diff --git a/src/Makefile.test.include b/src/Makefile.test.include index 326409c078..9fe2a3cf8a 100644 --- a/src/Makefile.test.include +++ b/src/Makefile.test.include @@ -239,6 +239,7 @@ test_fuzz_fuzz_SOURCES = \ test/fuzz/crypto_chacha20.cpp \ test/fuzz/crypto_chacha20_poly1305_aead.cpp \ test/fuzz/crypto_common.cpp \ + test/fuzz/crypto_diff_fuzz_chacha20.cpp \ test/fuzz/crypto_hkdf_hmac_sha256_l32.cpp \ test/fuzz/crypto_poly1305.cpp \ test/fuzz/cuckoocache.cpp \ diff --git a/src/test/fuzz/crypto_diff_fuzz_chacha20.cpp b/src/test/fuzz/crypto_diff_fuzz_chacha20.cpp new file mode 100644 index 0000000000..96681a121a --- /dev/null +++ b/src/test/fuzz/crypto_diff_fuzz_chacha20.cpp @@ -0,0 +1,330 @@ +// Copyright (c) 2020-2021 The Bitcoin Core developers +// Distributed under the MIT software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#include +#include +#include +#include + +#include +#include + +/* +From https://cr.yp.to/chacha.html +chacha-merged.c version 20080118 +D. J. Bernstein +Public domain. +*/ + +typedef unsigned int u32; +typedef unsigned char u8; + +#define U8C(v) (v##U) +#define U32C(v) (v##U) + +#define U8V(v) ((u8)(v)&U8C(0xFF)) +#define U32V(v) ((u32)(v)&U32C(0xFFFFFFFF)) + +#define ROTL32(v, n) (U32V((v) << (n)) | ((v) >> (32 - (n)))) + +#define U8TO32_LITTLE(p) \ + (((u32)((p)[0])) | ((u32)((p)[1]) << 8) | ((u32)((p)[2]) << 16) | \ + ((u32)((p)[3]) << 24)) + +#define U32TO8_LITTLE(p, v) \ + do { \ + (p)[0] = U8V((v)); \ + (p)[1] = U8V((v) >> 8); \ + (p)[2] = U8V((v) >> 16); \ + (p)[3] = U8V((v) >> 24); \ + } while (0) + +/* ------------------------------------------------------------------------- */ +/* Data structures */ + +typedef struct +{ + u32 input[16]; +} ECRYPT_ctx; + +/* ------------------------------------------------------------------------- */ +/* Mandatory functions */ + +void ECRYPT_keysetup( + ECRYPT_ctx* ctx, + const u8* key, + u32 keysize, /* Key size in bits. */ + u32 ivsize); /* IV size in bits. */ + +void ECRYPT_ivsetup( + ECRYPT_ctx* ctx, + const u8* iv); + +void ECRYPT_encrypt_bytes( + ECRYPT_ctx* ctx, + const u8* plaintext, + u8* ciphertext, + u32 msglen); /* Message length in bytes. */ + +/* ------------------------------------------------------------------------- */ + +/* Optional features */ + +void ECRYPT_keystream_bytes( + ECRYPT_ctx* ctx, + u8* keystream, + u32 length); /* Length of keystream in bytes. */ + +/* ------------------------------------------------------------------------- */ + +#define ROTATE(v, c) (ROTL32(v, c)) +#define XOR(v, w) ((v) ^ (w)) +#define PLUS(v, w) (U32V((v) + (w))) +#define PLUSONE(v) (PLUS((v), 1)) + +#define QUARTERROUND(a, b, c, d) \ + a = PLUS(a, b); d = ROTATE(XOR(d, a), 16); \ + c = PLUS(c, d); b = ROTATE(XOR(b, c), 12); \ + a = PLUS(a, b); d = ROTATE(XOR(d, a), 8); \ + c = PLUS(c, d); b = ROTATE(XOR(b, c), 7); + +static const char sigma[] = "expand 32-byte k"; +static const char tau[] = "expand 16-byte k"; + +void ECRYPT_keysetup(ECRYPT_ctx* x, const u8* k, u32 kbits, u32 ivbits) +{ + const char* constants; + + x->input[4] = U8TO32_LITTLE(k + 0); + x->input[5] = U8TO32_LITTLE(k + 4); + x->input[6] = U8TO32_LITTLE(k + 8); + x->input[7] = U8TO32_LITTLE(k + 12); + if (kbits == 256) { /* recommended */ + k += 16; + constants = sigma; + } else { /* kbits == 128 */ + constants = tau; + } + x->input[8] = U8TO32_LITTLE(k + 0); + x->input[9] = U8TO32_LITTLE(k + 4); + x->input[10] = U8TO32_LITTLE(k + 8); + x->input[11] = U8TO32_LITTLE(k + 12); + x->input[0] = U8TO32_LITTLE(constants + 0); + x->input[1] = U8TO32_LITTLE(constants + 4); + x->input[2] = U8TO32_LITTLE(constants + 8); + x->input[3] = U8TO32_LITTLE(constants + 12); +} + +void ECRYPT_ivsetup(ECRYPT_ctx* x, const u8* iv) +{ + x->input[12] = 0; + x->input[13] = 0; + x->input[14] = U8TO32_LITTLE(iv + 0); + x->input[15] = U8TO32_LITTLE(iv + 4); +} + +void ECRYPT_encrypt_bytes(ECRYPT_ctx* x, const u8* m, u8* c, u32 bytes) +{ + u32 x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15; + u32 j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15; + u8* ctarget = NULL; + u8 tmp[64]; + uint32_t i; + + if (!bytes) return; + + j0 = x->input[0]; + j1 = x->input[1]; + j2 = x->input[2]; + j3 = x->input[3]; + j4 = x->input[4]; + j5 = x->input[5]; + j6 = x->input[6]; + j7 = x->input[7]; + j8 = x->input[8]; + j9 = x->input[9]; + j10 = x->input[10]; + j11 = x->input[11]; + j12 = x->input[12]; + j13 = x->input[13]; + j14 = x->input[14]; + j15 = x->input[15]; + + for (;;) { + if (bytes < 64) { + for (i = 0; i < bytes; ++i) + tmp[i] = m[i]; + m = tmp; + ctarget = c; + c = tmp; + } + x0 = j0; + x1 = j1; + x2 = j2; + x3 = j3; + x4 = j4; + x5 = j5; + x6 = j6; + x7 = j7; + x8 = j8; + x9 = j9; + x10 = j10; + x11 = j11; + x12 = j12; + x13 = j13; + x14 = j14; + x15 = j15; + for (i = 20; i > 0; i -= 2) { + QUARTERROUND(x0, x4, x8, x12) + QUARTERROUND(x1, x5, x9, x13) + QUARTERROUND(x2, x6, x10, x14) + QUARTERROUND(x3, x7, x11, x15) + QUARTERROUND(x0, x5, x10, x15) + QUARTERROUND(x1, x6, x11, x12) + QUARTERROUND(x2, x7, x8, x13) + QUARTERROUND(x3, x4, x9, x14) + } + x0 = PLUS(x0, j0); + x1 = PLUS(x1, j1); + x2 = PLUS(x2, j2); + x3 = PLUS(x3, j3); + x4 = PLUS(x4, j4); + x5 = PLUS(x5, j5); + x6 = PLUS(x6, j6); + x7 = PLUS(x7, j7); + x8 = PLUS(x8, j8); + x9 = PLUS(x9, j9); + x10 = PLUS(x10, j10); + x11 = PLUS(x11, j11); + x12 = PLUS(x12, j12); + x13 = PLUS(x13, j13); + x14 = PLUS(x14, j14); + x15 = PLUS(x15, j15); + + x0 = XOR(x0, U8TO32_LITTLE(m + 0)); + x1 = XOR(x1, U8TO32_LITTLE(m + 4)); + x2 = XOR(x2, U8TO32_LITTLE(m + 8)); + x3 = XOR(x3, U8TO32_LITTLE(m + 12)); + x4 = XOR(x4, U8TO32_LITTLE(m + 16)); + x5 = XOR(x5, U8TO32_LITTLE(m + 20)); + x6 = XOR(x6, U8TO32_LITTLE(m + 24)); + x7 = XOR(x7, U8TO32_LITTLE(m + 28)); + x8 = XOR(x8, U8TO32_LITTLE(m + 32)); + x9 = XOR(x9, U8TO32_LITTLE(m + 36)); + x10 = XOR(x10, U8TO32_LITTLE(m + 40)); + x11 = XOR(x11, U8TO32_LITTLE(m + 44)); + x12 = XOR(x12, U8TO32_LITTLE(m + 48)); + x13 = XOR(x13, U8TO32_LITTLE(m + 52)); + x14 = XOR(x14, U8TO32_LITTLE(m + 56)); + x15 = XOR(x15, U8TO32_LITTLE(m + 60)); + + j12 = PLUSONE(j12); + if (!j12) { + j13 = PLUSONE(j13); + /* stopping at 2^70 bytes per nonce is user's responsibility */ + } + + U32TO8_LITTLE(c + 0, x0); + U32TO8_LITTLE(c + 4, x1); + U32TO8_LITTLE(c + 8, x2); + U32TO8_LITTLE(c + 