bitcoin/src/serialize.h

1231 lines
41 KiB
C
Raw Normal View History

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_SERIALIZE_H
#define BITCOIN_SERIALIZE_H
#include <attributes.h>
#include <compat/assumptions.h> // IWYU pragma: keep
#include <compat/endian.h>
#include <prevector.h>
#include <span.h>
2015-03-27 09:19:49 -03:00
#include <algorithm>
#include <concepts>
#include <cstdint>
#include <cstring>
#include <ios>
#include <limits>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
/**
* The maximum size of a serialized object in bytes or number of elements
* (for eg vectors) when the size is encoded as CompactSize.
*/
static constexpr uint64_t MAX_SIZE = 0x02000000;
/** Maximum amount of memory (in bytes) to allocate at once when deserializing vectors. */
static const unsigned int MAX_VECTOR_ALLOCATE = 5000000;
/**
* Dummy data type to identify deserializing constructors.
*
* By convention, a constructor of a type T with signature
*
* template <typename Stream> T::T(deserialize_type, Stream& s)
*
* is a deserializing constructor, which builds the type by
* deserializing it from s. If T contains const fields, this
* is likely the only way to do so.
*/
struct deserialize_type {};
constexpr deserialize_type deserialize {};
/*
* Lowest-level serialization and conversion.
*/
template<typename Stream> inline void ser_writedata8(Stream &s, uint8_t obj)
{
s.write(AsBytes(Span{&obj, 1}));
}
template<typename Stream> inline void ser_writedata16(Stream &s, uint16_t obj)
{
obj = htole16_internal(obj);
s.write(AsBytes(Span{&obj, 1}));
}
template<typename Stream> inline void ser_writedata16be(Stream &s, uint16_t obj)
{
obj = htobe16_internal(obj);
s.write(AsBytes(Span{&obj, 1}));
}
template<typename Stream> inline void ser_writedata32(Stream &s, uint32_t obj)
{
obj = htole32_internal(obj);
s.write(AsBytes(Span{&obj, 1}));
}
template<typename Stream> inline void ser_writedata32be(Stream &s, uint32_t obj)
{
obj = htobe32_internal(obj);
s.write(AsBytes(Span{&obj, 1}));
}
template<typename Stream> inline void ser_writedata64(Stream &s, uint64_t obj)
{
obj = htole64_internal(obj);
s.write(AsBytes(Span{&obj, 1}));
}
template<typename Stream> inline uint8_t ser_readdata8(Stream &s)
{
uint8_t obj;
s.read(AsWritableBytes(Span{&obj, 1}));
return obj;
}
template<typename Stream> inline uint16_t ser_readdata16(Stream &s)
{
uint16_t obj;
s.read(AsWritableBytes(Span{&obj, 1}));
return le16toh_internal(obj);
}
template<typename Stream> inline uint16_t ser_readdata16be(Stream &s)
{
uint16_t obj;
s.read(AsWritableBytes(Span{&obj, 1}));
return be16toh_internal(obj);
}
template<typename Stream> inline uint32_t ser_readdata32(Stream &s)
{
uint32_t obj;
s.read(AsWritableBytes(Span{&obj, 1}));
return le32toh_internal(obj);
}
template<typename Stream> inline uint32_t ser_readdata32be(Stream &s)
{
uint32_t obj;
s.read(AsWritableBytes(Span{&obj, 1}));
return be32toh_internal(obj);
}
template<typename Stream> inline uint64_t ser_readdata64(Stream &s)
{
uint64_t obj;
s.read(AsWritableBytes(Span{&obj, 1}));
return le64toh_internal(obj);
}
class SizeComputer;
/**
* Convert any argument to a reference to X, maintaining constness.
*
* This can be used in serialization code to invoke a base class's
* serialization routines.
*
* Example use:
* class Base { ... };
* class Child : public Base {
* int m_data;
* public:
* SERIALIZE_METHODS(Child, obj) {
* READWRITE(AsBase<Base>(obj), obj.m_data);
* }
* };
*
* static_cast cannot easily be used here, as the type of Obj will be const Child&
* during serialization and Child& during deserialization. AsBase will convert to
* const Base& and Base& appropriately.
*/
template <class Out, class In>
Out& AsBase(In& x)
{
static_assert(std::is_base_of_v<Out, In>);
return x;
}
template <class Out, class In>
const Out& AsBase(const In& x)
{
static_assert(std::is_base_of_v<Out, In>);
return x;
}
#define READWRITE(...) (ser_action.SerReadWriteMany(s, __VA_ARGS__))
#define SER_READ(obj, code) ser_action.SerRead(s, obj, [&](Stream& s, typename std::remove_const<Type>::type& obj) { code; })
#define SER_WRITE(obj, code) ser_action.SerWrite(s, obj, [&](Stream& s, const Type& obj) { code; })
/**
* Implement the Ser and Unser methods needed for implementing a formatter (see Using below).
*
* Both Ser and Unser are delegated to a single static method SerializationOps, which is polymorphic
* in the serialized/deserialized type (allowing it to be const when serializing, and non-const when
* deserializing).
*
* Example use:
* struct FooFormatter {
* FORMATTER_METHODS(Class, obj) { READWRITE(obj.val1, VARINT(obj.val2)); }
* }
* would define a class FooFormatter that defines a serialization of Class objects consisting
* of serializing its val1 member using the default serialization, and its val2 member using
* VARINT serialization. That FooFormatter can then be used in statements like
* READWRITE(Using<FooFormatter>(obj.bla)).
