bitcoin/src/main.cpp

7141 lines
310 KiB
C++
Raw Normal View History

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "main.h"
#include "addrman.h"
#include "arith_uint256.h"
#include "blockencodings.h"
#include "chainparams.h"
#include "checkpoints.h"
#include "checkqueue.h"
#include "consensus/consensus.h"
#include "consensus/merkle.h"
#include "consensus/validation.h"
2015-07-05 14:17:46 +02:00
#include "hash.h"
2011-05-15 16:52:31 -05:00
#include "init.h"
#include "merkleblock.h"
#include "net.h"
#include "netbase.h"
#include "policy/fees.h"
#include "policy/policy.h"
#include "pow.h"
#include "primitives/block.h"
#include "primitives/transaction.h"
#include "random.h"
#include "script/script.h"
#include "script/sigcache.h"
#include "script/standard.h"
#include "tinyformat.h"
#include "txdb.h"
#include "txmempool.h"
2012-04-15 22:10:54 +02:00
#include "ui_interface.h"
#include "undo.h"
#include "util.h"
#include "utilmoneystr.h"
2015-07-05 14:17:46 +02:00
#include "utilstrencodings.h"
#include "validationinterface.h"
#include "versionbits.h"
#include <atomic>
2013-10-28 16:36:11 +10:00
#include <sstream>
#include <boost/algorithm/string/replace.hpp>
#include <boost/algorithm/string/join.hpp>
#include <boost/filesystem.hpp>
#include <boost/filesystem/fstream.hpp>
#include <boost/math/distributions/poisson.hpp>
#include <boost/thread.hpp>
using namespace std;
#if defined(NDEBUG)
# error "Bitcoin cannot be compiled without assertions."
#endif
/**
* Global state
*/
CCriticalSection cs_main;
BlockMap mapBlockIndex;
CChain chainActive;
2014-07-12 00:03:10 +02:00
CBlockIndex *pindexBestHeader = NULL;
int64_t nTimeBestReceived = 0; // Used only to inform the wallet of when we last received a block
2012-05-13 04:43:24 +00:00
CWaitableCriticalSection csBestBlock;
CConditionVariable cvBlockChange;
int nScriptCheckThreads = 0;
bool fImporting = false;
bool fReindex = false;
bool fTxIndex = false;
bool fHavePruned = false;
bool fPruneMode = false;
bool fIsBareMultisigStd = DEFAULT_PERMIT_BAREMULTISIG;
bool fRequireStandard = true;
bool fCheckBlockIndex = false;
bool fCheckpointsEnabled = DEFAULT_CHECKPOINTS_ENABLED;
size_t nCoinCacheUsage = 5000 * 300;
uint64_t nPruneTarget = 0;
int64_t nMaxTipAge = DEFAULT_MAX_TIP_AGE;
bool fEnableReplacement = DEFAULT_ENABLE_REPLACEMENT;
CFeeRate minRelayTxFee = CFeeRate(DEFAULT_MIN_RELAY_TX_FEE);
CAmount maxTxFee = DEFAULT_TRANSACTION_MAXFEE;
2014-07-03 14:25:32 -04:00
CTxMemPool mempool(::minRelayTxFee);
FeeFilterRounder filterRounder(::minRelayTxFee);
struct IteratorComparator
{
template<typename I>
bool operator()(const I& a, const I& b)
{
return &(*a) < &(*b);
}
};
struct COrphanTx {
CTransaction tx;
NodeId fromPeer;
int64_t nTimeExpire;
};
2015-12-29 22:42:27 -05:00
map<uint256, COrphanTx> mapOrphanTransactions GUARDED_BY(cs_main);
map<COutPoint, set<map<uint256, COrphanTx>::iterator, IteratorComparator>> mapOrphanTransactionsByPrev GUARDED_BY(cs_main);
void EraseOrphansFor(NodeId peer) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
static void CheckBlockIndex(const Consensus::Params& consensusParams);
/** Constant stuff for coinbase transactions we create: */
CScript COINBASE_FLAGS;
const string strMessageMagic = "Bitcoin Signed Message:\n";
static const uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL; // SHA256("main address relay")[0:8]
// Internal stuff
namespace {
2014-04-30 14:57:11 +08:00
struct CBlockIndexWorkComparator
{
bool operator()(CBlockIndex *pa, CBlockIndex *pb) const {
2014-04-30 14:57:11 +08:00
// First sort by most total work, ...
if (pa->nChainWork > pb->nChainWork) return false;
if (pa->nChainWork < pb->nChainWork) return true;
// ... then by earliest time received, ...
if (pa->nSequenceId < pb->nSequenceId) return false;
if (pa->nSequenceId > pb->nSequenceId) return true;
// Use pointer address as tie breaker (should only happen with blocks
// loaded from disk, as those all have id 0).
if (pa < pb) return false;
if (pa > pb) return true;
// Identical blocks.
return false;
}
};
CBlockIndex *pindexBestInvalid;
/**
* The set of all CBlockIndex entries with BLOCK_VALID_TRANSACTIONS (for itself and all ancestors) and
* as good as our current tip or better. Entries may be failed, though, and pruning nodes may be
* missing the data for the block.
*/
set<CBlockIndex*, CBlockIndexWorkComparator> setBlockIndexCandidates;
/** Number of nodes with fSyncStarted. */
int nSyncStarted = 0;
2015-07-03 16:36:49 +02:00
/** All pairs A->B, where A (or one of its ancestors) misses transactions, but B has transactions.
* Pruned nodes may have entries where B is missing data.
*/
multimap<CBlockIndex*, CBlockIndex*> mapBlocksUnlinked;
2014-04-30 14:57:11 +08:00
CCriticalSection cs_LastBlockFile;
std::vector<CBlockFileInfo> vinfoBlockFile;
2014-04-30 14:57:11 +08:00
int nLastBlockFile = 0;
/** Global flag to indicate we should check to see if there are
* block/undo files that should be deleted. Set on startup
* or if we allocate more file space when we're in prune mode
*/
bool fCheckForPruning = false;
2014-04-30 14:57:11 +08:00
/**
* Every received block is assigned a unique and increasing identifier, so we
* know which one to give priority in case of a fork.
*/
2014-04-30 14:57:11 +08:00
CCriticalSection cs_nBlockSequenceId;
/** Blocks loaded from disk are assigned id 0, so start the counter at 1. */
int32_t nBlockSequenceId = 1;
/** Decreasing counter (used by subsequent preciousblock calls). */
int32_t nBlockReverseSequenceId = -1;
/** chainwork for the last block that preciousblock has been applied to. */
arith_uint256 nLastPreciousChainwork = 0;
2014-04-30 14:57:11 +08:00
/**
2015-04-28 14:47:17 +00:00
* Sources of received blocks, saved to be able to send them reject
* messages or ban them when processing happens afterwards. Protected by
* cs_main.
* Set mapBlockSource[hash].second to false if the node should not be
* punished if the block is invalid.
*/
map<uint256, std::pair<NodeId, bool>> mapBlockSource;
2014-04-30 14:57:11 +08:00
/**
* Filter for transactions that were recently rejected by
* AcceptToMemoryPool. These are not rerequested until the chain tip
* changes, at which point the entire filter is reset. Protected by
* cs_main.
*
* Without this filter we'd be re-requesting txs from each of our peers,
* increasing bandwidth consumption considerably. For instance, with 100
* peers, half of which relay a tx we don't accept, that might be a 50x
* bandwidth increase. A flooding attacker attempting to roll-over the
* filter using minimum-sized, 60byte, transactions might manage to send
* 1000/sec if we have fast peers, so we pick 120,000 to give our peers a
* two minute window to send invs to us.
*
* Decreasing the false positive rate is fairly cheap, so we pick one in a
* million to make it highly unlikely for users to have issues with this
* filter.
*
* Memory used: 1.3 MB
*/
std::unique_ptr<CRollingBloomFilter> recentRejects;
uint256 hashRecentRejectsChainTip;
/** Blocks that are in flight, and that are in the queue to be downloaded. Protected by cs_main. */
2014-04-30 14:57:11 +08:00
struct QueuedBlock {
uint256 hash;
CBlockIndex* pindex; //!< Optional.
bool fValidatedHeaders; //!< Whether this block has validated headers at the time of request.
std::unique_ptr<PartiallyDownloadedBlock> partialBlock; //!< Optional, used for CMPCTBLOCK downloads
2014-04-30 14:57:11 +08:00
};
map<uint256, pair<NodeId, list<QueuedBlock>::iterator> > mapBlocksInFlight;
/** Stack of nodes which we have set to announce using compact blocks */
list<NodeId> lNodesAnnouncingHeaderAndIDs;
/** Number of preferable block download peers. */
2014-10-28 09:33:55 -07:00
int nPreferredDownload = 0;
/** Dirty block index entries. */
set<CBlockIndex*> setDirtyBlockIndex;
/** Dirty block file entries. */
set<int> setDirtyFileInfo;
/** Number of peers from which we're downloading blocks. */
int nPeersWithValidatedDownloads = 0;
/** Relay map, protected by cs_main. */
typedef std::map<uint256, std::shared_ptr<const CTransaction>> MapRelay;
MapRelay mapRelay;
/** Expiration-time ordered list of (expire time, relay map entry) pairs, protected by cs_main). */
std::deque<std::pair<int64_t, MapRelay::iterator>> vRelayExpiration;
} // anon namespace
//////////////////////////////////////////////////////////////////////////////
//
// Registration of network node signals.
//
2013-11-18 01:25:17 +01:00
namespace {
struct CBlockReject {
unsigned char chRejectCode;
string strRejectReason;
uint256 hashBlock;
};
/**
* Maintain validation-specific state about nodes, protected by cs_main, instead
* by CNode's own locks. This simplifies asynchronous operation, where
* processing of incoming data is done after the ProcessMessage call returns,
* and we're no longer holding the node's locks.
*/
2013-11-18 01:25:17 +01:00
struct CNodeState {
//! The peer's address
2016-10-26 17:41:44 -04:00
const CService address;
//! Whether we have a fully established connection.
bool fCurrentlyConnected;
//! Accumulated misbehaviour score for this peer.
2013-11-18 01:25:17 +01:00
int nMisbehavior;
//! Whether this peer should be disconnected and banned (unless whitelisted).
2013-11-18 01:25:17 +01:00
bool fShouldBan;
//! String name of this peer (debugging/logging purposes).
2016-10-26 17:41:44 -04:00
const std::string name;
//! List of asynchronously-determined block rejections to notify this peer about.
std::vector<CBlockReject> rejects;
//! The best known block we know this peer has announced.
2014-06-23 00:00:26 +02:00
CBlockIndex *pindexBestKnownBlock;
//! The hash of the last unknown block this peer has announced.
2014-06-23 00:00:26 +02:00
uint256 hashLastUnknownBlock;
//! The last full block we both have.
CBlockIndex *pindexLastCommonBlock;
//! The best header we have sent our peer.
CBlockIndex *pindexBestHeaderSent;
//! Length of current-streak of unconnecting headers announcements
int nUnconnectingHeaders;
//! Whether we've started headers synchronization with this peer.
bool fSyncStarted;
//! Since when we're stalling block download progress (in microseconds), or 0.
int64_t nStallingSince;
list<QueuedBlock> vBlocksInFlight;
//! When the first entry in vBlocksInFlight started downloading. Don't care when vBlocksInFlight is empty.
int64_t nDownloadingSince;
int nBlocksInFlight;
int nBlocksInFlightValidHeaders;
//! Whether we consider this a preferred download peer.
2014-10-28 09:33:55 -07:00
bool fPreferredDownload;
//! Whether this peer wants invs or headers (when possible) for block announcements.
bool fPreferHeaders;
//! Whether this peer wants invs or cmpctblocks (when possible) for block announcements.
bool fPreferHeaderAndIDs;
/**
* Whether this peer will send us cmpctblocks if we request them.
* This is not used to gate request logic, as we really only care about fSupportsDesiredCmpctVersion,
* but is used as a flag to "lock in" the version of compact blocks (fWantsCmpctWitness) we send.
*/
bool fProvidesHeaderAndIDs;
//! Whether this peer can give us witnesses
bool fHaveWitness;
//! Whether this peer wants witnesses in cmpctblocks/blocktxns
bool fWantsCmpctWitness;
/**
* If we've announced NODE_WITNESS to this peer: whether the peer sends witnesses in cmpctblocks/blocktxns,
* otherwise: whether this peer sends non-witnesses in cmpctblocks/blocktxns.
*/
bool fSupportsDesiredCmpctVersion;
2013-11-18 01:25:17 +01:00
2016-10-26 17:41:44 -04:00
CNodeState(CAddress addrIn, std::string addrNameIn) : address(addrIn), name(addrNameIn) {
fCurrentlyConnected = false;
2013-11-18 01:25:17 +01:00
nMisbehavior = 0;
fShouldBan = false;
2014-06-23 00:00:26 +02:00
pindexBestKnownBlock = NULL;
hashLastUnknownBlock.SetNull();
pindexLastCommonBlock = NULL;
pindexBestHeaderSent = NULL;
nUnconnectingHeaders = 0;
fSyncStarted = false;
nStallingSince = 0;
nDownloadingSince = 0;
nBlocksInFlight = 0;
nBlocksInFlightValidHeaders = 0;
2014-10-28 09:33:55 -07:00
fPreferredDownload = false;
fPreferHeaders = false;
fPreferHeaderAndIDs = false;
fProvidesHeaderAndIDs = false;
fHaveWitness = false;
fWantsCmpctWitness = false;
fSupportsDesiredCmpctVersion = false;
2013-11-18 01:25:17 +01:00
}
};
/** Map maintaining per-node state. Requires cs_main. */
2013-11-18 01:25:17 +01:00
map<NodeId, CNodeState> mapNodeState;
// Requires cs_main.
CNodeState *State(NodeId pnode) {
map<NodeId, CNodeState>::iterator it = mapNodeState.find(pnode);
if (it == mapNodeState.end())
return NULL;
return &it->second;
}
2014-10-28 09:33:55 -07:00
void UpdatePreferredDownload(CNode* node, CNodeState* state)
{
nPreferredDownload -= state->fPreferredDownload;
// Whether this node should be marked as a preferred download node.
state->fPreferredDownload = (!node->fInbound || node->fWhitelisted) && !node->fOneShot && !node->fClient;
nPreferredDownload += state->fPreferredDownload;
}
void PushNodeVersion(CNode *pnode, CConnman& connman, int64_t nTime)
{
ServiceFlags nLocalNodeServices = pnode->GetLocalServices();
uint64_t nonce = pnode->GetLocalNonce();
int nNodeStartingHeight = pnode->GetMyStartingHeight();
NodeId nodeid = pnode->GetId();
CAddress addr = pnode->addr;
CAddress addrYou = (addr.IsRoutable() && !IsProxy(addr) ? addr : CAddress(CService(), addr.nServices));
CAddress addrMe = CAddress(CService(), nLocalNodeServices);
connman.PushMessageWithVersion(pnode, INIT_PROTO_VERSION, NetMsgType::VERSION, PROTOCOL_VERSION, (uint64_t)nLocalNodeServices, nTime, addrYou, addrMe,
nonce, strSubVersion, nNodeStartingHeight, ::fRelayTxes);
if (fLogIPs)
LogPrint("net", "send version message: version %d, blocks=%d, us=%s, them=%s, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addrMe.ToString(), addrYou.ToString(), nodeid);
else
LogPrint("net", "send version message: version %d, blocks=%d, us=%s, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addrMe.ToString(), nodeid);
}
void InitializeNode(CNode *pnode, CConnman& connman) {
2016-10-26 17:41:44 -04:00
CAddress addr = pnode->addr;
std::string addrName = pnode->addrName;
NodeId nodeid = pnode->GetId();
{
LOCK(cs_main);
mapNodeState.emplace_hint(mapNodeState.end(), std::piecewise_construct, std::forward_as_tuple(nodeid), std::forward_as_tuple(addr, std::move(addrName)));
}
if(!pnode->fInbound)
PushNodeVersion(pnode, connman, GetTime());
2013-11-18 01:25:17 +01:00
}
2016-05-24 18:59:16 -04:00
void FinalizeNode(NodeId nodeid, bool& fUpdateConnectionTime) {
fUpdateConnectionTime = false;
2013-11-18 01:25:17 +01:00
LOCK(cs_main);
CNodeState *state = State(nodeid);
if (state->fSyncStarted)
nSyncStarted--;
if (state->nMisbehavior == 0 && state->fCurrentlyConnected) {
2016-05-24 18:59:16 -04:00
fUpdateConnectionTime = true;
}
BOOST_FOREACH(const QueuedBlock& entry, state->vBlocksInFlight) {
mapBlocksInFlight.erase(entry.hash);
}
EraseOrphansFor(nodeid);
2014-10-28 09:33:55 -07:00
nPreferredDownload -= state->fPreferredDownload;
nPeersWithValidatedDownloads -= (state->nBlocksInFlightValidHeaders != 0);
assert(nPeersWithValidatedDownloads >= 0);
2013-11-18 01:25:17 +01:00
mapNodeState.erase(nodeid);
if (mapNodeState.empty()) {
// Do a consistency check after the last peer is removed.
assert(mapBlocksInFlight.empty());
assert(nPreferredDownload == 0);
assert(nPeersWithValidatedDownloads == 0);
}
2013-11-18 01:25:17 +01:00
}
// Requires cs_main.
// Returns a bool indicating whether we requested this block.
