#ifndef _SECP256K1_GROUP_ #define _SECP256K1_GROUP_ #include "field.h" namespace secp256k1 { /** Defines a point on the secp256k1 curve (y^2 = x^3 + 7) */ class GroupElem { protected: bool fInfinity; FieldElem x; FieldElem y; public: /** Creates the point at infinity */ GroupElem() { fInfinity = true; } /** Creates the point with given affine coordinates */ GroupElem(const FieldElem &xin, const FieldElem &yin) { fInfinity = false; x = xin; y = yin; } /** Checks whether this is the point at infinity */ bool IsInfinity() const { return fInfinity; } void SetNeg(GroupElem &p) { fInfinity = p.fInfinity; x = p.x; p.y.Normalize(); y.SetNeg(p.y, 1); } std::string ToString() { if (fInfinity) return "(inf)"; return "(" + x.ToString() + "," + y.ToString() + ")"; } friend class GroupElemJac; }; /** Represents a point on the secp256k1 curve, with jacobian coordinates */ class GroupElemJac : public GroupElem { protected: FieldElem z; public: /** Creates the point at infinity */ GroupElemJac() : GroupElem(), z(1) {} /** Creates the point with given affine coordinates */ GroupElemJac(const FieldElem &xin, const FieldElem &yin) : GroupElem(xin,yin), z(1) {} /** Checks whether this is a non-infinite point on the curve */ bool IsValid() { if (IsInfinity()) return false; // y^2 = x^3 + 7 // (Y/Z^3)^2 = (X/Z^2)^3 + 7 // Y^2 / Z^6 = X^3 / Z^6 + 7 // Y^2 = X^3 + 7*Z^6 FieldElem y2; y2.SetSquare(y); FieldElem x3; x3.SetSquare(x); x3.SetMult(x3,x); FieldElem z2; z2.SetSquare(z); FieldElem z6; z6.SetSquare(z2); z6.SetMult(z6,z2); z6 *= 7; x3 += z6; return y2 == x3; } /** Returns the affine coordinates of this point */ void GetAffine(GroupElem &aff) { z.SetInverse(z); FieldElem z2; z2.SetSquare(z); FieldElem z3; z3.SetMult(z,z2); x.SetMult(x,z2); y.SetMult(y,z3); z = FieldElem(1); aff.fInfinity = false; aff.x = x; aff.y = y; } /** Sets this point to have a given X coordinate & given Y oddness */ void SetCompressed(const FieldElem &xin, bool fOdd) { x = xin; FieldElem x2; x2.SetSquare(x); FieldElem x3; x3.SetMult(x,x2); fInfinity = false; FieldElem c(7); c += x3; y.SetSquareRoot(c); z = FieldElem(1); if (y.IsOdd() != fOdd) y.SetNeg(y,1); } /** Sets this point to be the EC double of another */ void SetDouble(const GroupElemJac &p) { if (p.fInfinity || y.IsZero()) { fInfinity = true; return; } FieldElem t1,t2,t3,t4,t5; z.SetMult(p.y,p.z); z *= 2; // Z' = 2*Y*Z (2) t1.SetSquare(p.x); t1 *= 3; // T1 = 3*X^2 (3) t2.SetSquare(t1); // T2 = 9*X^4 (1) t3.SetSquare(p.y); t3 *= 2; // T3 = 2*Y^2 (2) t4.SetSquare(t3); t4 *= 2; // T4 = 8*Y^4 (2) t3.SetMult(p.x,t3); // T3 = 2*X*Y^2 (1) x = t3; x *= 4; // X' = 8*X*Y^2 (4) x.SetNeg(x,4); // X' = -8*X*Y^2 (5) x += t2; // X' = 9*X^4 - 8*X*Y^2 (6) t2.SetNeg(t2,1); // T2 = -9*X^4 (2) t3 *= 6; // T3 = 12*X*Y^2 (6) t3 += t2; // T3 = 12*X*Y^2 - 9*X^4 (8) y.SetMult(t1,t3); // Y' = 36*X^3*Y^2 - 27*X^6 (1) t2.SetNeg(t4,2); // T2 = -8*Y^4 (3) y += t2; // Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) } /** Sets this point to be the EC addition of two others */ void SetAdd(const GroupElemJac &p, const GroupElemJac &q) { if (p.fInfinity) { *this = q; return; } if (q.fInfinity) { *this = p; return; } fInfinity = false; const FieldElem &x1 = p.x, &y1 = p.y, &z1 = p.z, &x2 = q.x, &y2 = q.y, &z2 = q.z; FieldElem z22; z22.SetSquare(z2); FieldElem z12; z12.SetSquare(z1); FieldElem u1; u1.SetMult(x1, z22); FieldElem u2; u2.SetMult(x2, z12); FieldElem s1; s1.SetMult(y1, z22); s1.SetMult(s1, z2); FieldElem s2; s2.SetMult(y2, z12); s2.SetMult(s2, z1); if (u1 == u2) { if (s1 == s2) { SetDouble(p); } else { fInfinity = true; } return; } FieldElem h; h.SetNeg(u1,1); h += u2; FieldElem r; r.SetNeg(s1,1); r += s2; FieldElem r2; r2.SetSquare(r); FieldElem h2; h2.SetSquare(h); FieldElem h3; h3.SetMult(h,h2); z.SetMult(z1,z2); z.SetMult(z, h); FieldElem t; t.SetMult(u1,h2); x = t; x *= 2; x += h3; x.SetNeg(x,3); x += r2; y.SetNeg(x,5); y += t; y.SetMult(y,r); h3.SetMult(h3,s1); h3.SetNeg(h3,1); y += h3; } /** Sets this point to be the EC addition of two others (one of which is in affine coordinates) */ void SetAdd(const GroupElemJac &p, const GroupElem &q) { if (p.fInfinity) { x = q.x; y = q.y; fInfinity = q.fInfinity; z = FieldElem(1); return; } if (q.fInfinity) { *this = p; return; } fInfinity = false; const FieldElem &x1 = p.x, &y1 = p.y, &z1 = p.z, &x2 = q.x, &y2 = q.y; FieldElem z12; z12.SetSquare(z1); FieldElem u1 = x1; u1.Normalize(); FieldElem u2; u2.SetMult(x2, z12); FieldElem s1 = y1; s1.Normalize(); FieldElem s2; s2.SetMult(y2, z12); s2.SetMult(s2, z1); if (u1 == u2) { if (s1 == s2) { SetDouble(p); } else { fInfinity = true; } return; } FieldElem h; h.SetNeg(u1,1); h += u2; FieldElem r; r.SetNeg(s1,1); r += s2; FieldElem r2; r2.SetSquare(r); FieldElem h2; h2.SetSquare(h); FieldElem h3; h3.SetMult(h,h2); z = p.z; z.SetMult(z, h); FieldElem t; t.SetMult(u1,h2); x = t; x *= 2; x += h3; x.SetNeg(x,3); x += r2; y.SetNeg(x,5); y += t; y.SetMult(y,r); h3.SetMult(h3,s1); h3.SetNeg(h3,1); y += h3; } std::string ToString() { GroupElem aff; GetAffine(aff); return aff.ToString(); } }; } #endif