bitcoin/group.h
Pieter Wuille b394396b45 split up
2013-03-08 01:20:53 +01:00

227 lines
6.5 KiB
C++

#ifndef _SECP256K1_GROUP_
#define _SECP256K1_GROUP_
#include "field.h"
namespace secp256k1 {
/** Defines a point on the secp256k1 curve (y^2 = x^3 + 7) */
class GroupElem {
protected:
bool fInfinity;
FieldElem x;
FieldElem y;
public:
/** Creates the point at infinity */
GroupElem() {
fInfinity = true;
}
/** Creates the point with given affine coordinates */
GroupElem(const FieldElem &xin, const FieldElem &yin) {
fInfinity = false;
x = xin;
y = yin;
}
/** Checks whether this is the point at infinity */
bool IsInfinity() const {
return fInfinity;
}
void SetNeg(GroupElem &p) {
fInfinity = p.fInfinity;
x = p.x;
p.y.Normalize();
y.SetNeg(p.y, 1);
}
std::string ToString() {
if (fInfinity)
return "(inf)";
return "(" + x.ToString() + "," + y.ToString() + ")";
}
friend class GroupElemJac;
};
/** Represents a point on the secp256k1 curve, with jacobian coordinates */
class GroupElemJac : public GroupElem {
protected:
FieldElem z;
public:
/** Creates the point at infinity */
GroupElemJac() : GroupElem(), z(1) {}
/** Creates the point with given affine coordinates */
GroupElemJac(const FieldElem &xin, const FieldElem &yin) : GroupElem(xin,yin), z(1) {}
/** Checks whether this is a non-infinite point on the curve */
bool IsValid() {
if (IsInfinity())
return false;
// y^2 = x^3 + 7
// (Y/Z^3)^2 = (X/Z^2)^3 + 7
// Y^2 / Z^6 = X^3 / Z^6 + 7
// Y^2 = X^3 + 7*Z^6
FieldElem y2; y2.SetSquare(y);
FieldElem x3; x3.SetSquare(x); x3.SetMult(x3,x);
FieldElem z2; z2.SetSquare(z);
FieldElem z6; z6.SetSquare(z2); z6.SetMult(z6,z2);
z6 *= 7;
x3 += z6;
return y2 == x3;
}
/** Returns the affine coordinates of this point */
void GetAffine(GroupElem &aff) {
z.SetInverse(z);
FieldElem z2;
z2.SetSquare(z);
FieldElem z3;
z3.SetMult(z,z2);
x.SetMult(x,z2);
y.SetMult(y,z3);
z = FieldElem(1);
aff.fInfinity = false;
aff.x = x;
aff.y = y;
}
/** Sets this point to have a given X coordinate & given Y oddness */
void SetCompressed(const FieldElem &xin, bool fOdd) {
x = xin;
FieldElem x2; x2.SetSquare(x);
FieldElem x3; x3.SetMult(x,x2);
fInfinity = false;
FieldElem c(7);
c += x3;
y.SetSquareRoot(c);
z = FieldElem(1);
if (y.IsOdd() != fOdd)
y.SetNeg(y,1);
}
/** Sets this point to be the EC double of another */
void SetDouble(const GroupElemJac &p) {
if (p.fInfinity || y.IsZero()) {
fInfinity = true;
return;
}
FieldElem t1,t2,t3,t4,t5;
z.SetMult(p.y,p.z);
z *= 2; // Z' = 2*Y*Z (2)
t1.SetSquare(p.x);
t1 *= 3; // T1 = 3*X^2 (3)
t2.SetSquare(t1); // T2 = 9*X^4 (1)
t3.SetSquare(p.y);
