( pfrom - > nVersion = = 0 )
{
// Must have a version message before anything else
2013-11-18 01:25:17 +01:00
Misbehaving ( pfrom - > GetId ( ) , 1 ) ;
2010-08-29 16:58:15 +00:00
return false ;
}
else if ( strCommand = = " verack " )
{
2012-11-15 19:41:12 -05:00
pfrom - > SetRecvVersion ( min ( pfrom - > nVersion , PROTOCOL_VERSION ) ) ;
2015-03-05 04:01:22 -08:00
// Mark this node as currently connected, so we update its timestamp later.
if ( pfrom - > fNetworkNode ) {
LOCK ( cs_main ) ;
State ( pfrom - > GetId ( ) ) - > fCurrentlyConnected = true ;
}
2010-08-29 16:58:15 +00:00
}
else if ( strCommand = = " addr " )
{
vector < CAddress > vAddr ;
vRecv > > vAddr ;
2010-10-23 17:43:53 +00:00
// Don't want addr from older versions unless seeding
2012-04-12 20:07:49 -04:00
if ( pfrom - > nVersion < CADDR_TIME_VERSION & & addrman . size ( ) > 1000 )
2010-08-29 16:58:15 +00:00
return true ;
if ( vAddr . size ( ) > 1000 )
2011-09-06 17:41:51 -04:00
{
2013-11-18 01:25:17 +01:00
Misbehaving ( pfrom - > GetId ( ) , 20 ) ;
2014-05-06 15:25:01 +02:00
return error ( " message addr size() = % u " , vAddr.size()) ;
2011-09-06 17:41:51 -04:00
}
2010-08-29 16:58:15 +00:00
// Store the new addresses
2012-04-10 20:22:04 +02:00
vector < CAddress > vAddrOk ;
2013-04-13 00:13:08 -05:00
int64_t nNow = GetAdjustedTime ( ) ;
int64_t nSince = nNow - 10 * 60 ;
2011-05-15 09:11:04 +02:00
BOOST_FOREACH ( CAddress & addr , vAddr )
2010-08-29 16:58:15 +00:00
{
2013-03-09 12:02:57 -05:00
boost : : this_thread : : interruption_point ( ) ;
2010-10-23 17:43:53 +00:00
if ( addr . nTime < = 100000000 | | addr . nTime > nNow + 10 * 60 )
addr . nTime = nNow - 5 * 24 * 60 * 60 ;
2010-08-29 16:58:15 +00:00
pfrom - > AddAddressKnown ( addr ) ;
2012-04-10 20:22:04 +02:00
bool fReachable = IsReachable ( addr ) ;
2010-10-23 17:43:53 +00:00
if ( addr . nTime > nSince & & ! pfrom - > fGetAddr & & vAddr . size ( ) < = 10 & & addr . IsRoutable ( ) )
2010-08-29 16:58:15 +00:00
{
// Relay to a limited number of other nodes
{
2012-04-06 18:39:12 +02:00
LOCK ( cs_vNodes ) ;
2010-10-19 17:16:51 +00:00
// Use deterministic randomness to send to the same nodes for 24 hours
2015-04-25 16:25:44 -04:00
// at a time so the addrKnowns of the chosen nodes prevent repeats
2010-08-29 16:58:15 +00:00
static uint256 hashSalt ;
2014-12-15 09:11:16 +01:00
if ( hashSalt . IsNull ( ) )
2012-05-17 12:13:14 -04:00
hashSalt = GetRandHash ( ) ;
2013-04-13 00:13:08 -05:00
uint64_t hashAddr = addr . GetHash ( ) ;
2014-12-16 15:43:03 +01:00
uint256 hashRand = ArithToUint256 ( UintToArith256 ( hashSalt ) ^ ( hashAddr < < 32 ) ^ ( ( GetTime ( ) + hashAddr ) / ( 24 * 60 * 60 ) ) ) ;
2010-10-19 17:16:51 +00:00
hashRand = Hash ( BEGIN ( hashRand ) , END ( hashRand ) ) ;
2010-08-29 16:58:15 +00:00
multimap < uint256 , CNode * > mapMix ;
2011-05-15 09:11:04 +02:00
BOOST_FOREACH ( CNode * pnode , vNodes )
2010-10-19 17:16:51 +00:00
{
2012-04-12 20:07:49 -04:00
if ( pnode - > nVersion < CADDR_TIME_VERSION )
2010-10-23 17:43:53 +00:00
continue ;
2010-10-19 17:16:51 +00:00
unsigned int nPointer ;
memcpy ( & nPointer , & pnode , sizeof ( nPointer ) ) ;
2014-12-16 15:43:03 +01:00
uint256 hashKey = ArithToUint256 ( UintToArith256 ( hashRand ) ^ nPointer ) ;
2010-10-19 17:16:51 +00:00
hashKey = Hash ( BEGIN ( hashKey ) , END ( hashKey ) ) ;
mapMix . insert ( make_pair ( hashKey , pnode ) ) ;
}
2012-04-10 20:22:04 +02:00
int nRelayNodes = fReachable ? 2 : 1 ; // limited relaying of addresses outside our network(s)
2010-08-29 16:58:15 +00:00
for ( multimap < uint256 , CNode * > : : iterator mi = mapMix . begin ( ) ; mi ! = mapMix . end ( ) & & nRelayNodes - - > 0 ; + + mi )
( ( * mi ) . second ) - > PushAddress ( addr ) ;
}
}
2012-04-10 20:22:04 +02:00
// Do not store addresses outside our network
if ( fReachable )
vAddrOk . push_back ( addr ) ;
2010-08-29 16:58:15 +00:00
}
2012-04-10 20:22:04 +02:00
addrman . Add ( vAddrOk , pfrom - > addr , 2 * 60 * 60 ) ;
2010-08-29 16:58:15 +00:00
if ( vAddr . size ( ) < 1000 )
pfrom - > fGetAddr = false ;
2012-04-24 02:15:00 +02:00
if ( pfrom - > fOneShot )
pfrom - > fDisconnect = true ;
2010-08-29 16:58:15 +00:00
}
else if ( strCommand = = " inv " )
{
vector < CInv > vInv ;
vRecv > > vInv ;
2012-07-31 17:42:35 -04:00
if ( vInv . size ( ) > MAX_INV_SZ )
2011-09-06 17:41:51 -04:00
{
2013-11-18 01:25:17 +01:00
Misbehaving ( pfrom - > GetId ( ) , 20 ) ;
2014-05-06 15:25:01 +02:00
return error ( " message inv size() = % u " , vInv.size()) ;
2011-09-06 17:41:51 -04:00
}
2010-08-29 16:58:15 +00:00
2013-07-25 02:34:42 +02:00
LOCK ( cs_main ) ;
2014-07-12 00:02:35 +02:00
std : : vector < CInv > vToFetch ;
2012-04-15 16:52:09 -04:00
for ( unsigned int nInv = 0 ; nInv < vInv . size ( ) ; nInv + + )
2010-08-29 16:58:15 +00:00
{
2012-03-18 23:47:26 +01:00
const CInv & inv = vInv [ nInv ] ;
2013-03-09 12:02:57 -05:00
boost : : this_thread : : interruption_point ( ) ;
2010-08-29 16:58:15 +00:00
pfrom - > AddInventoryKnown ( inv ) ;
2012-07-06 16:33:34 +02:00
bool fAlreadyHave = AlreadyHave ( inv ) ;
2014-02-26 17:55:04 -08:00
LogPrint ( " net " , " got inv: %s %s peer=%d \n " , inv . ToString ( ) , fAlreadyHave ? " have " : " new " , pfrom - > id ) ;
2010-08-29 16:58:15 +00:00
2014-07-12 00:02:35 +02:00
if ( ! fAlreadyHave & & ! fImporting & & ! fReindex & & inv . type ! = MSG_BLOCK )
pfrom - > AskFor ( inv ) ;
2010-08-29 16:58:15 +00:00
2014-07-12 00:02:35 +02:00
if ( inv . type = = MSG_BLOCK ) {
2014-06-23 00:00:26 +02:00
UpdateBlockAvailability ( pfrom - > GetId ( ) , inv . hash ) ;
2014-07-12 00:02:35 +02:00
if ( ! fAlreadyHave & & ! fImporting & & ! fReindex & & ! mapBlocksInFlight . count ( inv . hash ) ) {
2015-04-28 14:48:28 +00:00
// First request the headers preceding the announced block. In the normal fully-synced
2014-07-12 00:02:35 +02:00
// case where a new block is announced that succeeds the current tip (no reorganization),
// there are no such headers.
