bitcoin/src/wallet/coinselection.cpp

332 lines
15 KiB
C++
Raw Normal View History

// Copyright (c) 2017-2019 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <wallet/coinselection.h>
#include <optional.h>
scripted-diff: Move util files to separate directory. -BEGIN VERIFY SCRIPT- mkdir -p src/util git mv src/util.h src/util/system.h git mv src/util.cpp src/util/system.cpp git mv src/utilmemory.h src/util/memory.h git mv src/utilmoneystr.h src/util/moneystr.h git mv src/utilmoneystr.cpp src/util/moneystr.cpp git mv src/utilstrencodings.h src/util/strencodings.h git mv src/utilstrencodings.cpp src/util/strencodings.cpp git mv src/utiltime.h src/util/time.h git mv src/utiltime.cpp src/util/time.cpp sed -i 's/<util\.h>/<util\/system\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilmemory\.h>/<util\/memory\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilmoneystr\.h>/<util\/moneystr\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilstrencodings\.h>/<util\/strencodings\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utiltime\.h>/<util\/time\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/BITCOIN_UTIL_H/BITCOIN_UTIL_SYSTEM_H/g' src/util/system.h sed -i 's/BITCOIN_UTILMEMORY_H/BITCOIN_UTIL_MEMORY_H/g' src/util/memory.h sed -i 's/BITCOIN_UTILMONEYSTR_H/BITCOIN_UTIL_MONEYSTR_H/g' src/util/moneystr.h sed -i 's/BITCOIN_UTILSTRENCODINGS_H/BITCOIN_UTIL_STRENCODINGS_H/g' src/util/strencodings.h sed -i 's/BITCOIN_UTILTIME_H/BITCOIN_UTIL_TIME_H/g' src/util/time.h sed -i 's/ util\.\(h\|cpp\)/ util\/system\.\1/g' src/Makefile.am sed -i 's/utilmemory\.\(h\|cpp\)/util\/memory\.\1/g' src/Makefile.am sed -i 's/utilmoneystr\.\(h\|cpp\)/util\/moneystr\.\1/g' src/Makefile.am sed -i 's/utilstrencodings\.\(h\|cpp\)/util\/strencodings\.\1/g' src/Makefile.am sed -i 's/utiltime\.\(h\|cpp\)/util\/time\.\1/g' src/Makefile.am sed -i 's/-> util ->/-> util\/system ->/' test/lint/lint-circular-dependencies.sh sed -i 's/src\/util\.cpp/src\/util\/system\.cpp/g' test/lint/lint-format-strings.py test/lint/lint-locale-dependence.sh sed -i 's/src\/utilmoneystr\.cpp/src\/util\/moneystr\.cpp/g' test/lint/lint-locale-dependence.sh sed -i 's/src\/utilstrencodings\.\(h\|cpp\)/src\/util\/strencodings\.\1/g' test/lint/lint-locale-dependence.sh sed -i 's/src\\utilstrencodings\.cpp/src\\util\\strencodings\.cpp/' build_msvc/libbitcoinconsensus/libbitcoinconsensus.vcxproj -END VERIFY SCRIPT-
2018-10-22 19:51:11 -03:00
#include <util/system.h>
#include <util/moneystr.h>
// Descending order comparator
struct {
bool operator()(const OutputGroup& a, const OutputGroup& b) const
{
return a.effective_value > b.effective_value;
}
} descending;
/*
* This is the Branch and Bound Coin Selection algorithm designed by Murch. It searches for an input
* set that can pay for the spending target and does not exceed the spending target by more than the
* cost of creating and spending a change output. The algorithm uses a depth-first search on a binary
* tree. In the binary tree, each node corresponds to the inclusion or the omission of a UTXO. UTXOs
* are sorted by their effective values and the trees is explored deterministically per the inclusion
* branch first. At each node, the algorithm checks whether the selection is within the target range.
* While the selection has not reached the target range, more UTXOs are included. When a selection's
* value exceeds the target range, the complete subtree deriving from this selection can be omitted.
* At that point, the last included UTXO is deselected and the corresponding omission branch explored
* instead. The search ends after the complete tree has been searched or after a limited number of tries.
