// Copyright (c) 2017-2019 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include // Descending order comparator struct { bool operator()(const OutputGroup& a, const OutputGroup& b) const { return a.effective_value > b.effective_value; } } descending; /* * This is the Branch and Bound Coin Selection algorithm designed by Murch. It searches for an input * set that can pay for the spending target and does not exceed the spending target by more than the * cost of creating and spending a change output. The algorithm uses a depth-first search on a binary * tree. In the binary tree, each node corresponds to the inclusion or the omission of a UTXO. UTXOs * are sorted by their effective values and the trees is explored deterministically per the inclusion * branch first. At each node, the algorithm checks whether the selection is within the target range. * While the selection has not reached the target range, more UTXOs are included. When a selection's * value exceeds the target range, the complete subtree deriving from this selection can be omitted. * At that point, the last included UTXO is deselected and the corresponding omission branch explored * instead. The search ends after the complete tree has been searched or after a limited number of tries. * * The search continues to search for better solutions after one solution has been found. The best * solution is chosen by minimizing the waste metric. The waste metric is defined as the cost to * spend the current inputs at the given fee rate minus the long term expected cost to spend the * inputs, plus the amount the selection exceeds the spending target: * * waste = selectionTotal - target + inputs × (currentFeeRate - longTermFeeRate) * * The algorithm uses two additional optimizations. A lookahead keeps track of the total value of * the unexplored UTXOs. A subtree is not explored if the lookahead indicates that the target range * cannot be reached. Further, it is unnecessary to test equivalent combinations. This allows us * to skip testing the inclusion of UTXOs that match the effective value and waste of an omitted * predecessor. * * The Branch and Bound algorithm is described in detail in Murch's Master Thesis: * https://murch.one/wp-content/uploads/2016/11/erhardt2016coinselection.pdf * * @param const std::vector& utxo_pool The set of UTXOs that we are choosing from. * These UTXOs will be sorted in descending order by effective value and the CInputCoins' * values are their effective values. * @param const CAmount& target_value This is the value that we want to select. It is the lower * bound of the range. * @param const CAmount& cost_of_change This is the cost of creating and spending a change output. * This plus target_value is the upper bound of the range. * @param std::set& out_set -> This is an output parameter for the set of CInputCoins * that have been selected. * @param CAmount& value_ret -> This is an output parameter for the total value of the CInputCoins * that were selected. * @param CAmount not_input_fees -> The fees that need to be paid for the outputs and fixed size * overhead (version, locktime, marker and flag) */ static const size_t TOTAL_TRIES = 100000; bool SelectCoinsBnB(std::vector& utxo_pool, const CAmount& target_value, const CAmount& cost_of_change, std::set& out_set, CAmount& value_ret, CAmount not_input_fees) { out_set.clear(); CAmount curr_value = 0; std::vector curr_selection; // select the utxo at this index curr_selection.reserve(utxo_pool.size()); CAmount actual_target = not_input_fees + target_value; // Calculate curr_available_value CAmount curr_available_value = 0; for (const OutputGroup& utxo : utxo_pool) { // Assert that this utxo is not negative. It should never be negative, effective value calculation should have removed it assert(utxo.effective_value > 0); curr_available_value += utxo.effective_value; } if (curr_available_value < actual_target) { return false; } // Sort the utxo_pool std::sort(utxo_pool.begin(), utxo_pool.end(), descending); CAmount curr_waste = 0; std::vector best_selection; CAmount best_waste = MAX_MONEY; // Depth First search loop for choosing the UTXOs for (size_t i = 0; i < TOTAL_TRIES; ++i) { // Conditions