mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-10 11:57:28 -03:00
1230 lines
41 KiB
C++
1230 lines
41 KiB
C++
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
|
// Copyright (c) 2009-2022 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#ifndef BITCOIN_SERIALIZE_H
|
|
#define BITCOIN_SERIALIZE_H
|
|
|
|
#include <attributes.h>
|
|
#include <compat/assumptions.h> // IWYU pragma: keep
|
|
#include <compat/endian.h>
|
|
#include <prevector.h>
|
|
#include <span.h>
|
|
|
|
#include <algorithm>
|
|
#include <concepts>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <ios>
|
|
#include <limits>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
/**
|
|
* The maximum size of a serialized object in bytes or number of elements
|
|
* (for eg vectors) when the size is encoded as CompactSize.
|
|
*/
|
|
static constexpr uint64_t MAX_SIZE = 0x02000000;
|
|
|
|
/** Maximum amount of memory (in bytes) to allocate at once when deserializing vectors. */
|
|
static const unsigned int MAX_VECTOR_ALLOCATE = 5000000;
|
|
|
|
/**
|
|
* Dummy data type to identify deserializing constructors.
|
|
*
|
|
* By convention, a constructor of a type T with signature
|
|
*
|
|
* template <typename Stream> T::T(deserialize_type, Stream& s)
|
|
*
|
|
* is a deserializing constructor, which builds the type by
|
|
* deserializing it from s. If T contains const fields, this
|
|
* is likely the only way to do so.
|
|
*/
|
|
struct deserialize_type {};
|
|
constexpr deserialize_type deserialize {};
|
|
|
|
/*
|
|
* Lowest-level serialization and conversion.
|
|
*/
|
|
template<typename Stream> inline void ser_writedata8(Stream &s, uint8_t obj)
|
|
{
|
|
s.write(AsBytes(Span{&obj, 1}));
|
|
}
|
|
template<typename Stream> inline void ser_writedata16(Stream &s, uint16_t obj)
|
|
{
|
|
obj = htole16_internal(obj);
|
|
s.write(AsBytes(Span{&obj, 1}));
|
|
}
|
|
template<typename Stream> inline void ser_writedata16be(Stream &s, uint16_t obj)
|
|
{
|
|
obj = htobe16_internal(obj);
|
|
s.write(AsBytes(Span{&obj, 1}));
|
|
}
|
|
template<typename Stream> inline void ser_writedata32(Stream &s, uint32_t obj)
|
|
{
|
|
obj = htole32_internal(obj);
|
|
s.write(AsBytes(Span{&obj, 1}));
|
|
}
|
|
template<typename Stream> inline void ser_writedata32be(Stream &s, uint32_t obj)
|
|
{
|
|
obj = htobe32_internal(obj);
|
|
s.write(AsBytes(Span{&obj, 1}));
|
|
}
|
|
template<typename Stream> inline void ser_writedata64(Stream &s, uint64_t obj)
|
|
{
|
|
obj = htole64_internal(obj);
|
|
s.write(AsBytes(Span{&obj, 1}));
|
|
}
|
|
template<typename Stream> inline uint8_t ser_readdata8(Stream &s)
|
|
{
|
|
uint8_t obj;
|
|
s.read(AsWritableBytes(Span{&obj, 1}));
|
|
return obj;
|
|
}
|
|
template<typename Stream> inline uint16_t ser_readdata16(Stream &s)
|
|
{
|
|
uint16_t obj;
|
|
s.read(AsWritableBytes(Span{&obj, 1}));
|
|
return le16toh_internal(obj);
|
|
}
|
|
template<typename Stream> inline uint16_t ser_readdata16be(Stream &s)
|
|
{
|
|
uint16_t obj;
|
|
s.read(AsWritableBytes(Span{&obj, 1}));
|
|
return be16toh_internal(obj);
|
|
}
|
|
template<typename Stream> inline uint32_t ser_readdata32(Stream &s)
|
|
{
|
|
uint32_t obj;
|
|
s.read(AsWritableBytes(Span{&obj, 1}));
|
|
return le32toh_internal(obj);
|
|
}
|
|
template<typename Stream> inline uint32_t ser_readdata32be(Stream &s)
|
|
{
|
|
uint32_t obj;
|
|
s.read(AsWritableBytes(Span{&obj, 1}));
|
|
return be32toh_internal(obj);
|
|
}
|
|
template<typename Stream> inline uint64_t ser_readdata64(Stream &s)
|
|
{
|
|
uint64_t obj;
|
|
s.read(AsWritableBytes(Span{&obj, 1}));
|
|
return le64toh_internal(obj);
|
|
}
|
|
|
|
|
|
class SizeComputer;
|
|
|
|
/**
|
|
* Convert any argument to a reference to X, maintaining constness.
|
|
*
|
|
* This can be used in serialization code to invoke a base class's
|
|
* serialization routines.
|
|
*
|
|
* Example use:
|
|
* class Base { ... };
|
|
* class Child : public Base {
|
|
* int m_data;
|
|
* public:
|
|
* SERIALIZE_METHODS(Child, obj) {
|
|
* READWRITE(AsBase<Base>(obj), obj.m_data);
|
|
* }
|
|
* };
|
|
*
|
|
* static_cast cannot easily be used here, as the type of Obj will be const Child&
|
|
* during serialization and Child& during deserialization. AsBase will convert to
|
|
* const Base& and Base& appropriately.
|
|
*/
|
|
template <class Out, class In>
|
|
Out& AsBase(In& x)
|
|
{
|
|
static_assert(std::is_base_of_v<Out, In>);
|
|
return x;
|
|
}
|
|
template <class Out, class In>
|
|
const Out& AsBase(const In& x)
|
|
{
|
|
static_assert(std::is_base_of_v<Out, In>);
|
|
return x;
|
|
}
|
|
|
|
#define READWRITE(...) (ser_action.SerReadWriteMany(s, __VA_ARGS__))
|
|
#define SER_READ(obj, code) ser_action.SerRead(s, obj, [&](Stream& s, typename std::remove_const<Type>::type& obj) { code; })
|
|
#define SER_WRITE(obj, code) ser_action.SerWrite(s, obj, [&](Stream& s, const Type& obj) { code; })
|
|
|
|
/**
|
|
* Implement the Ser and Unser methods needed for implementing a formatter (see Using below).
|
|
*
|
|
* Both Ser and Unser are delegated to a single static method SerializationOps, which is polymorphic
|
|
* in the serialized/deserialized type (allowing it to be const when serializing, and non-const when
|
|
* deserializing).