// Secondly, and only when we are close to being synced, we request the announced block directly,
// to avoid an extra round-trip. Note that we must *first* ask for the headers, so by the
// time the block arrives, the header chain leading up to it is already validated. Not
// doing this will result in the received block being rejected as an orphan in case it is
// not a direct successor.
pfrom - > PushMessage ( " getheaders " , chainActive . GetLocator ( pindexBestHeader ) , inv . hash ) ;
2014-12-18 18:28:29 -05:00
CNodeState * nodestate = State ( pfrom - > GetId ( ) ) ;
2015-04-10 18:35:09 +02:00
if ( chainActive . Tip ( ) - > GetBlockTime ( ) > GetAdjustedTime ( ) - chainparams . GetConsensus ( ) . nPowTargetSpacing * 20 & &
2014-12-18 18:28:29 -05:00
nodestate - > nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER ) {
2014-07-12 00:02:35 +02:00
vToFetch . push_back ( inv ) ;
// Mark block as in flight already, even though the actual "getdata" message only goes out
// later (within the same cs_main lock, though).
2015-05-27 10:57:17 -04:00
MarkBlockAsInFlight ( pfrom - > GetId ( ) , inv . hash , chainparams . GetConsensus ( ) ) ;
2014-07-12 00:02:35 +02:00
}
2014-09-02 17:16:32 +07:00
LogPrint ( " net " , " getheaders (%d) %s to peer=%d \n " , pindexBestHeader - > nHeight , inv . hash . ToString ( ) , pfrom - > id ) ;
2014-07-12 00:02:35 +02:00
}
}
2014-06-23 00:00:26 +02:00
2010-08-29 16:58:15 +00:00
// Track requests for our stuff
2015-02-05 01:11:44 +01:00
GetMainSignals ( ) . Inventory ( inv . hash ) ;
2014-09-09 09:26:52 +02:00
if ( pfrom - > nSendSize > ( SendBufferSize ( ) * 2 ) ) {
Misbehaving ( pfrom - > GetId ( ) , 50 ) ;
return error ( " send buffer size() = % u " , pfrom->nSendSize) ;
}
2010-08-29 16:58:15 +00:00
}
2014-07-12 00:02:35 +02:00
if ( ! vToFetch . empty ( ) )
pfrom - > PushMessage ( " getdata " , vToFetch ) ;
2010-08-29 16:58:15 +00:00
}
else if ( strCommand = = " getdata " )
{
vector < CInv > vInv ;
vRecv > > vInv ;
2012-07-31 17:42:35 -04:00
if ( vInv . size ( ) > MAX_INV_SZ )
2011-09-06 17:41:51 -04:00
{
2013-11-18 01:25:17 +01:00
Misbehaving ( pfrom - > GetId ( ) , 20 ) ;
2014-05-06 15:25:01 +02:00
return error ( " message getdata size() = % u " , vInv.size()) ;
2011-09-06 17:41:51 -04:00
}
2010-08-29 16:58:15 +00:00
2013-10-08 12:09:40 +02:00
if ( fDebug | | ( vInv . size ( ) ! = 1 ) )
2014-02-26 17:55:04 -08:00
LogPrint ( " net " , " received getdata (%u invsz) peer=%d \n " , vInv . size ( ) , pfrom - > id ) ;
2012-06-23 21:38:33 -04:00
2013-10-08 12:09:40 +02:00
if ( ( fDebug & & vInv . size ( ) > 0 ) | | ( vInv . size ( ) = = 1 ) )
2014-02-26 17:55:04 -08:00
LogPrint ( " net " , " received getdata for: %s peer=%d \n " , vInv [ 0 ] . ToString ( ) , pfrom - > id ) ;
2010-08-29 16:58:15 +00:00
2013-03-29 23:49:38 +01:00
pfrom - > vRecvGetData . insert ( pfrom - > vRecvGetData . end ( ) , vInv . begin ( ) , vInv . end ( ) ) ;
ProcessGetData ( pfrom ) ;
2010-08-29 16:58:15 +00:00
}
else if ( strCommand = = " getblocks " )
{
CBlockLocator locator ;
uint256 hashStop ;
vRecv > > locator > > hashStop ;
2013-07-25 02:34:42 +02:00
LOCK ( cs_main ) ;
2010-12-05 09:29:30 +00:00
// Find the last block the caller has in the main chain
2014-09-03 02:52:01 +02:00
CBlockIndex * pindex = FindForkInGlobalIndex ( chainActive , locator ) ;
2010-08-29 16:58:15 +00:00
// Send the rest of the chain
if ( pindex )
2013-10-10 23:07:44 +02:00
pindex = chainActive . Next ( pindex ) ;
2012-03-21 22:10:50 -04:00
int nLimit = 500 ;
2014-12-15 09:11:16 +01:00
LogPrint ( " net " , " getblocks %d to %s limit %d from peer=%d \n " , ( pindex ? pindex - > nHeight : - 1 ) , hashStop . IsNull ( ) ? " end " : hashStop . ToString ( ) , nLimit , pfrom - > id ) ;
2013-10-10 23:07:44 +02:00
for ( ; pindex ; pindex = chainActive . Next ( pindex ) )
2010-08-29 16:58:15 +00:00
{
if ( pindex - > GetBlockHash ( ) = = hashStop )
{
2014-01-16 16:15:27 +01:00
LogPrint ( " net " , " getblocks stopping at %d %s \n " , pindex - > nHeight , pindex - > GetBlockHash ( ) . ToString ( ) ) ;
2010-08-29 16:58:15 +00:00
break ;
}
2015-05-12 20:56:50 -04:00
// If pruning, don't inv blocks unless we have on disk and are likely to still have
// for some reasonable time window (1 hour) that block relay might require.
const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / chainparams . GetConsensus ( ) . nPowTargetSpacing ;
if ( fPruneMode & & ( ! ( pindex - > nStatus & BLOCK_HAVE_DATA ) | | pindex - > nHeight < = chainActive . Tip ( ) - > nHeight - nPrunedBlocksLikelyToHave ) )
{
LogPrint ( " net " , " getblocks stopping, pruned or too old block at %d %s \n " , pindex - > nHeight , pindex - > GetBlockHash ( ) . ToString ( ) ) ;
break ;
}
2010-08-29 16:58:15 +00:00
pfrom - > PushInventory ( CInv ( MSG_BLOCK , pindex - > GetBlockHash ( ) ) ) ;
2012-03-21 22:10:50 -04:00
if ( - - nLimit < = 0 )
2010-08-29 16:58:15 +00:00
{
2015-04-28 14:47:17 +00:00
// When this block is requested, we'll send an inv that'll
// trigger the peer to getblocks the next batch of inventory.