// Also used if a block was /not/ received and timed out or started with another peer
bool MarkBlockAsReceived(const uint256& hash) {
map<uint256, pair<NodeId, list<QueuedBlock>::iterator> >::iterator itInFlight = mapBlocksInFlight.find(hash);
if (itInFlight != mapBlocksInFlight.end()) {
CNodeState *state = State(itInFlight->second.first);
state->nBlocksInFlightValidHeaders -= itInFlight->second.second->fValidatedHeaders;
if (state->nBlocksInFlightValidHeaders == 0 && itInFlight->second.second->fValidatedHeaders) {
// Last validated block on the queue was received.
nPeersWithValidatedDownloads--;
}
if (state->vBlocksInFlight.begin() == itInFlight->second.second) {
// First block on the queue was received, update the start download time for the next one
state->nDownloadingSince = std::max(state->nDownloadingSince, GetTimeMicros());
}
state->vBlocksInFlight.erase(itInFlight->second.second);
state->nBlocksInFlight--;
state->nStallingSince = 0;
mapBlocksInFlight.erase(itInFlight);
return true;
}
return false;
}
// Requires cs_main.
// returns false, still setting pit, if the block was already in flight from the same peer
// pit will only be valid as long as the same cs_main lock is being held
bool MarkBlockAsInFlight(NodeId nodeid, const uint256& hash, const Consensus::Params& consensusParams, CBlockIndex *pindex = NULL, list<QueuedBlock>::iterator **pit = NULL) {
CNodeState *state = State(nodeid);
assert(state != NULL);
// Short-circuit most stuff in case its from the same node
map<uint256, pair<NodeId, list<QueuedBlock>::iterator> >::iterator itInFlight = mapBlocksInFlight.find(hash);
if (itInFlight != mapBlocksInFlight.end() && itInFlight->second.first == nodeid) {
*pit = &itInFlight->second.second;
return false;
}
// Make sure it's not listed somewhere already.
MarkBlockAsReceived(hash);
list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(),
{hash, pindex, pindex != NULL, std::unique_ptr<PartiallyDownloadedBlock>(pit ? new PartiallyDownloadedBlock(&mempool) : NULL)});
state->nBlocksInFlight++;
state->nBlocksInFlightValidHeaders += it->fValidatedHeaders;
if (state->nBlocksInFlight == 1) {
// We're starting a block download (batch) from this peer.
state->nDownloadingSince = GetTimeMicros();
}
if (state->nBlocksInFlightValidHeaders == 1 && pindex != NULL) {
nPeersWithValidatedDownloads++;
}
itInFlight = mapBlocksInFlight.insert(std::make_pair(hash, std::make_pair(nodeid, it))).first;
if (pit)
*pit = &itInFlight->second.second;
return true;
}
/** Check whether the last unknown block a peer advertised is not yet known. */
2014-06-23 00:00:26 +02:00
void ProcessBlockAvailability(NodeId nodeid) {
CNodeState *state = State(nodeid);
assert(state != NULL);
if (!state->hashLastUnknownBlock.IsNull()) {
BlockMap::iterator itOld = mapBlockIndex.find(state->hashLastUnknownBlock);
2014-06-23 00:00:26 +02:00
if (itOld != mapBlockIndex.end() && itOld->second->nChainWork > 0) {
if (state->pindexBestKnownBlock == NULL || itOld->second->nChainWork >= state->pindexBestKnownBlock->nChainWork)
state->pindexBestKnownBlock = itOld->second;
state->hashLastUnknownBlock.SetNull();
2014-06-23 00:00:26 +02:00
}
}
}
/** Update tracking information about which blocks a peer is assumed to have. */
void UpdateBlockAvailability(NodeId nodeid, const uint256 &hash) {
CNodeState *state = State(nodeid);
assert(state != NULL);
ProcessBlockAvailability(nodeid);
BlockMap::iterator it = mapBlockIndex.find(hash);
2014-06-23 00:00:26 +02:00
if (it != mapBlockIndex.end() && it->second->nChainWork > 0) {
// An actually better block was announced.
if (state->pindexBestKnownBlock == NULL || it->second->nChainWork >= state->pindexBestKnownBlock->nChainWork)
state->pindexBestKnownBlock = it->second;
} else {
// An unknown block was announced; just assume that the latest one is the best one.
state->hashLastUnknownBlock = hash;
}
}
void MaybeSetPeerAsAnnouncingHeaderAndIDs(const CNodeState* nodestate, CNode* pfrom, CConnman& connman) {
if (!nodestate->fSupportsDesiredCmpctVersion) {
// Never ask from peers who can't provide witnesses.
return;
}
if (nodestate->fProvidesHeaderAndIDs) {
for (std::list<NodeId>::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) {
if (*it == pfrom->GetId()) {
lNodesAnnouncingHeaderAndIDs.erase(it);
lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId());
return;
}
}
bool fAnnounceUsingCMPCTBLOCK = false;
uint64_t nCMPCTBLOCKVersion = (pfrom->GetLocalServices() & NODE_WITNESS) ? 2 : 1;
if (lNodesAnnouncingHeaderAndIDs.size() >= 3) {
// As per BIP152, we only get 3 of our peers to announce
// blocks using compact encodings.
bool found = connman.ForNode(lNodesAnnouncingHeaderAndIDs.front(), [&connman, fAnnounceUsingCMPCTBLOCK, nCMPCTBLOCKVersion](CNode* pnodeStop){
connman.PushMessage(pnodeStop, NetMsgType::SENDCMPCT, fAnnounceUsingCMPCTBLOCK, nCMPCTBLOCKVersion);
return true;
});
if(found)
lNodesAnnouncingHeaderAndIDs.pop_front();
}
fAnnounceUsingCMPCTBLOCK = true;
connman.PushMessage(pfrom, NetMsgType::SENDCMPCT, fAnnounceUsingCMPCTBLOCK, nCMPCTBLOCKVersion);
lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId());
}
}
// Requires cs_main
bool CanDirectFetch(const Consensus::Params &consensusParams)
{
return chainActive.Tip()->GetBlockTime() > GetAdjustedTime() - consensusParams.nPowTargetSpacing * 20;
}
// Requires cs_main
bool PeerHasHeader(CNodeState *state, CBlockIndex *pindex)
{
if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight))
return true;
if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight))
return true;
return false;
}
/** Find the last common ancestor two blocks have.
* Both pa and pb must be non-NULL. */
CBlockIndex* LastCommonAncestor(CBlockIndex* pa, CBlockIndex* pb) {
if (pa->nHeight > pb->nHeight) {
pa = pa->GetAncestor(pb->nHeight);
} else if (pb->nHeight > pa->nHeight) {
pb = pb->GetAncestor(pa->nHeight);
}
while (pa != pb && pa && pb) {
pa = pa->pprev;
pb = pb->pprev;
}
// Eventually all chain branches meet at the genesis block.
assert(pa == pb);
return pa;
}
/** Update pindexLastCommonBlock and add not-in-flight missing successors to vBlocks, until it has
* at most count entries. */
void FindNextBlocksToDownload(NodeId nodeid, unsigned int count, std::vector<CBlockIndex*>& vBlocks, NodeId& nodeStaller, const Consensus::Params& consensusParams) {
if (count == 0)
return;
vBlocks.reserve(vBlocks.size() + count);
CNodeState *state = State(nodeid);
assert(state != NULL);
// Make sure pindexBestKnownBlock is up to date, we'll need it.
ProcessBlockAvailability(nodeid);
if (state->pindexBestKnownBlock == NULL || state->pindexBestKnownBlock->nChainWork < chainActive.Tip()->nChainWork) {
// This peer has nothing interesting.
return;
}
if (state->pindexLastCommonBlock == NULL) {
// Bootstrap quickly by guessing a parent of our best tip is the forking point.
// Guessing wrong in either direction is not a problem.
state->pindexLastCommonBlock = chainActive[std::min(state->pindexBestKnownBlock->nHeight, chainActive.Height())];
}
// If the peer reorganized, our previous pindexLastCommonBlock may not be an ancestor
2015-04-28 14:47:17 +00:00
// of its current tip anymore. Go back enough to fix that.
state->pindexLastCommonBlock = LastCommonAncestor(state->pindexLastCommonBlock, state->pindexBestKnownBlock);
if (state->pindexLastCommonBlock == state->pindexBestKnownBlock)
return;
std::vector<CBlockIndex*> vToFetch;
CBlockIndex *pindexWalk = state->pindexLastCommonBlock;
2014-10-14 15:41:23 -07:00
// Never fetch further than the best block we know the peer has, or more than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last
// linked block we have in common with this peer. The +1 is so we can detect stalling, namely if we would be able to
// download that next block if the window were 1 larger.
int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW;
int nMaxHeight = std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1);
NodeId waitingfor = -1;
while (pindexWalk->nHeight < nMaxHeight) {
// Read up to 128 (or more, if more blocks than that are needed) successors of pindexWalk (towards
// pindexBestKnownBlock) into vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as expensive
// as iterating over ~100 CBlockIndex* entries anyway.
int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max<int>(count - vBlocks.size(), 128));
vToFetch.resize(nToFetch);
pindexWalk = state->pindexBestKnownBlock->GetAncestor(pindexWalk->nHeight + nToFetch);
vToFetch[nToFetch - 1] = pindexWalk;
for (unsigned int i = nToFetch - 1; i > 0; i--) {
vToFetch[i - 1] = vToFetch[i]->pprev;
}
// Iterate over those blocks in vToFetch (in forward direction), adding the ones that
// are not yet downloaded and not in flight to vBlocks. In the mean time, update
// pindexLastCommonBlock as long as all ancestors are already downloaded, or if it's
// already part of our chain (and therefore don't need it even if pruned).
BOOST_FOREACH(CBlockIndex* pindex, vToFetch) {
if (!pindex->IsValid(BLOCK_VALID_TREE)) {
// We consider the chain that this peer is on invalid.
return;
}
if (!State(nodeid)->fHaveWitness && IsWitnessEnabled(pindex->pprev, consensusParams)) {
// We wouldn't download this block or its descendants from this peer.
return;
}
if (pindex->nStatus & BLOCK_HAVE_DATA || chainActive.Contains(pindex)) {
if (pindex->nChainTx)
state->pindexLastCommonBlock = pindex;
} else if (mapBlocksInFlight.count(pindex->GetBlockHash()) == 0) {
// The block is not already downloaded, and not yet in flight.
2014-10-14 15:41:23 -07:00
if (pindex->nHeight > nWindowEnd) {
// We reached the end of the window.
if (vBlocks.size() == 0 && waitingfor != nodeid) {
// We aren't able to fetch anything, but we would be if the download window was one larger.
nodeStaller = waitingfor;
}
return;
}
vBlocks.push_back(pindex);
if (vBlocks.size() == count) {
return;
}
} else if (waitingfor == -1) {
// This is the first already-in-flight block.
waitingfor = mapBlocksInFlight[pindex->GetBlockHash()].first;
}
}
}
}
} // anon namespace
2013-11-18 01:25:17 +01:00
bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) {
LOCK(cs_main);
CNodeState *state = State(nodeid);
if (state == NULL)
return false;
stats.nMisbehavior = state->nMisbehavior;
2014-06-23 00:00:26 +02:00
stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1;
2014-07-12 00:03:10 +02:00
stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1;
BOOST_FOREACH(const QueuedBlock& queue, state->vBlocksInFlight) {
if (queue.pindex)
stats.vHeightInFlight.push_back(queue.pindex->nHeight);
}
2013-11-18 01:25:17 +01:00
return true;
}
void RegisterNodeSignals(CNodeSignals& nodeSignals)
{
nodeSignals.ProcessMessages.connect(&ProcessMessages);
nodeSignals.SendMessages.connect(&SendMessages);
2013-11-18 01:25:17 +01:00
nodeSignals.InitializeNode.connect(&InitializeNode);
nodeSignals.FinalizeNode.connect(&FinalizeNode);
}
void UnregisterNodeSignals(CNodeSignals& nodeSignals)
{
nodeSignals.ProcessMessages.disconnect(&ProcessMessages);
nodeSignals.SendMessages.disconnect(&SendMessages);
2013-11-18 01:25:17 +01:00
nodeSignals.InitializeNode.disconnect(&InitializeNode);
nodeSignals.FinalizeNode.disconnect(&FinalizeNode);
}
2014-09-03 02:52:01 +02:00
CBlockIndex* FindForkInGlobalIndex(const CChain& chain, const CBlockLocator& locator)
{
// Find the first block the caller has in the main chain
BOOST_FOREACH(const uint256& hash, locator.vHave) {
BlockMap::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end())
{
CBlockIndex* pindex = (*mi).second;
2014-09-03 02:52:01 +02:00
if (chain.Contains(pindex))
return pindex;
if (pindex->GetAncestor(chain.Height()) == chain.Tip()) {
return chain.Tip();
}
}
}
2014-09-03 02:52:01 +02:00
return chain.Genesis();
}
CCoinsViewCache *pcoinsTip = NULL;
CBlockTreeDB *pblocktree = NULL;
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
enum FlushStateMode {
FLUSH_STATE_NONE,
FLUSH_STATE_IF_NEEDED,
FLUSH_STATE_PERIODIC,
FLUSH_STATE_ALWAYS
};
// See definition for documentation
bool static FlushStateToDisk(CValidationState &state, FlushStateMode mode);
//////////////////////////////////////////////////////////////////////////////
//
// mapOrphanTransactions
//
bool AddOrphanTx(const CTransaction& tx, NodeId peer) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
{
uint256 hash = tx.GetHash();
if (mapOrphanTransactions.count(hash))
return false;
// Ignore big transactions, to avoid a
// send-big-orphans memory exhaustion attack. If a peer has a legitimate
// large transaction with a missing parent then we assume
// it will rebroadcast it later, after the parent transaction(s)
// have been mined or received.
// 100 orphans, each of which is at most 99,999 bytes big is
// at most 10 megabytes of orphans and somewhat more byprev index (in the worst case):
2016-07-18 13:28:26 -04:00
unsigned int sz = GetTransactionWeight(tx);
if (sz >= MAX_STANDARD_TX_WEIGHT)
{
LogPrint("mempool", "ignoring large orphan tx (size: %u, hash: %s)\n", sz, hash.ToString());
return false;
}
2012-02-29 10:14:18 -05:00
auto ret = mapOrphanTransactions.emplace(hash, COrphanTx{tx, peer, GetTime() + ORPHAN_TX_EXPIRE_TIME});
assert(ret.second);
BOOST_FOREACH(const CTxIn& txin, tx.vin) {
mapOrphanTransactionsByPrev[txin.prevout].insert(ret.first);
}
LogPrint("mempool", "stored orphan tx %s (mapsz %u outsz %u)\n", hash.ToString(),
mapOrphanTransactions.size(), mapOrphanTransactionsByPrev.size());
return true;
}
int static EraseOrphanTx(uint256 hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
{
map<uint256, COrphanTx>::iterator it = mapOrphanTransactions.find(hash);
if (it == mapOrphanTransactions.end())
return 0;
BOOST_FOREACH(const CTxIn& txin, it->second.tx.vin)
{
auto itPrev = mapOrphanTransactionsByPrev.find(txin.prevout);
if (itPrev == mapOrphanTransactionsByPrev.end())
continue;
itPrev->second.erase(it);
if (itPrev->second.empty())
mapOrphanTransactionsByPrev.erase(itPrev);
}
mapOrphanTransactions.erase(it);
return 1;
}
void EraseOrphansFor(NodeId peer)
{
int nErased = 0;
map<uint256, COrphanTx>::iterator iter = mapOrphanTransactions.begin();
while (iter != mapOrphanTransactions.end())
{
map<uint256, COrphanTx>::iterator maybeErase = iter++; // increment to avoid iterator becoming invalid
if (maybeErase->second.fromPeer == peer)
{
nErased += EraseOrphanTx(maybeErase->second.tx.GetHash());
}
}
if (nErased > 0) LogPrint("mempool", "Erased %d orphan tx from peer %d\n", nErased, peer);
}
unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
2012-02-29 10:14:18 -05:00
{
unsigned int nEvicted = 0;
static int64_t nNextSweep;
int64_t nNow = GetTime();
if (nNextSweep <= nNow) {
// Sweep out expired orphan pool entries:
int nErased = 0;
int64_t nMinExpTime = nNow + ORPHAN_TX_EXPIRE_TIME - ORPHAN_TX_EXPIRE_INTERVAL;
map<uint256, COrphanTx>::iterator iter = mapOrphanTransactions.begin();
while (iter != mapOrphanTransactions.end())
{
map<uint256, COrphanTx>::iterator maybeErase = iter++;
if (maybeErase->second.nTimeExpire <= nNow) {
nErased += EraseOrphanTx(maybeErase->second.tx.GetHash());
} else {
nMinExpTime = std::min(maybeErase->second.nTimeExpire, nMinExpTime);
}
}
// Sweep again 5 minutes after the next entry that expires in order to batch the linear scan.
nNextSweep = nMinExpTime + ORPHAN_TX_EXPIRE_INTERVAL;
if (nErased > 0) LogPrint("mempool", "Erased %d orphan tx due to expiration\n", nErased);
}
2012-02-29 10:14:18 -05:00
while (mapOrphanTransactions.size() > nMaxOrphans)
{
// Evict a random orphan:
uint256 randomhash = GetRandHash();
map<uint256, COrphanTx>::iterator it = mapOrphanTransactions.lower_bound(randomhash);
2012-02-29 10:14:18 -05:00
if (it == mapOrphanTransactions.end())
it = mapOrphanTransactions.begin();
EraseOrphanTx(it->first);
++nEvicted;
}
return nEvicted;
}
bool IsFinalTx(const CTransaction &tx, int nBlockHeight, int64_t nBlockTime)
{
if (tx.nLockTime == 0)
return true;
if ((int64_t)tx.nLockTime < ((int64_t)tx.nLockTime < LOCKTIME_THRESHOLD ? (int64_t)nBlockHeight : nBlockTime))
return true;
for (const auto& txin : tx.vin) {
if (!(txin.nSequence == CTxIn::SEQUENCE_FINAL))
return false;
}
return true;
}
bool CheckFinalTx(const CTransaction &tx, int flags)
{
AssertLockHeld(cs_main);
// By convention a negative value for flags indicates that the
// current network-enforced consensus rules should be used. In
// a future soft-fork scenario that would mean checking which
// rules would be enforced for the next block and setting the
// appropriate flags. At the present time no soft-forks are
// scheduled, so no flags are set.
flags = std::max(flags, 0);
// CheckFinalTx() uses chainActive.Height()+1 to evaluate
// nLockTime because when IsFinalTx() is called within
// CBlock::AcceptBlock(), the height of the block *being*
// evaluated is what is used. Thus if we want to know if a
// transaction can be part of the *next* block, we need to call
// IsFinalTx() with one more than chainActive.Height().
const int nBlockHeight = chainActive.Height() + 1;
// BIP113 will require that time-locked transactions have nLockTime set to
// less than the median time of the previous block they're contained in.