|
|
*
|
|
* Example use:
|
|
* struct FooFormatter {
|
|
* FORMATTER_METHODS(Class, obj) { READWRITE(obj.val1, VARINT(obj.val2)); }
|
|
* }
|
|
* would define a class FooFormatter that defines a serialization of Class objects consisting
|
|
* of serializing its val1 member using the default serialization, and its val2 member using
|
|
* VARINT serialization. That FooFormatter can then be used in statements like
|
|
* READWRITE(Using<FooFormatter>(obj.bla)).
|
|
*/
|
|
#define FORMATTER_METHODS(cls, obj) \
|
|
template<typename Stream> \
|
|
static void Ser(Stream& s, const cls& obj) { SerializationOps(obj, s, ActionSerialize{}); } \
|
|
template<typename Stream> \
|
|
static void Unser(Stream& s, cls& obj) { SerializationOps(obj, s, ActionUnserialize{}); } \
|
|
template<typename Stream, typename Type, typename Operation> \
|
|
static void SerializationOps(Type& obj, Stream& s, Operation ser_action)
|
|
|
|
/**
|
|
* Formatter methods can retrieve parameters attached to a stream using the
|
|
* SER_PARAMS(type) macro as long as the stream is created directly or
|
|
* indirectly with a parameter of that type. This permits making serialization
|
|
* depend on run-time context in a type-safe way.
|
|
*
|
|
* Example use:
|
|
* struct BarParameter { bool fancy; ... };
|
|
* struct Bar { ... };
|
|
* struct FooFormatter {
|
|
* FORMATTER_METHODS(Bar, obj) {
|
|
* auto& param = SER_PARAMS(BarParameter);
|
|
* if (param.fancy) {
|
|
* READWRITE(VARINT(obj.value));
|
|
* } else {
|
|
* READWRITE(obj.value);
|
|
* }
|
|
* }
|
|
* };
|
|
* which would then be invoked as
|
|
* READWRITE(BarParameter{...}(Using<FooFormatter>(obj.foo)))
|
|
*
|
|
* parameter(obj) can be invoked anywhere in the call stack; it is
|
|
* passed down recursively into all serialization code, until another
|
|
* serialization parameter overrides it.
|
|
*
|
|
* Parameters will be implicitly converted where appropriate. This means that
|
|
* "parent" serialization code can use a parameter that derives from, or is
|
|
* convertible to, a "child" formatter's parameter type.
|
|
*
|
|
* Compilation will fail in any context where serialization is invoked but
|
|
* no parameter of a type convertible to BarParameter is provided.
|
|
*/
|
|
#define SER_PARAMS(type) (s.template GetParams<type>())
|
|
|
|
#define BASE_SERIALIZE_METHODS(cls) \
|
|
template <typename Stream> \
|
|
void Serialize(Stream& s) const \
|
|
{ \
|
|
static_assert(std::is_same<const cls&, decltype(*this)>::value, "Serialize type mismatch"); \
|
|
Ser(s, *this); \
|
|
} \
|
|
template <typename Stream> \
|
|
void Unserialize(Stream& s) \
|
|
{ \
|
|
static_assert(std::is_same<cls&, decltype(*this)>::value, "Unserialize type mismatch"); \
|
|
Unser(s, *this); \
|
|
}
|
|
|
|
/**
|
|
* Implement the Serialize and Unserialize methods by delegating to a single templated
|
|
* static method that takes the to-be-(de)serialized object as a parameter. This approach
|
|
* has the advantage that the constness of the object becomes a template parameter, and
|
|
* thus allows a single implementation that sees the object as const for serializing
|
|
* and non-const for deserializing, without casts.
|
|
*/
|
|
#define SERIALIZE_METHODS(cls, obj) \
|
|
BASE_SERIALIZE_METHODS(cls) \
|
|
FORMATTER_METHODS(cls, obj)
|
|
|
|
// Templates for serializing to anything that looks like a stream,
|
|
// i.e. anything that supports .read(Span<std::byte>) and .write(Span<const std::byte>)
|
|
//
|
|
// clang-format off
|
|
|
|
// Typically int8_t and char are distinct types, but some systems may define int8_t
|
|
// in terms of char. Forbid serialization of char in the typical case, but allow it if
|
|
// it's the only way to describe an int8_t.
|
|
template<class T>
|
|
concept CharNotInt8 = std::same_as<T, char> && !std::same_as<T, int8_t>;
|
|
|
|
template <typename Stream, CharNotInt8 V> void Serialize(Stream&, V) = delete; // char serialization forbidden. Use uint8_t or int8_t
|
|
template <typename Stream> void Serialize(Stream& s, std::byte a) { ser_writedata8(s, uint8_t(a)); }
|
|
template<typename Stream> inline void Serialize(Stream& s, int8_t a ) { ser_writedata8(s, a); }
|
|
template<typename Stream> inline void Serialize(Stream& s, uint8_t a ) { ser_writedata8(s, a); }
|
|
template<typename Stream> inline void Serialize(Stream& s, int16_t a ) { ser_writedata16(s, a); }
|
|
template<typename Stream> inline void Serialize(Stream& s, uint16_t a) { ser_writedata16(s, a); }
|
|
template<typename Stream> inline void Serialize(Stream& s, int32_t a ) { ser_writedata32(s, a); }
|
|
template<typename Stream> inline void Serialize(Stream& s, uint32_t a) { ser_writedata32(s, a); }
|
|
template<typename Stream> inline void Serialize(Stream& s, int64_t a ) { ser_writedata64(s, a); }
|
|
template<typename Stream> inline void Serialize(Stream& s, uint64_t a) { ser_writedata64(s, a); }
|
|
template <typename Stream, BasicByte B, int N> void Serialize(Stream& s, const B (&a)[N]) { s.write(MakeByteSpan(a)); }
|
|
template <typename Stream, BasicByte B, std::size_t N> void Serialize(Stream& s, const std::array<B, N>& a) { s.write(MakeByteSpan(a)); }
|
|
template <typename Stream, BasicByte B> void Serialize(Stream& s, Span<B> span) { s.write(AsBytes(span)); }