2014-01-16 16:15:27 +01:00
LogPrint ( " net " , " getblocks stopping at limit %d %s \n " , pindex - > nHeight , pindex - > GetBlockHash ( ) . ToString ( ) ) ;
2010-08-29 16:58:15 +00:00
pfrom - > hashContinue = pindex - > GetBlockHash ( ) ;
break ;
}
}
}
2010-12-05 09:29:30 +00:00
else if ( strCommand = = " getheaders " )
{
CBlockLocator locator ;
uint256 hashStop ;
vRecv > > locator > > hashStop ;
2013-07-25 02:34:42 +02:00
LOCK ( cs_main ) ;
2015-05-21 13:29:09 -04:00
if ( IsInitialBlockDownload ( ) )
return true ;
2010-12-05 09:29:30 +00:00
CBlockIndex * pindex = NULL ;
if ( locator . IsNull ( ) )
{
// If locator is null, return the hashStop block
2014-09-04 02:02:44 +02:00
BlockMap : : iterator mi = mapBlockIndex . find ( hashStop ) ;
2010-12-05 09:29:30 +00:00
if ( mi = = mapBlockIndex . end ( ) )
return true ;
pindex = ( * mi ) . second ;
}
else
{
// Find the last block the caller has in the main chain
2014-09-03 02:52:01 +02:00
pindex = FindForkInGlobalIndex ( chainActive , locator ) ;
2010-12-05 09:29:30 +00:00
if ( pindex )
2013-10-10 23:07:44 +02:00
pindex = chainActive . Next ( pindex ) ;
2010-12-05 09:29:30 +00:00
}
2012-11-14 22:18:10 +01:00
// we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end
2010-12-05 09:29:30 +00:00
vector < CBlock > vHeaders ;
2014-07-12 00:02:35 +02:00
int nLimit = MAX_HEADERS_RESULTS ;
2014-09-02 17:16:32 +07:00
LogPrint ( " net " , " getheaders %d to %s from peer=%d \n " , ( pindex ? pindex - > nHeight : - 1 ) , hashStop . ToString ( ) , pfrom - > id ) ;
2013-10-10 23:07:44 +02:00
for ( ; pindex ; pindex = chainActive . Next ( pindex ) )
2010-12-05 09:29:30 +00:00
{
vHeaders . push_back ( pindex - > GetBlockHeader ( ) ) ;
if ( - - nLimit < = 0 | | pindex - > GetBlockHash ( ) = = hashStop )
break ;
}
pfrom - > PushMessage ( " headers " , vHeaders ) ;
}
2010-08-29 16:58:15 +00:00
else if ( strCommand = = " tx " )
{
vector < uint256 > vWorkQueue ;
2012-05-17 10:12:04 -04:00
vector < uint256 > vEraseQueue ;
2010-08-29 16:58:15 +00:00
CTransaction tx ;
vRecv > > tx ;
CInv inv ( MSG_TX , tx . GetHash ( ) ) ;
pfrom - > AddInventoryKnown ( inv ) ;
2013-07-25 02:34:42 +02:00
LOCK ( cs_main ) ;
2010-08-29 16:58:15 +00:00
bool fMissingInputs = false ;
2013-01-27 00:14:11 +01:00
CValidationState state ;
2014-07-03 15:28:38 +07:00
mapAlreadyAskedFor . erase ( inv ) ;
2015-08-24 14:02:24 -07:00
// Check for recently rejected (and do other quick existence checks)
if ( AlreadyHave ( inv ) )
return true ;
2013-08-27 15:51:57 +10:00
if ( AcceptToMemoryPool ( mempool , state , tx , true , & fMissingInputs ) )
2010-08-29 16:58:15 +00:00
{
2013-11-05 02:47:07 +01:00
mempool . check ( pcoinsTip ) ;
2014-06-09 10:02:00 +02:00
RelayTransaction ( tx ) ;
2010-08-29 16:58:15 +00:00
vWorkQueue . push_back ( inv . hash ) ;
2015-10-08 00:46:57 -07:00
LogPrint ( " mempool " , " AcceptToMemoryPool: peer=%d: accepted %s (poolsz %u txn, %u kB) \n " ,
2015-09-07 08:19:57 +00:00
pfrom - > id ,
2014-01-16 16:15:27 +01:00
tx . GetHash ( ) . ToString ( ) ,
2015-10-08 00:46:57 -07:00
mempool . size ( ) , mempool . DynamicMemoryUsage ( ) / 1000 ) ;
2013-11-21 17:38:29 +04:00
2010-08-29 16:58:15 +00:00
// Recursively process any orphan transactions that depended on this one
2014-08-28 13:23:24 -04:00
set < NodeId > setMisbehaving ;
2012-04-15 16:52:09 -04:00
for ( unsigned int i = 0 ; i < vWorkQueue . size ( ) ; i + + )
2010-08-29 16:58:15 +00:00
{
2014-09-08 17:37:26 +02:00
map < uint256 , set < uint256 > > : : iterator itByPrev = mapOrphanTransactionsByPrev . find ( vWorkQueue [ i ] ) ;
if ( itByPrev = = mapOrphanTransactionsByPrev . end ( ) )
continue ;
for ( set < uint256 > : : iterator mi = itByPrev - > second . begin ( ) ;
mi ! = itByPrev - > second . end ( ) ;
2010-08-29 16:58:15 +00:00
+ + mi )
{
2013-08-02 15:14:44 +10:00
const uint256 & orphanHash = * mi ;
2014-08-28 13:23:24 -04:00
const CTransaction & orphanTx = mapOrphanTransactions [ orphanHash ] . tx ;
NodeId fromPeer = mapOrphanTransactions [ orphanHash ] . fromPeer ;
2012-05-17 10:12:04 -04:00
bool fMissingInputs2 = false ;
2013-08-02 15:14:44 +10:00
// Use a dummy CValidationState so someone can't setup nodes to counter-DoS based on orphan
// resolution (that is, feeding people an invalid transaction based on LegitTxX in order to get
// anyone relaying LegitTxX banned)
2013-01-31 03:53:21 +00:00
CValidationState stateDummy ;
2010-08-29 16:58:15 +00:00
2014-08-28 13:23:24 -04:00
if ( setMisbehaving . count ( fromPeer ) )
continue ;
2013-08-27 15:51:57 +10:00
if ( AcceptToMemoryPool ( mempool , stateDummy , orphanTx , true , & fMissingInputs2 ) )
2010-08-29 16:58:15 +00:00
{
2014-01-16 16:15:27 +01:00
LogPrint ( " mempool " , " accepted orphan tx %s \n " , orphanHash . ToString ( ) ) ;
2014-06-09 10:02:00 +02:00
RelayTransaction ( orphanTx ) ;
2013-08-02 15:14:44 +10:00
vWorkQueue . push_back ( orphanHash ) ;
2015-04-08 08:57:19 -05:00
vEraseQueue . push_back ( orphanHash ) ;
2012-05-17 10:12:04 -04:00
}
else if ( ! fMissingInputs2 )
{
2014-08-28 13:23:24 -04:00
int nDos = 0 ;
if ( stateDummy . IsInvalid ( nDos ) & & nDos > 0 )
{
// Punish peer that gave us an invalid orphan tx
Misbehaving ( fromPeer , nDos ) ;
setMisbehaving . insert ( fromPeer ) ;
LogPrint ( " mempool " , " invalid orphan tx %s \n " , orphanHash . ToString ( ) ) ;
}
2015-04-08 08:57:19 -05:00
// Has inputs but not accepted to mempool
// Probably non-standard or insufficient fee/priority
2014-01-16 16:15:27 +01:00
LogPrint ( " mempool " , " removed orphan tx %s \n " , orphanHash . ToString ( ) ) ;
2015-04-08 08:57:19 -05:00
vEraseQueue . push_back ( orphanHash ) ;
2015-07-31 17:55:05 +02:00
assert ( recentRejects ) ;
2015-07-17 06:46:48 -04:00
recentRejects - > insert ( orphanHash ) ;
2010-08-29 16:58:15 +00:00
}
2013-11-05 02:47:07 +01:00
mempool . check ( pcoinsTip ) ;
2010-08-29 16:58:15 +00:00
}
}
2012-05-17 10:12:04 -04:00
BOOST_FOREACH ( uint256 hash , vEraseQueue )
2010-08-29 16:58:15 +00:00
EraseOrphanTx ( hash ) ;
}
else if ( fMissingInputs )
{
2014-08-28 13:23:24 -04:00
AddOrphanTx ( tx , pfrom - > GetId ( ) ) ;
2012-02-29 10:14:18 -05:00
// DoS prevention: do not allow mapOrphanTransactions to grow unbounded
2014-09-10 14:08:03 -04:00
unsigned int nMaxOrphanTx = ( unsigned int ) std : : max ( ( int64_t ) 0 , GetArg ( " -maxorphantx " , DEFAULT_MAX_ORPHAN_TRANSACTIONS ) ) ;
unsigned int nEvicted = LimitOrphanTxSize ( nMaxOrphanTx ) ;
2012-02-29 10:14:18 -05:00
if ( nEvicted > 0 )
2013-09-18 20:38:08 +10:00
LogPrint ( " mempool " , " mapOrphan overflow, removed %u tx \n " , nEvicted ) ;
2015-07-17 06:46:48 -04:00
} else {
2015-08-24 14:02:24 -07:00
assert ( recentRejects ) ;
recentRejects - > insert ( tx . GetHash ( ) ) ;
2015-07-17 06:46:48 -04:00
if ( pfrom - > fWhitelisted ) {
// Always relay transactions received from whitelisted peers, even
// if they were rejected from the mempool, allowing the node to
// function as a gateway for nodes hidden behind it.
//
// FIXME: This includes invalid transactions, which means a
// whitelisted peer could get us banned! We may want to change
// that.
RelayTransaction ( tx ) ;
}
2010-08-29 16:58:15 +00:00
}
2013-10-01 16:26:42 +02:00
int nDoS = 0 ;
2013-10-07 08:55:04 +02:00
if ( state . IsInvalid ( nDoS ) )
2014-02-10 16:31:06 +01:00
{
2015-09-07 08:19:57 +00:00
LogPrint ( " mempoolrej " , " %s from peer=%d was not accepted: %s \n " , tx . GetHash ( ) . ToString ( ) ,
pfrom - > id ,
2015-08-06 10:02:12 +02:00
FormatStateMessage ( state ) ) ;
2015-08-06 09:51:36 +02:00
if ( state . GetRejectCode ( ) < REJECT_INTERNAL ) // Never send AcceptToMemoryPool's internal codes over P2P
pfrom - > PushMessage ( " reject " , strCommand , state . GetRejectCode ( ) ,
state . GetRejectReason ( ) . substr ( 0 , MAX_REJECT_MESSAGE_LENGTH ) , inv . hash ) ;
2013-10-07 08:55:04 +02:00
if ( nDoS > 0 )
2013-11-18 01:25:17 +01:00
Misbehaving ( pfrom - > GetId ( ) , nDoS ) ;
2013-10-28 16:36:11 +10:00
}
2010-08-29 16:58:15 +00:00
}
2014-07-12 00:02:35 +02:00
else if ( strCommand = = " headers " & & ! fImporting & & ! fReindex ) // Ignore headers received while importing
{
std : : vector < CBlockHeader > headers ;
// Bypass the normal CBlock deserialization, as we don't want to risk deserializing 2000 full blocks.
unsigned int nCount = ReadCompactSize ( vRecv ) ;
if ( nCount > MAX_HEADERS_RESULTS ) {
Misbehaving ( pfrom - > GetId ( ) , 20 ) ;
return error ( " headers message size = %u " , nCount ) ;
}
headers . resize ( nCount ) ;
for ( unsigned int n = 0 ; n < nCount ; n + + ) {
vRecv > > headers [ n ] ;
ReadCompactSize ( vRecv ) ; // ignore tx count; assume it is 0.