// When the next block is created its previous block will be the current
// chain tip, so we use that to calculate the median time passed to
// IsFinalTx() if LOCKTIME_MEDIAN_TIME_PAST is set.
const int64_t nBlockTime = (flags & LOCKTIME_MEDIAN_TIME_PAST)
? chainActive.Tip()->GetMedianTimePast()
: GetAdjustedTime();
return IsFinalTx(tx, nBlockHeight, nBlockTime);
}
/**
* Calculates the block height and previous block's median time past at
* which the transaction will be considered final in the context of BIP 68.
* Also removes from the vector of input heights any entries which did not
* correspond to sequence locked inputs as they do not affect the calculation.
*/
static std::pair<int, int64_t> CalculateSequenceLocks(const CTransaction &tx, int flags, std::vector<int>* prevHeights, const CBlockIndex& block)
{
assert(prevHeights->size() == tx.vin.size());
// Will be set to the equivalent height- and time-based nLockTime
// values that would be necessary to satisfy all relative lock-
// time constraints given our view of block chain history.
// The semantics of nLockTime are the last invalid height/time, so
// use -1 to have the effect of any height or time being valid.
int nMinHeight = -1;
int64_t nMinTime = -1;
// tx.nVersion is signed integer so requires cast to unsigned otherwise
// we would be doing a signed comparison and half the range of nVersion
// wouldn't support BIP 68.
bool fEnforceBIP68 = static_cast<uint32_t>(tx.nVersion) >= 2
&& flags & LOCKTIME_VERIFY_SEQUENCE;
// Do not enforce sequence numbers as a relative lock time
// unless we have been instructed to
if (!fEnforceBIP68) {
return std::make_pair(nMinHeight, nMinTime);
}
for (size_t txinIndex = 0; txinIndex < tx.vin.size(); txinIndex++) {
const CTxIn& txin = tx.vin[txinIndex];
// Sequence numbers with the most significant bit set are not
// treated as relative lock-times, nor are they given any
// consensus-enforced meaning at this point.
if (txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_DISABLE_FLAG) {
// The height of this input is not relevant for sequence locks
(*prevHeights)[txinIndex] = 0;
continue;
}
int nCoinHeight = (*prevHeights)[txinIndex];
if (txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG) {
int64_t nCoinTime = block.GetAncestor(std::max(nCoinHeight-1, 0))->GetMedianTimePast();
// NOTE: Subtract 1 to maintain nLockTime semantics
// BIP 68 relative lock times have the semantics of calculating
// the first block or time at which the transaction would be
// valid. When calculating the effective block time or height
// for the entire transaction, we switch to using the
// semantics of nLockTime which is the last invalid block
// time or height. Thus we subtract 1 from the calculated
// time or height.
// Time-based relative lock-times are measured from the
// smallest allowed timestamp of the block containing the
// txout being spent, which is the median time past of the
// block prior.
nMinTime = std::max(nMinTime, nCoinTime + (int64_t)((txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_MASK) << CTxIn::SEQUENCE_LOCKTIME_GRANULARITY) - 1);
} else {
nMinHeight = std::max(nMinHeight, nCoinHeight + (int)(txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_MASK) - 1);
}
}
return std::make_pair(nMinHeight, nMinTime);
}
static bool EvaluateSequenceLocks(const CBlockIndex& block, std::pair<int, int64_t> lockPair)
{
assert(block.pprev);
int64_t nBlockTime = block.pprev->GetMedianTimePast();
if (lockPair.first >= block.nHeight || lockPair.second >= nBlockTime)
return false;
return true;
}
bool SequenceLocks(const CTransaction &tx, int flags, std::vector<int>* prevHeights, const CBlockIndex& block)
{
return EvaluateSequenceLocks(block, CalculateSequenceLocks(tx, flags, prevHeights, block));
}
bool TestLockPointValidity(const LockPoints* lp)
{
AssertLockHeld(cs_main);
assert(lp);
// If there are relative lock times then the maxInputBlock will be set
// If there are no relative lock times, the LockPoints don't depend on the chain
if (lp->maxInputBlock) {
// Check whether chainActive is an extension of the block at which the LockPoints
// calculation was valid. If not LockPoints are no longer valid
if (!chainActive.Contains(lp->maxInputBlock)) {
return false;
}
}
// LockPoints still valid
return true;
}
bool CheckSequenceLocks(const CTransaction &tx, int flags, LockPoints* lp, bool useExistingLockPoints)
{
AssertLockHeld(cs_main);
AssertLockHeld(mempool.cs);
CBlockIndex* tip = chainActive.Tip();
CBlockIndex index;
index.pprev = tip;
// CheckSequenceLocks() uses chainActive.Height()+1 to evaluate
// height based locks because when SequenceLocks() is called within
// ConnectBlock(), the height of the block *being*
// evaluated is what is used.
// Thus if we want to know if a transaction can be part of the
// *next* block, we need to use one more than chainActive.Height()
index.nHeight = tip->nHeight + 1;
std::pair<int, int64_t> lockPair;
if (useExistingLockPoints) {
assert(lp);
lockPair.first = lp->height;
lockPair.second = lp->time;
}
else {
// pcoinsTip contains the UTXO set for chainActive.Tip()
CCoinsViewMemPool viewMemPool(pcoinsTip, mempool);
std::vector<int> prevheights;
prevheights.resize(tx.vin.size());
for (size_t txinIndex = 0; txinIndex < tx.vin.size(); txinIndex++) {
const CTxIn& txin = tx.vin[txinIndex];
CCoins coins;
if (!viewMemPool.GetCoins(txin.prevout.hash, coins)) {
return error("%s: Missing input", __func__);
}
if (coins.nHeight == MEMPOOL_HEIGHT) {
// Assume all mempool transaction confirm in the next block
prevheights[txinIndex] = tip->nHeight + 1;
} else {
prevheights[txinIndex] = coins.nHeight;
}
}
lockPair = CalculateSequenceLocks(tx, flags, &prevheights, index);
if (lp) {
lp->height = lockPair.first;
lp->time = lockPair.second;
// Also store the hash of the block with the highest height of
// all the blocks which have sequence locked prevouts.
// This hash needs to still be on the chain
// for these LockPoint calculations to be valid
// Note: It is impossible to correctly calculate a maxInputBlock
// if any of the sequence locked inputs depend on unconfirmed txs,
// except in the special case where the relative lock time/height
// is 0, which is equivalent to no sequence lock. Since we assume
// input height of tip+1 for mempool txs and test the resulting
// lockPair from CalculateSequenceLocks against tip+1. We know
// EvaluateSequenceLocks will fail if there was a non-zero sequence
// lock on a mempool input, so we can use the return value of
// CheckSequenceLocks to indicate the LockPoints validity
int maxInputHeight = 0;
BOOST_FOREACH(int height, prevheights) {
// Can ignore mempool inputs since we'll fail if they had non-zero locks
if (height != tip->nHeight+1) {
maxInputHeight = std::max(maxInputHeight, height);
}
}
lp->maxInputBlock = tip->GetAncestor(maxInputHeight);
}
}
return EvaluateSequenceLocks(index, lockPair);
}
unsigned int GetLegacySigOpCount(const CTransaction& tx)
{
unsigned int nSigOps = 0;
for (const auto& txin : tx.vin)
{
nSigOps += txin.scriptSig.GetSigOpCount(false);
}
for (const auto& txout : tx.vout)
{
nSigOps += txout.scriptPubKey.GetSigOpCount(false);
}
return nSigOps;
}
unsigned int GetP2SHSigOpCount(const CTransaction& tx, const CCoinsViewCache& inputs)
{
if (tx.IsCoinBase())
return 0;
unsigned int nSigOps = 0;
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
const CTxOut &prevout = inputs.GetOutputFor(tx.vin[i]);
if (prevout.scriptPubKey.IsPayToScriptHash())
nSigOps += prevout.scriptPubKey.GetSigOpCount(tx.vin[i].scriptSig);
}
return nSigOps;
}
int64_t GetTransactionSigOpCost(const CTransaction& tx, const CCoinsViewCache& inputs, int flags)
{
int64_t nSigOps = GetLegacySigOpCount(tx) * WITNESS_SCALE_FACTOR;
if (tx.IsCoinBase())
return nSigOps;
if (flags & SCRIPT_VERIFY_P2SH) {
nSigOps += GetP2SHSigOpCount(tx, inputs) * WITNESS_SCALE_FACTOR;
}
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
const CTxOut &prevout = inputs.GetOutputFor(tx.vin[i]);
nSigOps += CountWitnessSigOps(tx.vin[i].scriptSig, prevout.scriptPubKey, i < tx.wit.vtxinwit.size() ? &tx.wit.vtxinwit[i].scriptWitness : NULL, flags);
}
return nSigOps;
}
bool CheckTransaction(const CTransaction& tx, CValidationState &state, bool fCheckDuplicateInputs)
{
// Basic checks that don't depend on any context
if (tx.vin.empty())
return state.DoS(10, false, REJECT_INVALID, "bad-txns-vin-empty");
if (tx.vout.empty())
return state.DoS(10, false, REJECT_INVALID, "bad-txns-vout-empty");
// Size limits (this doesn't take the witness into account, as that hasn't been checked for malleability)
if (::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION | SERIALIZE_TRANSACTION_NO_WITNESS) > MAX_BLOCK_BASE_SIZE)
return state.DoS(100, false, REJECT_INVALID, "bad-txns-oversize");
// Check for negative or overflow output values
2014-04-22 15:46:19 -07:00
CAmount nValueOut = 0;
for (const auto& txout : tx.vout)
{
if (txout.nValue < 0)
return state.DoS(100, false, REJECT_INVALID, "bad-txns-vout-negative");
if (txout.nValue > MAX_MONEY)
return state.DoS(100, false, REJECT_INVALID, "bad-txns-vout-toolarge");
nValueOut += txout.nValue;
if (!MoneyRange(nValueOut))
return state.DoS(100, false, REJECT_INVALID, "bad-txns-txouttotal-toolarge");
}
// Check for duplicate inputs - note that this check is slow so we skip it in CheckBlock
if (fCheckDuplicateInputs) {
set<COutPoint> vInOutPoints;
for (const auto& txin : tx.vin)
{
2016-11-09 11:28:41 -08:00
if (!vInOutPoints.insert(txin.prevout).second)
return state.DoS(100, false, REJECT_INVALID, "bad-txns-inputs-duplicate");
}
}
if (tx.IsCoinBase())
{
if (tx.vin[0].scriptSig.size() < 2 || tx.vin[0].scriptSig.size() > 100)
return state.DoS(100, false, REJECT_INVALID, "bad-cb-length");
}
else
{
for (const auto& txin : tx.vin)
if (txin.prevout.IsNull())
return state.DoS(10, false, REJECT_INVALID, "bad-txns-prevout-null");
}
return true;
}
void LimitMempoolSize(CTxMemPool& pool, size_t limit, unsigned long age) {
int expired = pool.Expire(GetTime() - age);
if (expired != 0)
LogPrint("mempool", "Expired %i transactions from the memory pool\n", expired);
std::vector<uint256> vNoSpendsRemaining;
pool.TrimToSize(limit, &vNoSpendsRemaining);
BOOST_FOREACH(const uint256& removed, vNoSpendsRemaining)
pcoinsTip->Uncache(removed);
}
/** Convert CValidationState to a human-readable message for logging */
2015-10-28 14:56:28 -04:00
std::string FormatStateMessage(const CValidationState &state)
{
return strprintf("%s%s (code %i)",
state.GetRejectReason(),
state.GetDebugMessage().empty() ? "" : ", "+state.GetDebugMessage(),
state.GetRejectCode());
}
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
2016-02-03 13:14:23 +01:00
bool AcceptToMemoryPoolWorker(CTxMemPool& pool, CValidationState& state, const CTransaction& tx, bool fLimitFree,
bool* pfMissingInputs, int64_t nAcceptTime, bool fOverrideMempoolLimit, const CAmount& nAbsurdFee,
std::vector<uint256>& vHashTxnToUncache)
{
const uint256 hash = tx.GetHash();
AssertLockHeld(cs_main);
if (pfMissingInputs)
*pfMissingInputs = false;
if (!CheckTransaction(tx, state))
return false; // state filled in by CheckTransaction
// Coinbase is only valid in a block, not as a loose transaction
if (tx.IsCoinBase())
return state.DoS(100, false, REJECT_INVALID, "coinbase");
// Don't relay version 2 transactions until CSV is active, and we can be
// sure that such transactions will be mined (unless we're on
// -testnet/-regtest).
const CChainParams& chainparams = Params();
if (fRequireStandard && tx.nVersion >= 2 && VersionBitsTipState(chainparams.GetConsensus(), Consensus::DEPLOYMENT_CSV) != THRESHOLD_ACTIVE) {
return state.DoS(0, false, REJECT_NONSTANDARD, "premature-version2-tx");
}
// Reject transactions with witness before segregated witness activates (override with -prematurewitness)
bool witnessEnabled = IsWitnessEnabled(chainActive.Tip(), Params().GetConsensus());
if (!GetBoolArg("-prematurewitness",false) && !tx.wit.IsNull() && !witnessEnabled) {
return state.DoS(0, false, REJECT_NONSTANDARD, "no-witness-yet", true);
}
// Rather not work on nonstandard transactions (unless -testnet/-regtest)
string reason;
if (fRequireStandard && !IsStandardTx(tx, reason, witnessEnabled))
return state.DoS(0, false, REJECT_NONSTANDARD, reason);
// Only accept nLockTime-using transactions that can be mined in the next
// block; we don't want our mempool filled up with transactions that can't
// be mined yet.
if (!CheckFinalTx(tx, STANDARD_LOCKTIME_VERIFY_FLAGS))
return state.DoS(0, false, REJECT_NONSTANDARD, "non-final");
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// is it already in the memory pool?
if (pool.exists(hash))
return state.Invalid(false, REJECT_ALREADY_KNOWN, "txn-already-in-mempool");
// Check for conflicts with in-memory transactions
set<uint256> setConflicts;
{
LOCK(pool.cs); // protect pool.mapNextTx
BOOST_FOREACH(const CTxIn &txin, tx.vin)
{
auto itConflicting = pool.mapNextTx.find(txin.prevout);
if (itConflicting != pool.mapNextTx.end())
{
const CTransaction *ptxConflicting = itConflicting->second;
if (!setConflicts.count(ptxConflicting->GetHash()))
{
// Allow opt-out of transaction replacement by setting
// nSequence >= maxint-1 on all inputs.
//
// maxint-1 is picked to still allow use of nLockTime by
2016-08-13 11:21:13 -06:00
// non-replaceable transactions. All inputs rather than just one
// is for the sake of multi-party protocols, where we don't
// want a single party to be able to disable replacement.
//
// The opt-out ignores descendants as anyone relying on
// first-seen mempool behavior should be checking all
// unconfirmed ancestors anyway; doing otherwise is hopelessly
// insecure.
bool fReplacementOptOut = true;
if (fEnableReplacement)
{
2016-09-02 18:19:01 +02:00
BOOST_FOREACH(const CTxIn &_txin, ptxConflicting->vin)
{
2016-09-02 18:19:01 +02:00
if (_txin.nSequence < std::numeric_limits<unsigned int>::max()-1)
{
fReplacementOptOut = false;
break;
}
}
}
if (fReplacementOptOut)
return state.Invalid(false, REJECT_CONFLICT, "txn-mempool-conflict");
setConflicts.insert(ptxConflicting->GetHash());
}
}
}
}
{
2012-10-23 01:16:26 +02:00
CCoinsView dummy;
CCoinsViewCache view(&dummy);
2012-10-23 01:16:26 +02:00
2014-04-22 15:46:19 -07:00
CAmount nValueIn = 0;
LockPoints lp;
2012-10-23 01:16:26 +02:00
{
LOCK(pool.cs);
CCoinsViewMemPool viewMemPool(pcoinsTip, pool);
2012-10-23 01:16:26 +02:00
view.SetBackend(viewMemPool);
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// do we already have it?
bool fHadTxInCache = pcoinsTip->HaveCoinsInCache(hash);
if (view.HaveCoins(hash)) {
if (!fHadTxInCache)
vHashTxnToUncache.push_back(hash);
return state.Invalid(false, REJECT_ALREADY_KNOWN, "txn-already-known");
}
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// do all inputs exist?
// Note that this does not check for the presence of actual outputs (see the next check for that),
2015-04-28 14:48:28 +00:00
// and only helps with filling in pfMissingInputs (to determine missing vs spent).