*/
#define FORMATTER_METHODS(cls, obj) \
template<typename Stream> \
static void Ser(Stream& s, const cls& obj) { SerializationOps(obj, s, ActionSerialize{}); } \
template<typename Stream> \
static void Unser(Stream& s, cls& obj) { SerializationOps(obj, s, ActionUnserialize{}); } \
template<typename Stream, typename Type, typename Operation> \
static void SerializationOps(Type& obj, Stream& s, Operation ser_action)
/**
serialization: Support for multiple parameters This commit makes a minimal change to the ParamsStream class to let it retrieve multiple parameters. Followup commits after this commit clean up code using ParamsStream and make it easier to set multiple parameters. Currently it is only possible to attach one serialization parameter to a stream at a time. For example, it is not possible to set a parameter controlling the transaction format and a parameter controlling the address format at the same time because one parameter will override the other. This limitation is inconvenient for multiprocess code since it is not possible to create just one type of stream and serialize any object to it. Instead it is necessary to create different streams for different object types, which requires extra boilerplate and makes using the new parameter fields a lot more awkward than the older version and type fields. Fix this problem by allowing an unlimited number of serialization stream parameters to be set, and allowing them to be requested by type. Later parameters will still override earlier parameters, but only if they have the same type. This change requires replacing the stream.GetParams() method with a stream.GetParams<T>() method in order for serialization code to retrieve the desired parameters. This change is more verbose, but probably a good thing for readability because previously it could be difficult to know what type the GetParams() method would return, and now it is more obvious.
2023-11-22 16:47:00 -03:00
* Formatter methods can retrieve parameters attached to a stream using the
* SER_PARAMS(type) macro as long as the stream is created directly or
* indirectly with a parameter of that type. This permits making serialization
* depend on run-time context in a type-safe way.
*
* Example use:
* struct BarParameter { bool fancy; ... };
* struct Bar { ... };
* struct FooFormatter {
serialization: Support for multiple parameters This commit makes a minimal change to the ParamsStream class to let it retrieve multiple parameters. Followup commits after this commit clean up code using ParamsStream and make it easier to set multiple parameters. Currently it is only possible to attach one serialization parameter to a stream at a time. For example, it is not possible to set a parameter controlling the transaction format and a parameter controlling the address format at the same time because one parameter will override the other. This limitation is inconvenient for multiprocess code since it is not possible to create just one type of stream and serialize any object to it. Instead it is necessary to create different streams for different object types, which requires extra boilerplate and makes using the new parameter fields a lot more awkward than the older version and type fields. Fix this problem by allowing an unlimited number of serialization stream parameters to be set, and allowing them to be requested by type. Later parameters will still override earlier parameters, but only if they have the same type. This change requires replacing the stream.GetParams() method with a stream.GetParams<T>() method in order for serialization code to retrieve the desired parameters. This change is more verbose, but probably a good thing for readability because previously it could be difficult to know what type the GetParams() method would return, and now it is more obvious.
2023-11-22 16:47:00 -03:00
* FORMATTER_METHODS(Bar, obj) {
* auto& param = SER_PARAMS(BarParameter);
* if (param.fancy) {
* READWRITE(VARINT(obj.value));
* } else {
* READWRITE(obj.value);
* }
* }
* };
* which would then be invoked as
2023-09-18 09:02:30 -03:00
* READWRITE(BarParameter{...}(Using<FooFormatter>(obj.foo)))
*
* parameter(obj) can be invoked anywhere in the call stack; it is
* passed down recursively into all serialization code, until another
2023-09-18 09:02:30 -03:00
* serialization parameter overrides it.
*
* Parameters will be implicitly converted where appropriate. This means that
* "parent" serialization code can use a parameter that derives from, or is
* convertible to, a "child" formatter's parameter type.
*
* Compilation will fail in any context where serialization is invoked but
* no parameter of a type convertible to BarParameter is provided.
*/
serialization: Support for multiple parameters This commit makes a minimal change to the ParamsStream class to let it retrieve multiple parameters. Followup commits after this commit clean up code using ParamsStream and make it easier to set multiple parameters. Currently it is only possible to attach one serialization parameter to a stream at a time. For example, it is not possible to set a parameter controlling the transaction format and a parameter controlling the address format at the same time because one parameter will override the other. This limitation is inconvenient for multiprocess code since it is not possible to create just one type of stream and serialize any object to it. Instead it is necessary to create different streams for different object types, which requires extra boilerplate and makes using the new parameter fields a lot more awkward than the older version and type fields. Fix this problem by allowing an unlimited number of serialization stream parameters to be set, and allowing them to be requested by type. Later parameters will still override earlier parameters, but only if they have the same type. This change requires replacing the stream.GetParams() method with a stream.GetParams<T>() method in order for serialization code to retrieve the desired parameters. This change is more verbose, but probably a good thing for readability because previously it could be difficult to know what type the GetParams() method would return, and now it is more obvious.
2023-11-22 16:47:00 -03:00
#define SER_PARAMS(type) (s.template GetParams<type>())
#define BASE_SERIALIZE_METHODS(cls) \
template <typename Stream> \
void Serialize(Stream& s) const \
{ \
static_assert(std::is_same<const cls&, decltype(*this)>::value, "Serialize type mismatch"); \
Ser(s, *this); \
} \
template <typename Stream> \
void Unserialize(Stream& s) \
{ \
static_assert(std::is_same<cls&, decltype(*this)>::value, "Unserialize type mismatch"); \
Unser(s, *this); \
}
/**
* Implement the Serialize and Unserialize methods by delegating to a single templated
* static method that takes the to-be-(de)serialized object as a parameter. This approach
* has the advantage that the constness of the object becomes a template parameter, and
* thus allows a single implementation that sees the object as const for serializing
* and non-const for deserializing, without casts.
