mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-10 11:57:28 -03:00
Merge bitcoin/bitcoin#22704: fuzz: Differential fuzzing to compare Bitcoin Core's and D. J. Bernstein's implementation of ChaCha20
4d0ac72f3a
[fuzz] Add fuzzing harness to compare both implementations of ChaCha20 (stratospher)65ef93203c
[fuzz] Add D. J. Bernstein's implementation of ChaCha20 (stratospher) Pull request description: This PR compares Bitcoin Core's implementation of ChaCha20 with D. J. Bernstein's in order to find implementation discrepancies if any. ACKs for top commit: laanwj: Code review ACK4d0ac72f3a
Tree-SHA512: f826144b4db61b9cbdd7efaaca8fa9cbb899953065bc8a26820a566303b2ab6a17431e7c114635789f0a63fbe3b65cb0bf2ab85baf882803a5ee172af4881544
This commit is contained in:
commit
4ad59042b3
2 changed files with 331 additions and 0 deletions
|
@ -239,6 +239,7 @@ test_fuzz_fuzz_SOURCES = \
|
|||
test/fuzz/crypto_chacha20.cpp \
|
||||
test/fuzz/crypto_chacha20_poly1305_aead.cpp \
|
||||
test/fuzz/crypto_common.cpp \
|
||||
test/fuzz/crypto_diff_fuzz_chacha20.cpp \
|
||||
test/fuzz/crypto_hkdf_hmac_sha256_l32.cpp \
|
||||
test/fuzz/crypto_poly1305.cpp \
|
||||
test/fuzz/cuckoocache.cpp \
|
||||
|
|
330
src/test/fuzz/crypto_diff_fuzz_chacha20.cpp
Normal file
330
src/test/fuzz/crypto_diff_fuzz_chacha20.cpp
Normal file
|
@ -0,0 +1,330 @@
|
|||
// Copyright (c) 2020-2021 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include <crypto/chacha20.h>
|
||||
#include <test/fuzz/FuzzedDataProvider.h>
|
||||
#include <test/fuzz/fuzz.h>
|
||||
#include <test/fuzz/util.h>
|
||||
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
|
||||
/*
|
||||
From https://cr.yp.to/chacha.html
|
||||
chacha-merged.c version 20080118
|
||||
D. J. Bernstein
|
||||
Public domain.
|
||||
*/
|
||||
|
||||
typedef unsigned int u32;
|
||||
typedef unsigned char u8;
|
||||
|
||||
#define U8C(v) (v##U)
|
||||
#define U32C(v) (v##U)
|
||||
|
||||
#define U8V(v) ((u8)(v)&U8C(0xFF))
|
||||
#define U32V(v) ((u32)(v)&U32C(0xFFFFFFFF))
|
||||
|
||||
#define ROTL32(v, n) (U32V((v) << (n)) | ((v) >> (32 - (n))))
|
||||
|
||||
#define U8TO32_LITTLE(p) \
|
||||
(((u32)((p)[0])) | ((u32)((p)[1]) << 8) | ((u32)((p)[2]) << 16) | \
|
||||
((u32)((p)[3]) << 24))
|
||||
|
||||
#define U32TO8_LITTLE(p, v) \
|
||||
do { \
|
||||
(p)[0] = U8V((v)); \
|
||||
(p)[1] = U8V((v) >> 8); \
|
||||
(p)[2] = U8V((v) >> 16); \
|
||||
(p)[3] = U8V((v) >> 24); \
|
||||
} while (0)
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
/* Data structures */
|
||||
|
||||
typedef struct
|
||||
{
|
||||
u32 input[16];
|
||||
} ECRYPT_ctx;
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
/* Mandatory functions */
|
||||
|
||||
void ECRYPT_keysetup(
|
||||
ECRYPT_ctx* ctx,
|
||||
const u8* key,
|
||||
u32 keysize, /* Key size in bits. */
|
||||
u32 ivsize); /* IV size in bits. */
|
||||
|
||||
void ECRYPT_ivsetup(
|
||||
ECRYPT_ctx* ctx,
|
||||
const u8* iv);
|
||||
