bitcoin/src/key.h

107 lines
3.3 KiB
C
Raw Normal View History

2010-07-14 11:54:31 -04:00
// Copyright (c) 2009-2010 Satoshi Nakamoto
2012-02-07 13:28:30 -03:00
// Copyright (c) 2009-2012 The Bitcoin developers
2010-07-14 11:54:31 -04:00
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_KEY_H
#define BITCOIN_KEY_H
2010-07-14 11:54:31 -04:00
2011-06-26 10:11:56 -04:00
#include <stdexcept>
#include <vector>
2012-04-17 15:37:47 -03:00
#include "allocators.h"
2011-06-26 10:11:56 -04:00
#include "uint256.h"
#include <openssl/ec.h> // for EC_KEY definition
2010-07-14 11:54:31 -04:00
// secp160k1
// const unsigned int PRIVATE_KEY_SIZE = 192;
// const unsigned int PUBLIC_KEY_SIZE = 41;
// const unsigned int SIGNATURE_SIZE = 48;
//
// secp192k1
// const unsigned int PRIVATE_KEY_SIZE = 222;
// const unsigned int PUBLIC_KEY_SIZE = 49;
// const unsigned int SIGNATURE_SIZE = 57;
//
// secp224k1
// const unsigned int PRIVATE_KEY_SIZE = 250;
// const unsigned int PUBLIC_KEY_SIZE = 57;
// const unsigned int SIGNATURE_SIZE = 66;
//
// secp256k1:
// const unsigned int PRIVATE_KEY_SIZE = 279;
// const unsigned int PUBLIC_KEY_SIZE = 65;
// const unsigned int SIGNATURE_SIZE = 72;
//
// see www.keylength.com
// script supports up to 75 for single byte push
class key_error : public std::runtime_error
{
public:
explicit key_error(const std::string& str) : std::runtime_error(str) {}
};
// secure_allocator is defined in serialize.h
2011-11-06 20:05:42 -03:00
// CPrivKey is a serialized private key, with all parameters included (279 bytes)
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CPrivKey;
2011-11-06 20:05:42 -03:00
// CSecret is a serialization of just the secret parameter (32 bytes)
2011-06-25 08:57:32 -04:00
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CSecret;
2010-07-14 11:54:31 -04:00
2012-03-26 11:48:23 -03:00
/** An encapsulated OpenSSL Elliptic Curve key (public and/or private) */
2010-07-14 11:54:31 -04:00
class CKey
{
protected:
EC_KEY* pkey;
bool fSet;
bool fCompressedPubKey;
void SetCompressedPubKey();
2010-07-14 11:54:31 -04:00
public:
void Reset();
2010-07-14 11:54:31 -04:00
CKey();
CKey(const CKey& b);
CKey& operator=(const CKey& b);
2010-07-14 11:54:31 -04:00
~CKey();
2010-07-14 11:54:31 -04:00
bool IsNull() const;
bool IsCompressed() const;
2011-06-25 08:57:32 -04:00
void MakeNewKey(bool fCompressed);
bool SetPrivKey(const CPrivKey& vchPrivKey);
bool SetSecret(const CSecret& vchSecret, bool fCompressed = false);
CSecret GetSecret(bool &fCompressed) const;
CPrivKey GetPrivKey() const;
bool SetPubKey(const std::vector<unsigned char>& vchPubKey);
std::vector<unsigned char> GetPubKey() const;
2011-06-25 08:57:32 -04:00
bool Sign(uint256 hash, std::vector<unsigned char>& vchSig);
2010-07-14 11:54:31 -04:00
// create a compact signature (65 bytes), which allows reconstructing the used public key
2011-11-06 20:05:42 -03:00
// The format is one header byte, followed by two times 32 bytes for the serialized r and s values.
// The header byte: 0x1B = first key with even y, 0x1C = first key with odd y,
// 0x1D = second key with even y, 0x1E = second key with odd y
bool SignCompact(uint256 hash, std::vector<unsigned char>& vchSig);
// reconstruct public key from a compact signature
2011-11-06 20:05:42 -03:00
// This is only slightly more CPU intensive than just verifying it.
// If this function succeeds, the recovered public key is guaranteed to be valid
// (the signature is a valid signature of the given data for that key)
bool SetCompactSignature(uint256 hash, const std::vector<unsigned char>& vchSig);
bool Verify(uint256 hash, const std::vector<unsigned char>& vchSig);
2011-11-06 20:05:42 -03:00
// Verify a compact signature
bool VerifyCompact(uint256 hash, const std::vector<unsigned char>& vchSig);
2012-01-26 15:26:34 -03:00
bool IsValid();
2010-07-14 11:54:31 -04:00
};
#endif