*/
#define SERIALIZE_METHODS(cls, obj) \
BASE_SERIALIZE_METHODS(cls) \
FORMATTER_METHODS(cls, obj)
2023-09-12 07:06:55 -03:00
// Templates for serializing to anything that looks like a stream,
// i.e. anything that supports .read(Span<std::byte>) and .write(Span<const std::byte>)
//
// clang-format off
// Typically int8_t and char are distinct types, but some systems may define int8_t
// in terms of char. Forbid serialization of char in the typical case, but allow it if
// it's the only way to describe an int8_t.
template<class T>
concept CharNotInt8 = std::same_as<T, char> && !std::same_as<T, int8_t>;
template <typename Stream, CharNotInt8 V> void Serialize(Stream&, V) = delete; // char serialization forbidden. Use uint8_t or int8_t
2023-06-30 06:00:20 -04:00
template <typename Stream> void Serialize(Stream& s, std::byte a) { ser_writedata8(s, uint8_t(a)); }
template<typename Stream> inline void Serialize(Stream& s, int8_t a ) { ser_writedata8(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint8_t a ) { ser_writedata8(s, a); }
template<typename Stream> inline void Serialize(Stream& s, int16_t a ) { ser_writedata16(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint16_t a) { ser_writedata16(s, a); }
template<typename Stream> inline void Serialize(Stream& s, int32_t a ) { ser_writedata32(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint32_t a) { ser_writedata32(s, a); }
template<typename Stream> inline void Serialize(Stream& s, int64_t a ) { ser_writedata64(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint64_t a) { ser_writedata64(s, a); }
template <typename Stream, BasicByte B, int N> void Serialize(Stream& s, const B (&a)[N]) { s.write(MakeByteSpan(a)); }
template <typename Stream, BasicByte B, std::size_t N> void Serialize(Stream& s, const std::array<B, N>& a) { s.write(MakeByteSpan(a)); }
template <typename Stream, BasicByte B> void Serialize(Stream& s, Span<B> span) { s.write(AsBytes(span)); }
template <typename Stream, CharNotInt8 V> void Unserialize(Stream&, V) = delete; // char serialization forbidden. Use uint8_t or int8_t
2023-06-30 06:00:20 -04:00
template <typename Stream> void Unserialize(Stream& s, std::byte& a) { a = std::byte{ser_readdata8(s)}; }
template<typename Stream> inline void Unserialize(Stream& s, int8_t& a ) { a = ser_readdata8(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint8_t& a ) { a = ser_readdata8(s); }
template<typename Stream> inline void Unserialize(Stream& s, int16_t& a ) { a = ser_readdata16(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint16_t& a) { a = ser_readdata16(s); }
template<typename Stream> inline void Unserialize(Stream& s, int32_t& a ) { a = ser_readdata32(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint32_t& a) { a = ser_readdata32(s); }
template<typename Stream> inline void Unserialize(Stream& s, int64_t& a ) { a = ser_readdata64(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint64_t& a) { a = ser_readdata64(s); }
template <typename Stream, BasicByte B, int N> void Unserialize(Stream& s, B (&a)[N]) { s.read(MakeWritableByteSpan(a)); }
template <typename Stream, BasicByte B, std::size_t N> void Unserialize(Stream& s, std::array<B, N>& a) { s.read(MakeWritableByteSpan(a)); }
template <typename Stream, BasicByte B> void Unserialize(Stream& s, Span<B> span) { s.read(AsWritableBytes(span)); }
template <typename Stream> inline void Serialize(Stream& s, bool a) { uint8_t f = a; ser_writedata8(s, f); }
template <typename Stream> inline void Unserialize(Stream& s, bool& a) { uint8_t f = ser_readdata8(s); a = f; }
// clang-format on
/**
* Compact Size
* size < 253 -- 1 byte
* size <= USHRT_MAX -- 3 bytes (253 + 2 bytes)
* size <= UINT_MAX -- 5 bytes (254 + 4 bytes)
* size > UINT_MAX -- 9 bytes (255 + 8 bytes)
*/
constexpr inline unsigned int GetSizeOfCompactSize(uint64_t nSize)
{
if (nSize < 253) return sizeof(unsigned char);
else if (nSize <= std::numeric_limits<uint16_t>::max()) return sizeof(unsigned char) + sizeof(uint16_t);
else if (nSize <= std::numeric_limits<unsigned int>::max()) return sizeof(unsigned char) + sizeof(unsigned int);
else return sizeof(unsigned char) + sizeof(uint64_t);
}
inline void WriteCompactSize(SizeComputer& os, uint64_t nSize);
template<typename Stream>
void WriteCompactSize(Stream& os, uint64_t nSize)
{
if (nSize < 253)
{
ser_writedata8(os, nSize);
}
else if (nSize <= std::numeric_limits<uint16_t>::max())
{
ser_writedata8(os, 253);
ser_writedata16(os, nSize);
}
else if (nSize <= std::numeric_limits<unsigned int>::max())
{
ser_writedata8(os, 254);
ser_writedata32(os, nSize);
}
else
{
ser_writedata8(os, 255);
ser_writedata64(os, nSize);
}
return;
}
/**
* Decode a CompactSize-encoded variable-length integer.
*
* As these are primarily used to encode the size of vector-like serializations, by default a range
* check is performed. When used as a generic number encoding, range_check should be set to false.
*/
template<typename Stream>
uint64_t ReadCompactSize(Stream& is, bool range_check = true)
{
uint8_t chSize = ser_readdata8(is);
uint64_t nSizeRet = 0;
if (chSize < 253)
{
nSizeRet = chSize;
}
else if (chSize == 253)
{
nSizeRet = ser_readdata16(is);
if (nSizeRet < 253)
throw std::ios_base::failure("non-canonical ReadCompactSize()");
}
else if (chSize == 254)
{
nSizeRet = ser_readdata32(is);
if (nSizeRet < 0x10000u)
throw std::ios_base::failure("non-canonical ReadCompactSize()");
}
else
{
nSizeRet = ser_readdata64(is);
if (nSizeRet < 0x100000000ULL)
throw std::ios_base::failure("non-canonical ReadCompactSize()");
}
if (range_check && nSizeRet > MAX_SIZE) {
throw std::ios_base::failure("ReadCompactSize(): size too large");
}
return nSizeRet;
}
/**
* Variable-length integers: bytes are a MSB base-128 encoding of the number.
* The high bit in each byte signifies whether another digit follows. To make
* sure the encoding is one-to-one, one is subtracted from all but the last digit.