}
LOCK ( cs_main ) ;
if ( nCount = = 0 ) {
// Nothing interesting. Stop asking this peers for more headers.
return true ;
}
CBlockIndex * pindexLast = NULL ;
BOOST_FOREACH ( const CBlockHeader & header , headers ) {
CValidationState state ;
if ( pindexLast ! = NULL & & header . hashPrevBlock ! = pindexLast - > GetBlockHash ( ) ) {
Misbehaving ( pfrom - > GetId ( ) , 20 ) ;
return error ( " non-continuous headers sequence " ) ;
}
if ( ! AcceptBlockHeader ( header , state , & pindexLast ) ) {
int nDoS ;
if ( state . IsInvalid ( nDoS ) ) {
if ( nDoS > 0 )
Misbehaving ( pfrom - > GetId ( ) , nDoS ) ;
return error ( " invalid header received " ) ;
}
}
}
if ( pindexLast )
UpdateBlockAvailability ( pfrom - > GetId ( ) , pindexLast - > GetBlockHash ( ) ) ;
if ( nCount = = MAX_HEADERS_RESULTS & & pindexLast ) {
// Headers message had its maximum size; the peer may have more headers.
// TODO: optimize: if pindexLast is an ancestor of chainActive.Tip or pindexBestHeader, continue
// from there instead.
2014-09-02 17:16:32 +07:00
LogPrint ( " net " , " more getheaders (%d) to end to peer=%d (startheight:%d) \n " , pindexLast - > nHeight , pfrom - > id , pfrom - > nStartingHeight ) ;
2014-12-15 09:11:16 +01:00
pfrom - > PushMessage ( " getheaders " , chainActive . GetLocator ( pindexLast ) , uint256 ( ) ) ;
2014-07-12 00:02:35 +02:00
}
2015-03-13 09:25:34 -07:00
CheckBlockIndex ( ) ;
2014-07-12 00:02:35 +02:00
}
2012-10-21 21:23:13 +02:00
else if ( strCommand = = " block " & & ! fImporting & & ! fReindex ) // Ignore blocks received while importing
2010-08-29 16:58:15 +00:00
{
2010-12-05 09:29:30 +00:00
CBlock block ;
vRecv > > block ;
2010-08-29 16:58:15 +00:00
2010-12-05 09:29:30 +00:00
CInv inv ( MSG_BLOCK , block . GetHash ( ) ) ;
2014-07-12 00:02:35 +02:00
LogPrint ( " net " , " received block %s peer=%d \n " , inv . hash . ToString ( ) , pfrom - > id ) ;
2010-08-29 16:58:15 +00:00
2014-07-12 00:02:35 +02:00
pfrom - > AddInventoryKnown ( inv ) ;
2013-07-25 02:34:42 +02:00
2013-01-27 00:14:11 +01:00
CValidationState state ;
2015-06-02 20:46:41 -04:00
// Process all blocks from whitelisted peers, even if not requested,
// unless we're still syncing with the network.
// Such an unrequested block may still be processed, subject to the
// conditions in AcceptBlock().
bool forceProcessing = pfrom - > fWhitelisted & & ! IsInitialBlockDownload ( ) ;
ProcessNewBlock ( state , pfrom , & block , forceProcessing , NULL ) ;
2014-07-06 14:47:23 +02:00
int nDoS ;
if ( state . IsInvalid ( nDoS ) ) {
2015-08-06 09:51:36 +02:00
assert ( state . GetRejectCode ( ) < REJECT_INTERNAL ) ; // Blocks are never rejected with internal reject codes
2014-07-06 14:47:23 +02:00
pfrom - > PushMessage ( " reject " , strCommand , state . GetRejectCode ( ) ,
2014-11-29 16:01:37 +01:00
state . GetRejectReason ( ) . substr ( 0 , MAX_REJECT_MESSAGE_LENGTH ) , inv . hash ) ;
2014-07-06 14:47:23 +02:00
if ( nDoS > 0 ) {
LOCK ( cs_main ) ;
Misbehaving ( pfrom - > GetId ( ) , nDoS ) ;
}
}
2010-08-29 16:58:15 +00:00
}
2014-12-07 17:30:57 +01:00
// This asymmetric behavior for inbound and outbound connections was introduced
// to prevent a fingerprinting attack: an attacker can send specific fake addresses
2015-04-28 14:47:17 +00:00
// to users' AddrMan and later request them by sending getaddr messages.
// Making nodes which are behind NAT and can only make outgoing connections ignore
// the getaddr message mitigates the attack.
2014-12-07 17:30:57 +01:00
else if ( ( strCommand = = " getaddr " ) & & ( pfrom - > fInbound ) )
2010-08-29 16:58:15 +00:00
{
pfrom - > vAddrToSend . clear ( ) ;
2012-01-04 23:39:45 +01:00
vector < CAddress > vAddr = addrman . GetAddr ( ) ;
BOOST_FOREACH ( const CAddress & addr , vAddr )
pfrom - > PushAddress ( addr ) ;
2010-08-29 16:58:15 +00:00
}
2012-07-31 17:42:35 -04:00
else if ( strCommand = = " mempool " )
{
2013-08-27 15:51:57 +10:00
LOCK2 ( cs_main , pfrom - > cs_filter ) ;
2013-07-25 02:34:42 +02:00
2012-07-31 17:42:35 -04:00
std : : vector < uint256 > vtxid ;
mempool . queryHashes ( vtxid ) ;
vector < CInv > vInv ;
2013-01-10 14:06:30 -05:00
BOOST_FOREACH ( uint256 & hash , vtxid ) {
CInv inv ( MSG_TX , hash ) ;
2013-08-27 15:51:57 +10:00
CTransaction tx ;
bool fInMemPool = mempool . lookup ( hash , tx ) ;
if ( ! fInMemPool ) continue ; // another thread removed since queryHashes, maybe...
2014-06-09 10:02:00 +02:00
if ( ( pfrom - > pfilter & & pfrom - > pfilter - > IsRelevantAndUpdate ( tx ) ) | |
2013-01-10 14:06:30 -05:00
( ! pfrom - > pfilter ) )
vInv . push_back ( inv ) ;
2013-08-27 16:12:43 +10:00
if ( vInv . size ( ) = = MAX_INV_SZ ) {
pfrom - > PushMessage ( " inv " , vInv ) ;
vInv . clear ( ) ;
}
2012-07-31 17:42:35 -04:00
}
if ( vInv . size ( ) > 0 )
pfrom - > PushMessage ( " inv " , vInv ) ;
}
2010-08-29 16:58:15 +00:00
else if ( strCommand = = " ping " )
{
2012-04-11 12:38:03 -04:00
if ( pfrom - > nVersion > BIP0031_VERSION )
{
2013-04-13 00:13:08 -05:00
uint64_t nonce = 0 ;
2012-04-11 12:38:03 -04:00
vRecv > > nonce ;
// Echo the message back with the nonce. This allows for two useful features:
//
// 1) A remote node can quickly check if the connection is operational
// 2) Remote nodes can measure the latency of the network thread. If this node
// is overloaded it won't respond to pings quickly and the remote node can
// avoid sending us more work, like chain download requests.