|
||||
void ECRYPT_encrypt_bytes(
|
||||
ECRYPT_ctx* ctx,
|
||||
const u8* plaintext,
|
||||
u8* ciphertext,
|
||||
u32 msglen); /* Message length in bytes. */
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
/* Optional features */
|
||||
|
||||
void ECRYPT_keystream_bytes(
|
||||
ECRYPT_ctx* ctx,
|
||||
u8* keystream,
|
||||
u32 length); /* Length of keystream in bytes. */
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
#define ROTATE(v, c) (ROTL32(v, c))
|
||||
#define XOR(v, w) ((v) ^ (w))
|
||||
#define PLUS(v, w) (U32V((v) + (w)))
|
||||
#define PLUSONE(v) (PLUS((v), 1))
|
||||
|
||||
#define QUARTERROUND(a, b, c, d) \
|
||||
a = PLUS(a, b); d = ROTATE(XOR(d, a), 16); \
|
||||
c = PLUS(c, d); b = ROTATE(XOR(b, c), 12); \
|
||||
a = PLUS(a, b); d = ROTATE(XOR(d, a), 8); \
|
||||
c = PLUS(c, d); b = ROTATE(XOR(b, c), 7);
|
||||
|
||||
static const char sigma[] = "expand 32-byte k";
|
||||
static const char tau[] = "expand 16-byte k";
|
||||
|
||||
void ECRYPT_keysetup(ECRYPT_ctx* x, const u8* k, u32 kbits, u32 ivbits)
|
||||
{
|
||||
const char* constants;
|
||||
|
||||
x->input[4] = U8TO32_LITTLE(k + 0);
|
||||
x->input[5] = U8TO32_LITTLE(k + 4);
|
||||
x->input[6] = U8TO32_LITTLE(k + 8);
|
||||
x->input[7] = U8TO32_LITTLE(k + 12);
|
||||
if (kbits == 256) { /* recommended */
|
||||
k += 16;
|
||||
constants = sigma;
|
||||
} else { /* kbits == 128 */
|
||||
constants = tau;
|
||||
}
|
||||
x->input[8] = U8TO32_LITTLE(k + 0);
|
||||
x->input[9] = U8TO32_LITTLE(k + 4);
|
||||
x->input[10] = U8TO32_LITTLE(k + 8);
|
||||
x->input[11] = U8TO32_LITTLE(k + 12);
|
||||
x->input[0] = U8TO32_LITTLE(constants + 0);
|
||||
x->input[1] = U8TO32_LITTLE(constants + 4);
|
||||
x->input[2] = U8TO32_LITTLE(constants + 8);
|
||||
x->input[3] = U8TO32_LITTLE(constants + 12);
|
||||
}
|
||||
|
||||
void ECRYPT_ivsetup(ECRYPT_ctx* x, const u8* iv)
|
||||
{
|
||||
x->input[12] = 0;
|
||||
x->input[13] = 0;
|
||||
x->input[14] = U8TO32_LITTLE(iv + 0);
|
||||
x->input[15] = U8TO32_LITTLE(iv + 4);
|
||||
}
|
||||
|
||||
void ECRYPT_encrypt_bytes(ECRYPT_ctx* x, const u8* m, u8* c, u32 bytes)
|
||||
{
|
||||
u32 x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
|
||||
u32 j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15;
|
||||
u8* ctarget = NULL;
|
||||
u8 tmp[64];
|
||||
uint32_t i;
|
||||
|
||||
if (!bytes) return;
|
||||
|
||||
j0 = x->input[0];
|
||||
j1 = x->input[1];
|
||||
j2 = x->input[2];
|
||||
j3 = x->input[3];
|
||||
j4 = x->input[4];
|
||||
j5 = x->input[5];
|
||||
j6 = x->input[6];
|
||||
j7 = x->input[7];
|
||||
j8 = x->input[8];
|
||||
j9 = x->input[9];
|
||||
j10 = x->input[10];
|
||||
j11 = x->input[11];
|
||||
j12 = x->input[12];
|
||||
j13 = x->input[13];
|
||||
j14 = x->input[14];
|
||||
j15 = x->input[15];
|
||||
|
||||
for (;;) {
|
||||
if (bytes < 64) {
|
||||
for (i = 0; i < bytes; ++i)
|
||||
tmp[i] = m[i];
|
||||
m = tmp;
|
||||
ctarget = c;
|
||||
c = tmp;