*
* The search continues to search for better solutions after one solution has been found. The best
* solution is chosen by minimizing the waste metric. The waste metric is defined as the cost to
* spend the current inputs at the given fee rate minus the long term expected cost to spend the
* inputs, plus the amount the selection exceeds the spending target:
*
* waste = selectionTotal - target + inputs × (currentFeeRate - longTermFeeRate)
*
* The algorithm uses two additional optimizations. A lookahead keeps track of the total value of
* the unexplored UTXOs. A subtree is not explored if the lookahead indicates that the target range
* cannot be reached. Further, it is unnecessary to test equivalent combinations. This allows us
* to skip testing the inclusion of UTXOs that match the effective value and waste of an omitted
* predecessor.
*
* The Branch and Bound algorithm is described in detail in Murch's Master Thesis:
* https://murch.one/wp-content/uploads/2016/11/erhardt2016coinselection.pdf
*
* @param const std::vector<CInputCoin>& utxo_pool The set of UTXOs that we are choosing from.
* These UTXOs will be sorted in descending order by effective value and the CInputCoins'
* values are their effective values.
* @param const CAmount& target_value This is the value that we want to select. It is the lower
* bound of the range.
* @param const CAmount& cost_of_change This is the cost of creating and spending a change output.
* This plus target_value is the upper bound of the range.
* @param std::set<CInputCoin>& out_set -> This is an output parameter for the set of CInputCoins
* that have been selected.
* @param CAmount& value_ret -> This is an output parameter for the total value of the CInputCoins
* that were selected.
* @param CAmount not_input_fees -> The fees that need to be paid for the outputs and fixed size
* overhead (version, locktime, marker and flag)
*/
static const size_t TOTAL_TRIES = 100000;
bool SelectCoinsBnB(std::vector<OutputGroup>& utxo_pool, const CAmount& target_value, const CAmount& cost_of_change, std::set<CInputCoin>& out_set, CAmount& value_ret, CAmount not_input_fees)
{
out_set.clear();
CAmount curr_value = 0;
std::vector<bool> curr_selection; // select the utxo at this index
curr_selection.reserve(utxo_pool.size());
CAmount actual_target = not_input_fees + target_value;
// Calculate curr_available_value
CAmount curr_available_value = 0;
for (const OutputGroup& utxo : utxo_pool) {
// Assert that this utxo is not negative. It should never be negative, effective value calculation should have removed it
assert(utxo.effective_value > 0);
curr_available_value += utxo.effective_value;
}
if (curr_available_value < actual_target) {
return false;
}
// Sort the utxo_pool
std::sort(utxo_pool.begin(), utxo_pool.end(), descending);
CAmount curr_waste = 0;
std::vector<bool> best_selection;
CAmount best_waste = MAX_MONEY;
// Depth First search loop for choosing the UTXOs
for (size_t i = 0; i < TOTAL_TRIES; ++i) {
// Conditions for starting a backtrack
bool backtrack = false;
if (curr_value + curr_available_value < actual_target || // Cannot possibly reach target with the amount remaining in the curr_available_value.
curr_value > actual_target + cost_of_change || // Selected value is out of range, go back and try other branch
(curr_waste > best_waste && (utxo_pool.at(0).fee - utxo_pool.at(0).long_term_fee) > 0)) { // Don't select things which we know will be more wasteful if the waste is increasing
backtrack = true;
} else if (curr_value >= actual_target) { // Selected value is within range
curr_waste += (curr_value - actual_target); // This is the excess value which is added to the waste for the below comparison
// Adding another UTXO after this check could bring the waste down if the long term fee is higher than the current fee.