* Thus, the byte sequence a[] with length len, where all but the last byte
* has bit 128 set, encodes the number:
*
* (a[len-1] & 0x7F) + sum(i=1..len-1, 128^i*((a[len-i-1] & 0x7F)+1))
*
* Properties:
* * Very small (0-127: 1 byte, 128-16511: 2 bytes, 16512-2113663: 3 bytes)
* * Every integer has exactly one encoding
* * Encoding does not depend on size of original integer type
* * No redundancy: every (infinite) byte sequence corresponds to a list
* of encoded integers.
*
* 0: [0x00] 256: [0x81 0x00]
* 1: [0x01] 16383: [0xFE 0x7F]
* 127: [0x7F] 16384: [0xFF 0x00]
* 128: [0x80 0x00] 16511: [0xFF 0x7F]
* 255: [0x80 0x7F] 65535: [0x82 0xFE 0x7F]
* 2^32: [0x8E 0xFE 0xFE 0xFF 0x00]
*/
/**
* Mode for encoding VarInts.
*
* Currently there is no support for signed encodings. The default mode will not
* compile with signed values, and the legacy "nonnegative signed" mode will
* accept signed values, but improperly encode and decode them if they are
* negative. In the future, the DEFAULT mode could be extended to support
* negative numbers in a backwards compatible way, and additional modes could be
* added to support different varint formats (e.g. zigzag encoding).
*/
enum class VarIntMode { DEFAULT, NONNEGATIVE_SIGNED };
template <VarIntMode Mode, typename I>
struct CheckVarIntMode {
constexpr CheckVarIntMode()
{
static_assert(Mode != VarIntMode::DEFAULT || std::is_unsigned<I>::value, "Unsigned type required with mode DEFAULT.");
static_assert(Mode != VarIntMode::NONNEGATIVE_SIGNED || std::is_signed<I>::value, "Signed type required with mode NONNEGATIVE_SIGNED.");
}
};
template<VarIntMode Mode, typename I>
inline unsigned int GetSizeOfVarInt(I n)
{
CheckVarIntMode<Mode, I>();
int nRet = 0;
while(true) {
nRet++;
if (n <= 0x7F)
break;
n = (n >> 7) - 1;
}
return nRet;
}
template<typename I>
inline void WriteVarInt(SizeComputer& os, I n);
template<typename Stream, VarIntMode Mode, typename I>
void WriteVarInt(Stream& os, I n)
{
CheckVarIntMode<Mode, I>();
unsigned char tmp[(sizeof(n)*8+6)/7];
int len=0;
while(true) {
tmp[len] = (n & 0x7F) | (len ? 0x80 : 0x00);
if (n <= 0x7F)
break;
n = (n >> 7) - 1;
len++;
}
do {
ser_writedata8(os, tmp[len]);
} while(len--);
}
template<typename Stream, VarIntMode Mode, typename I>
I ReadVarInt(Stream& is)
{
CheckVarIntMode<Mode, I>();
I n = 0;
while(true) {
unsigned char chData = ser_readdata8(is);
if (n > (std::numeric_limits<I>::max() >> 7)) {
throw std::ios_base::failure("ReadVarInt(): size too large");
}
n = (n << 7) | (chData & 0x7F);
if (chData & 0x80) {
if (n == std::numeric_limits<I>::max()) {
throw std::ios_base::failure("ReadVarInt(): size too large");
}
n++;
} else {
return n;
}
}
}
/** Simple wrapper class to serialize objects using a formatter; used by Using(). */
template<typename Formatter, typename T>
class Wrapper
{
static_assert(std::is_lvalue_reference<T>::value, "Wrapper needs an lvalue reference type T");
protected:
T m_object;
public:
explicit Wrapper(T obj) : m_object(obj) {}
template<typename Stream> void Serialize(Stream &s) const { Formatter().Ser(s, m_object); }
template<typename Stream> void Unserialize(Stream &s) { Formatter().Unser(s, m_object); }
};
/** Cause serialization/deserialization of an object to be done using a specified formatter class.
*
* To use this, you need a class Formatter that has public functions Ser(stream, const object&) for
* serialization, and Unser(stream, object&) for deserialization. Serialization routines (inside
* READWRITE, or directly with << and >> operators), can then use Using<Formatter>(object).
*
* This works by constructing a Wrapper<Formatter, T>-wrapped version of object, where T is
* const during serialization, and non-const during deserialization, which maintains const
* correctness.
*/
template<typename Formatter, typename T>
static inline Wrapper<Formatter, T&> Using(T&& t) { return Wrapper<Formatter, T&>(t); }
#define VARINT_MODE(obj, mode) Using<VarIntFormatter<mode>>(obj)
#define VARINT(obj) Using<VarIntFormatter<VarIntMode::DEFAULT>>(obj)
#define COMPACTSIZE(obj) Using<CompactSizeFormatter<true>>(obj)
2020-05-20 14:13:06 -04:00
#define LIMITED_STRING(obj,n) Using<LimitedStringFormatter<n>>(obj)
2012-03-26 11:48:23 -03:00
/** Serialization wrapper class for integers in VarInt format. */
template<VarIntMode Mode>
struct VarIntFormatter
{
template<typename Stream, typename I> void Ser(Stream &s, I v)
{
WriteVarInt<Stream,Mode,typename std::remove_cv<I>::type>(s, v);
}
template<typename Stream, typename I> void Unser(Stream& s, I& v)
{
v = ReadVarInt<Stream,Mode,typename std::remove_cv<I>::type>(s);
}
};
2020-05-19 17:30:30 -04:00
/** Serialization wrapper class for custom integers and enums.
*
* It permits specifying the serialized size (1 to 8 bytes) and endianness.
*
* Use the big endian mode for values that are stored in memory in native
* byte order, but serialized in big endian notation. This is only intended
* to implement serializers that are compatible with existing formats, and
* its use is not recommended for new data structures.