//
// The nonce stops the remote getting confused between different pings: without
// it, if the remote node sends a ping once per second and this node takes 5
// seconds to respond to each, the 5th ping the remote sends would appear to
// return very quickly.
pfrom - > PushMessage ( " pong " , nonce ) ;
}
2010-08-29 16:58:15 +00:00
}
2013-08-22 04:34:33 -07:00
else if ( strCommand = = " pong " )
{
2014-07-06 16:06:46 +02:00
int64_t pingUsecEnd = nTimeReceived ;
2013-04-13 00:13:08 -05:00
uint64_t nonce = 0 ;
2013-08-22 04:34:33 -07:00
size_t nAvail = vRecv . in_avail ( ) ;
bool bPingFinished = false ;
std : : string sProblem ;
2013-11-11 16:20:39 +01:00
2013-08-22 04:34:33 -07:00
if ( nAvail > = sizeof ( nonce ) ) {
vRecv > > nonce ;
2013-11-11 16:20:39 +01:00
2013-08-22 04:34:33 -07:00
// Only process pong message if there is an outstanding ping (old ping without nonce should never pong)
if ( pfrom - > nPingNonceSent ! = 0 ) {
if ( nonce = = pfrom - > nPingNonceSent ) {
// Matching pong received, this ping is no longer outstanding
bPingFinished = true ;
2013-04-13 00:13:08 -05:00
int64_t pingUsecTime = pingUsecEnd - pfrom - > nPingUsecStart ;
2013-08-22 04:34:33 -07:00
if ( pingUsecTime > 0 ) {
// Successful ping time measurement, replace previous
pfrom - > nPingUsecTime = pingUsecTime ;
2015-08-13 02:31:46 -07:00
pfrom - > nMinPingUsecTime = std : : min ( pfrom - > nMinPingUsecTime , pingUsecTime ) ;
2013-08-22 04:34:33 -07:00
} else {
// This should never happen
sProblem = " Timing mishap " ;
}
} else {
// Nonce mismatches are normal when pings are overlapping
sProblem = " Nonce mismatch " ;
if ( nonce = = 0 ) {
2015-04-28 14:48:28 +00:00
// This is most likely a bug in another implementation somewhere; cancel this ping
2013-08-22 04:34:33 -07:00
bPingFinished = true ;
sProblem = " Nonce zero " ;
}
}
} else {
sProblem = " Unsolicited pong without ping " ;
}
} else {
2015-04-28 14:48:28 +00:00
// This is most likely a bug in another implementation somewhere; cancel this ping
2013-08-22 04:34:33 -07:00
bPingFinished = true ;
sProblem = " Short payload " ;
}
2013-11-11 16:20:39 +01:00
2013-08-22 04:34:33 -07:00
if ( ! ( sProblem . empty ( ) ) ) {
2015-09-07 08:19:57 +00:00
LogPrint ( " net " , " pong peer=%d: %s, %x expected, %x received, %u bytes \n " ,
2014-02-26 17:55:04 -08:00
pfrom - > id ,
2014-01-16 16:15:27 +01:00
sProblem ,
2013-10-15 14:50:58 +02:00
pfrom - > nPingNonceSent ,
nonce ,
nAvail ) ;
2013-08-22 04:34:33 -07:00
}
if ( bPingFinished ) {
pfrom - > nPingNonceSent = 0 ;
}
}
2013-11-11 16:20:39 +01:00
2015-06-12 12:00:39 +02:00
else if ( fAlerts & & strCommand = = " alert " )
2010-08-29 16:58:15 +00:00
{
CAlert alert ;
vRecv > > alert ;
2012-08-26 17:08:18 -04:00
uint256 alertHash = alert . GetHash ( ) ;
if ( pfrom - > setKnown . count ( alertHash ) = = 0 )
2010-08-29 16:58:15 +00:00
{
2015-04-03 17:42:06 +02:00
if ( alert . ProcessAlert ( Params ( ) . AlertKey ( ) ) )
2012-04-06 18:39:12 +02:00
{
2012-08-26 17:08:18 -04:00
// Relay
pfrom - > setKnown . insert ( alertHash ) ;
{
LOCK ( cs_vNodes ) ;
BOOST_FOREACH ( CNode * pnode , vNodes )
alert . RelayTo ( pnode ) ;
}
}
else {
// Small DoS penalty so peers that send us lots of
// duplicate/expired/invalid-signature/whatever alerts
// eventually get banned.
// This isn't a Misbehaving(100) (immediate ban) because the
// peer might be an older or different implementation with
// a different signature key, etc.
2013-11-18 01:25:17 +01:00
Misbehaving ( pfrom - > GetId ( ) , 10 ) ;
2012-04-06 18:39:12 +02:00
}
2010-08-29 16:58:15 +00:00
}
}
2015-08-20 21:15:27 -07:00
else if ( ! ( nLocalServices & NODE_BLOOM ) & &
( strCommand = = " filterload " | |
strCommand = = " filteradd " | |
strCommand = = " filterclear " ) & &
//TODO: Remove this line after reasonable network upgrade
pfrom - > nVersion > = NO_BLOOM_VERSION )
{
if ( pfrom - > nVersion > = NO_BLOOM_VERSION )
Misbehaving ( pfrom - > GetId ( ) , 100 ) ;
//TODO: Enable this after reasonable network upgrade
//else
// pfrom->fDisconnect = true;
}
2012-08-13 05:26:29 +02:00
else if ( strCommand = = " filterload " )
{
CBloomFilter filter ;
vRecv > > filter ;
if ( ! filter . IsWithinSizeConstraints ( ) )
// There is no excuse for sending a too-large filter
2013-11-18 01:25:17 +01:00
Misbehaving ( pfrom - > GetId ( ) , 100 ) ;
2012-08-13 05:26:29 +02:00
else
{
LOCK ( pfrom - > cs_filter ) ;
delete pfrom - > pfilter ;
pfrom - > pfilter = new CBloomFilter ( filter ) ;
2013-08-20 17:41:42 -07:00
pfrom - > pfilter - > UpdateEmptyFull ( ) ;
2012-08-13 05:26:29 +02:00
}
2012-08-20 21:10:25 -04:00
pfrom - > fRelayTxes = true ;
2012-08-13 05:26:29 +02:00
}
else if ( strCommand = = " filteradd " )
{
vector < unsigned char > vData ;
vRecv > > vData ;
// Nodes must NEVER send a data item > 520 bytes (the max size for a script data object,
// and thus, the maximum size any matched object can have) in a filteradd message
2013-01-18 13:55:18 -05:00
if ( vData . size ( ) > MAX_SCRIPT_ELEMENT_SIZE )
2012-08-13 05:26:29 +02:00
{
2013-11-18 01:25:17 +01:00
Misbehaving ( pfrom - > GetId ( ) , 100 ) ;
2012-08-13 05:26:29 +02:00
} else {
LOCK ( pfrom - > cs_filter ) ;
if ( pfrom - > pfilter )
pfrom - > pfilter - > insert ( vData ) ;
else
2013-11-18 01:25:17 +01:00
Misbehaving ( pfrom - > GetId ( ) , 100 ) ;
2012-08-13 05:26:29 +02:00
}
}
else if ( strCommand = = " filterclear " )
{
LOCK ( pfrom - > cs_filter ) ;
delete pfrom - > pfilter ;
2013-08-18 20:21:06 -07:00
pfrom - > pfilter = new CBloomFilter ( ) ;
2012-08-20 21:10:25 -04:00
pfrom - > fRelayTxes = true ;
2012-08-13 05:26:29 +02:00
}
2013-10-28 16:36:11 +10:00
else if ( strCommand = = " reject " )
{
2014-09-12 16:37:53 +02:00
if ( fDebug ) {
try {
string strMsg ; unsigned char ccode ; string strReason ;
2014-11-29 16:01:37 +01:00
vRecv > > LIMITED_STRING ( strMsg , CMessageHeader : : COMMAND_SIZE ) > > ccode > > LIMITED_STRING ( strReason , MAX_REJECT_MESSAGE_LENGTH ) ;
2013-10-28 16:36:11 +10:00
2014-09-12 16:37:53 +02:00
ostringstream ss ;
ss < < strMsg < < " code " < < itostr ( ccode ) < < " : " < < strReason ;
2013-10-28 16:36:11 +10:00
2014-09-12 16:37:53 +02:00
if ( strMsg = = " block " | | strMsg = = " tx " )
{
uint256 hash ;
vRecv > > hash ;
ss < < " : hash " < < hash . ToString ( ) ;
}
LogPrint ( " net " , " Reject %s \n " , SanitizeString ( ss . str ( ) ) ) ;
2014-12-07 13:29:06 +01:00
} catch ( const std : : ios_base : : failure & ) {
2014-09-12 16:37:53 +02:00
// Avoid feedback loops by preventing reject messages from triggering a new reject message.