for starting a backtrack bool backtrack = false; if (curr_value + curr_available_value < actual_target || // Cannot possibly reach target with the amount remaining in the curr_available_value. curr_value > actual_target + cost_of_change || // Selected value is out of range, go back and try other branch (curr_waste > best_waste && (utxo_pool.at(0).fee - utxo_pool.at(0).long_term_fee) > 0)) { // Don't select things which we know will be more wasteful if the waste is increasing backtrack = true; } else if (curr_value >= actual_target) { // Selected value is within range curr_waste += (curr_value - actual_target); // This is the excess value which is added to the waste for the below comparison // Adding another UTXO after this check could bring the waste down if the long term fee is higher than the current fee. // However we are not going to explore that because this optimization for the waste is only done when we have hit our target // value. Adding any more UTXOs will be just burning the UTXO; it will go entirely to fees. Thus we aren't going to // explore any more UTXOs to avoid burning money like that. if (curr_waste <= best_waste) { best_selection = curr_selection; best_selection.resize(utxo_pool.size()); best_waste = curr_waste; if (best_waste == 0) { break; } } curr_waste -= (curr_value - actual_target); // Remove the excess value as we will be selecting different coins now backtrack = true; } // Backtracking, moving backwards if (backtrack) { // Walk backwards to find the last included UTXO that still needs to have its omission branch traversed. while (!curr_selection.empty() && !curr_selection.back()) { curr_selection.pop_back(); curr_available_value += utxo_pool.at(curr_selection.size()).effective_value; } if (curr_selection.empty()) { // We have walked back to the first utxo and no branch is untraversed. All solutions searched break; } // Output was included on previous iterations, try excluding now. curr_selection.back() = false; OutputGroup& utxo = utxo_pool.at(curr_selection.size() - 1); curr_value -= utxo.effective_value; curr_waste -= utxo.fee - utxo.long_term_fee; } else { // Moving forwards, continuing down this branch OutputGroup& utxo = utxo_pool.at(curr_selection.size()); // Remove this utxo from the curr_available_value utxo amount curr_available_value -= utxo.effective_value; // Avoid searching a branch if the previous UTXO has the same value and same waste and was excluded. Since the ratio of fee to // long term fee is the same, we only need to check if one of those values match in order to know that the waste is the same. if (!curr_selection.empty() && !curr_selection.back() && utxo.effective_value == utxo_pool.at(curr_selection.size() - 1).effective_value && utxo.fee == utxo_pool.at(curr_selection.size() - 1).fee) { curr_selection.push_back(false); } else { // Inclusion branch first (Largest First Exploration) curr_selection.push_back(true); curr_value += utxo.effective_value; curr_waste += utxo.fee - utxo.long_term_fee; } } } // Check for solution if (best_selection.empty()) { return false; } // Set output set value_ret = 0; for (size_t i = 0; i < best_selection.size(); ++i) { if (best_selection.at(i)) { util::insert(out_set, utxo_pool.at(i).m_outputs); value_ret += utxo_pool.at(i).m_value; } } return true; } static void ApproximateBestSubset(const std::vector& groups, const CAmount& nTotalLower, const CAmount& nTargetValue, std::vector& vfBest, CAmount& nBest, int iterations = 1000) { std::vector vfIncluded; vfBest.assign(groups.size(), true); nBest = nTotalLower; FastRandomContext insecure_rand; for (int nRep = 0; nRep < iterations && nBest != nTargetValue; nRep++) { vfIncluded.assign(groups.size(), false); CAmount nTotal = 0; bool fReachedTarget = false; for (int nPass = 0; nPass < 2 && !fReachedTarget; nPass++) { for (unsigned int i = 0; i < groups.size(); i++) { //The solver here uses a randomized algorithm, //the randomness serves no real security purpose but is just //needed to prevent degenerate behavior and it is important //that the rng is fast. We do not use a constant random sequence, //because there may be some privacy improvement by making //the selection random. if (nPass == 