*/
template<int Bytes, bool BigEndian = false>
2020-02-16 00:48:42 -03:00
struct CustomUintFormatter
{
static_assert(Bytes > 0 && Bytes <= 8, "CustomUintFormatter Bytes out of range");
static constexpr uint64_t MAX = 0xffffffffffffffff >> (8 * (8 - Bytes));
template <typename Stream, typename I> void Ser(Stream& s, I v)
{
if (v < 0 || v > MAX) throw std::ios_base::failure("CustomUintFormatter value out of range");
if (BigEndian) {
uint64_t raw = htobe64_internal(v);
s.write(AsBytes(Span{&raw, 1}).last(Bytes));
} else {
uint64_t raw = htole64_internal(v);
s.write(AsBytes(Span{&raw, 1}).first(Bytes));
}
2020-02-16 00:48:42 -03:00
}
template <typename Stream, typename I> void Unser(Stream& s, I& v)
{
using U = typename std::conditional<std::is_enum<I>::value, std::underlying_type<I>, std::common_type<I>>::type::type;
static_assert(std::numeric_limits<U>::max() >= MAX && std::numeric_limits<U>::min() <= 0, "Assigned type too small");
2020-02-16 00:48:42 -03:00
uint64_t raw = 0;
if (BigEndian) {
s.read(AsWritableBytes(Span{&raw, 1}).last(Bytes));
v = static_cast<I>(be64toh_internal(raw));
} else {
s.read(AsWritableBytes(Span{&raw, 1}).first(Bytes));
v = static_cast<I>(le64toh_internal(raw));
}
2020-02-16 00:48:42 -03:00
}
};
template<int Bytes> using BigEndianFormatter = CustomUintFormatter<Bytes, true>;
/** Formatter for integers in CompactSize format. */
template<bool RangeCheck>
struct CompactSizeFormatter
{
template<typename Stream, typename I>
void Unser(Stream& s, I& v)
{
uint64_t n = ReadCompactSize<Stream>(s, RangeCheck);
if (n < std::numeric_limits<I>::min() || n > std::numeric_limits<I>::max()) {
throw std::ios_base::failure("CompactSize exceeds limit of type");
}
v = n;
}
template<typename Stream, typename I>
void Ser(Stream& s, I v)
{
static_assert(std::is_unsigned<I>::value, "CompactSize only supported for unsigned integers");
static_assert(std::numeric_limits<I>::max() <= std::numeric_limits<uint64_t>::max(), "CompactSize only supports 64-bit integers and below");
WriteCompactSize<Stream>(s, v);
}
};
2022-04-07 13:47:52 -04:00
template <typename U, bool LOSSY = false>
struct ChronoFormatter {
template <typename Stream, typename Tp>
void Unser(Stream& s, Tp& tp)
{
U u;
s >> u;
// Lossy deserialization does not make sense, so force Wnarrowing
tp = Tp{typename Tp::duration{typename Tp::duration::rep{u}}};
}
template <typename Stream, typename Tp>
void Ser(Stream& s, Tp tp)
{
if constexpr (LOSSY) {
s << U(tp.time_since_epoch().count());
} else {
s << U{tp.time_since_epoch().count()};
}
}
};
template <typename U>
using LossyChronoFormatter = ChronoFormatter<U, true>;
2019-10-02 16:49:33 -03:00
class CompactSizeWriter
{
protected:
uint64_t n;
public:
explicit CompactSizeWriter(uint64_t n_in) : n(n_in) { }
template<typename Stream>
void Serialize(Stream &s) const {
WriteCompactSize<Stream>(s, n);
}
};
template<size_t Limit>
2020-05-20 14:13:06 -04:00
struct LimitedStringFormatter
{
template<typename Stream>
2020-05-20 14:13:06 -04:00
void Unser(Stream& s, std::string& v)
{
size_t size = ReadCompactSize(s);
if (size > Limit) {
throw std::ios_base::failure("String length limit exceeded");
}
2020-05-20 14:13:06 -04:00
v.resize(size);
if (size != 0) s.read(MakeWritableByteSpan(v));
}
template<typename Stream>
2020-05-20 14:13:06 -04:00
void Ser(Stream& s, const std::string& v)
{
2020-05-20 14:13:06 -04:00
s << v;
}
};
/** Formatter to serialize/deserialize vector elements using another formatter
*
* Example:
* struct X {
* std::vector<uint64_t> v;
* SERIALIZE_METHODS(X, obj) { READWRITE(Using<VectorFormatter<VarInt>>(obj.v)); }
* };
* will define a struct that contains a vector of uint64_t, which is serialized
* as a vector of VarInt-encoded integers.
*
* V is not required to be an std::vector type. It works for any class that
* exposes a value_type, size, reserve, emplace_back, back, and const iterators.
*/
template<class Formatter>
struct VectorFormatter
{
template<typename Stream, typename V>
void Ser(Stream& s, const V& v)
{
Formatter formatter;
WriteCompactSize(s, v.size());
for (const typename V::value_type& elem : v) {
formatter.Ser(s, elem);
}
}
template<typename Stream, typename V>
void Unser(Stream& s, V& v)
{
Formatter formatter;
v.clear();
size_t size = ReadCompactSize(s);
size_t allocated = 0;
while (allocated < size) {
// For DoS prevention, do not blindly allocate as much as the stream claims to contain.