LogPrint ( " net " , " Unparseable reject message received \n " ) ;
2013-10-28 16:36:11 +10:00
}
}
}
2010-08-29 16:58:15 +00:00
else
{
// Ignore unknown commands for extensibility
2014-06-27 11:03:24 +07:00
LogPrint ( " net " , " Unknown command \" %s \" from peer=%d \n " , SanitizeString ( strCommand ) , pfrom - > id ) ;
2010-08-29 16:58:15 +00:00
}
return true ;
}
2012-11-15 19:41:12 -05:00
// requires LOCK(cs_vRecvMsg)
2011-06-01 18:27:05 +02:00
bool ProcessMessages ( CNode * pfrom )
{
//if (fDebug)
2015-02-24 18:32:34 +01:00
// LogPrintf("%s(%u messages)\n", __func__, pfrom->vRecvMsg.size());
2010-08-29 16:58:15 +00:00
2011-06-01 18:27:05 +02:00
//
// Message format
// (4) message start
// (12) command
// (4) size
// (4) checksum
// (x) data
//
2013-03-01 01:41:28 +01:00
bool fOk = true ;
2010-08-29 16:58:15 +00:00
2013-03-29 23:49:38 +01:00
if ( ! pfrom - > vRecvGetData . empty ( ) )
ProcessGetData ( pfrom ) ;
2013-11-11 16:20:39 +01:00
2013-10-28 13:20:21 -07:00
// this maintains the order of responses
if ( ! pfrom - > vRecvGetData . empty ( ) ) return fOk ;
2013-11-11 16:20:39 +01:00
2013-03-01 01:41:28 +01:00
std : : deque < CNetMessage > : : iterator it = pfrom - > vRecvMsg . begin ( ) ;
2013-03-24 16:52:24 +01:00
while ( ! pfrom - > fDisconnect & & it ! = pfrom - > vRecvMsg . end ( ) ) {
2012-03-21 22:10:50 -04:00
// Don't bother if send buffer is too full to respond anyway
2013-03-24 16:52:24 +01:00
if ( pfrom - > nSendSize > = SendBufferSize ( ) )
2012-03-21 22:10:50 -04:00
break ;
2013-03-01 01:41:28 +01:00
// get next message
CNetMessage & msg = * it ;
2012-11-15 19:41:12 -05:00
//if (fDebug)
2015-02-24 18:32:34 +01:00
// LogPrintf("%s(message %u msgsz, %u bytes, complete:%s)\n", __func__,
2012-11-15 19:41:12 -05:00
// msg.hdr.nMessageSize, msg.vRecv.size(),
// msg.complete() ? "Y" : "N");
2013-03-01 01:41:28 +01:00
// end, if an incomplete message is found
2012-11-15 19:41:12 -05:00
if ( ! msg . complete ( ) )
2011-06-01 18:27:05 +02:00
break ;
2012-11-15 19:41:12 -05:00
2013-03-01 01:41:28 +01:00
// at this point, any failure means we can delete the current message
it + + ;
2012-11-15 19:41:12 -05:00
// Scan for message start
2013-05-07 15:16:25 +02:00
if ( memcmp ( msg . hdr . pchMessageStart , Params ( ) . MessageStart ( ) , MESSAGE_START_SIZE ) ! = 0 ) {
2015-02-08 00:59:58 +00:00
LogPrintf ( " PROCESSMESSAGE: INVALID MESSAGESTART %s peer=%d \n " , SanitizeString ( msg . hdr . GetCommand ( ) ) , pfrom - > id ) ;
2013-03-01 01:41:28 +01:00
fOk = false ;
break ;
2011-06-01 18:27:05 +02:00
}
2010-08-29 16:58:15 +00:00
2011-06-01 18:27:05 +02:00
// Read header
2012-11-15 19:41:12 -05:00
CMessageHeader & hdr = msg . hdr ;
2014-10-27 20:24:31 -04:00
if ( ! hdr . IsValid ( Params ( ) . MessageStart ( ) ) )
2011-06-01 18:27:05 +02:00
{
2015-02-08 00:59:58 +00:00
LogPrintf ( " PROCESSMESSAGE: ERRORS IN HEADER %s peer=%d \n " , SanitizeString ( hdr . GetCommand ( ) ) , pfrom - > id ) ;
2011-06-01 18:27:05 +02:00
continue ;
}
string strCommand = hdr . GetCommand ( ) ;
// Message size
unsigned int nMessageSize = hdr . nMessageSize ;
// Checksum
2012-11-15 19:41:12 -05:00
CDataStream & vRecv = msg . vRecv ;
2012-02-20 01:33:31 +01:00
uint256 hash = Hash ( vRecv . begin ( ) , vRecv . begin ( ) + nMessageSize ) ;
2014-12-19 11:38:30 +01:00
unsigned int nChecksum = ReadLE32 ( ( unsigned char * ) & hash ) ;
2012-02-20 01:33:31 +01:00
if ( nChecksum ! = hdr . nChecksum )
2011-06-01 18:27:05 +02:00
{
2015-02-24 18:32:34 +01:00
LogPrintf ( " %s(%s, %u bytes): CHECKSUM ERROR nChecksum=%08x hdr.nChecksum=%08x \n " , __func__ ,
2015-02-08 00:59:58 +00:00
SanitizeString ( strCommand ) , nMessageSize , nChecksum , hdr . nChecksum ) ;
2012-02-20 01:33:31 +01:00
continue ;
2011-06-01 18:27:05 +02:00
}
// Process message
bool fRet = false ;
try
{
2014-07-06 16:06:46 +02:00
fRet = ProcessMessage ( pfrom , strCommand , vRecv , msg . nTime ) ;
2013-03-09 12:02:57 -05:00
boost : : this_thread : : interruption_point ( ) ;
2011-06-01 18:27:05 +02:00
}
2014-12-07 13:29:06 +01:00
catch ( const std : : ios_base : : failure & e )
2011-06-01 18:27:05 +02:00
{
2013-10-28 16:36:11 +10:00
pfrom - > PushMessage ( " reject " , strCommand , REJECT_MALFORMED , string ( " error parsing message " ) ) ;
2011-06-01 18:27:05 +02:00
if ( strstr ( e . what ( ) , " end of data " ) )
{
2012-07-26 00:48:39 +00:00
// Allow exceptions from under-length message on vRecv
2015-02-24 18:32:34 +01:00
LogPrintf ( " %s(%s, %u bytes): Exception '%s' caught, normally caused by a message being shorter than its stated length \n " , __func__ , SanitizeString ( strCommand ) , nMessageSize , e . what ( ) ) ;
2011-06-01 18:27:05 +02:00
}
else if ( strstr ( e . what ( ) , " size too large " ) )
{
2012-07-26 00:48:39 +00:00
// Allow exceptions from over-long size
2015-02-24 18:32:34 +01:00
LogPrintf ( " %s(%s, %u bytes): Exception '%s' caught \n " , __func__ , SanitizeString ( strCommand ) , nMessageSize , e . what ( ) ) ;
2011-06-01 18:27:05 +02:00
}
else
{
2012-05-22 12:06:08 +01:00
PrintExceptionContinue ( & e , " ProcessMessages() " ) ;
2011-06-01 18:27:05 +02:00
}
}
2014-12-07 13:29:06 +01:00
catch ( const boost : : thread_interrupted & ) {
2013-03-09 12:02:57 -05:00
throw ;
}
2014-12-07 13:29:06 +01:00
catch ( const std : : exception & e ) {
2012-05-22 12:06:08 +01:00
PrintExceptionContinue ( & e , " ProcessMessages() " ) ;
2011-06-01 18:27:05 +02:00
} catch ( . . . ) {
2012-05-22 12:06:08 +01:00
PrintExceptionContinue ( NULL , " ProcessMessages() " ) ;
2011-06-01 18:27:05 +02:00
}
if ( ! fRet )
2015-02-24 18:32:34 +01:00
LogPrintf ( " %s(%s, %u bytes) FAILED peer=%d \n " , __func__ , SanitizeString ( strCommand ) , nMessageSize , pfrom - > id ) ;
2013-11-11 16:20:39 +01:00
2013-10-28 13:20:21 -07:00
break ;
2011-06-01 18:27:05 +02:00
}
2013-03-24 16:52:24 +01:00
// In case the connection got shut down, its receive buffer was wiped
if ( ! pfrom - > fDisconnect )
pfrom - > vRecvMsg . erase ( pfrom - > vRecvMsg . begin ( ) , it ) ;
2013-03-01 01:41:28 +01:00
return fOk ;
2011-06-01 18:27:05 +02:00
}
2010-08-29 16:58:15 +00:00
bool SendMessages ( CNode * pto , bool fSendTrickle )
{
2015-04-10 18:35:09 +02:00
const Consensus : : Params & consensusParams = Params ( ) . GetConsensus ( ) ;
2013-07-20 14:34:16 +02:00
{
2015-04-28 14:47:17 +00:00
// Don't send anything until we get its version message
2010-08-29 16:58:15 +00:00
if ( pto - > nVersion = = 0 )
return true ;
2013-08-22 04:34:33 -07:00
//
// Message: ping
//
bool pingSend = false ;
if ( pto - > fPingQueued ) {
// RPC ping request by user
pingSend = true ;
}
2013-10-15 00:34:20 +02:00
if ( pto - > nPingNonceSent = = 0 & & pto - > nPingUsecStart + PING_INTERVAL * 1000000 < GetTimeMicros ( ) ) {
// Ping automatically sent as a latency probe & keepalive.
