bitcoin/src/key.h

349 lines
10 KiB
C
Raw Normal View History

2010-07-14 11:54:31 -04:00
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_KEY_H
#define BITCOIN_KEY_H
2010-07-14 11:54:31 -04:00
2012-04-17 15:37:47 -03:00
#include "allocators.h"
#include "hash.h"
2012-05-14 13:07:52 -04:00
#include "serialize.h"
2011-06-26 10:11:56 -04:00
#include "uint256.h"
#include <stdexcept>
#include <vector>
2011-06-26 10:11:56 -04:00
/**
* secp256k1:
* const unsigned int PRIVATE_KEY_SIZE = 279;
* const unsigned int PUBLIC_KEY_SIZE = 65;
* const unsigned int SIGNATURE_SIZE = 72;
*
* see www.keylength.com
* script supports up to 75 for single byte push
*/
2010-07-14 11:54:31 -04:00
/** A reference to a CKey: the Hash160 of its serialized public key */
class CKeyID : public uint160
{
public:
CKeyID() : uint160(0) {}
CKeyID(const uint160& in) : uint160(in) {}
};
/** An encapsulated public key. */
class CPubKey
{
2012-05-14 13:07:52 -04:00
private:
/**
* Just store the serialized data.
* Its length can very cheaply be computed from the first byte.
*/
2013-04-30 15:56:04 -04:00
unsigned char vch[65];
//! Compute the length of a pubkey with a given first byte.
unsigned int static GetLen(unsigned char chHeader)
{
2013-04-30 15:56:04 -04:00
if (chHeader == 2 || chHeader == 3)
return 33;
if (chHeader == 4 || chHeader == 6 || chHeader == 7)
return 65;
return 0;
}
//! Set this key data to be invalid
void Invalidate()
{
vch[0] = 0xFF;
2013-04-30 15:56:04 -04:00
}
2012-05-14 13:07:52 -04:00
public:
//! Construct an invalid public key.
CPubKey()
{
Invalidate();
2013-04-30 15:56:04 -04:00
}
//! Initialize a public key using begin/end iterators to byte data.
template <typename T>
void Set(const T pbegin, const T pend)
{
int len = pend == pbegin ? 0 : GetLen(pbegin[0]);
if (len && len == (pend - pbegin))
memcpy(vch, (unsigned char*)&pbegin[0], len);
else
Invalidate();
2013-04-30 15:56:04 -04:00
}
//! Construct a public key using begin/end iterators to byte data.
template <typename T>
CPubKey(const T pbegin, const T pend)
{
Set(pbegin, pend);
2013-04-30 15:56:04 -04:00
}
2012-05-14 13:07:52 -04:00
//! Construct a public key from a byte vector.
CPubKey(const std::vector<unsigned char>& vch)
{
Set(vch.begin(), vch.end());
2013-04-30 15:56:04 -04:00
}
//! Simple read-only vector-like interface to the pubkey data.
unsigned int size() const { return GetLen(vch[0]); }
const unsigned char* begin() const { return vch; }
const unsigned char* end() const { return vch + size(); }
const unsigned char& operator[](unsigned int pos) const { return vch[pos]; }
//! Comparator implementation.
friend bool operator==(const CPubKey& a, const CPubKey& b)
{
return a.vch[0] == b.vch[0] &&
memcmp(a.vch, b.vch, a.size()) == 0;
}
friend bool operator!=(const CPubKey& a, const CPubKey& b)
{
return !(a == b);
}
friend bool operator<(const CPubKey& a, const CPubKey& b)
{
2013-04-30 15:56:04 -04:00
return a.vch[0] < b.vch[0] ||
(a.vch[0] == b.vch[0] && memcmp(a.vch, b.vch, a.size()) < 0);
2013-04-30 15:56:04 -04:00
}
//! Implement serialization, as if this was a byte vector.