// Instead, allocate in 5MiB batches, so that an attacker actually needs to provide
// X MiB of data to make us allocate X+5 Mib.
static_assert(sizeof(typename V::value_type) <= MAX_VECTOR_ALLOCATE, "Vector element size too large");
allocated = std::min(size, allocated + MAX_VECTOR_ALLOCATE / sizeof(typename V::value_type));
v.reserve(allocated);
while (v.size() < allocated) {
v.emplace_back();
formatter.Unser(s, v.back());
}
}
};
};
/**
* Forward declarations
*/
/**
* string
*/
template<typename Stream, typename C> void Serialize(Stream& os, const std::basic_string<C>& str);
template<typename Stream, typename C> void Unserialize(Stream& is, std::basic_string<C>& str);
2015-10-29 03:11:24 -03:00
/**
* prevector
*/
template<typename Stream, unsigned int N, typename T> inline void Serialize(Stream& os, const prevector<N, T>& v);
template<typename Stream, unsigned int N, typename T> inline void Unserialize(Stream& is, prevector<N, T>& v);
2015-10-29 03:11:24 -03:00
/**
* vector
*/
template<typename Stream, typename T, typename A> inline void Serialize(Stream& os, const std::vector<T, A>& v);
template<typename Stream, typename T, typename A> inline void Unserialize(Stream& is, std::vector<T, A>& v);
/**
* pair
*/
template<typename Stream, typename K, typename T> void Serialize(Stream& os, const std::pair<K, T>& item);
template<typename Stream, typename K, typename T> void Unserialize(Stream& is, std::pair<K, T>& item);
/**
* map
*/
template<typename Stream, typename K, typename T, typename Pred, typename A> void Serialize(Stream& os, const std::map<K, T, Pred, A>& m);
template<typename Stream, typename K, typename T, typename Pred, typename A> void Unserialize(Stream& is, std::map<K, T, Pred, A>& m);
/**
* set
*/
template<typename Stream, typename K, typename Pred, typename A> void Serialize(Stream& os, const std::set<K, Pred, A>& m);
template<typename Stream, typename K, typename Pred, typename A> void Unserialize(Stream& is, std::set<K, Pred, A>& m);
/**
* shared_ptr
*/
template<typename Stream, typename T> void Serialize(Stream& os, const std::shared_ptr<const T>& p);
template<typename Stream, typename T> void Unserialize(Stream& os, std::shared_ptr<const T>& p);
/**
* unique_ptr
*/
template<typename Stream, typename T> void Serialize(Stream& os, const std::unique_ptr<const T>& p);
template<typename Stream, typename T> void Unserialize(Stream& os, std::unique_ptr<const T>& p);
/**
* If none of the specialized versions above matched, default to calling member function.
*/
template <class T, class Stream>
concept Serializable = requires(T a, Stream s) { a.Serialize(s); };
template <typename Stream, typename T>
requires Serializable<T, Stream>
void Serialize(Stream& os, const T& a)
{
a.Serialize(os);
}
template <class T, class Stream>
concept Unserializable = requires(T a, Stream s) { a.Unserialize(s); };
template <typename Stream, typename T>
requires Unserializable<T, Stream>
void Unserialize(Stream& is, T&& a)
{
a.Unserialize(is);
}
/** Default formatter. Serializes objects as themselves.
*
* The vector/prevector serialization code passes this to VectorFormatter
* to enable reusing that logic. It shouldn't be needed elsewhere.
*/
struct DefaultFormatter
{
template<typename Stream, typename T>
static void Ser(Stream& s, const T& t) { Serialize(s, t); }
template<typename Stream, typename T>
static void Unser(Stream& s, T& t) { Unserialize(s, t); }
};
/**
* string
*/
template<typename Stream, typename C>
void Serialize(Stream& os, const std::basic_string<C>& str)
{
WriteCompactSize(os, str.size());
if (!str.empty())
os.write(MakeByteSpan(str));
}
template<typename Stream, typename C>
void Unserialize(Stream& is, std::basic_string<C>& str)
{
unsigned int nSize = ReadCompactSize(is);
str.resize(nSize);
if (nSize != 0)
is.read(MakeWritableByteSpan(str));
}
2015-10-29 03:11:24 -03:00
/**
* prevector
*/
template <typename Stream, unsigned int N, typename T>
void Serialize(Stream& os, const prevector<N, T>& v)
{
if constexpr (BasicByte<T>) { // Use optimized version for unformatted basic bytes
WriteCompactSize(os, v.size());
if (!v.empty()) os.write(MakeByteSpan(v));
} else {
Serialize(os, Using<VectorFormatter<DefaultFormatter>>(v));
}
2015-10-29 03:11:24 -03:00
}
template <typename Stream, unsigned int N, typename T>
void Unserialize(Stream& is, prevector<N, T>& v)
2015-10-29 03:11:24 -03:00
{
if constexpr (BasicByte<T>) { // Use optimized version for unformatted basic bytes
// Limit size per read so bogus size value won't cause out of memory
v.clear();
unsigned int nSize = ReadCompactSize(is);
unsigned int i = 0;
while (i < nSize) {
unsigned int blk = std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T)));
v.resize_uninitialized(i + blk);
is.read(AsWritableBytes(Span{&v[i], blk}));
i += blk;
}
} else {
Unserialize(is, Using<VectorFormatter<DefaultFormatter>>(v));
2015-10-29 03:11:24 -03:00
}
}
/**
* vector
*/
template <typename Stream, typename T, typename A>
void Serialize(Stream& os, const std::vector<T, A>& v)
{
if constexpr (BasicByte<T>) { // Use optimized version for unformatted basic bytes
WriteCompactSize(os, v.size());
if (!v.empty()) os.write(MakeByteSpan(v));
} else if constexpr (std::is_same_v<T, bool>) {
// A special case for std::vector<bool>, as dereferencing
// std::vector<bool>::const_iterator does not result in a const bool&
// due to std::vector's special casing for bool arguments.