|
|
|
|
template <typename Stream, CharNotInt8 V> void Unserialize(Stream&, V) = delete; // char serialization forbidden. Use uint8_t or int8_t
|
|
template <typename Stream> void Unserialize(Stream& s, std::byte& a) { a = std::byte{ser_readdata8(s)}; }
|
|
template<typename Stream> inline void Unserialize(Stream& s, int8_t& a ) { a = ser_readdata8(s); }
|
|
template<typename Stream> inline void Unserialize(Stream& s, uint8_t& a ) { a = ser_readdata8(s); }
|
|
template<typename Stream> inline void Unserialize(Stream& s, int16_t& a ) { a = ser_readdata16(s); }
|
|
template<typename Stream> inline void Unserialize(Stream& s, uint16_t& a) { a = ser_readdata16(s); }
|
|
template<typename Stream> inline void Unserialize(Stream& s, int32_t& a ) { a = ser_readdata32(s); }
|
|
template<typename Stream> inline void Unserialize(Stream& s, uint32_t& a) { a = ser_readdata32(s); }
|
|
template<typename Stream> inline void Unserialize(Stream& s, int64_t& a ) { a = ser_readdata64(s); }
|
|
template<typename Stream> inline void Unserialize(Stream& s, uint64_t& a) { a = ser_readdata64(s); }
|
|
template <typename Stream, BasicByte B, int N> void Unserialize(Stream& s, B (&a)[N]) { s.read(MakeWritableByteSpan(a)); }
|
|
template <typename Stream, BasicByte B, std::size_t N> void Unserialize(Stream& s, std::array<B, N>& a) { s.read(MakeWritableByteSpan(a)); }
|
|
template <typename Stream, BasicByte B> void Unserialize(Stream& s, Span<B> span) { s.read(AsWritableBytes(span)); }
|
|
|
|
template <typename Stream> inline void Serialize(Stream& s, bool a) { uint8_t f = a; ser_writedata8(s, f); }
|
|
template <typename Stream> inline void Unserialize(Stream& s, bool& a) { uint8_t f = ser_readdata8(s); a = f; }
|
|
// clang-format on
|
|
|
|
|
|
/**
|
|
* Compact Size
|
|
* size < 253 -- 1 byte
|
|
* size <= USHRT_MAX -- 3 bytes (253 + 2 bytes)
|
|
* size <= UINT_MAX -- 5 bytes (254 + 4 bytes)
|
|
* size > UINT_MAX -- 9 bytes (255 + 8 bytes)
|
|
*/
|
|
constexpr inline unsigned int GetSizeOfCompactSize(uint64_t nSize)
|
|
{
|
|
if (nSize < 253) return sizeof(unsigned char);
|
|
else if (nSize <= std::numeric_limits<uint16_t>::max()) return sizeof(unsigned char) + sizeof(uint16_t);
|
|
else if (nSize <= std::numeric_limits<unsigned int>::max()) return sizeof(unsigned char) + sizeof(unsigned int);
|
|
else return sizeof(unsigned char) + sizeof(uint64_t);
|
|
}
|
|
|
|
inline void WriteCompactSize(SizeComputer& os, uint64_t nSize);
|
|
|
|
template<typename Stream>
|
|
void WriteCompactSize(Stream& os, uint64_t nSize)
|
|
{
|
|
if (nSize < 253)
|
|
{
|
|
ser_writedata8(os, nSize);
|
|
}
|
|
else if (nSize <= std::numeric_limits<uint16_t>::max())
|
|
{
|
|
ser_writedata8(os, 253);
|
|
ser_writedata16(os, nSize);
|
|
}
|
|
else if (nSize <= std::numeric_limits<unsigned int>::max())
|
|
{
|
|
ser_writedata8(os, 254);
|
|
ser_writedata32(os, nSize);
|
|
}
|
|
else
|
|
{
|
|
ser_writedata8(os, 255);
|
|
ser_writedata64(os, nSize);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* Decode a CompactSize-encoded variable-length integer.
|
|
*
|
|
* As these are primarily used to encode the size of vector-like serializations, by default a range
|
|
* check is performed. When used as a generic number encoding, range_check should be set to false.
|
|
*/
|
|
template<typename Stream>
|
|
uint64_t ReadCompactSize(Stream& is, bool range_check = true)
|
|
{
|
|
uint8_t chSize = ser_readdata8(is);
|
|
uint64_t nSizeRet = 0;
|
|
if (chSize < 253)
|
|
{
|
|
nSizeRet = chSize;
|
|
}
|
|
else if (chSize == 253)
|
|
{
|
|
nSizeRet = ser_readdata16(is);
|
|
if (nSizeRet < 253)
|
|
throw std::ios_base::failure("non-canonical ReadCompactSize()");
|
|
}
|
|
else if (chSize == 254)
|
|
{
|
|
nSizeRet = ser_readdata32(is);
|
|
if (nSizeRet < 0x10000u)
|
|
throw std::ios_base::failure("non-canonical ReadCompactSize()");
|
|
}
|
|
else
|
|
{
|
|
nSizeRet = ser_readdata64(is);
|
|
if (nSizeRet < 0x100000000ULL)
|
|
throw std::ios_base::failure("non-canonical ReadCompactSize()");
|
|
}
|
|
if (range_check && nSizeRet > MAX_SIZE) {
|
|
throw std::ios_base::failure("ReadCompactSize(): size too large");
|
|
}
|
|
return nSizeRet;
|
|
}
|
|
|
|
/**
|
|
* Variable-length integers: bytes are a MSB base-128 encoding of the number.
|
|
* The high bit in each byte signifies whether another digit follows. To make
|
|
* sure the encoding is one-to-one, one is subtracted from all but the last digit.
|
|
* Thus, the byte sequence a[] with length len, where all but the last byte
|
|
* has bit 128 set, encodes the number:
|
|
*
|
|
* (a[len-1] & 0x7F) + sum(i=1..len-1, 128^i*((a[len-i-1] & 0x7F)+1))
|
|
*
|
|
* Properties:
|
|
* * Very small (0-127: 1 byte, 128-16511: 2 bytes, 16512-2113663: 3 bytes)
|
|
* * Every integer has exactly one encoding
|
|
* * Encoding does not depend on size of original integer type
|
|
* * No redundancy: every (infinite) byte sequence corresponds to a list
|
|
* of encoded integers.
|
|
*
|
|
* 0: [0x00] 256: [0x81 0x00]
|
|
* 1: [0x01] 16383: [0xFE 0x7F]
|
|
* 127: [0x7F] 16384: [0xFF 0x00]
|
|
* 128: [0x80 0x00] 16511: [0xFF 0x7F]
|
|
* 255: [0x80 0x7F] 65535: [0x82 0xFE 0x7F]
|
|
* 2^32: [0x8E 0xFE 0xFE 0xFF 0x00]
|
|
*/
|
|
|
|
/**
|
|
* Mode for encoding VarInts.