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
BOOST_FOREACH(const CTxIn txin, tx.vin) {
if (!pcoinsTip->HaveCoinsInCache(txin.prevout.hash))
vHashTxnToUncache.push_back(txin.prevout.hash);
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
if (!view.HaveCoins(txin.prevout.hash)) {
if (pfMissingInputs)
*pfMissingInputs = true;
return false; // fMissingInputs and !state.IsInvalid() is used to detect this condition, don't set state.Invalid()
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
}
}
// are the actual inputs available?
if (!view.HaveInputs(tx))
return state.Invalid(false, REJECT_DUPLICATE, "bad-txns-inputs-spent");
2012-10-23 01:16:26 +02:00
// Bring the best block into scope
view.GetBestBlock();
estimatefee / estimatepriority RPC methods New RPC methods: return an estimate of the fee (or priority) a transaction needs to be likely to confirm in a given number of blocks. Mike Hearn created the first version of this method for estimating fees. It works as follows: For transactions that took 1 to N (I picked N=25) blocks to confirm, keep N buckets with at most 100 entries in each recording the fees-per-kilobyte paid by those transactions. (separate buckets are kept for transactions that confirmed because they are high-priority) The buckets are filled as blocks are found, and are saved/restored in a new fee_estiamtes.dat file in the data directory. A few variations on Mike's initial scheme: To estimate the fee needed for a transaction to confirm in X buckets, all of the samples in all of the buckets are used and a median of all of the data is used to make the estimate. For example, imagine 25 buckets each containing the full 100 entries. Those 2,500 samples are sorted, and the estimate of the fee needed to confirm in the very next block is the 50'th-highest-fee-entry in that sorted list; the estimate of the fee needed to confirm in the next two blocks is the 150'th-highest-fee-entry, etc. That algorithm has the nice property that estimates of how much fee you need to pay to get confirmed in block N will always be greater than or equal to the estimate for block N+1. It would clearly be wrong to say "pay 11 uBTC and you'll get confirmed in 3 blocks, but pay 12 uBTC and it will take LONGER". A single block will not contribute more than 10 entries to any one bucket, so a single miner and a large block cannot overwhelm the estimates.
2014-03-17 08:19:54 -04:00
nValueIn = view.GetValueIn(tx);
2012-10-23 01:16:26 +02:00
// we have all inputs cached now, so switch back to dummy, so we don't need to keep lock on mempool
view.SetBackend(dummy);
// Only accept BIP68 sequence locked transactions that can be mined in the next
// block; we don't want our mempool filled up with transactions that can't
// be mined yet.
// Must keep pool.cs for this unless we change CheckSequenceLocks to take a
// CoinsViewCache instead of create its own
if (!CheckSequenceLocks(tx, STANDARD_LOCKTIME_VERIFY_FLAGS, &lp))
return state.DoS(0, false, REJECT_NONSTANDARD, "non-BIP68-final");
2012-10-23 01:16:26 +02:00
}
// Check for non-standard pay-to-script-hash in inputs
if (fRequireStandard && !AreInputsStandard(tx, view))
return state.Invalid(false, REJECT_NONSTANDARD, "bad-txns-nonstandard-inputs");
// Check for non-standard witness in P2WSH
if (!tx.wit.IsNull() && fRequireStandard && !IsWitnessStandard(tx, view))
return state.DoS(0, false, REJECT_NONSTANDARD, "bad-witness-nonstandard", true);
int64_t nSigOpsCost = GetTransactionSigOpCost(tx, view, STANDARD_SCRIPT_VERIFY_FLAGS);
2014-04-22 15:46:19 -07:00
CAmount nValueOut = tx.GetValueOut();
CAmount nFees = nValueIn-nValueOut;
// nModifiedFees includes any fee deltas from PrioritiseTransaction
CAmount nModifiedFees = nFees;
double nPriorityDummy = 0;
pool.ApplyDeltas(hash, nPriorityDummy, nModifiedFees);
CAmount inChainInputValue;
double dPriority = view.GetPriority(tx, chainActive.Height(), inChainInputValue);
// Keep track of transactions that spend a coinbase, which we re-scan
// during reorgs to ensure COINBASE_MATURITY is still met.
bool fSpendsCoinbase = false;
BOOST_FOREACH(const CTxIn &txin, tx.vin) {
const CCoins *coins = view.AccessCoins(txin.prevout.hash);
if (coins->IsCoinBase()) {
fSpendsCoinbase = true;
break;
}
}
CTxMemPoolEntry entry(tx, nFees, nAcceptTime, dPriority, chainActive.Height(), pool.HasNoInputsOf(tx), inChainInputValue, fSpendsCoinbase, nSigOpsCost, lp);
unsigned int nSize = entry.GetTxSize();
// Check that the transaction doesn't have an excessive number of
// sigops, making it impossible to mine. Since the coinbase transaction
// itself can contain sigops MAX_STANDARD_TX_SIGOPS is less than
// MAX_BLOCK_SIGOPS; we still consider this an invalid rather than
// merely non-standard transaction.
if (nSigOpsCost > MAX_STANDARD_TX_SIGOPS_COST)
return state.DoS(0, false, REJECT_NONSTANDARD, "bad-txns-too-many-sigops", false,
strprintf("%d", nSigOpsCost));
CAmount mempoolRejectFee = pool.GetMinFee(GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000).GetFee(nSize);
if (mempoolRejectFee > 0 && nModifiedFees < mempoolRejectFee) {
return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "mempool min fee not met", false, strprintf("%d < %d", nFees, mempoolRejectFee));
} else if (GetBoolArg("-relaypriority", DEFAULT_RELAYPRIORITY) && nModifiedFees < ::minRelayTxFee.GetFee(nSize) && !AllowFree(entry.GetPriority(chainActive.Height() + 1))) {
// Require that free transactions have sufficient priority to be mined in the next block.
return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "insufficient priority");
}
// Continuously rate-limit free (really, very-low-fee) transactions
// This mitigates 'penny-flooding' -- sending thousands of free transactions just to
// be annoying or make others' transactions take longer to confirm.
if (fLimitFree && nModifiedFees < ::minRelayTxFee.GetFee(nSize))
{
static CCriticalSection csFreeLimiter;
static double dFreeCount;
static int64_t nLastTime;
int64_t nNow = GetTime();
LOCK(csFreeLimiter);
// Use an exponentially decaying ~10-minute window:
dFreeCount *= pow(1.0 - 1.0/600.0, (double)(nNow - nLastTime));
nLastTime = nNow;
// -limitfreerelay unit is thousand-bytes-per-minute
// At default rate it would take over a month to fill 1GB
if (dFreeCount + nSize >= GetArg("-limitfreerelay", DEFAULT_LIMITFREERELAY) * 10 * 1000)
return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "rate limited free transaction");
LogPrint("mempool", "Rate limit dFreeCount: %g => %g\n", dFreeCount, dFreeCount+nSize);
dFreeCount += nSize;
}
if (nAbsurdFee && nFees > nAbsurdFee)
return state.Invalid(false,
REJECT_HIGHFEE, "absurdly-high-fee",
strprintf("%d > %d", nFees, nAbsurdFee));
// Calculate in-mempool ancestors, up to a limit.
CTxMemPool::setEntries setAncestors;
size_t nLimitAncestors = GetArg("-limitancestorcount", DEFAULT_ANCESTOR_LIMIT);
size_t nLimitAncestorSize = GetArg("-limitancestorsize", DEFAULT_ANCESTOR_SIZE_LIMIT)*1000;
size_t nLimitDescendants = GetArg("-limitdescendantcount", DEFAULT_DESCENDANT_LIMIT);
size_t nLimitDescendantSize = GetArg("-limitdescendantsize", DEFAULT_DESCENDANT_SIZE_LIMIT)*1000;
std::string errString;
if (!pool.CalculateMemPoolAncestors(entry, setAncestors, nLimitAncestors, nLimitAncestorSize, nLimitDescendants, nLimitDescendantSize, errString)) {
return state.DoS(0, false, REJECT_NONSTANDARD, "too-long-mempool-chain", false, errString);
}
// A transaction that spends outputs that would be replaced by it is invalid. Now
// that we have the set of all ancestors we can detect this
// pathological case by making sure setConflicts and setAncestors don't
// intersect.
BOOST_FOREACH(CTxMemPool::txiter ancestorIt, setAncestors)
{
const uint256 &hashAncestor = ancestorIt->GetTx().GetHash();
if (setConflicts.count(hashAncestor))
{
return state.DoS(10, false,
REJECT_INVALID, "bad-txns-spends-conflicting-tx", false,
strprintf("%s spends conflicting transaction %s",
hash.ToString(),
hashAncestor.ToString()));
}
}
// Check if it's economically rational to mine this transaction rather
// than the ones it replaces.
CAmount nConflictingFees = 0;
size_t nConflictingSize = 0;
uint64_t nConflictingCount = 0;
CTxMemPool::setEntries allConflicting;
// If we don't hold the lock allConflicting might be incomplete; the
// subsequent RemoveStaged() and addUnchecked() calls don't guarantee
// mempool consistency for us.
LOCK(pool.cs);
if (setConflicts.size())
{
CFeeRate newFeeRate(nModifiedFees, nSize);
set<uint256> setConflictsParents;
const int maxDescendantsToVisit = 100;
CTxMemPool::setEntries setIterConflicting;
BOOST_FOREACH(const uint256 &hashConflicting, setConflicts)
{
CTxMemPool::txiter mi = pool.mapTx.find(hashConflicting);
if (mi == pool.mapTx.end())
continue;
// Save these to avoid repeated lookups
setIterConflicting.insert(mi);
// Don't allow the replacement to reduce the feerate of the
// mempool.
//
// We usually don't want to accept replacements with lower
// feerates than what they replaced as that would lower the
// feerate of the next block. Requiring that the feerate always
// be increased is also an easy-to-reason about way to prevent
// DoS attacks via replacements.
//
// The mining code doesn't (currently) take children into
// account (CPFP) so we only consider the feerates of
// transactions being directly replaced, not their indirect
// descendants. While that does mean high feerate children are
// ignored when deciding whether or not to replace, we do
// require the replacement to pay more overall fees too,
// mitigating most cases.
CFeeRate oldFeeRate(mi->GetModifiedFee(), mi->GetTxSize());
if (newFeeRate <= oldFeeRate)
{
return state.DoS(0, false,
REJECT_INSUFFICIENTFEE, "insufficient fee", false,
strprintf("rejecting replacement %s; new feerate %s <= old feerate %s",
hash.ToString(),
newFeeRate.ToString(),
oldFeeRate.ToString()));
}
BOOST_FOREACH(const CTxIn &txin, mi->GetTx().vin)
{
setConflictsParents.insert(txin.prevout.hash);
}
nConflictingCount += mi->GetCountWithDescendants();
}
// This potentially overestimates the number of actual descendants
// but we just want to be conservative to avoid doing too much
// work.
if (nConflictingCount <= maxDescendantsToVisit) {
// If not too many to replace, then calculate the set of
// transactions that would have to be evicted
BOOST_FOREACH(CTxMemPool::txiter it, setIterConflicting) {
pool.CalculateDescendants(it, allConflicting);
}
BOOST_FOREACH(CTxMemPool::txiter it, allConflicting) {
nConflictingFees += it->GetModifiedFee();
nConflictingSize += it->GetTxSize();
}
} else {
return state.DoS(0, false,
REJECT_NONSTANDARD, "too many potential replacements", false,
strprintf("rejecting replacement %s; too many potential replacements (%d > %d)\n",
hash.ToString(),
nConflictingCount,
maxDescendantsToVisit));
}
for (unsigned int j = 0; j < tx.vin.size(); j++)
{
// We don't want to accept replacements that require low
// feerate junk to be mined first. Ideally we'd keep track of
// the ancestor feerates and make the decision based on that,
// but for now requiring all new inputs to be confirmed works.
if (!setConflictsParents.count(tx.vin[j].prevout.hash))
{
// Rather than check the UTXO set - potentially expensive -
// it's cheaper to just check if the new input refers to a
// tx that's in the mempool.
if (pool.mapTx.find(tx.vin[j].prevout.hash) != pool.mapTx.end())
return state.DoS(0, false,
REJECT_NONSTANDARD, "replacement-adds-unconfirmed", false,
strprintf("replacement %s adds unconfirmed input, idx %d",
hash.ToString(), j));
}
}
// The replacement must pay greater fees than the transactions it
// replaces - if we did the bandwidth used by those conflicting
// transactions would not be paid for.
if (nModifiedFees < nConflictingFees)
{
return state.DoS(0, false,
REJECT_INSUFFICIENTFEE, "insufficient fee", false,
strprintf("rejecting replacement %s, less fees than conflicting txs; %s < %s",
hash.ToString(), FormatMoney(nModifiedFees), FormatMoney(nConflictingFees)));
}
// Finally in addition to paying more fees than the conflicts the
// new transaction must pay for its own bandwidth.
CAmount nDeltaFees = nModifiedFees - nConflictingFees;
if (nDeltaFees < ::minRelayTxFee.GetFee(nSize))
{
return state.DoS(0, false,
REJECT_INSUFFICIENTFEE, "insufficient fee", false,
strprintf("rejecting replacement %s, not enough additional fees to relay; %s < %s",
hash.ToString(),
FormatMoney(nDeltaFees),
FormatMoney(::minRelayTxFee.GetFee(nSize))));
}
}
unsigned int scriptVerifyFlags = STANDARD_SCRIPT_VERIFY_FLAGS;
if (!Params().RequireStandard()) {
scriptVerifyFlags = GetArg("-promiscuousmempoolflags", scriptVerifyFlags);
}
// Check against previous transactions
// This is done last to help prevent CPU exhaustion denial-of-service attacks.
2016-08-26 18:38:20 +02:00
PrecomputedTransactionData txdata(tx);
if (!CheckInputs(tx, state, view, true, scriptVerifyFlags, true, txdata)) {
// SCRIPT_VERIFY_CLEANSTACK requires SCRIPT_VERIFY_WITNESS, so we
// need to turn both off, and compare against just turning off CLEANSTACK
// to see if the failure is specifically due to witness validation.
if (tx.wit.IsNull() && CheckInputs(tx, state, view, true, scriptVerifyFlags & ~(SCRIPT_VERIFY_WITNESS | SCRIPT_VERIFY_CLEANSTACK), true, txdata) &&
2016-08-26 18:38:20 +02:00
!CheckInputs(tx, state, view, true, scriptVerifyFlags & ~SCRIPT_VERIFY_CLEANSTACK, true, txdata)) {
// Only the witness is missing, so the transaction itself may be fine.
state.SetCorruptionPossible();
}
return false;
}
// Check again against just the consensus-critical mandatory script
// verification flags, in case of bugs in the standard flags that cause
// transactions to pass as valid when they're actually invalid. For
// instance the STRICTENC flag was incorrectly allowing certain
// CHECKSIG NOT scripts to pass, even though they were invalid.
//
// There is a similar check in CreateNewBlock() to prevent creating
// invalid blocks, however allowing such transactions into the mempool
// can be exploited as a DoS attack.
2016-08-26 18:38:20 +02:00
if (!CheckInputs(tx, state, view, true, MANDATORY_SCRIPT_VERIFY_FLAGS, true, txdata))
{
return error("%s: BUG! PLEASE REPORT THIS! ConnectInputs failed against MANDATORY but not STANDARD flags %s, %s",
__func__, hash.ToString(), FormatStateMessage(state));
}
// Remove conflicting transactions from the mempool
BOOST_FOREACH(const CTxMemPool::txiter it, allConflicting)
{
LogPrint("mempool", "replacing tx %s with %s for %s BTC additional fees, %d delta bytes\n",
it->GetTx().GetHash().ToString(),
hash.ToString(),
FormatMoney(nModifiedFees - nConflictingFees),
(int)nSize - (int)nConflictingSize);
}
pool.RemoveStaged(allConflicting, false);
// Store transaction in memory
pool.addUnchecked(hash, entry, setAncestors, !IsInitialBlockDownload());
// trim mempool and check if tx was trimmed
if (!fOverrideMempoolLimit) {
LimitMempoolSize(pool, GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000, GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60);
if (!pool.exists(hash))
return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "mempool full");
}
}
GetMainSignals().SyncTransaction(tx, NULL, CMainSignals::SYNC_TRANSACTION_NOT_IN_BLOCK);
return true;
}
bool AcceptToMemoryPoolWithTime(CTxMemPool& pool, CValidationState &state, const CTransaction &tx, bool fLimitFree,
bool* pfMissingInputs, int64_t nAcceptTime, bool fOverrideMempoolLimit, const CAmount nAbsurdFee)
{
std::vector<uint256> vHashTxToUncache;
bool res = AcceptToMemoryPoolWorker(pool, state, tx, fLimitFree, pfMissingInputs, nAcceptTime, fOverrideMempoolLimit, nAbsurdFee, vHashTxToUncache);
if (!res) {
BOOST_FOREACH(const uint256& hashTx, vHashTxToUncache)
pcoinsTip->Uncache(hashTx);
}
// After we've (potentially) uncached entries, ensure our coins cache is still within its size limits
CValidationState stateDummy;
FlushStateToDisk(stateDummy, FLUSH_STATE_PERIODIC);
return res;
}
bool AcceptToMemoryPool(CTxMemPool& pool, CValidationState &state, const CTransaction &tx, bool fLimitFree,
bool* pfMissingInputs, bool fOverrideMempoolLimit, const CAmount nAbsurdFee)
{
return AcceptToMemoryPoolWithTime(pool, state, tx, fLimitFree, pfMissingInputs, GetTime(), fOverrideMempoolLimit, nAbsurdFee);
}
/** Return transaction in txOut, and if it was found inside a block, its hash is placed in hashBlock */
bool GetTransaction(const uint256 &hash, CTransaction &txOut, const Consensus::Params& consensusParams, uint256 &hashBlock, bool fAllowSlow)
{
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
CBlockIndex *pindexSlow = NULL;
LOCK(cs_main);
std::shared_ptr<const CTransaction> ptx = mempool.get(hash);
if (ptx)
{
txOut = *ptx;
return true;
}
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
if (fTxIndex) {
CDiskTxPos postx;
if (pblocktree->ReadTxIndex(hash, postx)) {
CAutoFile file(OpenBlockFile(postx, true), SER_DISK, CLIENT_VERSION);
if (file.IsNull())
return error("%s: OpenBlockFile failed", __func__);
CBlockHeader header;
try {
file >> header;
fseek(file.Get(), postx.nTxOffset, SEEK_CUR);
file >> txOut;
} catch (const std::exception& e) {
return error("%s: Deserialize or I/O error - %s", __func__, e.what());
}
hashBlock = header.GetHash();
if (txOut.GetHash() != hash)
return error("%s: txid mismatch", __func__);
return true;
}
}
if (fAllowSlow) { // use coin database to locate block that contains transaction, and scan it
int nHeight = -1;
{
const CCoinsViewCache& view = *pcoinsTip;
const CCoins* coins = view.AccessCoins(hash);
if (coins)
nHeight = coins->nHeight;
}
if (nHeight > 0)
pindexSlow = chainActive[nHeight];
}
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
if (pindexSlow) {
CBlock block;
if (ReadBlockFromDisk(block, pindexSlow, consensusParams)) {
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
BOOST_FOREACH(const CTransaction &tx, block.vtx) {
if (tx.GetHash() == hash) {
txOut = tx;
hashBlock = pindexSlow->GetBlockHash();
return true;
}
}
}
}
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
return false;
}
//////////////////////////////////////////////////////////////////////////////
//
// CBlock and CBlockIndex
//
bool WriteBlockToDisk(const CBlock& block, CDiskBlockPos& pos, const CMessageHeader::MessageStartChars& messageStart)
{
// Open history file to append
CAutoFile fileout(OpenBlockFile(pos), SER_DISK, CLIENT_VERSION);
if (fileout.IsNull())
return error("WriteBlockToDisk: OpenBlockFile failed");
// Write index header
unsigned int nSize = GetSerializeSize(fileout, block);
fileout << FLATDATA(messageStart) << nSize;
// Write block
long fileOutPos = ftell(fileout.Get());
if (fileOutPos < 0)
return error("WriteBlockToDisk: ftell failed");
pos.nPos = (unsigned int)fileOutPos;
fileout << block;
return true;
}
bool ReadBlockFromDisk(CBlock& block, const CDiskBlockPos& pos, const Consensus::Params& consensusParams)
{
block.SetNull();
// Open history file to read
CAutoFile filein(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION);
if (filein.IsNull())
return error("ReadBlockFromDisk: OpenBlockFile failed for %s", pos.ToString());
// Read block
try {
filein >> block;
}
catch (const std::exception& e) {
return error("%s: Deserialize or I/O error - %s at %s", __func__, e.what(), pos.ToString());
}
// Check the header
if (!CheckProofOfWork(block.GetHash(), block.nBits, consensusParams))
return error("ReadBlockFromDisk: Errors in block header at %s", pos.ToString());
return true;
}
bool ReadBlockFromDisk(CBlock& block, const CBlockIndex* pindex, const Consensus::Params& consensusParams)
{
if (!ReadBlockFromDisk(block, pindex->GetBlockPos(), consensusParams))
return false;
if (block.GetHash() != pindex->GetBlockHash())
return error("ReadBlockFromDisk(CBlock&, CBlockIndex*): GetHash() doesn't match index for %s at %s",
pindex->ToString(), pindex->GetBlockPos().ToString());
return true;
}
CAmount GetBlockSubsidy(int nHeight, const Consensus::Params& consensusParams)
{
int halvings = nHeight / consensusParams.nSubsidyHalvingInterval;
// Force block reward to zero when right shift is undefined.