unsigned int GetSerializeSize(int nType, int nVersion) const
{
2013-04-30 15:56:04 -04:00
return size() + 1;
}
template <typename Stream>
void Serialize(Stream& s, int nType, int nVersion) const
{
2013-04-30 15:56:04 -04:00
unsigned int len = size();
2013-05-04 10:10:09 -04:00
::WriteCompactSize(s, len);
2013-04-30 15:56:04 -04:00
s.write((char*)vch, len);
}
template <typename Stream>
void Unserialize(Stream& s, int nType, int nVersion)
{
2013-05-04 10:10:09 -04:00
unsigned int len = ::ReadCompactSize(s);
2013-04-30 15:56:04 -04:00
if (len <= 65) {
s.read((char*)vch, len);
} else {
// invalid pubkey, skip available data
2013-04-30 15:56:04 -04:00
char dummy;
while (len--)
s.read(&dummy, 1);
Invalidate();
2013-04-30 15:56:04 -04:00
}
}
2012-05-14 13:07:52 -04:00
//! Get the KeyID of this public key (hash of its serialization)
CKeyID GetID() const
{
return CKeyID(Hash160(vch, vch + size()));
2012-05-14 13:07:52 -04:00
}
//! Get the 256-bit hash of this public key.
uint256 GetHash() const
{
return Hash(vch, vch + size());
2012-05-14 13:07:52 -04:00
}
/*
* Check syntactic correctness.
*
* Note that this is consensus critical as CheckSig() calls it!
*/
bool IsValid() const
{
2013-04-30 15:56:04 -04:00
return size() > 0;
2012-05-14 13:07:52 -04:00
}
//! fully validate whether this is a valid public key (more expensive than IsValid())
bool IsFullyValid() const;
//! Check whether this is a compressed public key.
bool IsCompressed() const
{
2013-04-30 15:56:04 -04:00
return size() == 33;
}
/**
* Verify a DER signature (~72 bytes).
* If this public key is not fully valid, the return value will be false.
*/
bool Verify(const uint256& hash, const std::vector<unsigned char>& vchSig) const;
//! Recover a public key from a compact signature.
bool RecoverCompact(const uint256& hash, const std::vector<unsigned char>& vchSig);
//! Turn this public key into an uncompressed public key.
bool Decompress();
2013-07-14 19:05:25 -04:00
//! Derive BIP32 child pubkey.
2013-07-14 19:05:25 -04:00
bool Derive(CPubKey& pubkeyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const;
2012-05-14 13:07:52 -04:00
};
2010-07-14 11:54:31 -04:00
/**
* secure_allocator is defined in allocators.h
* CPrivKey is a serialized private key, with all parameters included (279 bytes)
*/
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CPrivKey;
2010-07-14 11:54:31 -04:00
/** An encapsulated private key. */
class CKey
{
private:
//! Whether this private key is valid. We check for correctness when modifying the key
//! data, so fValid should always correspond to the actual state.
bool fValid;
//! Whether the public key corresponding to this private key is (to be) compressed.
bool fCompressed;
//! The actual byte data
unsigned char vch[32];
//! Check whether the 32-byte array pointed to be vch is valid keydata.
bool static Check(const unsigned char* vch);
public:
//! Construct an invalid private key.
CKey() : fValid(false), fCompressed(false)
{
LockObject(vch);
}
2010-07-14 11:54:31 -04:00
//! Copy constructor. This is necessary because of memlocking.
CKey(const CKey& secret) : fValid(secret.fValid), fCompressed(secret.fCompressed)
{
LockObject(vch);
memcpy(vch, secret.vch, sizeof(vch));
}
//! Destructor (again necessary because of memlocking).
~CKey()
{
UnlockObject(vch);
}
2010-07-14 11:54:31 -04:00
friend bool operator==(const CKey& a, const CKey& b)
{
return a.fCompressed == b.fCompressed && a.size() == b.size() &&
memcmp(&a.vch[0], &b.vch[0], a.size()) == 0;
2013-07-14 19:05:25 -04:00
}
//! Initialize using begin and end iterators to byte data.
template <typename T>
void Set(const T pbegin, const T pend, bool fCompressedIn)
{
if (pend - pbegin != 32) {
fValid = false;
return;
}
if (Check(&pbegin[0])) {
memcpy(vch, (unsigned char*)&pbegin[0], 32);
fValid = true;
fCompressed = fCompressedIn;
} else {
fValid = false;
}
}
//! Simple read-only vector-like interface.