|
|
*
|
|
* Currently there is no support for signed encodings. The default mode will not
|
|
* compile with signed values, and the legacy "nonnegative signed" mode will
|
|
* accept signed values, but improperly encode and decode them if they are
|
|
* negative. In the future, the DEFAULT mode could be extended to support
|
|
* negative numbers in a backwards compatible way, and additional modes could be
|
|
* added to support different varint formats (e.g. zigzag encoding).
|
|
*/
|
|
enum class VarIntMode { DEFAULT, NONNEGATIVE_SIGNED };
|
|
|
|
template <VarIntMode Mode, typename I>
|
|
struct CheckVarIntMode {
|
|
constexpr CheckVarIntMode()
|
|
{
|
|
static_assert(Mode != VarIntMode::DEFAULT || std::is_unsigned<I>::value, "Unsigned type required with mode DEFAULT.");
|
|
static_assert(Mode != VarIntMode::NONNEGATIVE_SIGNED || std::is_signed<I>::value, "Signed type required with mode NONNEGATIVE_SIGNED.");
|
|
}
|
|
};
|
|
|
|
template<VarIntMode Mode, typename I>
|
|
inline unsigned int GetSizeOfVarInt(I n)
|
|
{
|
|
CheckVarIntMode<Mode, I>();
|
|
int nRet = 0;
|
|
while(true) {
|
|
nRet++;
|
|
if (n <= 0x7F)
|
|
break;
|
|
n = (n >> 7) - 1;
|
|
}
|
|
return nRet;
|
|
}
|
|
|
|
template<typename I>
|
|
inline void WriteVarInt(SizeComputer& os, I n);
|
|
|
|
template<typename Stream, VarIntMode Mode, typename I>
|
|
void WriteVarInt(Stream& os, I n)
|
|
{
|
|
CheckVarIntMode<Mode, I>();
|
|
unsigned char tmp[(sizeof(n)*8+6)/7];
|
|
int len=0;
|
|
while(true) {
|
|
tmp[len] = (n & 0x7F) | (len ? 0x80 : 0x00);
|
|
if (n <= 0x7F)
|
|
break;
|
|
n = (n >> 7) - 1;
|
|
len++;
|
|
}
|
|
do {
|
|
ser_writedata8(os, tmp[len]);
|
|
} while(len--);
|
|
}
|
|
|
|
template<typename Stream, VarIntMode Mode, typename I>
|
|
I ReadVarInt(Stream& is)
|
|
{
|
|
CheckVarIntMode<Mode, I>();
|
|
I n = 0;
|
|
while(true) {
|
|
unsigned char chData = ser_readdata8(is);
|
|
if (n > (std::numeric_limits<I>::max() >> 7)) {
|
|
throw std::ios_base::failure("ReadVarInt(): size too large");
|
|
}
|
|
n = (n << 7) | (chData & 0x7F);
|
|
if (chData & 0x80) {
|
|
if (n == std::numeric_limits<I>::max()) {
|
|
throw std::ios_base::failure("ReadVarInt(): size too large");
|
|
}
|
|
n++;
|
|
} else {
|
|
return n;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Simple wrapper class to serialize objects using a formatter; used by Using(). */
|
|
template<typename Formatter, typename T>
|
|
class Wrapper
|
|
{
|
|
static_assert(std::is_lvalue_reference<T>::value, "Wrapper needs an lvalue reference type T");
|
|
protected:
|
|
T m_object;
|
|
public:
|
|
explicit Wrapper(T obj) : m_object(obj) {}
|
|
template<typename Stream> void Serialize(Stream &s) const { Formatter().Ser(s, m_object); }
|
|
template<typename Stream> void Unserialize(Stream &s) { Formatter().Unser(s, m_object); }
|
|
};
|
|
|
|
/** Cause serialization/deserialization of an object to be done using a specified formatter class.
|
|
*
|
|
* To use this, you need a class Formatter that has public functions Ser(stream, const object&) for
|
|
* serialization, and Unser(stream, object&) for deserialization. Serialization routines (inside
|
|
* READWRITE, or directly with << and >> operators), can then use Using<Formatter>(object).
|
|
*
|
|
* This works by constructing a Wrapper<Formatter, T>-wrapped version of object, where T is
|
|
* const during serialization, and non-const during deserialization, which maintains const
|
|
* correctness.
|
|
*/
|
|
template<typename Formatter, typename T>
|
|
static inline Wrapper<Formatter, T&> Using(T&& t) { return Wrapper<Formatter, T&>(t); }
|
|
|
|
#define VARINT_MODE(obj, mode) Using<VarIntFormatter<mode>>(obj)
|
|
#define VARINT(obj) Using<VarIntFormatter<VarIntMode::DEFAULT>>(obj)
|
|
#define COMPACTSIZE(obj) Using<CompactSizeFormatter<true>>(obj)
|
|
#define LIMITED_STRING(obj,n) Using<LimitedStringFormatter<n>>(obj)
|
|
|
|
/** Serialization wrapper class for integers in VarInt format. */
|
|
template<VarIntMode Mode>
|
|
struct VarIntFormatter
|
|
{
|
|
template<typename Stream, typename I> void Ser(Stream &s, I v)
|
|
{
|
|
WriteVarInt<Stream,Mode,typename std::remove_cv<I>::type>(s, v);
|
|
}
|
|
|
|
template<typename Stream, typename I> void Unser(Stream& s, I& v)
|
|
{
|
|
v = ReadVarInt<Stream,Mode,typename std::remove_cv<I>::type>(s);
|
|
}
|
|
};
|
|
|
|
/** Serialization wrapper class for custom integers and enums.
|
|
*
|
|
* It permits specifying the serialized size (1 to 8 bytes) and endianness.
|
|
*
|
|
* Use the big endian mode for values that are stored in memory in native
|
|
* byte order, but serialized in big endian notation. This is only intended
|
|
* to implement serializers that are compatible with existing formats, and
|
|
* its use is not recommended for new data structures.