if (halvings >= 64)
return 0;
CAmount nSubsidy = 50 * COIN;
// Subsidy is cut in half every 210,000 blocks which will occur approximately every 4 years.
nSubsidy >>= halvings;
return nSubsidy;
}
bool IsInitialBlockDownload()
{
const CChainParams& chainParams = Params();
// Once this function has returned false, it must remain false.
static std::atomic<bool> latchToFalse{false};
// Optimization: pre-test latch before taking the lock.
if (latchToFalse.load(std::memory_order_relaxed))
return false;
LOCK(cs_main);
if (latchToFalse.load(std::memory_order_relaxed))
return false;
if (fImporting || fReindex)
return true;
if (chainActive.Tip() == NULL)
return true;
if (chainActive.Tip()->nChainWork < UintToArith256(chainParams.GetConsensus().nMinimumChainWork))
return true;
if (chainActive.Tip()->GetBlockTime() < (GetTime() - nMaxTipAge))
return true;
latchToFalse.store(true, std::memory_order_relaxed);
return false;
}
bool fLargeWorkForkFound = false;
bool fLargeWorkInvalidChainFound = false;
CBlockIndex *pindexBestForkTip = NULL, *pindexBestForkBase = NULL;
static void AlertNotify(const std::string& strMessage)
2016-03-06 10:07:25 +00:00
{
uiInterface.NotifyAlertChanged();
std::string strCmd = GetArg("-alertnotify", "");
if (strCmd.empty()) return;
// Alert text should be plain ascii coming from a trusted source, but to
// be safe we first strip anything not in safeChars, then add single quotes around
// the whole string before passing it to the shell:
std::string singleQuote("'");
std::string safeStatus = SanitizeString(strMessage);
safeStatus = singleQuote+safeStatus+singleQuote;
boost::replace_all(strCmd, "%s", safeStatus);
boost::thread t(runCommand, strCmd); // thread runs free
2016-03-06 10:07:25 +00:00
}
void CheckForkWarningConditions()
{
AssertLockHeld(cs_main);
// Before we get past initial download, we cannot reliably alert about forks
// (we assume we don't get stuck on a fork before finishing our initial sync)
if (IsInitialBlockDownload())
return;
// If our best fork is no longer within 72 blocks (+/- 12 hours if no one mines it)
// of our head, drop it
if (pindexBestForkTip && chainActive.Height() - pindexBestForkTip->nHeight >= 72)
pindexBestForkTip = NULL;
if (pindexBestForkTip || (pindexBestInvalid && pindexBestInvalid->nChainWork > chainActive.Tip()->nChainWork + (GetBlockProof(*chainActive.Tip()) * 6)))
{
2014-10-27 23:00:55 -04:00
if (!fLargeWorkForkFound && pindexBestForkBase)
{
std::string warning = std::string("'Warning: Large-work fork detected, forking after block ") +
pindexBestForkBase->phashBlock->ToString() + std::string("'");
AlertNotify(warning);
}
2014-10-27 23:00:55 -04:00
if (pindexBestForkTip && pindexBestForkBase)
{
LogPrintf("%s: Warning: Large valid fork found\n forking the chain at height %d (%s)\n lasting to height %d (%s).\nChain state database corruption likely.\n", __func__,
pindexBestForkBase->nHeight, pindexBestForkBase->phashBlock->ToString(),
pindexBestForkTip->nHeight, pindexBestForkTip->phashBlock->ToString());
fLargeWorkForkFound = true;
}
else
{
LogPrintf("%s: Warning: Found invalid chain at least ~6 blocks longer than our best chain.\nChain state database corruption likely.\n", __func__);
fLargeWorkInvalidChainFound = true;
}
}
else
{
fLargeWorkForkFound = false;
fLargeWorkInvalidChainFound = false;
}
}
void CheckForkWarningConditionsOnNewFork(CBlockIndex* pindexNewForkTip)
{
AssertLockHeld(cs_main);
// If we are on a fork that is sufficiently large, set a warning flag
CBlockIndex* pfork = pindexNewForkTip;
CBlockIndex* plonger = chainActive.Tip();
while (pfork && pfork != plonger)
{
while (plonger && plonger->nHeight > pfork->nHeight)
plonger = plonger->pprev;
if (pfork == plonger)
break;
pfork = pfork->pprev;
}
2015-04-28 14:48:28 +00:00
// We define a condition where we should warn the user about as a fork of at least 7 blocks
// with a tip within 72 blocks (+/- 12 hours if no one mines it) of ours
// We use 7 blocks rather arbitrarily as it represents just under 10% of sustained network
// hash rate operating on the fork.
// or a chain that is entirely longer than ours and invalid (note that this should be detected by both)
// We define it this way because it allows us to only store the highest fork tip (+ base) which meets
// the 7-block condition and from this always have the most-likely-to-cause-warning fork
if (pfork && (!pindexBestForkTip || (pindexBestForkTip && pindexNewForkTip->nHeight > pindexBestForkTip->nHeight)) &&
pindexNewForkTip->nChainWork - pfork->nChainWork > (GetBlockProof(*pfork) * 7) &&
chainActive.Height() - pindexNewForkTip->nHeight < 72)
{
pindexBestForkTip = pindexNewForkTip;
pindexBestForkBase = pfork;
}
CheckForkWarningConditions();
}
// Requires cs_main.
void Misbehaving(NodeId pnode, int howmuch)
{
if (howmuch == 0)
return;
CNodeState *state = State(pnode);
if (state == NULL)
return;
state->nMisbehavior += howmuch;
int banscore = GetArg("-banscore", DEFAULT_BANSCORE_THRESHOLD);
if (state->nMisbehavior >= banscore && state->nMisbehavior - howmuch < banscore)
{
2016-09-12 15:54:05 +07:00
LogPrintf("%s: %s peer=%d (%d -> %d) BAN THRESHOLD EXCEEDED\n", __func__, state->name, pnode, state->nMisbehavior-howmuch, state->nMisbehavior);
state->fShouldBan = true;
} else
2016-09-12 15:54:05 +07:00
LogPrintf("%s: %s peer=%d (%d -> %d)\n", __func__, state->name, pnode, state->nMisbehavior-howmuch, state->nMisbehavior);
}
void static InvalidChainFound(CBlockIndex* pindexNew)
{
if (!pindexBestInvalid || pindexNew->nChainWork > pindexBestInvalid->nChainWork)
pindexBestInvalid = pindexNew;
LogPrintf("%s: invalid block=%s height=%d log2_work=%.8g date=%s\n", __func__,
pindexNew->GetBlockHash().ToString(), pindexNew->nHeight,
log(pindexNew->nChainWork.getdouble())/log(2.0), DateTimeStrFormat("%Y-%m-%d %H:%M:%S",
pindexNew->GetBlockTime()));
CBlockIndex *tip = chainActive.Tip();
assert (tip);
LogPrintf("%s: current best=%s height=%d log2_work=%.8g date=%s\n", __func__,
tip->GetBlockHash().ToString(), chainActive.Height(), log(tip->nChainWork.getdouble())/log(2.0),
DateTimeStrFormat("%Y-%m-%d %H:%M:%S", tip->GetBlockTime()));
CheckForkWarningConditions();
}
void static InvalidBlockFound(CBlockIndex *pindex, const CValidationState &state) {
if (!state.CorruptionPossible()) {
pindex->nStatus |= BLOCK_FAILED_VALID;
setDirtyBlockIndex.insert(pindex);
setBlockIndexCandidates.erase(pindex);
InvalidChainFound(pindex);
}
}
void UpdateCoins(const CTransaction& tx, CCoinsViewCache& inputs, CTxUndo &txundo, int nHeight)
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
{
// mark inputs spent
if (!tx.IsCoinBase()) {
2014-09-03 15:54:37 +02:00
txundo.vprevout.reserve(tx.vin.size());
BOOST_FOREACH(const CTxIn &txin, tx.vin) {
2014-10-19 02:57:02 +02:00
CCoinsModifier coins = inputs.ModifyCoins(txin.prevout.hash);
unsigned nPos = txin.prevout.n;
if (nPos >= coins->vout.size() || coins->vout[nPos].IsNull())
assert(false);
// mark an outpoint spent, and construct undo information
txundo.vprevout.push_back(CTxInUndo(coins->vout[nPos]));
coins->Spend(nPos);
if (coins->vout.size() == 0) {
CTxInUndo& undo = txundo.vprevout.back();
undo.nHeight = coins->nHeight;
undo.fCoinBase = coins->fCoinBase;
undo.nVersion = coins->nVersion;
}
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
}
}
// add outputs
inputs.ModifyNewCoins(tx.GetHash(), tx.IsCoinBase())->FromTx(tx, nHeight);
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
}
void UpdateCoins(const CTransaction& tx, CCoinsViewCache& inputs, int nHeight)
{
CTxUndo txundo;
UpdateCoins(tx, inputs, txundo, nHeight);
}
bool CScriptCheck::operator()() {
const CScript &scriptSig = ptxTo->vin[nIn].scriptSig;
2015-11-08 01:16:45 +01:00
const CScriptWitness *witness = (nIn < ptxTo->wit.vtxinwit.size()) ? &ptxTo->wit.vtxinwit[nIn].scriptWitness : NULL;
2016-08-26 18:38:20 +02:00
if (!VerifyScript(scriptSig, scriptPubKey, witness, nFlags, CachingTransactionSignatureChecker(ptxTo, nIn, amount, cacheStore, *txdata), &error)) {
return false;
}
return true;
}
int GetSpendHeight(const CCoinsViewCache& inputs)
{
LOCK(cs_main);
CBlockIndex* pindexPrev = mapBlockIndex.find(inputs.GetBestBlock())->second;
return pindexPrev->nHeight + 1;
}
namespace Consensus {
bool CheckTxInputs(const CTransaction& tx, CValidationState& state, const CCoinsViewCache& inputs, int nSpendHeight)
{
// This doesn't trigger the DoS code on purpose; if it did, it would make it easier
// for an attacker to attempt to split the network.
if (!inputs.HaveInputs(tx))
return state.Invalid(false, 0, "", "Inputs unavailable");
2014-04-22 15:46:19 -07:00
CAmount nValueIn = 0;
CAmount nFees = 0;
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
const COutPoint &prevout = tx.vin[i].prevout;
const CCoins *coins = inputs.AccessCoins(prevout.hash);
assert(coins);
// If prev is coinbase, check that it's matured
if (coins->IsCoinBase()) {
if (nSpendHeight - coins->nHeight < COINBASE_MATURITY)
return state.Invalid(false,
REJECT_INVALID, "bad-txns-premature-spend-of-coinbase",
strprintf("tried to spend coinbase at depth %d", nSpendHeight - coins->nHeight));
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
}
// Check for negative or overflow input values
nValueIn += coins->vout[prevout.n].nValue;
if (!MoneyRange(coins->vout[prevout.n].nValue) || !MoneyRange(nValueIn))
return state.DoS(100, false, REJECT_INVALID, "bad-txns-inputvalues-outofrange");
}
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
if (nValueIn < tx.GetValueOut())
return state.DoS(100, false, REJECT_INVALID, "bad-txns-in-belowout", false,
strprintf("value in (%s) < value out (%s)", FormatMoney(nValueIn), FormatMoney(tx.GetValueOut())));
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// Tally transaction fees
2014-04-22 15:46:19 -07:00
CAmount nTxFee = nValueIn - tx.GetValueOut();
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
if (nTxFee < 0)
return state.DoS(100, false, REJECT_INVALID, "bad-txns-fee-negative");
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
nFees += nTxFee;
if (!MoneyRange(nFees))
return state.DoS(100, false, REJECT_INVALID, "bad-txns-fee-outofrange");
return true;
}
}// namespace Consensus
2016-08-26 18:38:20 +02:00
bool CheckInputs(const CTransaction& tx, CValidationState &state, const CCoinsViewCache &inputs, bool fScriptChecks, unsigned int flags, bool cacheStore, PrecomputedTransactionData& txdata, std::vector<CScriptCheck> *pvChecks)
{
if (!tx.IsCoinBase())
{
if (!Consensus::CheckTxInputs(tx, state, inputs, GetSpendHeight(inputs)))
return false;
if (pvChecks)
pvChecks->reserve(tx.vin.size());
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// The first loop above does all the inexpensive checks.
// Only if ALL inputs pass do we perform expensive ECDSA signature checks.
// Helps prevent CPU exhaustion attacks.
// Skip ECDSA signature verification when connecting blocks before the
// last block chain checkpoint. Assuming the checkpoints are valid this
// is safe because block merkle hashes are still computed and checked,
// and any change will be caught at the next checkpoint. Of course, if
// the checkpoint is for a chain that's invalid due to false scriptSigs
2016-08-13 11:21:13 -06:00
// this optimization would allow an invalid chain to be accepted.
if (fScriptChecks) {
for (unsigned int i = 0; i < tx.vin.size(); i++) {
const COutPoint &prevout = tx.vin[i].prevout;
const CCoins* coins = inputs.AccessCoins(prevout.hash);
assert(coins);
// Verify signature
2016-08-26 18:38:20 +02:00
CScriptCheck check(*coins, tx, i, flags, cacheStore, &txdata);
if (pvChecks) {
pvChecks->push_back(CScriptCheck());
check.swap(pvChecks->back());
} else if (!check()) {
if (flags & STANDARD_NOT_MANDATORY_VERIFY_FLAGS) {
// Check whether the failure was caused by a
// non-mandatory script verification check, such as
// non-standard DER encodings or non-null dummy
// arguments; if so, don't trigger DoS protection to
// avoid splitting the network between upgraded and
// non-upgraded nodes.