0 ? insecure_rand.randbool() : !vfIncluded[i]) { nTotal += groups[i].m_value; vfIncluded[i] = true; if (nTotal >= nTargetValue) { fReachedTarget = true; if (nTotal < nBest) { nBest = nTotal; vfBest = vfIncluded; } nTotal -= groups[i].m_value; vfIncluded[i] = false; } } } } } } bool KnapsackSolver(const CAmount& nTargetValue, std::vector& groups, std::set& setCoinsRet, CAmount& nValueRet) { setCoinsRet.clear(); nValueRet = 0; // List of values less than target Optional lowest_larger; std::vector applicable_groups; CAmount nTotalLower = 0; Shuffle(groups.begin(), groups.end(), FastRandomContext()); for (const OutputGroup& group : groups) { if (group.m_value == nTargetValue) { util::insert(setCoinsRet, group.m_outputs); nValueRet += group.m_value; return true; } else if (group.m_value < nTargetValue + MIN_CHANGE) { applicable_groups.push_back(group); nTotalLower += group.m_value; } else if (!lowest_larger || group.m_value < lowest_larger->m_value) { lowest_larger = group; } } if (nTotalLower == nTargetValue) { for (const auto& group : applicable_groups) { util::insert(setCoinsRet, group.m_outputs); nValueRet += group.m_value; } return true; } if (nTotalLower < nTargetValue) { if (!lowest_larger) return false; util::insert(setCoinsRet, lowest_larger->m_outputs); nValueRet += lowest_larger->m_value; return true; } // Solve subset sum by stochastic approximation std::sort(applicable_groups.begin(), applicable_groups.end(), descending); std::vector vfBest; CAmount nBest; ApproximateBestSubset(applicable_groups, nTotalLower, nTargetValue, vfBest, nBest); if (nBest != nTargetValue && nTotalLower >= nTargetValue + MIN_CHANGE) { ApproximateBestSubset(applicable_groups, nTotalLower, nTargetValue + MIN_CHANGE, vfBest, nBest); } // If we have a bigger coin and (either the stochastic approximation didn't find a good solution, // or the next bigger coin is closer), return the bigger coin if (lowest_larger && ((nBest != nTargetValue && nBest < nTargetValue + MIN_CHANGE) || lowest_larger->m_value <= nBest)) { util::insert(setCoinsRet, lowest_larger->m_outputs); nValueRet += lowest_larger->m_value; } else { for (unsigned int i = 0; i < applicable_groups.size(); i++) { if (vfBest[i]) { util::insert(setCoinsRet, applicable_groups[i].m_outputs); nValueRet += applicable_groups[i].m_value; } } if (LogAcceptCategory(BCLog::SELECTCOINS)) { LogPrint(BCLog::SELECTCOINS, "SelectCoins() best subset: "); /* Continued */ for (unsigned int i = 0; i < applicable_groups.size(); i++) { if (vfBest[i]) { LogPrint(BCLog::SELECTCOINS, "%s ", FormatMoney(applicable_groups[i].m_value)); /* Continued */ } } LogPrint(BCLog::SELECTCOINS, "total %s\n", FormatMoney(nBest)); } } return true; } /****************************************************************************** OutputGroup ******************************************************************************/ void OutputGroup::Insert(const CInputCoin& output, int depth, bool from_me, size_t ancestors, size_t descendants) { m_outputs.push_back(output); m_from_me &= from_me; m_value += output.txout.nValue; m_depth = std::min(m_depth, depth); // ancestors here express the number of ancestors the new coin will end up having, which is // the sum, rather than the max; this will overestimate in the cases where multiple inputs // have common ancestors m_ancestors += ancestors; // descendants is the count as seen from the top ancestor, not the descendants as seen from the // coin itself; thus, this value is counted as the max, not the sum m_descendants = std::max(m_descendants, descendants); effective_value = m_value; } std::vector::iterator OutputGroup::Discard(const CInputCoin& output) { auto it = m_outputs.begin(); while (it != m_outputs.end() && it->outpoint != output.outpoint) ++it; if (it == m_outputs.end()) return it; m_value -= output.txout.nValue; effective_value -= output.effective_value; return m_outputs.erase(it); } bool OutputGroup::EligibleForSpending(const CoinEligibilityFilter& eligibility_filter) const { return m_depth >= (m_from_me ? eligibility_filter.conf_mine : eligibility_filter.conf_theirs) && m_ancestors <= eligibility_filter.max_ancestors && m_descendants <= eligibility_filter.max_descendants; }