|
|
*/
|
|
template<int Bytes, bool BigEndian = false>
|
|
struct CustomUintFormatter
|
|
{
|
|
static_assert(Bytes > 0 && Bytes <= 8, "CustomUintFormatter Bytes out of range");
|
|
static constexpr uint64_t MAX = 0xffffffffffffffff >> (8 * (8 - Bytes));
|
|
|
|
template <typename Stream, typename I> void Ser(Stream& s, I v)
|
|
{
|
|
if (v < 0 || v > MAX) throw std::ios_base::failure("CustomUintFormatter value out of range");
|
|
if (BigEndian) {
|
|
uint64_t raw = htobe64_internal(v);
|
|
s.write(AsBytes(Span{&raw, 1}).last(Bytes));
|
|
} else {
|
|
uint64_t raw = htole64_internal(v);
|
|
s.write(AsBytes(Span{&raw, 1}).first(Bytes));
|
|
}
|
|
}
|
|
|
|
template <typename Stream, typename I> void Unser(Stream& s, I& v)
|
|
{
|
|
using U = typename std::conditional<std::is_enum<I>::value, std::underlying_type<I>, std::common_type<I>>::type::type;
|
|
static_assert(std::numeric_limits<U>::max() >= MAX && std::numeric_limits<U>::min() <= 0, "Assigned type too small");
|
|
uint64_t raw = 0;
|
|
if (BigEndian) {
|
|
s.read(AsWritableBytes(Span{&raw, 1}).last(Bytes));
|
|
v = static_cast<I>(be64toh_internal(raw));
|
|
} else {
|
|
s.read(AsWritableBytes(Span{&raw, 1}).first(Bytes));
|
|
v = static_cast<I>(le64toh_internal(raw));
|
|
}
|
|
}
|
|
};
|
|
|
|
template<int Bytes> using BigEndianFormatter = CustomUintFormatter<Bytes, true>;
|
|
|
|
/** Formatter for integers in CompactSize format. */
|
|
template<bool RangeCheck>
|
|
struct CompactSizeFormatter
|
|
{
|
|
template<typename Stream, typename I>
|
|
void Unser(Stream& s, I& v)
|
|
{
|
|
uint64_t n = ReadCompactSize<Stream>(s, RangeCheck);
|
|
if (n < std::numeric_limits<I>::min() || n > std::numeric_limits<I>::max()) {
|
|
throw std::ios_base::failure("CompactSize exceeds limit of type");
|
|
}
|
|
v = n;
|
|
}
|
|
|
|
template<typename Stream, typename I>
|
|
void Ser(Stream& s, I v)
|
|
{
|
|
static_assert(std::is_unsigned<I>::value, "CompactSize only supported for unsigned integers");
|
|
static_assert(std::numeric_limits<I>::max() <= std::numeric_limits<uint64_t>::max(), "CompactSize only supports 64-bit integers and below");
|
|
|
|
WriteCompactSize<Stream>(s, v);
|
|
}
|
|
};
|
|
|
|
template <typename U, bool LOSSY = false>
|
|
struct ChronoFormatter {
|
|
template <typename Stream, typename Tp>
|
|
void Unser(Stream& s, Tp& tp)
|
|
{
|
|
U u;
|
|
s >> u;
|
|
// Lossy deserialization does not make sense, so force Wnarrowing
|
|
tp = Tp{typename Tp::duration{typename Tp::duration::rep{u}}};
|
|
}
|
|
template <typename Stream, typename Tp>
|
|
void Ser(Stream& s, Tp tp)
|
|
{
|
|
if constexpr (LOSSY) {
|
|
s << U(tp.time_since_epoch().count());
|
|
} else {
|
|
s << U{tp.time_since_epoch().count()};
|
|
}
|
|
}
|
|
};
|
|
template <typename U>
|
|
using LossyChronoFormatter = ChronoFormatter<U, true>;
|
|
|
|
class CompactSizeWriter
|
|
{
|
|
protected:
|
|
uint64_t n;
|
|
public:
|
|
explicit CompactSizeWriter(uint64_t n_in) : n(n_in) { }
|
|
|
|
template<typename Stream>
|
|
void Serialize(Stream &s) const {
|
|
WriteCompactSize<Stream>(s, n);
|
|
}
|
|
};
|
|
|
|
template<size_t Limit>
|
|
struct LimitedStringFormatter
|
|
{
|
|
template<typename Stream>
|
|
void Unser(Stream& s, std::string& v)
|
|
{
|
|
size_t size = ReadCompactSize(s);
|
|
if (size > Limit) {
|
|
throw std::ios_base::failure("String length limit exceeded");
|
|
}
|
|
v.resize(size);
|
|
if (size != 0) s.read(MakeWritableByteSpan(v));
|
|
}
|
|
|
|
template<typename Stream>
|
|
void Ser(Stream& s, const std::string& v)
|
|
{
|
|
s << v;
|
|
}
|
|
};
|
|
|
|
/** Formatter to serialize/deserialize vector elements using another formatter
|
|
*
|
|
* Example:
|
|
* struct X {
|
|
* std::vector<uint64_t> v;
|
|
* SERIALIZE_METHODS(X, obj) { READWRITE(Using<VectorFormatter<VarInt>>(obj.v)); }
|
|
* };
|
|
* will define a struct that contains a vector of uint64_t, which is serialized
|
|
* as a vector of VarInt-encoded integers.
|
|
*
|
|
* V is not required to be an std::vector type. It works for any class that
|
|
* exposes a value_type, size, reserve, emplace_back, back, and const iterators.
|
|
*/
|
|
template<class Formatter>
|
|
struct VectorFormatter
|
|
{
|
|
template<typename Stream, typename V>
|
|
void Ser(Stream& s, const V& v)
|
|
{
|
|
Formatter formatter;
|
|
WriteCompactSize(s, v.size());
|
|
for (const typename V::value_type& elem : v) {
|
|
formatter.Ser(s, elem);
|
|
}
|
|
}
|
|
|
|
template<typename Stream, typename V>
|
|
void Unser(Stream& s, V& v)
|
|
{
|
|
Formatter formatter;
|
|
v.clear();
|
|
size_t size = ReadCompactSize(s);
|
|
size_t allocated = 0;
|
|
while (allocated < size) {
|
|
// For DoS prevention, do not blindly allocate as much as the stream claims to contain.
|
|
// Instead, allocate in 5MiB batches, so that an attacker actually needs to provide
|
|
// X MiB of data to make us allocate X+5 Mib.