CScriptCheck check2(*coins, tx, i,
2016-08-26 18:38:20 +02:00
flags & ~STANDARD_NOT_MANDATORY_VERIFY_FLAGS, cacheStore, &txdata);
if (check2())
return state.Invalid(false, REJECT_NONSTANDARD, strprintf("non-mandatory-script-verify-flag (%s)", ScriptErrorString(check.GetScriptError())));
}
// Failures of other flags indicate a transaction that is
// invalid in new blocks, e.g. a invalid P2SH. We DoS ban
// such nodes as they are not following the protocol. That
// said during an upgrade careful thought should be taken
// as to the correct behavior - we may want to continue
2016-06-03 10:05:51 -04:00
// peering with non-upgraded nodes even after soft-fork
// super-majority signaling has occurred.
return state.DoS(100,false, REJECT_INVALID, strprintf("mandatory-script-verify-flag-failed (%s)", ScriptErrorString(check.GetScriptError())));
}
}
}
}
return true;
}
namespace {
bool UndoWriteToDisk(const CBlockUndo& blockundo, CDiskBlockPos& pos, const uint256& hashBlock, const CMessageHeader::MessageStartChars& messageStart)
{
// Open history file to append
CAutoFile fileout(OpenUndoFile(pos), SER_DISK, CLIENT_VERSION);
if (fileout.IsNull())
return error("%s: OpenUndoFile failed", __func__);
// Write index header
unsigned int nSize = GetSerializeSize(fileout, blockundo);
fileout << FLATDATA(messageStart) << nSize;
// Write undo data
long fileOutPos = ftell(fileout.Get());
if (fileOutPos < 0)
return error("%s: ftell failed", __func__);
pos.nPos = (unsigned int)fileOutPos;
fileout << blockundo;
// calculate & write checksum
CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION);
hasher << hashBlock;
hasher << blockundo;
fileout << hasher.GetHash();
return true;
}
bool UndoReadFromDisk(CBlockUndo& blockundo, const CDiskBlockPos& pos, const uint256& hashBlock)
{
// Open history file to read
CAutoFile filein(OpenUndoFile(pos, true), SER_DISK, CLIENT_VERSION);
if (filein.IsNull())
return error("%s: OpenUndoFile failed", __func__);
// Read block
uint256 hashChecksum;
try {
filein >> blockundo;
filein >> hashChecksum;
}
catch (const std::exception& e) {
return error("%s: Deserialize or I/O error - %s", __func__, e.what());
}
// Verify checksum
CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION);
hasher << hashBlock;
hasher << blockundo;
if (hashChecksum != hasher.GetHash())
return error("%s: Checksum mismatch", __func__);
return true;
}
/** Abort with a message */
bool AbortNode(const std::string& strMessage, const std::string& userMessage="")
{
strMiscWarning = strMessage;
LogPrintf("*** %s\n", strMessage);
uiInterface.ThreadSafeMessageBox(
2015-08-09 00:17:27 +01:00
userMessage.empty() ? _("Error: A fatal internal error occurred, see debug.log for details") : userMessage,
"", CClientUIInterface::MSG_ERROR);
StartShutdown();
return false;
}
bool AbortNode(CValidationState& state, const std::string& strMessage, const std::string& userMessage="")
{
AbortNode(strMessage, userMessage);
return state.Error(strMessage);
}
} // anon namespace
/**
* Apply the undo operation of a CTxInUndo to the given chain state.
* @param undo The undo object.
* @param view The coins view to which to apply the changes.
* @param out The out point that corresponds to the tx input.
* @return True on success.
*/
static bool ApplyTxInUndo(const CTxInUndo& undo, CCoinsViewCache& view, const COutPoint& out)
{
bool fClean = true;
CCoinsModifier coins = view.ModifyCoins(out.hash);
if (undo.nHeight != 0) {
// undo data contains height: this is the last output of the prevout tx being spent
if (!coins->IsPruned())
fClean = fClean && error("%s: undo data overwriting existing transaction", __func__);
coins->Clear();
coins->fCoinBase = undo.fCoinBase;
coins->nHeight = undo.nHeight;
coins->nVersion = undo.nVersion;
} else {
if (coins->IsPruned())
fClean = fClean && error("%s: undo data adding output to missing transaction", __func__);
}
if (coins->IsAvailable(out.n))
fClean = fClean && error("%s: undo data overwriting existing output", __func__);
if (coins->vout.size() < out.n+1)
coins->vout.resize(out.n+1);
coins->vout[out.n] = undo.txout;
return fClean;
}
bool DisconnectBlock(const CBlock& block, CValidationState& state, const CBlockIndex* pindex, CCoinsViewCache& view, bool* pfClean)
{
assert(pindex->GetBlockHash() == view.GetBestBlock());
2012-12-30 15:29:39 +01:00
if (pfClean)
*pfClean = false;
bool fClean = true;
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
CBlockUndo blockUndo;
CDiskBlockPos pos = pindex->GetUndoPos();
if (pos.IsNull())
return error("DisconnectBlock(): no undo data available");
2014-10-27 14:35:52 +01:00
if (!UndoReadFromDisk(blockUndo, pos, pindex->pprev->GetBlockHash()))
return error("DisconnectBlock(): failure reading undo data");
2013-06-23 18:32:58 -07:00
if (blockUndo.vtxundo.size() + 1 != block.vtx.size())
return error("DisconnectBlock(): block and undo data inconsistent");
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// undo transactions in reverse order
2013-06-23 18:32:58 -07:00
for (int i = block.vtx.size() - 1; i >= 0; i--) {
const CTransaction &tx = block.vtx[i];
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
uint256 hash = tx.GetHash();
// Check that all outputs are available and match the outputs in the block itself
// exactly.
{
CCoinsModifier outs = view.ModifyCoins(hash);
outs->ClearUnspendable();
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
CCoins outsBlock(tx, pindex->nHeight);
// The CCoins serialization does not serialize negative numbers.
// No network rules currently depend on the version here, so an inconsistency is harmless
// but it must be corrected before txout nversion ever influences a network rule.
if (outsBlock.nVersion < 0)
outs->nVersion = outsBlock.nVersion;
if (*outs != outsBlock)
fClean = fClean && error("DisconnectBlock(): added transaction mismatch? database corrupted");
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// remove outputs
outs->Clear();
}
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// restore inputs
if (i > 0) { // not coinbases
const CTxUndo &txundo = blockUndo.vtxundo[i-1];
2012-12-30 15:29:39 +01:00
if (txundo.vprevout.size() != tx.vin.size())
return error("DisconnectBlock(): transaction and undo data inconsistent");
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
for (unsigned int j = tx.vin.size(); j-- > 0;) {
const COutPoint &out = tx.vin[j].prevout;
const CTxInUndo &undo = txundo.vprevout[j];
if (!ApplyTxInUndo(undo, view, out))
fClean = false;
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
}
}
}
// move best block pointer to prevout block
view.SetBestBlock(pindex->pprev->GetBlockHash());
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
2012-12-30 15:29:39 +01:00
if (pfClean) {
*pfClean = fClean;
return true;
}
return fClean;
}
void static FlushBlockFile(bool fFinalize = false)
2012-09-06 03:21:18 +02:00
{
LOCK(cs_LastBlockFile);
CDiskBlockPos posOld(nLastBlockFile, 0);
2012-09-06 03:21:18 +02:00
FILE *fileOld = OpenBlockFile(posOld);
if (fileOld) {
if (fFinalize)
TruncateFile(fileOld, vinfoBlockFile[nLastBlockFile].nSize);
FileCommit(fileOld);
fclose(fileOld);
}
2012-09-06 03:21:18 +02:00
fileOld = OpenUndoFile(posOld);
if (fileOld) {
if (fFinalize)
TruncateFile(fileOld, vinfoBlockFile[nLastBlockFile].nUndoSize);
FileCommit(fileOld);
fclose(fileOld);
}
2012-09-06 03:21:18 +02:00
}
2013-01-27 00:14:11 +01:00
bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, unsigned int nAddSize);
static CCheckQueue<CScriptCheck> scriptcheckqueue(128);
void ThreadScriptCheck() {
RenameThread("bitcoin-scriptch");
scriptcheckqueue.Thread();
}
// Protected by cs_main
VersionBitsCache versionbitscache;
int32_t ComputeBlockVersion(const CBlockIndex* pindexPrev, const Consensus::Params& params)
{
LOCK(cs_main);
int32_t nVersion = VERSIONBITS_TOP_BITS;
for (int i = 0; i < (int)Consensus::MAX_VERSION_BITS_DEPLOYMENTS; i++) {
ThresholdState state = VersionBitsState(pindexPrev, params, (Consensus::DeploymentPos)i, versionbitscache);
if (state == THRESHOLD_LOCKED_IN || state == THRESHOLD_STARTED) {
nVersion |= VersionBitsMask(params, (Consensus::DeploymentPos)i);
}
}
return nVersion;
}
/**
* Threshold condition checker that triggers when unknown versionbits are seen on the network.
*/
class WarningBitsConditionChecker : public AbstractThresholdConditionChecker
{
private:
int bit;
public:
WarningBitsConditionChecker(int bitIn) : bit(bitIn) {}
int64_t BeginTime(const Consensus::Params& params) const { return 0; }
int64_t EndTime(const Consensus::Params& params) const { return std::numeric_limits<int64_t>::max(); }
int Period(const Consensus::Params& params) const { return params.nMinerConfirmationWindow; }
int Threshold(const Consensus::Params& params) const { return params.nRuleChangeActivationThreshold; }
bool Condition(const CBlockIndex* pindex, const Consensus::Params& params) const
{
return ((pindex->nVersion & VERSIONBITS_TOP_MASK) == VERSIONBITS_TOP_BITS) &&
((pindex->nVersion >> bit) & 1) != 0 &&
((ComputeBlockVersion(pindex->pprev, params) >> bit) & 1) == 0;
}
};
// Protected by cs_main
static ThresholdConditionCache warningcache[VERSIONBITS_NUM_BITS];
static int64_t nTimeCheck = 0;
static int64_t nTimeForks = 0;
static int64_t nTimeVerify = 0;
static int64_t nTimeConnect = 0;
static int64_t nTimeIndex = 0;
static int64_t nTimeCallbacks = 0;
static int64_t nTimeTotal = 0;
bool ConnectBlock(const CBlock& block, CValidationState& state, CBlockIndex* pindex,
CCoinsViewCache& view, const CChainParams& chainparams, bool fJustCheck)
{
AssertLockHeld(cs_main);
int64_t nTimeStart = GetTimeMicros();
// Check it again in case a previous version let a bad block in
if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck))
return error("%s: Consensus::CheckBlock: %s", __func__, FormatStateMessage(state));
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// verify that the view's current state corresponds to the previous block
uint256 hashPrevBlock = pindex->pprev == NULL ? uint256() : pindex->pprev->GetBlockHash();
assert(hashPrevBlock == view.GetBestBlock());
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// Special case for the genesis block, skipping connection of its transactions
// (its coinbase is unspendable)
if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {
if (!fJustCheck)
view.SetBestBlock(pindex->GetBlockHash());
return true;
}
bool fScriptChecks = true;
if (fCheckpointsEnabled) {
CBlockIndex *pindexLastCheckpoint = Checkpoints::GetLastCheckpoint(chainparams.Checkpoints());
if (pindexLastCheckpoint && pindexLastCheckpoint->GetAncestor(pindex->nHeight) == pindex) {
// This block is an ancestor of a checkpoint: disable script checks
fScriptChecks = false;
}
}
int64_t nTime1 = GetTimeMicros(); nTimeCheck += nTime1 - nTimeStart;
LogPrint("bench", " - Sanity checks: %.2fms [%.2fs]\n", 0.001 * (nTime1 - nTimeStart), nTimeCheck * 0.000001);
// Do not allow blocks that contain transactions which 'overwrite' older transactions,
// unless those are already completely spent.
// If such overwrites are allowed, coinbases and transactions depending upon those
// can be duplicated to remove the ability to spend the first instance -- even after
// being sent to another address.
// See BIP30 and http://r6.ca/blog/20120206T005236Z.html for more information.
// This logic is not necessary for memory pool transactions, as AcceptToMemoryPool
// already refuses previously-known transaction ids entirely.
2015-04-28 14:48:28 +00:00
// This rule was originally applied to all blocks with a timestamp after March 15, 2012, 0:00 UTC.
// Now that the whole chain is irreversibly beyond that time it is applied to all blocks except the
2015-04-28 14:47:17 +00:00
// two in the chain that violate it. This prevents exploiting the issue against nodes during their
// initial block download.
bool fEnforceBIP30 = (!pindex->phashBlock) || // Enforce on CreateNewBlock invocations which don't have a hash.
!((pindex->nHeight==91842 && pindex->GetBlockHash() == uint256S("0x00000000000a4d0a398161ffc163c503763b1f4360639393e0e4c8e300e0caec")) ||
(pindex->nHeight==91880 && pindex->GetBlockHash() == uint256S("0x00000000000743f190a18c5577a3c2d2a1f610ae9601ac046a38084ccb7cd721")));
// Once BIP34 activated it was not possible to create new duplicate coinbases and thus other than starting
// with the 2 existing duplicate coinbase pairs, not possible to create overwriting txs. But by the
// time BIP34 activated, in each of the existing pairs the duplicate coinbase had overwritten the first
// before the first had been spent. Since those coinbases are sufficiently buried its no longer possible to create further
// duplicate transactions descending from the known pairs either.
// If we're on the known chain at height greater than where BIP34 activated, we can save the db accesses needed for the BIP30 check.
CBlockIndex *pindexBIP34height = pindex->pprev->GetAncestor(chainparams.GetConsensus().BIP34Height);
//Only continue to enforce if we're below BIP34 activation height or the block hash at that height doesn't correspond.
fEnforceBIP30 = fEnforceBIP30 && (!pindexBIP34height || !(pindexBIP34height->GetBlockHash() == chainparams.GetConsensus().BIP34Hash));
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
if (fEnforceBIP30) {
BOOST_FOREACH(const CTransaction& tx, block.vtx) {
const CCoins* coins = view.AccessCoins(tx.GetHash());
if (coins && !coins->IsPruned())
return state.DoS(100, error("ConnectBlock(): tried to overwrite transaction"),
REJECT_INVALID, "bad-txns-BIP30");
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
}
}
// BIP16 didn't become active until Apr 1 2012
int64_t nBIP16SwitchTime = 1333238400;
2014-06-28 23:36:06 +02:00
bool fStrictPayToScriptHash = (pindex->GetBlockTime() >= nBIP16SwitchTime);
unsigned int flags = fStrictPayToScriptHash ? SCRIPT_VERIFY_P2SH : SCRIPT_VERIFY_NONE;
2016-07-22 08:27:55 +09:00
// Start enforcing the DERSIG (BIP66) rule
if (pindex->nHeight >= chainparams.GetConsensus().BIP66Height) {
2015-01-19 18:37:21 -05:00
flags |= SCRIPT_VERIFY_DERSIG;
}
2016-07-22 08:27:55 +09:00
// Start enforcing CHECKLOCKTIMEVERIFY (BIP65) rule
if (pindex->nHeight >= chainparams.GetConsensus().BIP65Height) {
flags |= SCRIPT_VERIFY_CHECKLOCKTIMEVERIFY;
}
2016-02-16 16:37:43 +00:00
// Start enforcing BIP68 (sequence locks) and BIP112 (CHECKSEQUENCEVERIFY) using versionbits logic.
int nLockTimeFlags = 0;
if (VersionBitsState(pindex->pprev, chainparams.GetConsensus(), Consensus::DEPLOYMENT_CSV, versionbitscache) == THRESHOLD_ACTIVE) {
flags |= SCRIPT_VERIFY_CHECKSEQUENCEVERIFY;
2016-02-16 16:37:43 +00:00
nLockTimeFlags |= LOCKTIME_VERIFY_SEQUENCE;
}
// Start enforcing WITNESS rules using versionbits logic.
if (IsWitnessEnabled(pindex->pprev, chainparams.GetConsensus())) {
flags |= SCRIPT_VERIFY_WITNESS;
2016-08-31 19:38:23 +08:00
flags |= SCRIPT_VERIFY_NULLDUMMY;
}
int64_t nTime2 = GetTimeMicros(); nTimeForks += nTime2 - nTime1;
LogPrint("bench", " - Fork checks: %.2fms [%.2fs]\n", 0.001 * (nTime2 - nTime1), nTimeForks * 0.000001);
CBlockUndo blockundo;
CCheckQueueControl<CScriptCheck> control(fScriptChecks && nScriptCheckThreads ? &scriptcheckqueue : NULL);
std::vector<uint256> vOrphanErase;
std::vector<int> prevheights;
2014-04-22 15:46:19 -07:00
CAmount nFees = 0;
int nInputs = 0;
int64_t nSigOpsCost = 0;
2013-06-23 18:50:06 -07:00
CDiskTxPos pos(pindex->GetBlockPos(), GetSizeOfCompactSize(block.vtx.size()));
std::vector<std::pair<uint256, CDiskTxPos> > vPos;
2013-06-23 18:50:06 -07:00
vPos.reserve(block.vtx.size());
2014-09-03 15:54:37 +02:00
blockundo.vtxundo.reserve(block.vtx.size() - 1);
2016-08-26 18:38:20 +02:00
std::vector<PrecomputedTransactionData> txdata;
txdata.reserve(block.vtx.size()); // Required so that pointers to individual PrecomputedTransactionData don't get invalidated
2013-06-23 18:50:06 -07:00
for (unsigned int i = 0; i < block.vtx.size(); i++)
{
2013-06-23 18:50:06 -07:00
const CTransaction &tx = block.vtx[i];
nInputs += tx.vin.size();
if (!tx.IsCoinBase())
{
if (!view.HaveInputs(tx))
return state.DoS(100, error("ConnectBlock(): inputs missing/spent"),
REJECT_INVALID, "bad-txns-inputs-missingorspent");
// Check that transaction is BIP68 final
// BIP68 lock checks (as opposed to nLockTime checks) must
// be in ConnectBlock because they require the UTXO set
prevheights.resize(tx.vin.size());
for (size_t j = 0; j < tx.vin.size(); j++) {
prevheights[j] = view.AccessCoins(tx.vin[j].prevout.hash)->nHeight;
}
// Which orphan pool entries must we evict?