// However we are not going to explore that because this optimization for the waste is only done when we have hit our target
// value. Adding any more UTXOs will be just burning the UTXO; it will go entirely to fees. Thus we aren't going to
// explore any more UTXOs to avoid burning money like that.
if (curr_waste <= best_waste) {
best_selection = curr_selection;
best_selection.resize(utxo_pool.size());
best_waste = curr_waste;
if (best_waste == 0) {
break;
}
}
curr_waste -= (curr_value - actual_target); // Remove the excess value as we will be selecting different coins now
backtrack = true;
}
// Backtracking, moving backwards
if (backtrack) {
// Walk backwards to find the last included UTXO that still needs to have its omission branch traversed.
while (!curr_selection.empty() && !curr_selection.back()) {
curr_selection.pop_back();
curr_available_value += utxo_pool.at(curr_selection.size()).effective_value;
2018-07-17 13:23:46 -04:00
}
if (curr_selection.empty()) { // We have walked back to the first utxo and no branch is untraversed. All solutions searched
break;
}
// Output was included on previous iterations, try excluding now.
curr_selection.back() = false;
OutputGroup& utxo = utxo_pool.at(curr_selection.size() - 1);
curr_value -= utxo.effective_value;
curr_waste -= utxo.fee - utxo.long_term_fee;
} else { // Moving forwards, continuing down this branch
OutputGroup& utxo = utxo_pool.at(curr_selection.size());
// Remove this utxo from the curr_available_value utxo amount
curr_available_value -= utxo.effective_value;
// Avoid searching a branch if the previous UTXO has the same value and same waste and was excluded. Since the ratio of fee to
// long term fee is the same, we only need to check if one of those values match in order to know that the waste is the same.
if (!curr_selection.empty() && !curr_selection.back() &&
utxo.effective_value == utxo_pool.at(curr_selection.size() - 1).effective_value &&
utxo.fee == utxo_pool.at(curr_selection.size() - 1).fee) {
curr_selection.push_back(false);
} else {
// Inclusion branch first (Largest First Exploration)
curr_selection.push_back(true);
curr_value += utxo.effective_value;
curr_waste += utxo.fee - utxo.long_term_fee;
}
}
}
// Check for solution
if (best_selection.empty()) {
return false;
}
// Set output set
value_ret = 0;
for (size_t i = 0; i < best_selection.size(); ++i) {
if (best_selection.at(i)) {
util::insert(out_set, utxo_pool.at(i).m_outputs);
value_ret += utxo_pool.at(i).m_value;
}
}
return true;
}
static void ApproximateBestSubset(const std::vector<OutputGroup>& groups, const CAmount& nTotalLower, const CAmount& nTargetValue,
std::vector<char>& vfBest, CAmount& nBest, int iterations = 1000)
{
std::vector<char> vfIncluded;
vfBest.assign(groups.size(), true);
nBest = nTotalLower;
FastRandomContext insecure_rand;
for (int nRep = 0; nRep < iterations && nBest != nTargetValue; nRep++)
{
vfIncluded.assign(groups.size(), false);
CAmount nTotal = 0;
bool fReachedTarget = false;
for (int nPass = 0; nPass < 2 && !fReachedTarget; nPass++)
{
for (unsigned int i = 0; i < groups.size(); i++)
{
//The solver here uses a randomized algorithm,
//the randomness serves no real security purpose but is just
//needed to prevent degenerate behavior and it is important
//that the rng is fast. We do not use a constant random sequence,
//because there may be some privacy improvement by making
//the selection random.