t3 *= 2; // T3 = 2*Y^2 (2)
t4.SetSquare(t3);
t4 *= 2; // T4 = 8*Y^4 (2)
t3.SetMult(p.x,t3); // T3 = 2*X*Y^2 (1)
x = t3;
x *= 4; // X' = 8*X*Y^2 (4)
x.SetNeg(x,4); // X' = -8*X*Y^2 (5)
x += t2; // X' = 9*X^4 - 8*X*Y^2 (6)
t2.SetNeg(t2,1); // T2 = -9*X^4 (2)
t3 *= 6; // T3 = 12*X*Y^2 (6)
t3 += t2; // T3 = 12*X*Y^2 - 9*X^4 (8)
y.SetMult(t1,t3); // Y' = 36*X^3*Y^2 - 27*X^6 (1)
t2.SetNeg(t4,2); // T2 = -8*Y^4 (3)
y += t2; // Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4)
}
/** Sets this point to be the EC addition of two others */
void SetAdd(const GroupElemJac &p, const GroupElemJac &q) {
if (p.fInfinity) {
*this = q;
return;
}
if (q.fInfinity) {
*this = p;
return;
}
fInfinity = false;
const FieldElem &x1 = p.x, &y1 = p.y, &z1 = p.z, &x2 = q.x, &y2 = q.y, &z2 = q.z;
FieldElem z22; z22.SetSquare(z2);
FieldElem z12; z12.SetSquare(z1);
FieldElem u1; u1.SetMult(x1, z22);
FieldElem u2; u2.SetMult(x2, z12);
FieldElem s1; s1.SetMult(y1, z22); s1.SetMult(s1, z2);
FieldElem s2; s2.SetMult(y2, z12); s2.SetMult(s2, z1);
if (u1 == u2) {
if (s1 == s2) {
SetDouble(p);
} else {
fInfinity = true;
}
return;
}
FieldElem h; h.SetNeg(u1,1); h += u2;
FieldElem r; r.SetNeg(s1,1); r += s2;
FieldElem r2; r2.SetSquare(r);
FieldElem h2; h2.SetSquare(h);
FieldElem h3; h3.SetMult(h,h2);
z.SetMult(z1,z2); z.SetMult(z, h);
FieldElem t; t.SetMult(u1,h2);
x = t; x *= 2; x += h3; x.SetNeg(x,3); x += r2;
y.SetNeg(x,5); y += t; y.SetMult(y,r);
h3.SetMult(h3,s1); h3.SetNeg(h3,1);
y += h3;
}
/** Sets this point to be the EC addition of two others (one of which is in affine coordinates) */
void SetAdd(const GroupElemJac &p, const GroupElem &q) {
if (p.fInfinity) {
x = q.x;
y = q.y;
fInfinity = q.fInfinity;
z = FieldElem(1);
return;
}
if (q.fInfinity) {
*this = p;
return;
}
fInfinity = false;
const FieldElem &x1 = p.x, &y1 = p.y, &z1 = p.z, &x2 = q.x, &y2 = q.y;
FieldElem z12; z12.SetSquare(z1);
FieldElem u1 = x1; u1.Normalize();
FieldElem u2; u2.SetMult(x2, z12);
FieldElem s1 = y1; s1.Normalize();
FieldElem s2; s2.SetMult(y2, z12); s2.SetMult(s2, z1);
if (u1 == u2) {
if (s1 == s2) {
SetDouble(p);
} else {
fInfinity = true;
}
return;
}
FieldElem h; h.SetNeg(u1,1); h += u2;
FieldElem r; r.SetNeg(s1,1); r += s2;
FieldElem r2; r2.SetSquare(r);
FieldElem h2; h2.SetSquare(h);
FieldElem h3; h3.SetMult(h,h2);
z = p.z; z.SetMult(z, h);
FieldElem t; t.SetMult(u1,h2);
x = t; x *= 2; x += h3; x.SetNeg(x,3); x += r2;
y.SetNeg(x,5); y += t; y.SetMult(y,r);
h3.SetMult(h3,s1); h3.SetNeg(h3,1);
y += h3;
}
std::string ToString() {
GroupElem aff;
GetAffine(aff);
return aff.ToString();
}
};
}
#endif