for (size_t j = 0; j < tx.vin.size(); j++) {
auto itByPrev = mapOrphanTransactionsByPrev.find(tx.vin[j].prevout);
if (itByPrev == mapOrphanTransactionsByPrev.end()) continue;
for (auto mi = itByPrev->second.begin(); mi != itByPrev->second.end(); ++mi) {
const CTransaction& orphanTx = (*mi)->second.tx;
const uint256& orphanHash = orphanTx.GetHash();
vOrphanErase.push_back(orphanHash);
}
}
if (!SequenceLocks(tx, nLockTimeFlags, &prevheights, *pindex)) {
return state.DoS(100, error("%s: contains a non-BIP68-final transaction", __func__),
REJECT_INVALID, "bad-txns-nonfinal");
}
}
// GetTransactionSigOpCost counts 3 types of sigops:
// * legacy (always)
// * p2sh (when P2SH enabled in flags and excludes coinbase)
// * witness (when witness enabled in flags and excludes coinbase)
nSigOpsCost += GetTransactionSigOpCost(tx, view, flags);
if (nSigOpsCost > MAX_BLOCK_SIGOPS_COST)
return state.DoS(100, error("ConnectBlock(): too many sigops"),
REJECT_INVALID, "bad-blk-sigops");
2016-08-26 18:38:20 +02:00
txdata.emplace_back(tx);
if (!tx.IsCoinBase())
{
nFees += view.GetValueIn(tx)-tx.GetValueOut();
std::vector<CScriptCheck> vChecks;
bool fCacheResults = fJustCheck; /* Don't cache results if we're actually connecting blocks (still consult the cache, though) */
2016-08-26 18:38:20 +02:00
if (!CheckInputs(tx, state, view, fScriptChecks, flags, fCacheResults, txdata[i], nScriptCheckThreads ? &vChecks : NULL))
return error("ConnectBlock(): CheckInputs on %s failed with %s",
tx.GetHash().ToString(), FormatStateMessage(state));
control.Add(vChecks);
}
2014-09-03 15:54:37 +02:00
CTxUndo undoDummy;
if (i > 0) {
blockundo.vtxundo.push_back(CTxUndo());
}
UpdateCoins(tx, view, i == 0 ? undoDummy : blockundo.vtxundo.back(), pindex->nHeight);
vPos.push_back(std::make_pair(tx.GetHash(), pos));
pos.nTxOffset += ::GetSerializeSize(tx, SER_DISK, CLIENT_VERSION);
}
int64_t nTime3 = GetTimeMicros(); nTimeConnect += nTime3 - nTime2;
LogPrint("bench", " - Connect %u transactions: %.2fms (%.3fms/tx, %.3fms/txin) [%.2fs]\n", (unsigned)block.vtx.size(), 0.001 * (nTime3 - nTime2), 0.001 * (nTime3 - nTime2) / block.vtx.size(), nInputs <= 1 ? 0 : 0.001 * (nTime3 - nTime2) / (nInputs-1), nTimeConnect * 0.000001);
CAmount blockReward = nFees + GetBlockSubsidy(pindex->nHeight, chainparams.GetConsensus());
if (block.vtx[0].GetValueOut() > blockReward)
2013-10-28 16:36:11 +10:00
return state.DoS(100,
error("ConnectBlock(): coinbase pays too much (actual=%d vs limit=%d)",
block.vtx[0].GetValueOut(), blockReward),
2014-02-10 16:31:06 +01:00
REJECT_INVALID, "bad-cb-amount");
2012-10-22 21:46:00 +02:00
if (!control.Wait())
2013-01-27 00:14:11 +01:00
return state.DoS(100, false);
int64_t nTime4 = GetTimeMicros(); nTimeVerify += nTime4 - nTime2;
LogPrint("bench", " - Verify %u txins: %.2fms (%.3fms/txin) [%.2fs]\n", nInputs - 1, 0.001 * (nTime4 - nTime2), nInputs <= 1 ? 0 : 0.001 * (nTime4 - nTime2) / (nInputs-1), nTimeVerify * 0.000001);
if (fJustCheck)
return true;
// Write undo information to disk
if (pindex->GetUndoPos().IsNull() || !pindex->IsValid(BLOCK_VALID_SCRIPTS))
{
if (pindex->GetUndoPos().IsNull()) {
2016-09-02 18:19:01 +02:00
CDiskBlockPos _pos;
if (!FindUndoPos(state, pindex->nFile, _pos, ::GetSerializeSize(blockundo, SER_DISK, CLIENT_VERSION) + 40))
return error("ConnectBlock(): FindUndoPos failed");
2016-09-02 18:19:01 +02:00
if (!UndoWriteToDisk(blockundo, _pos, pindex->pprev->GetBlockHash(), chainparams.MessageStart()))
return AbortNode(state, "Failed to write undo data");
// update nUndoPos in block index
2016-09-02 18:19:01 +02:00
pindex->nUndoPos = _pos.nPos;
pindex->nStatus |= BLOCK_HAVE_UNDO;
}
pindex->RaiseValidity(BLOCK_VALID_SCRIPTS);
setDirtyBlockIndex.insert(pindex);
}
if (fTxIndex)
2013-01-27 00:14:11 +01:00
if (!pblocktree->WriteTxIndex(vPos))
return AbortNode(state, "Failed to write transaction index");
// add this block to the view's block chain
view.SetBestBlock(pindex->GetBlockHash());
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
int64_t nTime5 = GetTimeMicros(); nTimeIndex += nTime5 - nTime4;
LogPrint("bench", " - Index writing: %.2fms [%.2fs]\n", 0.001 * (nTime5 - nTime4), nTimeIndex * 0.000001);
// Watch for changes to the previous coinbase transaction.
static uint256 hashPrevBestCoinBase;
GetMainSignals().UpdatedTransaction(hashPrevBestCoinBase);
hashPrevBestCoinBase = block.vtx[0].GetHash();
// Erase orphan transactions include or precluded by this block
if (vOrphanErase.size()) {
int nErased = 0;
BOOST_FOREACH(uint256 &orphanHash, vOrphanErase) {
nErased += EraseOrphanTx(orphanHash);
}
LogPrint("mempool", "Erased %d orphan tx included or conflicted by block\n", nErased);
}
int64_t nTime6 = GetTimeMicros(); nTimeCallbacks += nTime6 - nTime5;
LogPrint("bench", " - Callbacks: %.2fms [%.2fs]\n", 0.001 * (nTime6 - nTime5), nTimeCallbacks * 0.000001);
return true;
}
/**
* Update the on-disk chain state.
* The caches and indexes are flushed depending on the mode we're called with
* if they're too large, if it's been a while since the last write,
* or always and in all cases if we're in prune mode and are deleting files.
*/
2014-11-14 18:19:26 +01:00
bool static FlushStateToDisk(CValidationState &state, FlushStateMode mode) {
const CChainParams& chainparams = Params();
LOCK2(cs_main, cs_LastBlockFile);
static int64_t nLastWrite = 0;
static int64_t nLastFlush = 0;
static int64_t nLastSetChain = 0;
std::set<int> setFilesToPrune;
bool fFlushForPrune = false;
2015-01-04 19:11:44 +01:00
try {
if (fPruneMode && fCheckForPruning && !fReindex) {
FindFilesToPrune(setFilesToPrune, chainparams.PruneAfterHeight());
fCheckForPruning = false;
if (!setFilesToPrune.empty()) {
fFlushForPrune = true;
if (!fHavePruned) {
pblocktree->WriteFlag("prunedblockfiles", true);
fHavePruned = true;
}
}
}
int64_t nNow = GetTimeMicros();
// Avoid writing/flushing immediately after startup.
if (nLastWrite == 0) {
nLastWrite = nNow;
}
if (nLastFlush == 0) {
nLastFlush = nNow;
}
if (nLastSetChain == 0) {
nLastSetChain = nNow;
}
size_t cacheSize = pcoinsTip->DynamicMemoryUsage();
// The cache is large and close to the limit, but we have time now (not in the middle of a block processing).
bool fCacheLarge = mode == FLUSH_STATE_PERIODIC && cacheSize * (10.0/9) > nCoinCacheUsage;
// The cache is over the limit, we have to write now.
bool fCacheCritical = mode == FLUSH_STATE_IF_NEEDED && cacheSize > nCoinCacheUsage;
// It's been a while since we wrote the block index to disk. Do this frequently, so we don't need to redownload after a crash.
bool fPeriodicWrite = mode == FLUSH_STATE_PERIODIC && nNow > nLastWrite + (int64_t)DATABASE_WRITE_INTERVAL * 1000000;
// It's been very long since we flushed the cache. Do this infrequently, to optimize cache usage.
bool fPeriodicFlush = mode == FLUSH_STATE_PERIODIC && nNow > nLastFlush + (int64_t)DATABASE_FLUSH_INTERVAL * 1000000;
// Combine all conditions that result in a full cache flush.
bool fDoFullFlush = (mode == FLUSH_STATE_ALWAYS) || fCacheLarge || fCacheCritical || fPeriodicFlush || fFlushForPrune;
// Write blocks and block index to disk.
if (fDoFullFlush || fPeriodicWrite) {
// Depend on nMinDiskSpace to ensure we can write block index
if (!CheckDiskSpace(0))
return state.Error("out of disk space");
// First make sure all block and undo data is flushed to disk.
2012-09-06 03:21:18 +02:00
FlushBlockFile();
// Then update all block file information (which may refer to block and undo files).
2014-11-25 16:26:20 +01:00
{
std::vector<std::pair<int, const CBlockFileInfo*> > vFiles;
vFiles.reserve(setDirtyFileInfo.size());
for (set<int>::iterator it = setDirtyFileInfo.begin(); it != setDirtyFileInfo.end(); ) {
vFiles.push_back(make_pair(*it, &vinfoBlockFile[*it]));
setDirtyFileInfo.erase(it++);
}
std::vector<const CBlockIndex*> vBlocks;
vBlocks.reserve(setDirtyBlockIndex.size());
for (set<CBlockIndex*>::iterator it = setDirtyBlockIndex.begin(); it != setDirtyBlockIndex.end(); ) {
vBlocks.push_back(*it);
setDirtyBlockIndex.erase(it++);
}
if (!pblocktree->WriteBatchSync(vFiles, nLastBlockFile, vBlocks)) {
return AbortNode(state, "Files to write to block index database");
}
}
// Finally remove any pruned files
if (fFlushForPrune)
UnlinkPrunedFiles(setFilesToPrune);
nLastWrite = nNow;
}
// Flush best chain related state. This can only be done if the blocks / block index write was also done.
if (fDoFullFlush) {
// Typical CCoins structures on disk are around 128 bytes in size.
// Pushing a new one to the database can cause it to be written
// twice (once in the log, and once in the tables). This is already
// an overestimation, as most will delete an existing entry or
// overwrite one. Still, use a conservative safety factor of 2.
if (!CheckDiskSpace(128 * 2 * 2 * pcoinsTip->GetCacheSize()))
return state.Error("out of disk space");
// Flush the chainstate (which may refer to block index entries).
if (!pcoinsTip->Flush())
return AbortNode(state, "Failed to write to coin database");
nLastFlush = nNow;
}
if (fDoFullFlush || ((mode == FLUSH_STATE_ALWAYS || mode == FLUSH_STATE_PERIODIC) && nNow > nLastSetChain + (int64_t)DATABASE_WRITE_INTERVAL * 1000000)) {
// Update best block in wallet (so we can detect restored wallets).
GetMainSignals().SetBestChain(chainActive.GetLocator());
nLastSetChain = nNow;
2012-09-06 03:21:18 +02:00
}
2015-01-04 19:11:44 +01:00
} catch (const std::runtime_error& e) {
return AbortNode(state, std::string("System error while flushing: ") + e.what());
2015-01-04 19:11:44 +01:00
}
return true;
}
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
void FlushStateToDisk() {
CValidationState state;
2014-11-14 18:19:26 +01:00
FlushStateToDisk(state, FLUSH_STATE_ALWAYS);
}
void PruneAndFlush() {
CValidationState state;
fCheckForPruning = true;
FlushStateToDisk(state, FLUSH_STATE_NONE);
}
/** Update chainActive and related internal data structures. */
void static UpdateTip(CBlockIndex *pindexNew, const CChainParams& chainParams) {
chainActive.SetTip(pindexNew);
// New best block
mempool.AddTransactionsUpdated(1);
2012-05-13 04:43:24 +00:00
cvBlockChange.notify_all();
static bool fWarned = false;
std::vector<std::string> warningMessages;
if (!IsInitialBlockDownload())
{
int nUpgraded = 0;
const CBlockIndex* pindex = chainActive.Tip();
for (int bit = 0; bit < VERSIONBITS_NUM_BITS; bit++) {
WarningBitsConditionChecker checker(bit);
ThresholdState state = checker.GetStateFor(pindex, chainParams.GetConsensus(), warningcache[bit]);
if (state == THRESHOLD_ACTIVE || state == THRESHOLD_LOCKED_IN) {
if (state == THRESHOLD_ACTIVE) {
strMiscWarning = strprintf(_("Warning: unknown new rules activated (versionbit %i)"), bit);
if (!fWarned) {
AlertNotify(strMiscWarning);
fWarned = true;
}
} else {
warningMessages.push_back(strprintf("unknown new rules are about to activate (versionbit %i)", bit));
}
}
}
// Check the version of the last 100 blocks to see if we need to upgrade:
for (int i = 0; i < 100 && pindex != NULL; i++)
{
int32_t nExpectedVersion = ComputeBlockVersion(pindex->pprev, chainParams.GetConsensus());
if (pindex->nVersion > VERSIONBITS_LAST_OLD_BLOCK_VERSION && (pindex->nVersion & ~nExpectedVersion) != 0)
++nUpgraded;
pindex = pindex->pprev;
}
if (nUpgraded > 0)
warningMessages.push_back(strprintf("%d of last 100 blocks have unexpected version", nUpgraded));
if (nUpgraded > 100/2)
{
// strMiscWarning is read by GetWarnings(), called by Qt and the JSON-RPC code to warn the user:
strMiscWarning = _("Warning: Unknown block versions being mined! It's possible unknown rules are in effect");
if (!fWarned) {
AlertNotify(strMiscWarning);
fWarned = true;
}
}
}
LogPrintf("%s: new best=%s height=%d version=0x%08x log2_work=%.8g tx=%lu date='%s' progress=%f cache=%.1fMiB(%utx)", __func__,
chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(), chainActive.Tip()->nVersion,
log(chainActive.Tip()->nChainWork.getdouble())/log(2.0), (unsigned long)chainActive.Tip()->nChainTx,
DateTimeStrFormat("%Y-%m-%d %H:%M:%S", chainActive.Tip()->GetBlockTime()),
Checkpoints::GuessVerificationProgress(chainParams.Checkpoints(), chainActive.Tip()), pcoinsTip->DynamicMemoryUsage() * (1.0 / (1<<20)), pcoinsTip->GetCacheSize());
if (!warningMessages.empty())
LogPrintf(" warning='%s'", boost::algorithm::join(warningMessages, ", "));
LogPrintf("\n");
}
/** Disconnect chainActive's tip. You probably want to call mempool.removeForReorg and manually re-limit mempool size after this, with cs_main held. */
bool static DisconnectTip(CValidationState& state, const CChainParams& chainparams, bool fBare = false)
{
CBlockIndex *pindexDelete = chainActive.Tip();
assert(pindexDelete);
// Read block from disk.
CBlock block;
2016-04-17 10:58:50 +03:00
if (!ReadBlockFromDisk(block, pindexDelete, chainparams.GetConsensus()))
return AbortNode(state, "Failed to read block");
// Apply the block atomically to the chain state.
int64_t nStart = GetTimeMicros();
{
CCoinsViewCache view(pcoinsTip);
if (!DisconnectBlock(block, state, pindexDelete, view))
return error("DisconnectTip(): DisconnectBlock %s failed", pindexDelete->GetBlockHash().ToString());
assert(view.Flush());
}
LogPrint("bench", "- Disconnect block: %.2fms\n", (GetTimeMicros() - nStart) * 0.001);
// Write the chain state to disk, if necessary.
2014-11-14 18:19:26 +01:00
if (!FlushStateToDisk(state, FLUSH_STATE_IF_NEEDED))
return false;
if (!fBare) {
// Resurrect mempool transactions from the disconnected block.
std::vector<uint256> vHashUpdate;
BOOST_FOREACH(const CTransaction &tx, block.vtx) {
// ignore validation errors in resurrected transactions
CValidationState stateDummy;
if (tx.IsCoinBase() || !AcceptToMemoryPool(mempool, stateDummy, tx, false, NULL, true)) {
mempool.removeRecursive(tx);
} else if (mempool.exists(tx.GetHash())) {
vHashUpdate.push_back(tx.GetHash());
}
}
// AcceptToMemoryPool/addUnchecked all assume that new mempool entries have
// no in-mempool children, which is generally not true when adding
// previously-confirmed transactions back to the mempool.
// UpdateTransactionsFromBlock finds descendants of any transactions in this
// block that were added back and cleans up the mempool state.
mempool.UpdateTransactionsFromBlock(vHashUpdate);
}
// Update chainActive and related variables.
UpdateTip(pindexDelete->pprev, chainparams);
// Let wallets know transactions went from 1-confirmed to
// 0-confirmed or conflicted:
BOOST_FOREACH(const CTransaction &tx, block.vtx) {
GetMainSignals().SyncTransaction(tx, pindexDelete->pprev, CMainSignals::SYNC_TRANSACTION_NOT_IN_BLOCK);
}
return true;
}
static int64_t nTimeReadFromDisk = 0;
static int64_t nTimeConnectTotal = 0;
static int64_t nTimeFlush = 0;
static int64_t nTimeChainState = 0;
static int64_t nTimePostConnect = 0;
2015-05-31 15:36:44 +02:00
/**
* Connect a new block to chainActive. pblock is either NULL or a pointer to a CBlock
* corresponding to pindexNew, to bypass loading it again from disk.