|
|
static_assert(sizeof(typename V::value_type) <= MAX_VECTOR_ALLOCATE, "Vector element size too large");
|
|
allocated = std::min(size, allocated + MAX_VECTOR_ALLOCATE / sizeof(typename V::value_type));
|
|
v.reserve(allocated);
|
|
while (v.size() < allocated) {
|
|
v.emplace_back();
|
|
formatter.Unser(s, v.back());
|
|
}
|
|
}
|
|
};
|
|
};
|
|
|
|
/**
|
|
* Forward declarations
|
|
*/
|
|
|
|
/**
|
|
* string
|
|
*/
|
|
template<typename Stream, typename C> void Serialize(Stream& os, const std::basic_string<C>& str);
|
|
template<typename Stream, typename C> void Unserialize(Stream& is, std::basic_string<C>& str);
|
|
|
|
/**
|
|
* prevector
|
|
*/
|
|
template<typename Stream, unsigned int N, typename T> inline void Serialize(Stream& os, const prevector<N, T>& v);
|
|
template<typename Stream, unsigned int N, typename T> inline void Unserialize(Stream& is, prevector<N, T>& v);
|
|
|
|
/**
|
|
* vector
|
|
*/
|
|
template<typename Stream, typename T, typename A> inline void Serialize(Stream& os, const std::vector<T, A>& v);
|
|
template<typename Stream, typename T, typename A> inline void Unserialize(Stream& is, std::vector<T, A>& v);
|
|
|
|
/**
|
|
* pair
|
|
*/
|
|
template<typename Stream, typename K, typename T> void Serialize(Stream& os, const std::pair<K, T>& item);
|
|
template<typename Stream, typename K, typename T> void Unserialize(Stream& is, std::pair<K, T>& item);
|
|
|
|
/**
|
|
* map
|
|
*/
|
|
template<typename Stream, typename K, typename T, typename Pred, typename A> void Serialize(Stream& os, const std::map<K, T, Pred, A>& m);
|
|
template<typename Stream, typename K, typename T, typename Pred, typename A> void Unserialize(Stream& is, std::map<K, T, Pred, A>& m);
|
|
|
|
/**
|
|
* set
|
|
*/
|
|
template<typename Stream, typename K, typename Pred, typename A> void Serialize(Stream& os, const std::set<K, Pred, A>& m);
|
|
template<typename Stream, typename K, typename Pred, typename A> void Unserialize(Stream& is, std::set<K, Pred, A>& m);
|
|
|
|
/**
|
|
* shared_ptr
|
|
*/
|
|
template<typename Stream, typename T> void Serialize(Stream& os, const std::shared_ptr<const T>& p);
|
|
template<typename Stream, typename T> void Unserialize(Stream& os, std::shared_ptr<const T>& p);
|
|
|
|
/**
|
|
* unique_ptr
|
|
*/
|
|
template<typename Stream, typename T> void Serialize(Stream& os, const std::unique_ptr<const T>& p);
|
|
template<typename Stream, typename T> void Unserialize(Stream& os, std::unique_ptr<const T>& p);
|
|
|
|
|
|
/**
|
|
* If none of the specialized versions above matched, default to calling member function.
|
|
*/
|
|
template <class T, class Stream>
|
|
concept Serializable = requires(T a, Stream s) { a.Serialize(s); };
|
|
template <typename Stream, typename T>
|
|
requires Serializable<T, Stream>
|
|
void Serialize(Stream& os, const T& a)
|
|
{
|
|
a.Serialize(os);
|
|
}
|
|
|
|
template <class T, class Stream>
|
|
concept Unserializable = requires(T a, Stream s) { a.Unserialize(s); };
|
|
template <typename Stream, typename T>
|
|
requires Unserializable<T, Stream>
|
|
void Unserialize(Stream& is, T&& a)
|
|
{
|
|
a.Unserialize(is);
|
|
}
|
|
|
|
/** Default formatter. Serializes objects as themselves.
|
|
*
|
|
* The vector/prevector serialization code passes this to VectorFormatter
|
|
* to enable reusing that logic. It shouldn't be needed elsewhere.
|
|
*/
|
|
struct DefaultFormatter
|
|
{
|
|
template<typename Stream, typename T>
|
|
static void Ser(Stream& s, const T& t) { Serialize(s, t); }
|
|
|
|
template<typename Stream, typename T>
|
|
static void Unser(Stream& s, T& t) { Unserialize(s, t); }
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* string
|
|
*/
|
|
template<typename Stream, typename C>
|
|
void Serialize(Stream& os, const std::basic_string<C>& str)
|
|
{
|
|
WriteCompactSize(os, str.size());
|
|
if (!str.empty())
|
|
os.write(MakeByteSpan(str));
|
|
}
|
|
|
|
template<typename Stream, typename C>
|
|
void Unserialize(Stream& is, std::basic_string<C>& str)
|
|
{
|
|
unsigned int nSize = ReadCompactSize(is);
|
|
str.resize(nSize);
|
|
if (nSize != 0)
|
|
is.read(MakeWritableByteSpan(str));
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* prevector
|
|
*/
|
|
template <typename Stream, unsigned int N, typename T>
|
|
void Serialize(Stream& os, const prevector<N, T>& v)
|
|
{
|
|
if constexpr (BasicByte<T>) { // Use optimized version for unformatted basic bytes
|
|
WriteCompactSize(os, v.size());
|
|
if (!v.empty()) os.write(MakeByteSpan(v));
|
|
} else {
|
|
Serialize(os, Using<VectorFormatter<DefaultFormatter>>(v));
|
|
}
|
|
}
|
|
|
|
|
|
template <typename Stream, unsigned int N, typename T>
|
|
void Unserialize(Stream& is, prevector<N, T>& v)
|
|
{
|
|
if constexpr (BasicByte<T>) { // Use optimized version for unformatted basic bytes
|
|
// Limit size per read so bogus size value won't cause out of memory
|
|
v.clear();
|
|
unsigned int nSize = ReadCompactSize(is);
|
|
unsigned int i = 0;
|
|
while (i < nSize) {
|
|
unsigned int blk = std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T)));
|
|
v.resize_uninitialized(i + blk);
|
|
is.read(AsWritableBytes(Span{&v[i], blk}));
|
|
i += blk;
|
|
}
|
|
} else {
|
|
Unserialize(is, Using<VectorFormatter<DefaultFormatter>>(v));
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* vector
|
|
*/
|
|
template <typename Stream, typename T, typename A>
|
|
void Serialize(Stream& os, const std::vector<T, A>& v)
|
|
{
|
|
if constexpr (BasicByte<T>) { // Use optimized version for unformatted basic bytes
|
|
WriteCompactSize(os, v.size());
|
|
if (!v.empty()) os.write(MakeByteSpan(v));
|
|
} else if constexpr (std::is_same_v<T, bool>) {
|
|
// A special case for std::vector<bool>, as dereferencing
|
|
// std::vector<bool>::const_iterator does not result in a const bool&
|
|
// due to std::vector's special casing for bool arguments.