if (nPass == 0 ? insecure_rand.randbool() : !vfIncluded[i])
{
nTotal += groups[i].m_value;
vfIncluded[i] = true;
if (nTotal >= nTargetValue)
{
fReachedTarget = true;
if (nTotal < nBest)
{
nBest = nTotal;
vfBest = vfIncluded;
}
nTotal -= groups[i].m_value;
vfIncluded[i] = false;
}
}
}
}
}
}
bool KnapsackSolver(const CAmount& nTargetValue, std::vector<OutputGroup>& groups, std::set<CInputCoin>& setCoinsRet, CAmount& nValueRet)
{
setCoinsRet.clear();
nValueRet = 0;
// List of values less than target
Optional<OutputGroup> lowest_larger;
std::vector<OutputGroup> applicable_groups;
CAmount nTotalLower = 0;
Shuffle(groups.begin(), groups.end(), FastRandomContext());
for (const OutputGroup& group : groups) {
if (group.m_value == nTargetValue) {
util::insert(setCoinsRet, group.m_outputs);
nValueRet += group.m_value;
return true;
} else if (group.m_value < nTargetValue + MIN_CHANGE) {
applicable_groups.push_back(group);
nTotalLower += group.m_value;
} else if (!lowest_larger || group.m_value < lowest_larger->m_value) {
lowest_larger = group;
}
}
if (nTotalLower == nTargetValue) {
for (const auto& group : applicable_groups) {
util::insert(setCoinsRet, group.m_outputs);
nValueRet += group.m_value;
}
return true;
}
if (nTotalLower < nTargetValue) {
if (!lowest_larger) return false;
util::insert(setCoinsRet, lowest_larger->m_outputs);
nValueRet += lowest_larger->m_value;
return true;
}
// Solve subset sum by stochastic approximation
std::sort(applicable_groups.begin(), applicable_groups.end(), descending);
std::vector<char> vfBest;
CAmount nBest;
ApproximateBestSubset(applicable_groups, nTotalLower, nTargetValue, vfBest, nBest);
if (nBest != nTargetValue && nTotalLower >= nTargetValue + MIN_CHANGE) {
ApproximateBestSubset(applicable_groups, nTotalLower, nTargetValue + MIN_CHANGE, vfBest, nBest);
}
// If we have a bigger coin and (either the stochastic approximation didn't find a good solution,
// or the next bigger coin is closer), return the bigger coin
if (lowest_larger &&
((nBest != nTargetValue && nBest < nTargetValue + MIN_CHANGE) || lowest_larger->m_value <= nBest)) {
util::insert(setCoinsRet, lowest_larger->m_outputs);
nValueRet += lowest_larger->m_value;
} else {
for (unsigned int i = 0; i < applicable_groups.size(); i++) {
if (vfBest[i]) {
util::insert(setCoinsRet, applicable_groups[i].m_outputs);
nValueRet += applicable_groups[i].m_value;
}
}
if (LogAcceptCategory(BCLog::SELECTCOINS)) {
LogPrint(BCLog::SELECTCOINS, "SelectCoins() best subset: "); /* Continued */
for (unsigned int i = 0; i < applicable_groups.size(); i++) {
if (vfBest[i]) {
LogPrint(BCLog::SELECTCOINS, "%s ", FormatMoney(applicable_groups[i].m_value)); /* Continued */
}
}
LogPrint(BCLog::SELECTCOINS, "total %s\n", FormatMoney(nBest));
}
}
return true;
}
2018-07-18 22:43:03 -04:00
/******************************************************************************
OutputGroup
******************************************************************************/
void OutputGroup::Insert(const CInputCoin& output, int depth, bool from_me, size_t ancestors, size_t descendants) {
m_outputs.push_back(output);
m_from_me &= from_me;
m_value += output.txout.nValue;
2018-07-18 22:43:03 -04:00
m_depth = std::min(m_depth, depth);
// ancestors here express the number of ancestors the new coin will end up having, which is
// the sum, rather than the max; this will overestimate in the cases where multiple inputs
// have common ancestors
m_ancestors += ancestors;
// descendants is the count as seen from the top ancestor, not the descendants as seen from the
// coin itself; thus, this value is counted as the max, not the sum
2018-07-18 22:43:03 -04:00
m_descendants = std::max(m_descendants, descendants);
effective_value = m_value;
}
std::vector<CInputCoin>::iterator OutputGroup::Discard(const CInputCoin& output) {
auto it = m_outputs.begin();
while (it != m_outputs.end() && it->outpoint != output.outpoint) ++it;
if (it == m_outputs.end()) return it;
m_value -= output.txout.nValue;
2018-07-18 22:43:03 -04:00
effective_value -= output.effective_value;
return m_outputs.erase(it);
}
bool OutputGroup::EligibleForSpending(const CoinEligibilityFilter& eligibility_filter) const
{
return m_depth >= (m_from_me ? eligibility_filter.conf_mine : eligibility_filter.conf_theirs)
&& m_ancestors <= eligibility_filter.max_ancestors
&& m_descendants <= eligibility_filter.max_descendants;
}