|
||||
}
|
||||
x0 = j0;
|
||||
x1 = j1;
|
||||
x2 = j2;
|
||||
x3 = j3;
|
||||
x4 = j4;
|
||||
x5 = j5;
|
||||
x6 = j6;
|
||||
x7 = j7;
|
||||
x8 = j8;
|
||||
x9 = j9;
|
||||
x10 = j10;
|
||||
x11 = j11;
|
||||
x12 = j12;
|
||||
x13 = j13;
|
||||
x14 = j14;
|
||||
x15 = j15;
|
||||
for (i = 20; i > 0; i -= 2) {
|
||||
QUARTERROUND(x0, x4, x8, x12)
|
||||
QUARTERROUND(x1, x5, x9, x13)
|
||||
QUARTERROUND(x2, x6, x10, x14)
|
||||
QUARTERROUND(x3, x7, x11, x15)
|
||||
QUARTERROUND(x0, x5, x10, x15)
|
||||
QUARTERROUND(x1, x6, x11, x12)
|
||||
QUARTERROUND(x2, x7, x8, x13)
|
||||
QUARTERROUND(x3, x4, x9, x14)
|
||||
}
|
||||
x0 = PLUS(x0, j0);
|
||||
x1 = PLUS(x1, j1);
|
||||
x2 = PLUS(x2, j2);
|
||||
x3 = PLUS(x3, j3);
|
||||
x4 = PLUS(x4, j4);
|
||||
x5 = PLUS(x5, j5);
|
||||
x6 = PLUS(x6, j6);
|
||||
x7 = PLUS(x7, j7);
|
||||
x8 = PLUS(x8, j8);
|
||||
x9 = PLUS(x9, j9);
|
||||
x10 = PLUS(x10, j10);
|
||||
x11 = PLUS(x11, j11);
|
||||
x12 = PLUS(x12, j12);
|
||||
x13 = PLUS(x13, j13);
|
||||
x14 = PLUS(x14, j14);
|
||||
x15 = PLUS(x15, j15);
|
||||
|
||||
x0 = XOR(x0, U8TO32_LITTLE(m + 0));
|
||||
x1 = XOR(x1, U8TO32_LITTLE(m + 4));
|
||||
x2 = XOR(x2, U8TO32_LITTLE(m + 8));
|
||||
x3 = XOR(x3, U8TO32_LITTLE(m + 12));
|
||||
x4 = XOR(x4, U8TO32_LITTLE(m + 16));
|
||||
x5 = XOR(x5, U8TO32_LITTLE(m + 20));
|
||||
x6 = XOR(x6, U8TO32_LITTLE(m + 24));
|
||||
x7 = XOR(x7, U8TO32_LITTLE(m + 28));
|
||||
x8 = XOR(x8, U8TO32_LITTLE(m + 32));
|
||||
x9 = XOR(x9, U8TO32_LITTLE(m + 36));
|
||||
x10 = XOR(x10, U8TO32_LITTLE(m + 40));
|
||||
x11 = XOR(x11, U8TO32_LITTLE(m + 44));
|
||||
x12 = XOR(x12, U8TO32_LITTLE(m + 48));
|
||||
x13 = XOR(x13, U8TO32_LITTLE(m + 52));
|
||||
x14 = XOR(x14, U8TO32_LITTLE(m + 56));
|
||||
x15 = XOR(x15, U8TO32_LITTLE(m + 60));
|
||||
|
||||
j12 = PLUSONE(j12);
|
||||
if (!j12) {
|
||||
j13 = PLUSONE(j13);
|
||||
/* stopping at 2^70 bytes per nonce is user's responsibility */
|
||||
}
|
||||
|
||||
U32TO8_LITTLE(c + 0, x0);
|
||||
U32TO8_LITTLE(c + 4, x1);
|
||||
U32TO8_LITTLE(c + 8, x2);
|
||||
U32TO8_LITTLE(c + 12, x3);
|
||||
U32TO8_LITTLE(c + 16, x4);
|
||||
U32TO8_LITTLE(c + 20, x5);
|
||||
U32TO8_LITTLE(c + 24, x6);
|
||||
U32TO8_LITTLE(c + 28, x7);
|
||||
U32TO8_LITTLE(c + 32, x8);
|
||||
U32TO8_LITTLE(c + 36, x9);
|
||||
U32TO8_LITTLE(c + 40, x10);
|
||||
U32TO8_LITTLE(c + 44, x11);
|
||||
U32TO8_LITTLE(c + 48, x12);
|
||||
U32TO8_LITTLE(c + 52, x13);
|
||||
U32TO8_LITTLE(c + 56, x14);
|
||||
U32TO8_LITTLE(c + 60, x15);
|
||||
|
||||
if (bytes <= 64) {
|
||||
if (bytes < 64) {
|
||||
for (i = 0; i < bytes; ++i)
|
||||
ctarget[i] = c[i];
|
||||
}
|
||||
x->input[12] = j12;
|
||||
x->input[13] = j13;
|
||||
return;
|
||||
}
|
||||
bytes -= 64;
|
||||
c += 64;
|
||||
m += 64;
|
||||
}
|
||||
}
|
||||
|
||||
void ECRYPT_keystream_bytes(ECRYPT_ctx* x, u8* stream, u32 bytes)
|
||||
{
|
||||
u32 i;
|
||||
for (i = 0; i < bytes; ++i)
|
||||
stream[i] = 0;
|
||||