|
|
WriteCompactSize(os, v.size());
|
|
for (bool elem : v) {
|
|
::Serialize(os, elem);
|
|
}
|
|
} else {
|
|
Serialize(os, Using<VectorFormatter<DefaultFormatter>>(v));
|
|
}
|
|
}
|
|
|
|
|
|
template <typename Stream, typename T, typename A>
|
|
void Unserialize(Stream& is, std::vector<T, A>& v)
|
|
{
|
|
if constexpr (BasicByte<T>) { // Use optimized version for unformatted basic bytes
|
|
// Limit size per read so bogus size value won't cause out of memory
|
|
v.clear();
|
|
unsigned int nSize = ReadCompactSize(is);
|
|
unsigned int i = 0;
|
|
while (i < nSize) {
|
|
unsigned int blk = std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T)));
|
|
v.resize(i + blk);
|
|
is.read(AsWritableBytes(Span{&v[i], blk}));
|
|
i += blk;
|
|
}
|
|
} else {
|
|
Unserialize(is, Using<VectorFormatter<DefaultFormatter>>(v));
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* pair
|
|
*/
|
|
template<typename Stream, typename K, typename T>
|
|
void Serialize(Stream& os, const std::pair<K, T>& item)
|
|
{
|
|
Serialize(os, item.first);
|
|
Serialize(os, item.second);
|
|
}
|
|
|
|
template<typename Stream, typename K, typename T>
|
|
void Unserialize(Stream& is, std::pair<K, T>& item)
|
|
{
|
|
Unserialize(is, item.first);
|
|
Unserialize(is, item.second);
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* map
|
|
*/
|
|
template<typename Stream, typename K, typename T, typename Pred, typename A>
|
|
void Serialize(Stream& os, const std::map<K, T, Pred, A>& m)
|
|
{
|
|
WriteCompactSize(os, m.size());
|
|
for (const auto& entry : m)
|
|
Serialize(os, entry);
|
|
}
|
|
|
|
template<typename Stream, typename K, typename T, typename Pred, typename A>
|
|
void Unserialize(Stream& is, std::map<K, T, Pred, A>& m)
|
|
{
|
|
m.clear();
|
|
unsigned int nSize = ReadCompactSize(is);
|
|
typename std::map<K, T, Pred, A>::iterator mi = m.begin();
|
|
for (unsigned int i = 0; i < nSize; i++)
|
|
{
|
|
std::pair<K, T> item;
|
|
Unserialize(is, item);
|
|
mi = m.insert(mi, item);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* set
|
|
*/
|
|
template<typename Stream, typename K, typename Pred, typename A>
|
|
void Serialize(Stream& os, const std::set<K, Pred, A>& m)
|
|
{
|
|
WriteCompactSize(os, m.size());
|
|
for (typename std::set<K, Pred, A>::const_iterator it = m.begin(); it != m.end(); ++it)
|
|
Serialize(os, (*it));
|
|
}
|
|
|
|
template<typename Stream, typename K, typename Pred, typename A>
|
|
void Unserialize(Stream& is, std::set<K, Pred, A>& m)
|
|
{
|
|
m.clear();
|
|
unsigned int nSize = ReadCompactSize(is);
|
|
typename std::set<K, Pred, A>::iterator it = m.begin();
|
|
for (unsigned int i = 0; i < nSize; i++)
|
|
{
|
|
K key;
|
|
Unserialize(is, key);
|
|
it = m.insert(it, key);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* unique_ptr
|
|
*/
|
|
template<typename Stream, typename T> void
|
|
Serialize(Stream& os, const std::unique_ptr<const T>& p)
|
|
{
|
|
Serialize(os, *p);
|
|
}
|
|
|
|
template<typename Stream, typename T>
|
|
void Unserialize(Stream& is, std::unique_ptr<const T>& p)
|
|
{
|
|
p.reset(new T(deserialize, is));
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* shared_ptr
|
|
*/
|
|
template<typename Stream, typename T> void
|
|
Serialize(Stream& os, const std::shared_ptr<const T>& p)
|
|
{
|
|
Serialize(os, *p);
|
|
}
|
|
|
|
template<typename Stream, typename T>
|
|
void Unserialize(Stream& is, std::shared_ptr<const T>& p)
|
|
{
|
|
p = std::make_shared<const T>(deserialize, is);
|
|
}
|
|
|
|
/**
|
|
* Support for (un)serializing many things at once
|
|
*/
|
|
|
|
template <typename Stream, typename... Args>
|
|
void SerializeMany(Stream& s, const Args&... args)
|
|
{
|
|
(::Serialize(s, args), ...);
|
|
}
|
|
|
|
template <typename Stream, typename... Args>
|
|
inline void UnserializeMany(Stream& s, Args&&... args)
|
|
{
|
|
(::Unserialize(s, args), ...);
|
|
}
|
|
|
|
/**
|
|
* Support for all macros providing or using the ser_action parameter of the SerializationOps method.
|
|
*/
|
|
struct ActionSerialize {
|
|
static constexpr bool ForRead() { return false; }
|
|
|
|
template<typename Stream, typename... Args>
|
|
static void SerReadWriteMany(Stream& s, const Args&... args)
|
|
{
|
|
::SerializeMany(s, args...);
|
|
}
|
|
|
|
template<typename Stream, typename Type, typename Fn>
|
|
static void SerRead(Stream& s, Type&&, Fn&&)
|
|
{
|
|
}
|
|
|
|
template<typename Stream, typename Type, typename Fn>
|
|
static void SerWrite(Stream& s, Type&& obj, Fn&& fn)
|
|
{
|
|
fn(s, std::forward<Type>(obj));
|
|
}
|
|
};
|
|
struct ActionUnserialize {
|
|
static constexpr bool ForRead() { return true; }
|
|
|
|
template<typename Stream, typename... Args>
|
|
static void SerReadWriteMany(Stream& s, Args&&... args)
|
|
{
|
|
::UnserializeMany(s, args...);
|
|
}
|
|
|
|
template<typename Stream, typename Type, typename Fn>
|
|
static void SerRead(Stream& s, Type&& obj, Fn&& fn)
|
|
{
|
|
fn(s, std::forward<Type>(obj));
|
|
}
|
|
|
|
template<typename Stream, typename Type, typename Fn>
|
|
static void SerWrite(Stream& s, Type&&, Fn&&)
|
|
{
|
|
}
|
|
};
|
|
|
|
/* ::GetSerializeSize implementations
|
|
*
|
|
* Computing the serialized size of objects is done through a special stream
|
|
* object of type SizeComputer, which only records the number of bytes written
|
|
* to it.
|
|
*
|
|
* If your Serialize or SerializationOp method has non-trivial overhead for
|
|
* serialization, it may be worthwhile to implement a specialized version for
|
|
* SizeComputer, which uses the s.seek() method to record bytes that would
|
|
* be written instead.