WriteCompactSize(os, v.size());
for (bool elem : v) {
::Serialize(os, elem);
}
} else {
Serialize(os, Using<VectorFormatter<DefaultFormatter>>(v));
}
}
template <typename Stream, typename T, typename A>
void Unserialize(Stream& is, std::vector<T, A>& v)
{
if constexpr (BasicByte<T>) { // Use optimized version for unformatted basic bytes
// Limit size per read so bogus size value won't cause out of memory
v.clear();
unsigned int nSize = ReadCompactSize(is);
unsigned int i = 0;
while (i < nSize) {
unsigned int blk = std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T)));
v.resize(i + blk);
is.read(AsWritableBytes(Span{&v[i], blk}));
i += blk;
}
} else {
Unserialize(is, Using<VectorFormatter<DefaultFormatter>>(v));
}
}
/**
* pair
*/
template<typename Stream, typename K, typename T>
void Serialize(Stream& os, const std::pair<K, T>& item)
{
Serialize(os, item.first);
Serialize(os, item.second);
}
template<typename Stream, typename K, typename T>
void Unserialize(Stream& is, std::pair<K, T>& item)
{
Unserialize(is, item.first);
Unserialize(is, item.second);
}
/**
* map
*/
template<typename Stream, typename K, typename T, typename Pred, typename A>
void Serialize(Stream& os, const std::map<K, T, Pred, A>& m)
{
WriteCompactSize(os, m.size());
for (const auto& entry : m)
Serialize(os, entry);
}
template<typename Stream, typename K, typename T, typename Pred, typename A>
void Unserialize(Stream& is, std::map<K, T, Pred, A>& m)
{
m.clear();
unsigned int nSize = ReadCompactSize(is);
typename std::map<K, T, Pred, A>::iterator mi = m.begin();
for (unsigned int i = 0; i < nSize; i++)
{
std::pair<K, T> item;
Unserialize(is, item);
mi = m.insert(mi, item);
}
}
/**
* set
*/
template<typename Stream, typename K, typename Pred, typename A>
void Serialize(Stream& os, const std::set<K, Pred, A>& m)
{
WriteCompactSize(os, m.size());
for (typename std::set<K, Pred, A>::const_iterator it = m.begin(); it != m.end(); ++it)
Serialize(os, (*it));
}
template<typename Stream, typename K, typename Pred, typename A>
void Unserialize(Stream& is, std::set<K, Pred, A>& m)
{
m.clear();
unsigned int nSize = ReadCompactSize(is);
typename std::set<K, Pred, A>::iterator it = m.begin();
for (unsigned int i = 0; i < nSize; i++)
{
K key;
Unserialize(is, key);
it = m.insert(it, key);
}
}
/**
* unique_ptr
*/
template<typename Stream, typename T> void
Serialize(Stream& os, const std::unique_ptr<const T>& p)
{
Serialize(os, *p);
}
template<typename Stream, typename T>
void Unserialize(Stream& is, std::unique_ptr<const T>& p)
{
p.reset(new T(deserialize, is));
}
/**
* shared_ptr
*/
template<typename Stream, typename T> void
Serialize(Stream& os, const std::shared_ptr<const T>& p)
{
Serialize(os, *p);
}
template<typename Stream, typename T>
void Unserialize(Stream& is, std::shared_ptr<const T>& p)
{
p = std::make_shared<const T>(deserialize, is);
}
/**
* Support for (un)serializing many things at once
*/
template <typename Stream, typename... Args>
void SerializeMany(Stream& s, const Args&... args)
{
(::Serialize(s, args), ...);
}
template <typename Stream, typename... Args>
inline void UnserializeMany(Stream& s, Args&&... args)
{
(::Unserialize(s, args), ...);
}
/**
* Support for all macros providing or using the ser_action parameter of the SerializationOps method.
*/
struct ActionSerialize {
static constexpr bool ForRead() { return false; }
template<typename Stream, typename... Args>
static void SerReadWriteMany(Stream& s, const Args&... args)
{
::SerializeMany(s, args...);
}
template<typename Stream, typename Type, typename Fn>
static void SerRead(Stream& s, Type&&, Fn&&)
{
}
template<typename Stream, typename Type, typename Fn>
static void SerWrite(Stream& s, Type&& obj, Fn&& fn)
{
fn(s, std::forward<Type>(obj));
}
};
struct ActionUnserialize {
static constexpr bool ForRead() { return true; }
template<typename Stream, typename... Args>
static void SerReadWriteMany(Stream& s, Args&&... args)
{
::UnserializeMany(s, args...);
}
template<typename Stream, typename Type, typename Fn>
static void SerRead(Stream& s, Type&& obj, Fn&& fn)
{
fn(s, std::forward<Type>(obj));
}
template<typename Stream, typename Type, typename Fn>
static void SerWrite(Stream& s, Type&&, Fn&&)
{
}
};
/* ::GetSerializeSize implementations
*
* Computing the serialized size of objects is done through a special stream
* object of type SizeComputer, which only records the number of bytes written
* to it.
*
* If your Serialize or SerializationOp method has non-trivial overhead for
* serialization, it may be worthwhile to implement a specialized version for
* SizeComputer, which uses the s.seek() method to record bytes that would
* be written instead.
*/
class SizeComputer
{
protected:
size_t nSize{0};
public:
2024-07-08 05:11:58 -04:00
SizeComputer() = default;
void write(Span<const std::byte> src)
{
this->nSize += src.size();
}
/** Pretend _nSize bytes are written, without specifying them. */
void seek(size_t _nSize)
{
this->nSize += _nSize;
}
template<typename T>
SizeComputer& operator<<(const T& obj)
{
::Serialize(*this, obj);
return (*this);
}
size_t size() const {
return nSize;
}
};
template<typename I>
inline void WriteVarInt(SizeComputer &s, I n)
{
s.seek(GetSizeOfVarInt<I>(n));
}
inline void WriteCompactSize(SizeComputer &s, uint64_t nSize)
{
s.seek(GetSizeOfCompactSize(nSize));
}
template <typename T>
size_t GetSerializeSize(const T& t)
{
return (SizeComputer() << t).size();
}
//! Check if type contains a stream by seeing if has a GetStream() method.
template<typename T>
concept ContainsStream = requires(T t) { t.GetStream(); };
/** Wrapper that overrides the GetParams() function of a stream. */
template <typename SubStream, typename Params>
class ParamsStream
{
const Params& m_params;
// If ParamsStream constructor is passed an lvalue argument, Substream will
// be a reference type, and m_substream will reference that argument.