ECRYPT_encrypt_bytes(x, stream, stream, bytes);
|
||||
}
|
||||
|
||||
FUZZ_TARGET(crypto_diff_fuzz_chacha20)
|
||||
{
|
||||
FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()};
|
||||
|
||||
ChaCha20 chacha20;
|
||||
ECRYPT_ctx ctx;
|
||||
// D. J. Bernstein doesn't initialise ctx to 0 while Bitcoin Core initialises chacha20 to 0 in the constructor
|
||||
for (int i = 0; i < 16; i++) {
|
||||
ctx.input[i] = 0;
|
||||
}
|
||||
|
||||
if (fuzzed_data_provider.ConsumeBool()) {
|
||||
const std::vector<unsigned char> key = ConsumeFixedLengthByteVector(fuzzed_data_provider, fuzzed_data_provider.ConsumeIntegralInRange<size_t>(16, 32));
|
||||
chacha20 = ChaCha20{key.data(), key.size()};
|
||||
ECRYPT_keysetup(&ctx, key.data(), key.size() * 8, 0);
|
||||
// ECRYPT_keysetup() doesn't set the counter and nonce to 0 while SetKey() does
|
||||
uint8_t iv[8] = {0, 0, 0, 0, 0, 0, 0, 0};
|
||||
ECRYPT_ivsetup(&ctx, iv);
|
||||
}
|
||||
|
||||
LIMITED_WHILE (fuzzed_data_provider.ConsumeBool(), 3000) {
|
||||
CallOneOf(
|
||||
fuzzed_data_provider,
|
||||
[&] {
|
||||
const std::vector<unsigned char> key = ConsumeFixedLengthByteVector(fuzzed_data_provider, fuzzed_data_provider.ConsumeIntegralInRange<size_t>(16, 32));
|
||||
chacha20.SetKey(key.data(), key.size());
|
||||
ECRYPT_keysetup(&ctx, key.data(), key.size() * 8, 0);
|
||||
// ECRYPT_keysetup() doesn't set the counter and nonce to 0 while SetKey() does
|
||||
uint8_t iv[8] = {0, 0, 0, 0, 0, 0, 0, 0};
|
||||
ECRYPT_ivsetup(&ctx, iv);
|
||||
},
|
||||
[&] {
|
||||
uint64_t iv = fuzzed_data_provider.ConsumeIntegral<uint64_t>();
|
||||
chacha20.SetIV(iv);
|
||||
ctx.input[14] = iv;
|
||||
ctx.input[15] = iv >> 32;
|
||||
},
|
||||
[&] {
|
||||
uint64_t counter = fuzzed_data_provider.ConsumeIntegral<uint64_t>();
|
||||
chacha20.Seek(counter);
|
||||
ctx.input[12] = counter;
|
||||
ctx.input[13] = counter >> 32;
|
||||
},
|
||||
[&] {
|
||||
uint32_t integralInRange = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096);
|
||||
std::vector<uint8_t> output(integralInRange);
|
||||
chacha20.Keystream(output.data(), output.size());
|
||||
std::vector<uint8_t> djb_output(integralInRange);
|
||||
ECRYPT_keystream_bytes(&ctx, djb_output.data(), djb_output.size());
|
||||
if (output.data() != NULL && djb_output.data() != NULL) {
|
||||
assert(memcmp(output.data(), djb_output.data(), integralInRange) == 0);
|
||||
}
|
||||
},
|
||||
[&] {
|
||||
uint32_t integralInRange = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096);
|
||||
std::vector<uint8_t> output(integralInRange);
|
||||
const std::vector<uint8_t> input = ConsumeFixedLengthByteVector(fuzzed_data_provider, output.size());
|
||||
chacha20.Crypt(input.data(), output.data(), input.size());
|
||||
std::vector<uint8_t> djb_output(integralInRange);
|
||||
ECRYPT_encrypt_bytes(&ctx, input.data(), djb_output.data(), input.size());
|
||||
});
|
||||
}
|
||||
}
|
Loading…
Reference in a new issue