|
|
*/
|
|
class SizeComputer
|
|
{
|
|
protected:
|
|
size_t nSize{0};
|
|
|
|
public:
|
|
SizeComputer() = default;
|
|
|
|
void write(Span<const std::byte> src)
|
|
{
|
|
this->nSize += src.size();
|
|
}
|
|
|
|
/** Pretend _nSize bytes are written, without specifying them. */
|
|
void seek(size_t _nSize)
|
|
{
|
|
this->nSize += _nSize;
|
|
}
|
|
|
|
template<typename T>
|
|
SizeComputer& operator<<(const T& obj)
|
|
{
|
|
::Serialize(*this, obj);
|
|
return (*this);
|
|
}
|
|
|
|
size_t size() const {
|
|
return nSize;
|
|
}
|
|
};
|
|
|
|
template<typename I>
|
|
inline void WriteVarInt(SizeComputer &s, I n)
|
|
{
|
|
s.seek(GetSizeOfVarInt<I>(n));
|
|
}
|
|
|
|
inline void WriteCompactSize(SizeComputer &s, uint64_t nSize)
|
|
{
|
|
s.seek(GetSizeOfCompactSize(nSize));
|
|
}
|
|
|
|
template <typename T>
|
|
size_t GetSerializeSize(const T& t)
|
|
{
|
|
return (SizeComputer() << t).size();
|
|
}
|
|
|
|
//! Check if type contains a stream by seeing if has a GetStream() method.
|
|
template<typename T>
|
|
concept ContainsStream = requires(T t) { t.GetStream(); };
|
|
|
|
/** Wrapper that overrides the GetParams() function of a stream. */
|
|
template <typename SubStream, typename Params>
|
|
class ParamsStream
|
|
{
|
|
const Params& m_params;
|
|
// If ParamsStream constructor is passed an lvalue argument, Substream will
|
|
// be a reference type, and m_substream will reference that argument.
|
|
// Otherwise m_substream will be a substream instance and move from the
|
|
// argument. Letting ParamsStream contain a substream instance instead of
|
|
// just a reference is useful to make the ParamsStream object self contained
|
|
// and let it do cleanup when destroyed, for example by closing files if
|
|
// SubStream is a file stream.
|
|
SubStream m_substream;
|
|
|
|
public:
|
|
ParamsStream(SubStream&& substream, const Params& params LIFETIMEBOUND) : m_params{params}, m_substream{std::forward<SubStream>(substream)} {}
|
|
|
|
template <typename NestedSubstream, typename Params1, typename Params2, typename... NestedParams>
|
|
ParamsStream(NestedSubstream&& s, const Params1& params1 LIFETIMEBOUND, const Params2& params2 LIFETIMEBOUND, const NestedParams&... params LIFETIMEBOUND)
|
|
: ParamsStream{::ParamsStream{std::forward<NestedSubstream>(s), params2, params...}, params1} {}
|
|
|
|
template <typename U> ParamsStream& operator<<(const U& obj) { ::Serialize(*this, obj); return *this; }
|
|
template <typename U> ParamsStream& operator>>(U&& obj) { ::Unserialize(*this, obj); return *this; }
|
|
void write(Span<const std::byte> src) { GetStream().write(src); }
|
|
void read(Span<std::byte> dst) { GetStream().read(dst); }
|
|
void ignore(size_t num) { GetStream().ignore(num); }
|
|
bool eof() const { return GetStream().eof(); }
|
|
size_t size() const { return GetStream().size(); }
|
|
|
|
//! Get reference to stream parameters.
|
|
template <typename P>
|
|
const auto& GetParams() const
|
|
{
|
|
if constexpr (std::is_convertible_v<Params, P>) {
|
|
return m_params;
|
|
} else {
|
|
return m_substream.template GetParams<P>();
|
|
}
|
|
}
|
|
|
|
//! Get reference to underlying stream.
|
|
auto& GetStream()
|
|
{
|
|
if constexpr (ContainsStream<SubStream>) {
|
|
return m_substream.GetStream();
|
|
} else {
|
|
return m_substream;
|
|
}
|
|
}
|
|
const auto& GetStream() const
|
|
{
|
|
if constexpr (ContainsStream<SubStream>) {
|
|
return m_substream.GetStream();
|
|
} else {
|
|
return m_substream;
|
|
}
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Explicit template deduction guide is required for single-parameter
|
|
* constructor so Substream&& is treated as a forwarding reference, and
|
|
* SubStream is deduced as reference type for lvalue arguments.
|
|
*/
|
|
template <typename Substream, typename Params>
|
|
ParamsStream(Substream&&, const Params&) -> ParamsStream<Substream, Params>;
|
|
|
|
/**
|
|
* Template deduction guide for multiple params arguments that creates a nested
|
|
* ParamsStream.
|
|
*/
|
|
template <typename Substream, typename Params1, typename Params2, typename... Params>
|
|
ParamsStream(Substream&& s, const Params1& params1, const Params2& params2, const Params&... params) ->
|
|
ParamsStream<decltype(ParamsStream{std::forward<Substream>(s), params2, params...}), Params1>;
|
|
|
|
/** Wrapper that serializes objects with the specified parameters. */
|
|
template <typename Params, typename T>
|
|
class ParamsWrapper
|
|
{
|
|
const Params& m_params;
|
|
T& m_object;
|
|
|
|
public:
|
|
explicit ParamsWrapper(const Params& params, T& obj) : m_params{params}, m_object{obj} {}
|
|
|
|
template <typename Stream>
|
|
void Serialize(Stream& s) const
|
|
{
|
|
ParamsStream ss{s, m_params};
|
|
::Serialize(ss, m_object);
|
|
}
|
|
template <typename Stream>
|
|
void Unserialize(Stream& s)
|
|
{
|
|
ParamsStream ss{s, m_params};
|
|
::Unserialize(ss, m_object);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Helper macro for SerParams structs
|
|
*
|
|
* Allows you define SerParams instances and then apply them directly
|
|
* to an object via function call syntax, eg:
|
|
*
|
|
* constexpr SerParams FOO{....};
|
|
* ss << FOO(obj);
|
|
*/
|
|
#define SER_PARAMS_OPFUNC \
|
|
/** \
|
|
* Return a wrapper around t that (de)serializes it with specified parameter params. \
|
|
* \
|
|
* See SER_PARAMS for more information on serialization parameters. \
|
|
*/ \
|
|
template <typename T> \
|
|
auto operator()(T&& t) const \
|
|
{ \
|
|
return ParamsWrapper{*this, t}; \
|
|
}
|
|
|
|
#endif // BITCOIN_SERIALIZE_H
|