2013-08-22 04:34:33 -07:00
pingSend = true ;
}
if ( pingSend ) {
2013-04-13 00:13:08 -05:00
uint64_t nonce = 0 ;
2013-08-22 04:34:33 -07:00
while ( nonce = = 0 ) {
2014-06-24 14:27:32 +02:00
GetRandBytes ( ( unsigned char * ) & nonce , sizeof ( nonce ) ) ;
2013-08-22 04:34:33 -07:00
}
pto - > fPingQueued = false ;
2013-10-15 00:34:20 +02:00
pto - > nPingUsecStart = GetTimeMicros ( ) ;
2013-08-22 04:34:33 -07:00
if ( pto - > nVersion > BIP0031_VERSION ) {
2013-10-15 00:34:20 +02:00
pto - > nPingNonceSent = nonce ;
2012-06-14 18:31:08 +02:00
pto - > PushMessage ( " ping " , nonce ) ;
2013-08-22 04:34:33 -07:00
} else {
2013-10-15 00:34:20 +02:00
// Peer is too old to support ping command with nonce, pong will never arrive.
pto - > nPingNonceSent = 0 ;
2012-04-11 12:38:03 -04:00
pto - > PushMessage ( " ping " ) ;
2013-08-22 04:34:33 -07:00
}
2012-04-11 12:38:03 -04:00
}
2010-08-29 16:58:15 +00:00
2014-04-15 17:38:25 +02:00
TRY_LOCK ( cs_main , lockMain ) ; // Acquire cs_main for IsInitialBlockDownload() and CNodeState()
if ( ! lockMain )
return true ;
2010-08-29 16:58:15 +00:00
// Address refresh broadcast
2013-04-13 00:13:08 -05:00
static int64_t nLastRebroadcast ;
2012-02-01 18:08:03 -05:00
if ( ! IsInitialBlockDownload ( ) & & ( GetTime ( ) - nLastRebroadcast > 24 * 60 * 60 ) )
2010-08-29 16:58:15 +00:00
{
2014-07-20 23:32:25 -07:00
LOCK ( cs_vNodes ) ;
BOOST_FOREACH ( CNode * pnode , vNodes )
2010-08-29 16:58:15 +00:00
{
2015-04-25 16:25:44 -04:00
// Periodically clear addrKnown to allow refresh broadcasts
2014-07-20 23:32:25 -07:00
if ( nLastRebroadcast )
2015-07-20 04:43:34 +09:00
pnode - > addrKnown . reset ( ) ;
2010-08-29 16:58:15 +00:00
2014-07-20 23:32:25 -07:00
// Rebroadcast our address
AdvertizeLocal ( pnode ) ;
2010-08-29 16:58:15 +00:00
}
2014-07-20 23:32:25 -07:00
if ( ! vNodes . empty ( ) )
nLastRebroadcast = GetTime ( ) ;
2010-08-29 16:58:15 +00:00
}
//
// Message: addr
//
if ( fSendTrickle )
{
vector < CAddress > vAddr ;
vAddr . reserve ( pto - > vAddrToSend . size ( ) ) ;
2011-05-15 09:11:04 +02:00
BOOST_FOREACH ( const CAddress & addr , pto - > vAddrToSend )
2010-08-29 16:58:15 +00:00
{
2015-04-25 16:25:44 -04:00
if ( ! pto - > addrKnown . contains ( addr . GetKey ( ) ) )
2010-08-29 16:58:15 +00:00
{
2015-04-25 16:25:44 -04:00
pto - > addrKnown . insert ( addr . GetKey ( ) ) ;
2010-08-29 16:58:15 +00:00
vAddr . push_back ( addr ) ;
// receiver rejects addr messages larger than 1000
if ( vAddr . size ( ) > = 1000 )
{
pto - > PushMessage ( " addr " , vAddr ) ;
vAddr . clear ( ) ;
}
}
}
pto - > vAddrToSend . clear ( ) ;
if ( ! vAddr . empty ( ) )
pto - > PushMessage ( " addr " , vAddr ) ;
}
2013-11-16 19:28:24 +01:00
CNodeState & state = * State ( pto - > GetId ( ) ) ;
if ( state . fShouldBan ) {
2014-06-21 13:34:36 +02:00
if ( pto - > fWhitelisted )
LogPrintf ( " Warning: not punishing whitelisted peer %s! \n " , pto - > addr . ToString ( ) ) ;
2013-11-18 01:25:17 +01:00
else {
pto - > fDisconnect = true ;
2014-06-21 13:34:36 +02:00
if ( pto - > addr . IsLocal ( ) )
LogPrintf ( " Warning: not banning local peer %s! \n " , pto - > addr . ToString ( ) ) ;
else
2014-08-28 13:23:24 -04:00
{
2015-06-26 21:38:33 +02:00
CNode : : Ban ( pto - > addr , BanReasonNodeMisbehaving ) ;
2014-08-28 13:23:24 -04:00
}
2013-11-18 01:25:17 +01:00
}
2013-11-16 19:28:24 +01:00
state . fShouldBan = false ;
2013-11-18 01:25:17 +01:00
}
2013-11-16 19:28:24 +01:00
BOOST_FOREACH ( const CBlockReject & reject , state . rejects )
pto - > PushMessage ( " reject " , ( string ) " block " , reject . chRejectCode , reject . strRejectReason , reject . hashBlock ) ;
state . rejects . clear ( ) ;
2013-07-20 14:34:16 +02:00
// Start block sync
2014-07-12 00:02:35 +02:00
if ( pindexBestHeader = = NULL )
pindexBestHeader = chainActive . Tip ( ) ;
2014-10-28 09:33:55 -07:00
bool fFetch = state . fPreferredDownload | | ( nPreferredDownload = = 0 & & ! pto - > fClient & & ! pto - > fOneShot ) ; // Download if this is a nice peer, or we have no nice peers and this one might do.
2015-01-12 09:55:48 -05:00
if ( ! state . fSyncStarted & & ! pto - > fClient & & ! fImporting & & ! fReindex ) {
2014-07-12 00:02:35 +02:00
// Only actively request headers from a single peer, unless we're close to today.
2015-01-12 09:55:48 -05:00
if ( ( nSyncStarted = = 0 & & fFetch ) | | pindexBestHeader - > GetBlockTime ( ) > GetAdjustedTime ( ) - 24 * 60 * 60 ) {
2014-07-12 00:02:35 +02:00
state . fSyncStarted = true ;
nSyncStarted + + ;
2015-10-14 20:42:49 +02:00
const CBlockIndex * pindexStart = pindexBestHeader ;
/* If possible, start at the block preceding the currently
best known header . This ensures that we always get a
non - empty list of headers back as long as the peer
is up - to - date . With a non - empty response , we can initialise
the peer ' s known best block . This wouldn ' t be possible
if we requested starting at pindexBestHeader and
got back an empty response . */
if ( pindexStart - > pprev )
pindexStart = pindexStart - > pprev ;
2014-09-02 17:16:32 +07:00
LogPrint ( " net " , " initial getheaders (%d) to peer=%d (startheight:%d) \n " , pindexStart - > nHeight , pto - > id , pto - > nStartingHeight ) ;
2014-12-15 09:11:16 +01:00
pto - > PushMessage ( " getheaders " , chainActive . GetLocator ( pindexStart ) , uint256 ( ) ) ;
2014-07-12 00:02:35 +02:00
}
2013-07-20 14:34:16 +02:00
}
// Resend wallet transactions that haven't gotten in a block yet
// Except during reindex, importing and IBD, when old wallet
// transactions become unconfirmed and spams other nodes.