12, x3); + U32TO8_LITTLE(c + 16, x4); + U32TO8_LITTLE(c + 20, x5); + U32TO8_LITTLE(c + 24, x6); + U32TO8_LITTLE(c + 28, x7); + U32TO8_LITTLE(c + 32, x8); + U32TO8_LITTLE(c + 36, x9); + U32TO8_LITTLE(c + 40, x10); + U32TO8_LITTLE(c + 44, x11); + U32TO8_LITTLE(c + 48, x12); + U32TO8_LITTLE(c + 52, x13); + U32TO8_LITTLE(c + 56, x14); + U32TO8_LITTLE(c + 60, x15); + + if (bytes <= 64) { + if (bytes < 64) { + for (i = 0; i < bytes; ++i) + ctarget[i] = c[i]; + } + x->input[12] = j12; + x->input[13] = j13; + return; + } + bytes -= 64; + c += 64; + m += 64; + } +} + +void ECRYPT_keystream_bytes(ECRYPT_ctx* x, u8* stream, u32 bytes) +{ + u32 i; + for (i = 0; i < bytes; ++i) + stream[i] = 0; + ECRYPT_encrypt_bytes(x, stream, stream, bytes); +} + +FUZZ_TARGET(crypto_diff_fuzz_chacha20) +{ + FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()}; + + ChaCha20 chacha20; + ECRYPT_ctx ctx; + // D. J. Bernstein doesn't initialise ctx to 0 while Bitcoin Core initialises chacha20 to 0 in the constructor + for (int i = 0; i < 16; i++) { + ctx.input[i] = 0; + } + + if (fuzzed_data_provider.ConsumeBool()) { + const std::vector key = ConsumeFixedLengthByteVector(fuzzed_data_provider, fuzzed_data_provider.ConsumeIntegralInRange(16, 32)); + chacha20 = ChaCha20{key.data(), key.size()}; + ECRYPT_keysetup(&ctx, key.data(), key.size() * 8, 0); + // ECRYPT_keysetup() doesn't set the counter and nonce to 0 while SetKey() does + uint8_t iv[8] = {0, 0, 0, 0, 0, 0, 0, 0}; + ECRYPT_ivsetup(&ctx, iv); + } + + LIMITED_WHILE (fuzzed_data_provider.ConsumeBool(), 3000) { + CallOneOf( + fuzzed_data_provider, + [&] { + const std::vector key = ConsumeFixedLengthByteVector(fuzzed_data_provider, fuzzed_data_provider.ConsumeIntegralInRange(16, 32)); + chacha20.SetKey(key.data(), key.size()); + ECRYPT_keysetup(&ctx, key.data(), key.size() * 8, 0); + // ECRYPT_keysetup() doesn't set the counter and nonce to 0 while SetKey() does + uint8_t iv[8] = {0, 0, 0, 0, 0, 0, 0, 0}; + ECRYPT_ivsetup(&ctx, iv); + }, + [&] { + uint64_t iv = fuzzed_data_provider.ConsumeIntegral(); + chacha20.SetIV(iv); + ctx.input[14] = iv; + ctx.input[15] = iv >> 32; + }, + [&] { + uint64_t counter = fuzzed_data_provider.ConsumeIntegral(); + chacha20.Seek(counter); + ctx.input[12] = counter; + ctx.input[13] = counter >> 32; + }, + [&] { + uint32_t integralInRange = fuzzed_data_provider.ConsumeIntegralInRange(0, 4096); + std::vector output(integralInRange); + chacha20.Keystream(output.data(), output.size()); + std::vector djb_output(integralInRange); + ECRYPT_keystream_bytes(&ctx, djb_output.data(), djb_output.size()); + if (output.data() != NULL && djb_output.data() != NULL) { + assert(memcmp(output.data(), djb_output.data(), integralInRange) == 0); + } + }, + [&] { + uint32_t integralInRange = fuzzed_data_provider.ConsumeIntegralInRange(0, 4096); + std::vector output(integralInRange); + const std::vector input = ConsumeFixedLengthByteVector(fuzzed_data_provider, output.size()); + chacha20.Crypt(input.data(), output.data(), input.size()); + std::vector djb_output(integralInRange); + ECRYPT_encrypt_bytes(&ctx, input.data(), djb_output.data(), input.size()); + }); + } +}