unsigned int size() const { return (fValid ? 32 : 0); }
const unsigned char* begin() const { return vch; }
const unsigned char* end() const { return vch + size(); }
//! Check whether this private key is valid.
bool IsValid() const { return fValid; }
2010-07-14 11:54:31 -04:00
//! Check whether the public key corresponding to this private key is (to be) compressed.
bool IsCompressed() const { return fCompressed; }
2011-06-25 08:57:32 -04:00
//! Initialize from a CPrivKey (serialized OpenSSL private key data).
bool SetPrivKey(const CPrivKey& vchPrivKey, bool fCompressed);
//! Generate a new private key using a cryptographic PRNG.
void MakeNewKey(bool fCompressed);
/**
* Convert the private key to a CPrivKey (serialized OpenSSL private key data).
* This is expensive.
*/
CPrivKey GetPrivKey() const;
/**
* Compute the public key from a private key.
* This is expensive.
*/
2012-05-14 13:07:52 -04:00
CPubKey GetPubKey() const;
2011-06-25 08:57:32 -04:00
//! Create a DER-serialized signature.
bool Sign(const uint256& hash, std::vector<unsigned char>& vchSig, bool lowS = true) const;
2010-07-14 11:54:31 -04:00
/**
* Create a compact signature (65 bytes), which allows reconstructing the used public key.
* The format is one header byte, followed by two times 32 bytes for the serialized r and s values.
* The header byte: 0x1B = first key with even y, 0x1C = first key with odd y,
* 0x1D = second key with even y, 0x1E = second key with odd y,
* add 0x04 for compressed keys.
*/
bool SignCompact(const uint256& hash, std::vector<unsigned char>& vchSig) const;
2013-07-14 19:05:25 -04:00
//! Derive BIP32 child key.
2013-07-14 19:05:25 -04:00
bool Derive(CKey& keyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const;
//! Load private key and check that public key matches.
bool Load(CPrivKey& privkey, CPubKey& vchPubKey, bool fSkipCheck);
//! Check whether an element of a signature (r or s) is valid.
static bool CheckSignatureElement(const unsigned char* vch, int len, bool half);
2013-07-14 19:05:25 -04:00
};
struct CExtPubKey {
unsigned char nDepth;
unsigned char vchFingerprint[4];
unsigned int nChild;
unsigned char vchChainCode[32];
CPubKey pubkey;
friend bool operator==(const CExtPubKey& a, const CExtPubKey& b)
{
2013-07-14 19:05:25 -04:00
return a.nDepth == b.nDepth && memcmp(&a.vchFingerprint[0], &b.vchFingerprint[0], 4) == 0 && a.nChild == b.nChild &&
memcmp(&a.vchChainCode[0], &b.vchChainCode[0], 32) == 0 && a.pubkey == b.pubkey;
}
void Encode(unsigned char code[74]) const;
void Decode(const unsigned char code[74]);
bool Derive(CExtPubKey& out, unsigned int nChild) const;
2013-07-14 19:05:25 -04:00
};
struct CExtKey {
unsigned char nDepth;
unsigned char vchFingerprint[4];
unsigned int nChild;
unsigned char vchChainCode[32];
CKey key;
friend bool operator==(const CExtKey& a, const CExtKey& b)
{
2013-07-14 19:05:25 -04:00
return a.nDepth == b.nDepth && memcmp(&a.vchFingerprint[0], &b.vchFingerprint[0], 4) == 0 && a.nChild == b.nChild &&
memcmp(&a.vchChainCode[0], &b.vchChainCode[0], 32) == 0 && a.key == b.key;
}
void Encode(unsigned char code[74]) const;
void Decode(const unsigned char code[74]);
bool Derive(CExtKey& out, unsigned int nChild) const;
2013-07-14 19:05:25 -04:00
CExtPubKey Neuter() const;
void SetMaster(const unsigned char* seed, unsigned int nSeedLen);
2010-07-14 11:54:31 -04:00
};
/** Check that required EC support is available at runtime */
bool ECC_InitSanityCheck(void);
#endif // BITCOIN_KEY_H