// Otherwise m_substream will be a substream instance and move from the
// argument. Letting ParamsStream contain a substream instance instead of
// just a reference is useful to make the ParamsStream object self contained
// and let it do cleanup when destroyed, for example by closing files if
// SubStream is a file stream.
SubStream m_substream;
public:
ParamsStream(SubStream&& substream, const Params& params LIFETIMEBOUND) : m_params{params}, m_substream{std::forward<SubStream>(substream)} {}
template <typename NestedSubstream, typename Params1, typename Params2, typename... NestedParams>
ParamsStream(NestedSubstream&& s, const Params1& params1 LIFETIMEBOUND, const Params2& params2 LIFETIMEBOUND, const NestedParams&... params LIFETIMEBOUND)
: ParamsStream{::ParamsStream{std::forward<NestedSubstream>(s), params2, params...}, params1} {}
template <typename U> ParamsStream& operator<<(const U& obj) { ::Serialize(*this, obj); return *this; }
template <typename U> ParamsStream& operator>>(U&& obj) { ::Unserialize(*this, obj); return *this; }
void write(Span<const std::byte> src) { GetStream().write(src); }
void read(Span<std::byte> dst) { GetStream().read(dst); }
void ignore(size_t num) { GetStream().ignore(num); }
bool eof() const { return GetStream().eof(); }
size_t size() const { return GetStream().size(); }
serialization: Support for multiple parameters This commit makes a minimal change to the ParamsStream class to let it retrieve multiple parameters. Followup commits after this commit clean up code using ParamsStream and make it easier to set multiple parameters. Currently it is only possible to attach one serialization parameter to a stream at a time. For example, it is not possible to set a parameter controlling the transaction format and a parameter controlling the address format at the same time because one parameter will override the other. This limitation is inconvenient for multiprocess code since it is not possible to create just one type of stream and serialize any object to it. Instead it is necessary to create different streams for different object types, which requires extra boilerplate and makes using the new parameter fields a lot more awkward than the older version and type fields. Fix this problem by allowing an unlimited number of serialization stream parameters to be set, and allowing them to be requested by type. Later parameters will still override earlier parameters, but only if they have the same type. This change requires replacing the stream.GetParams() method with a stream.GetParams<T>() method in order for serialization code to retrieve the desired parameters. This change is more verbose, but probably a good thing for readability because previously it could be difficult to know what type the GetParams() method would return, and now it is more obvious.
2023-11-22 16:47:00 -03:00
//! Get reference to stream parameters.
template <typename P>
const auto& GetParams() const
{
if constexpr (std::is_convertible_v<Params, P>) {
return m_params;
} else {
return m_substream.template GetParams<P>();
}
}
//! Get reference to underlying stream.
auto& GetStream()
{
if constexpr (ContainsStream<SubStream>) {
return m_substream.GetStream();
} else {
return m_substream;
}
}
const auto& GetStream() const
{
if constexpr (ContainsStream<SubStream>) {
return m_substream.GetStream();
} else {
return m_substream;
}
}
};
/**
* Explicit template deduction guide is required for single-parameter
* constructor so Substream&& is treated as a forwarding reference, and
* SubStream is deduced as reference type for lvalue arguments.
*/
template <typename Substream, typename Params>
ParamsStream(Substream&&, const Params&) -> ParamsStream<Substream, Params>;
/**
* Template deduction guide for multiple params arguments that creates a nested
* ParamsStream.
*/
template <typename Substream, typename Params1, typename Params2, typename... Params>
ParamsStream(Substream&& s, const Params1& params1, const Params2& params2, const Params&... params) ->
ParamsStream<decltype(ParamsStream{std::forward<Substream>(s), params2, params...}), Params1>;
/** Wrapper that serializes objects with the specified parameters. */
template <typename Params, typename T>
class ParamsWrapper
{
const Params& m_params;
T& m_object;
public:
explicit ParamsWrapper(const Params& params, T& obj) : m_params{params}, m_object{obj} {}
template <typename Stream>
void Serialize(Stream& s) const
{
ParamsStream ss{s, m_params};
::Serialize(ss, m_object);
}
template <typename Stream>
void Unserialize(Stream& s)
{
ParamsStream ss{s, m_params};
::Unserialize(ss, m_object);
}
};
2023-09-11 05:36:11 -03:00
/**
* Helper macro for SerParams structs
*
* Allows you define SerParams instances and then apply them directly
* to an object via function call syntax, eg:
*
* constexpr SerParams FOO{....};
* ss << FOO(obj);
*/
2023-09-18 09:02:30 -03:00
#define SER_PARAMS_OPFUNC \
/** \
* Return a wrapper around t that (de)serializes it with specified parameter params. \
* \
serialization: Support for multiple parameters This commit makes a minimal change to the ParamsStream class to let it retrieve multiple parameters. Followup commits after this commit clean up code using ParamsStream and make it easier to set multiple parameters. Currently it is only possible to attach one serialization parameter to a stream at a time. For example, it is not possible to set a parameter controlling the transaction format and a parameter controlling the address format at the same time because one parameter will override the other. This limitation is inconvenient for multiprocess code since it is not possible to create just one type of stream and serialize any object to it. Instead it is necessary to create different streams for different object types, which requires extra boilerplate and makes using the new parameter fields a lot more awkward than the older version and type fields. Fix this problem by allowing an unlimited number of serialization stream parameters to be set, and allowing them to be requested by type. Later parameters will still override earlier parameters, but only if they have the same type. This change requires replacing the stream.GetParams() method with a stream.GetParams<T>() method in order for serialization code to retrieve the desired parameters. This change is more verbose, but probably a good thing for readability because previously it could be difficult to know what type the GetParams() method would return, and now it is more obvious.
2023-11-22 16:47:00 -03:00
* See SER_PARAMS for more information on serialization parameters. \
2023-09-18 09:02:30 -03:00
*/ \
template <typename T> \
auto operator()(T&& t) const \
{ \
return ParamsWrapper{*this, t}; \
}
2023-09-11 05:36:11 -03:00
#endif // BITCOIN_SERIALIZE_H