if ( ! fReindex & & ! fImporting & & ! IsInitialBlockDownload ( ) )
{
2015-03-23 13:47:18 -04:00
GetMainSignals ( ) . Broadcast ( nTimeBestReceived ) ;
2013-07-20 14:34:16 +02:00
}
2010-08-29 16:58:15 +00:00
//
// Message: inventory
//
vector < CInv > vInv ;
vector < CInv > vInvWait ;
{
2012-04-06 18:39:12 +02:00
LOCK ( pto - > cs_inventory ) ;
2010-08-29 16:58:15 +00:00
vInv . reserve ( pto - > vInventoryToSend . size ( ) ) ;
vInvWait . reserve ( pto - > vInventoryToSend . size ( ) ) ;
2011-05-15 09:11:04 +02:00
BOOST_FOREACH ( const CInv & inv , pto - > vInventoryToSend )
2010-08-29 16:58:15 +00:00
{
if ( pto - > setInventoryKnown . count ( inv ) )
continue ;
// trickle out tx inv to protect privacy
if ( inv . type = = MSG_TX & & ! fSendTrickle )
{
// 1/4 of tx invs blast to all immediately
static uint256 hashSalt ;
2014-12-15 09:11:16 +01:00
if ( hashSalt . IsNull ( ) )
2012-05-17 12:13:14 -04:00
hashSalt = GetRandHash ( ) ;
2014-12-16 15:43:03 +01:00
uint256 hashRand = ArithToUint256 ( UintToArith256 ( inv . hash ) ^ UintToArith256 ( hashSalt ) ) ;
2010-08-29 16:58:15 +00:00
hashRand = Hash ( BEGIN ( hashRand ) , END ( hashRand ) ) ;
2014-12-16 15:43:03 +01:00
bool fTrickleWait = ( ( UintToArith256 ( hashRand ) & 3 ) ! = 0 ) ;
2010-08-29 16:58:15 +00:00
if ( fTrickleWait )
{
vInvWait . push_back ( inv ) ;
continue ;
}
}
// returns true if wasn't already contained in the set
if ( pto - > setInventoryKnown . insert ( inv ) . second )
{
vInv . push_back ( inv ) ;
if ( vInv . size ( ) > = 1000 )
{
pto - > PushMessage ( " inv " , vInv ) ;
vInv . clear ( ) ;
}
}
}
pto - > vInventoryToSend = vInvWait ;
}
if ( ! vInv . empty ( ) )
pto - > PushMessage ( " inv " , vInv ) ;
2014-07-12 00:02:35 +02:00
// Detect whether we're stalling
2014-01-10 13:23:26 +01:00
int64_t nNow = GetTimeMicros ( ) ;
2014-07-12 00:02:35 +02:00
if ( ! pto - > fDisconnect & & state . nStallingSince & & state . nStallingSince < nNow - 1000000 * BLOCK_STALLING_TIMEOUT ) {
// Stalling only triggers when the block download window cannot move. During normal steady state,
// the download window should be much larger than the to-be-downloaded set of blocks, so disconnection
// should only happen during initial block download.
LogPrintf ( " Peer=%d is stalling block download, disconnecting \n " , pto - > id ) ;
2014-01-10 13:23:26 +01:00
pto - > fDisconnect = true ;
}
2015-01-12 09:53:10 -08:00
// In case there is a block that has been in flight from this peer for (2 + 0.5 * N) times the block interval
2015-01-06 17:05:46 +01:00
// (with N the number of validated blocks that were in flight at the time it was requested), disconnect due to
// timeout. We compensate for in-flight blocks to prevent killing off peers due to our own downstream link
2015-04-28 14:48:28 +00:00
// being saturated. We only count validated in-flight blocks so peers can't advertise non-existing block hashes
2015-01-06 17:05:46 +01:00
// to unreasonably increase our timeout.
2015-04-06 13:10:33 -04:00
// We also compare the block download timeout originally calculated against the time at which we'd disconnect
// if we assumed the block were being requested now (ignoring blocks we've requested from this peer, since we're
// only looking at this peer's oldest request). This way a large queue in the past doesn't result in a
// permanently large window for this block to be delivered (ie if the number of blocks in flight is decreasing
// more quickly than once every 5 minutes, then we'll shorten the download window for this block).
if ( ! pto - > fDisconnect & & state . vBlocksInFlight . size ( ) > 0 ) {
QueuedBlock & queuedBlock = state . vBlocksInFlight . front ( ) ;
2015-05-27 10:57:17 -04:00
int64_t nTimeoutIfRequestedNow = GetBlockTimeout ( nNow , nQueuedValidatedHeaders - state . nBlocksInFlightValidHeaders , consensusParams ) ;
2015-04-06 13:10:33 -04:00
if ( queuedBlock . nTimeDisconnect > nTimeoutIfRequestedNow ) {
LogPrint ( " net " , " Reducing block download timeout for peer=%d block=%s, orig=%d new=%d \n " , pto - > id , queuedBlock . hash . ToString ( ) , queuedBlock . nTimeDisconnect , nTimeoutIfRequestedNow ) ;
queuedBlock . nTimeDisconnect = nTimeoutIfRequestedNow ;
}
if ( queuedBlock . nTimeDisconnect < nNow ) {
LogPrintf ( " Timeout downloading block %s from peer=%d, disconnecting \n " , queuedBlock . hash . ToString ( ) , pto - > id ) ;
pto - > fDisconnect = true ;
}
2015-01-06 17:05:46 +01:00
}
2014-01-10 13:23:26 +01:00
2010-08-29 16:58:15 +00:00
//
2014-01-10 13:23:26 +01:00
// Message: getdata (blocks)
2010-08-29 16:58:15 +00:00
//
vector < CInv > vGetData ;
2015-01-12 09:55:48 -05:00
if ( ! pto - > fDisconnect & & ! pto - > fClient & & ( fFetch | | ! IsInitialBlockDownload ( ) ) & & state . nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER ) {
2014-07-12 00:02:35 +02:00
vector < CBlockIndex * > vToDownload ;
NodeId staller = - 1 ;
FindNextBlocksToDownload ( pto - > GetId ( ) , MAX_BLOCKS_IN_TRANSIT_PER_PEER - state . nBlocksInFlight , vToDownload , staller ) ;
BOOST_FOREACH ( CBlockIndex * pindex , vToDownload ) {
vGetData . push_back ( CInv ( MSG_BLOCK , pindex - > GetBlockHash ( ) ) ) ;
2015-05-27 10:57:17 -04:00
MarkBlockAsInFlight ( pto - > GetId ( ) , pindex - > GetBlockHash ( ) , consensusParams , pindex ) ;
2014-09-05 22:32:22 +07:00
LogPrint ( " net " , " Requesting block %s (%d) peer=%d \n " , pindex - > GetBlockHash ( ) . ToString ( ) ,
pindex - > nHeight , pto - > id ) ;
2014-07-12 00:02:35 +02:00
}
if ( state . nBlocksInFlight = = 0 & & staller ! = - 1 ) {
2014-09-04 01:31:01 +07:00
if ( State ( staller ) - > nStallingSince = = 0 ) {
2014-07-12 00:02:35 +02:00
State ( staller ) - > nStallingSince = nNow ;
2014-09-04 01:31:01 +07:00
LogPrint ( " net " , " Stall started peer=%d \n " , staller ) ;
}
2014-01-10 13:23:26 +01:00
}
}
//
// Message: getdata (non-blocks)
//
while ( ! pto - > fDisconnect & & ! pto - > mapAskFor . empty ( ) & & ( * pto - > mapAskFor . begin ( ) ) . first < = nNow )
2010-08-29 16:58:15 +00:00
{
const CInv & inv = ( * pto - > mapAskFor . begin ( ) ) . second ;
2012-07-06 16:33:34 +02:00
if ( ! AlreadyHave ( inv ) )
2010-08-29 16:58:15 +00:00
{
2013-10-08 12:09:40 +02:00
if ( fDebug )
2014-02-26 17:55:04 -08:00
LogPrint ( " net " , " Requesting %s peer=%d \n " , inv . ToString ( ) , pto - > id ) ;
2010-08-29 16:58:15 +00:00
vGetData . push_back ( inv ) ;
if ( vGetData . size ( ) > = 1000 )
{
pto - > PushMessage ( " getdata " , vGetData ) ;
vGetData . clear ( ) ;
}
}
pto - > mapAskFor . erase ( pto - > mapAskFor . begin ( ) ) ;
}
if ( ! vGetData . empty ( ) )
pto - > PushMessage ( " getdata " , vGetData ) ;
}
return true ;
}
2014-08-21 05:17:21 +02:00
std : : string CBlockFileInfo : : ToString ( ) const {
2014-09-08 12:25:52 +02:00
return strprintf ( " CBlockFileInfo(blocks=%u, size=%u, heights=%u...%u, time=%s...%s) " , nBlocks, nSize, nHeightFirst, nHeightLast, DateTimeStrFormat( " % Y - % m - % d " , nTimeFirst), DateTimeStrFormat( " % Y - % m - % d " , nTimeLast)) ;
2014-08-21 05:17:21 +02:00
}
2010-08-29 16:58:15 +00:00
2013-03-29 02:17:10 +01:00
class CMainCleanup
{
public :
CMainCleanup ( ) { }
~ CMainCleanup ( ) {
// block headers
2014-09-04 02:02:44 +02:00
BlockMap : : iterator it1 = mapBlockIndex . begin ( ) ;
2013-03-29 02:17:10 +01:00
for ( ; it1 ! = mapBlockIndex . end ( ) ; it1 + + )
delete ( * it1 ) . second ;
mapBlockIndex . clear ( ) ;
// orphan transactions
mapOrphanTransactions . clear ( ) ;
2014-08-28 13:23:24 -04:00
mapOrphanTransactionsByPrev . clear ( ) ;
2013-03-29 02:17:10 +01:00
}
} instance_of_cmaincleanup ;