*/
bool static ConnectTip(CValidationState& state, const CChainParams& chainparams, CBlockIndex* pindexNew, const CBlock* pblock, std::vector<std::shared_ptr<const CTransaction>> &txConflicted, std::vector<std::tuple<CTransaction,CBlockIndex*,int>> &txChanged)
{
assert(pindexNew->pprev == chainActive.Tip());
// Read block from disk.
int64_t nTime1 = GetTimeMicros();
CBlock block;
2014-08-26 02:26:41 +02:00
if (!pblock) {
if (!ReadBlockFromDisk(block, pindexNew, chainparams.GetConsensus()))
return AbortNode(state, "Failed to read block");
2014-08-26 02:26:41 +02:00
pblock = &block;
}
// Apply the block atomically to the chain state.
int64_t nTime2 = GetTimeMicros(); nTimeReadFromDisk += nTime2 - nTime1;
int64_t nTime3;
LogPrint("bench", " - Load block from disk: %.2fms [%.2fs]\n", (nTime2 - nTime1) * 0.001, nTimeReadFromDisk * 0.000001);
{
CCoinsViewCache view(pcoinsTip);
bool rv = ConnectBlock(*pblock, state, pindexNew, view, chainparams);
GetMainSignals().BlockChecked(*pblock, state);
if (!rv) {
if (state.IsInvalid())
InvalidBlockFound(pindexNew, state);
return error("ConnectTip(): ConnectBlock %s failed", pindexNew->GetBlockHash().ToString());
2013-01-27 01:24:06 +01:00
}
nTime3 = GetTimeMicros(); nTimeConnectTotal += nTime3 - nTime2;
LogPrint("bench", " - Connect total: %.2fms [%.2fs]\n", (nTime3 - nTime2) * 0.001, nTimeConnectTotal * 0.000001);
assert(view.Flush());
}
int64_t nTime4 = GetTimeMicros(); nTimeFlush += nTime4 - nTime3;
LogPrint("bench", " - Flush: %.2fms [%.2fs]\n", (nTime4 - nTime3) * 0.001, nTimeFlush * 0.000001);
// Write the chain state to disk, if necessary.
2014-11-14 18:19:26 +01:00
if (!FlushStateToDisk(state, FLUSH_STATE_IF_NEEDED))
return false;
int64_t nTime5 = GetTimeMicros(); nTimeChainState += nTime5 - nTime4;
LogPrint("bench", " - Writing chainstate: %.2fms [%.2fs]\n", (nTime5 - nTime4) * 0.001, nTimeChainState * 0.000001);
// Remove conflicting transactions from the mempool.;
mempool.removeForBlock(pblock->vtx, pindexNew->nHeight, &txConflicted, !IsInitialBlockDownload());
// Update chainActive & related variables.
UpdateTip(pindexNew, chainparams);
for(unsigned int i=0; i < pblock->vtx.size(); i++)
txChanged.emplace_back(pblock->vtx[i], pindexNew, i);
int64_t nTime6 = GetTimeMicros(); nTimePostConnect += nTime6 - nTime5; nTimeTotal += nTime6 - nTime1;
LogPrint("bench", " - Connect postprocess: %.2fms [%.2fs]\n", (nTime6 - nTime5) * 0.001, nTimePostConnect * 0.000001);
LogPrint("bench", "- Connect block: %.2fms [%.2fs]\n", (nTime6 - nTime1) * 0.001, nTimeTotal * 0.000001);
return true;
}
/**
* Return the tip of the chain with the most work in it, that isn't
* known to be invalid (it's however far from certain to be valid).
*/
static CBlockIndex* FindMostWorkChain() {
do {
CBlockIndex *pindexNew = NULL;
// Find the best candidate header.
{
std::set<CBlockIndex*, CBlockIndexWorkComparator>::reverse_iterator it = setBlockIndexCandidates.rbegin();
if (it == setBlockIndexCandidates.rend())
return NULL;
pindexNew = *it;
}
// Check whether all blocks on the path between the currently active chain and the candidate are valid.
// Just going until the active chain is an optimization, as we know all blocks in it are valid already.
CBlockIndex *pindexTest = pindexNew;
bool fInvalidAncestor = false;
while (pindexTest && !chainActive.Contains(pindexTest)) {
assert(pindexTest->nChainTx || pindexTest->nHeight == 0);
// Pruned nodes may have entries in setBlockIndexCandidates for
// which block files have been deleted. Remove those as candidates
// for the most work chain if we come across them; we can't switch
// to a chain unless we have all the non-active-chain parent blocks.
bool fFailedChain = pindexTest->nStatus & BLOCK_FAILED_MASK;
bool fMissingData = !(pindexTest->nStatus & BLOCK_HAVE_DATA);
if (fFailedChain || fMissingData) {
// Candidate chain is not usable (either invalid or missing data)
if (fFailedChain && (pindexBestInvalid == NULL || pindexNew->nChainWork > pindexBestInvalid->nChainWork))
pindexBestInvalid = pindexNew;
CBlockIndex *pindexFailed = pindexNew;
// Remove the entire chain from the set.
while (pindexTest != pindexFailed) {
if (fFailedChain) {
pindexFailed->nStatus |= BLOCK_FAILED_CHILD;
} else if (fMissingData) {
// If we're missing data, then add back to mapBlocksUnlinked,
// so that if the block arrives in the future we can try adding
// to setBlockIndexCandidates again.
mapBlocksUnlinked.insert(std::make_pair(pindexFailed->pprev, pindexFailed));
}
setBlockIndexCandidates.erase(pindexFailed);
pindexFailed = pindexFailed->pprev;
}
setBlockIndexCandidates.erase(pindexTest);
fInvalidAncestor = true;
break;
2013-01-27 00:14:11 +01:00
}
pindexTest = pindexTest->pprev;
}
if (!fInvalidAncestor)
return pindexNew;
} while(true);
}
/** Delete all entries in setBlockIndexCandidates that are worse than the current tip. */
static void PruneBlockIndexCandidates() {
// Note that we can't delete the current block itself, as we may need to return to it later in case a
// reorganization to a better block fails.
std::set<CBlockIndex*, CBlockIndexWorkComparator>::iterator it = setBlockIndexCandidates.begin();
2014-11-20 12:43:50 +01:00
while (it != setBlockIndexCandidates.end() && setBlockIndexCandidates.value_comp()(*it, chainActive.Tip())) {
setBlockIndexCandidates.erase(it++);
}
2014-11-20 12:43:50 +01:00
// Either the current tip or a successor of it we're working towards is left in setBlockIndexCandidates.
assert(!setBlockIndexCandidates.empty());
}
/**
* Try to make some progress towards making pindexMostWork the active block.
* pblock is either NULL or a pointer to a CBlock corresponding to pindexMostWork.
*/
static bool ActivateBestChainStep(CValidationState& state, const CChainParams& chainparams, CBlockIndex* pindexMostWork, const CBlock* pblock, bool& fInvalidFound, std::vector<std::shared_ptr<const CTransaction>>& txConflicted, std::vector<std::tuple<CTransaction,CBlockIndex*,int>>& txChanged)
{
AssertLockHeld(cs_main);
const CBlockIndex *pindexOldTip = chainActive.Tip();
const CBlockIndex *pindexFork = chainActive.FindFork(pindexMostWork);
// Disconnect active blocks which are no longer in the best chain.
bool fBlocksDisconnected = false;
while (chainActive.Tip() && chainActive.Tip() != pindexFork) {
2016-04-17 10:58:50 +03:00
if (!DisconnectTip(state, chainparams))
return false;
fBlocksDisconnected = true;
}
// Build list of new blocks to connect.
std::vector<CBlockIndex*> vpindexToConnect;
bool fContinue = true;
int nHeight = pindexFork ? pindexFork->nHeight : -1;
while (fContinue && nHeight != pindexMostWork->nHeight) {
// Don't iterate the entire list of potential improvements toward the best tip, as we likely only need
// a few blocks along the way.
int nTargetHeight = std::min(nHeight + 32, pindexMostWork->nHeight);
vpindexToConnect.clear();
vpindexToConnect.reserve(nTargetHeight - nHeight);
CBlockIndex *pindexIter = pindexMostWork->GetAncestor(nTargetHeight);
while (pindexIter && pindexIter->nHeight != nHeight) {
vpindexToConnect.push_back(pindexIter);
pindexIter = pindexIter->pprev;
}
nHeight = nTargetHeight;
// Connect new blocks.
BOOST_REVERSE_FOREACH(CBlockIndex *pindexConnect, vpindexToConnect) {
if (!ConnectTip(state, chainparams, pindexConnect, pindexConnect == pindexMostWork ? pblock : NULL, txConflicted, txChanged)) {
if (state.IsInvalid()) {
// The block violates a consensus rule.
if (!state.CorruptionPossible())
InvalidChainFound(vpindexToConnect.back());
state = CValidationState();
fInvalidFound = true;
fContinue = false;
break;
} else {
// A system error occurred (disk space, database error, ...).
return false;
}
} else {
PruneBlockIndexCandidates();
if (!pindexOldTip || chainActive.Tip()->nChainWork > pindexOldTip->nChainWork) {
// We're in a better position than we were. Return temporarily to release the lock.
fContinue = false;
break;
}
}
}
}
if (fBlocksDisconnected) {
mempool.removeForReorg(pcoinsTip, chainActive.Tip()->nHeight + 1, STANDARD_LOCKTIME_VERIFY_FLAGS);
LimitMempoolSize(mempool, GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000, GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60);
}
mempool.check(pcoinsTip);
// Callbacks/notifications for a new best chain.
if (fInvalidFound)
CheckForkWarningConditionsOnNewFork(vpindexToConnect.back());
else
CheckForkWarningConditions();
return true;
}
2016-04-28 16:18:45 +02:00
static void NotifyHeaderTip() {
bool fNotify = false;
bool fInitialBlockDownload = false;
static CBlockIndex* pindexHeaderOld = NULL;
CBlockIndex* pindexHeader = NULL;
{
LOCK(cs_main);
pindexHeader = pindexBestHeader;
2016-04-28 16:18:45 +02:00
if (pindexHeader != pindexHeaderOld) {
fNotify = true;
fInitialBlockDownload = IsInitialBlockDownload();
pindexHeaderOld = pindexHeader;
}
}
// Send block tip changed notifications without cs_main
if (fNotify) {
uiInterface.NotifyHeaderTip(fInitialBlockDownload, pindexHeader);
}
}
/**
* Make the best chain active, in multiple steps. The result is either failure
* or an activated best chain. pblock is either NULL or a pointer to a block
* that is already loaded (to avoid loading it again from disk).
*/
bool ActivateBestChain(CValidationState &state, const CChainParams& chainparams, const CBlock *pblock) {
CBlockIndex *pindexMostWork = NULL;
CBlockIndex *pindexNewTip = NULL;
std::vector<std::tuple<CTransaction,CBlockIndex*,int>> txChanged;
if (pblock)
txChanged.reserve(pblock->vtx.size());
do {
txChanged.clear();
boost::this_thread::interruption_point();
if (ShutdownRequested())
break;
const CBlockIndex *pindexFork;
std::vector<std::shared_ptr<const CTransaction>> txConflicted;
bool fInitialDownload;
{
LOCK(cs_main);
CBlockIndex *pindexOldTip = chainActive.Tip();
if (pindexMostWork == NULL) {
pindexMostWork = FindMostWorkChain();
}
// Whether we have anything to do at all.
if (pindexMostWork == NULL || pindexMostWork == chainActive.Tip())
return true;
bool fInvalidFound = false;
if (!ActivateBestChainStep(state, chainparams, pindexMostWork, pblock && pblock->GetHash() == pindexMostWork->GetBlockHash() ? pblock : NULL, fInvalidFound, txConflicted, txChanged))
return false;
if (fInvalidFound) {
// Wipe cache, we may need another branch now.
pindexMostWork = NULL;
}
pindexNewTip = chainActive.Tip();
pindexFork = chainActive.FindFork(pindexOldTip);
fInitialDownload = IsInitialBlockDownload();
}
// When we reach this point, we switched to a new tip (stored in pindexNewTip).
// Notifications/callbacks that can run without cs_main
// throw all transactions though the signal-interface
// while _not_ holding the cs_main lock
for(std::shared_ptr<const CTransaction> tx : txConflicted)
{
GetMainSignals().SyncTransaction(*tx, pindexNewTip, CMainSignals::SYNC_TRANSACTION_NOT_IN_BLOCK);
}
// ... and about transactions that got confirmed:
for(unsigned int i = 0; i < txChanged.size(); i++)
GetMainSignals().SyncTransaction(std::get<0>(txChanged[i]), std::get<1>(txChanged[i]), std::get<2>(txChanged[i]));
// Notify external listeners about the new tip.
GetMainSignals().UpdatedBlockTip(pindexNewTip, pindexFork, fInitialDownload);
// Always notify the UI if a new block tip was connected
if (pindexFork != pindexNewTip) {
uiInterface.NotifyBlockTip(fInitialDownload, pindexNewTip);
}
} while (pindexNewTip != pindexMostWork);
CheckBlockIndex(chainparams.GetConsensus());
// Write changes periodically to disk, after relay.
2014-11-14 18:19:26 +01:00
if (!FlushStateToDisk(state, FLUSH_STATE_PERIODIC)) {
return false;
}
return true;
}
bool PreciousBlock(CValidationState& state, const CChainParams& params, CBlockIndex *pindex)
{
{
LOCK(cs_main);
if (pindex->nChainWork < chainActive.Tip()->nChainWork) {
// Nothing to do, this block is not at the tip.
return true;
}
if (chainActive.Tip()->nChainWork > nLastPreciousChainwork) {
// The chain has been extended since the last call, reset the counter.
nBlockReverseSequenceId = -1;
}
nLastPreciousChainwork = chainActive.Tip()->nChainWork;
setBlockIndexCandidates.erase(pindex);
pindex->nSequenceId = nBlockReverseSequenceId;
if (nBlockReverseSequenceId > std::numeric_limits<int32_t>::min()) {
// We can't keep reducing the counter if somebody really wants to
// call preciousblock 2**31-1 times on the same set of tips...
nBlockReverseSequenceId--;
}
if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS) && pindex->nChainTx) {
setBlockIndexCandidates.insert(pindex);
PruneBlockIndexCandidates();
}
}
return ActivateBestChain(state, params);
}
2016-04-17 10:58:50 +03:00
bool InvalidateBlock(CValidationState& state, const CChainParams& chainparams, CBlockIndex *pindex)
{
AssertLockHeld(cs_main);
// Mark the block itself as invalid.
pindex->nStatus |= BLOCK_FAILED_VALID;
setDirtyBlockIndex.insert(pindex);
setBlockIndexCandidates.erase(pindex);
while (chainActive.Contains(pindex)) {
CBlockIndex *pindexWalk = chainActive.Tip();
pindexWalk->nStatus |= BLOCK_FAILED_CHILD;
setDirtyBlockIndex.insert(pindexWalk);
setBlockIndexCandidates.erase(pindexWalk);
// ActivateBestChain considers blocks already in chainActive
// unconditionally valid already, so force disconnect away from it.
2016-04-17 10:58:50 +03:00
if (!DisconnectTip(state, chainparams)) {
mempool.removeForReorg(pcoinsTip, chainActive.Tip()->nHeight + 1, STANDARD_LOCKTIME_VERIFY_FLAGS);
return false;
}
}
LimitMempoolSize(mempool, GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000, GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60);
// The resulting new best tip may not be in setBlockIndexCandidates anymore, so
2015-04-28 14:47:17 +00:00
// add it again.
BlockMap::iterator it = mapBlockIndex.begin();
while (it != mapBlockIndex.end()) {
if (it->second->IsValid(BLOCK_VALID_TRANSACTIONS) && it->second->nChainTx && !setBlockIndexCandidates.value_comp()(it->second, chainActive.Tip())) {
setBlockIndexCandidates.insert(it->second);
}
it++;
}
InvalidChainFound(pindex);
mempool.removeForReorg(pcoinsTip, chainActive.Tip()->nHeight + 1, STANDARD_LOCKTIME_VERIFY_FLAGS);
return true;
}
bool ResetBlockFailureFlags(CBlockIndex *pindex) {
AssertLockHeld(cs_main);
int nHeight = pindex->nHeight;
// Remove the invalidity flag from this block and all its descendants.
BlockMap::iterator it = mapBlockIndex.begin();
while (it != mapBlockIndex.end()) {
if (!it->second->IsValid() && it->second->GetAncestor(nHeight) == pindex) {
it->second->nStatus &= ~BLOCK_FAILED_MASK;
setDirtyBlockIndex.insert(it->second);
if (it->second->IsValid(BLOCK_VALID_TRANSACTIONS) && it->second->nChainTx && setBlockIndexCandidates.value_comp()(chainActive.Tip(), it->second)) {
setBlockIndexCandidates.insert(it->second);
}
if (it->second == pindexBestInvalid) {
// Reset invalid block marker if it was pointing to one of those.
pindexBestInvalid = NULL;
}
}
it++;
}
// Remove the invalidity flag from all ancestors too.
while (pindex != NULL) {
if (pindex->nStatus & BLOCK_FAILED_MASK) {
pindex->nStatus &= ~BLOCK_FAILED_MASK;
setDirtyBlockIndex.insert(pindex);
}
pindex = pindex->pprev;
}
return true;
}
CBlockIndex* AddToBlockIndex(const CBlockHeader& block)
{
// Check for duplicate
2013-06-23 19:00:18 -07:00
uint256 hash = block.GetHash();
BlockMap::iterator it = mapBlockIndex.find(hash);
if (it != mapBlockIndex.end())
return it->second;
// Construct new block index object
2013-06-23 19:00:18 -07:00
CBlockIndex* pindexNew = new CBlockIndex(block);
assert(pindexNew);
// We assign the sequence id to blocks only when the full data is available,
// to avoid miners withholding blocks but broadcasting headers, to get a
// competitive advantage.
pindexNew->nSequenceId = 0;
BlockMap::iterator mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
BlockMap::iterator miPrev = mapBlockIndex.find(block.hashPrevBlock);
if (miPrev != mapBlockIndex.end())
{
pindexNew->pprev = (*miPrev).second;
pindexNew->nHeight = pindexNew->pprev->nHeight + 1;
pindexNew->BuildSkip();
}
pindexNew->nChainWork = (pindexNew->pprev ? pindexNew->pprev->nChainWork : 0) + GetBlockProof(*pindexNew);
pindexNew->RaiseValidity(BLOCK_VALID_TREE);
if (pindexBestHeader == NULL || pindexBestHeader->nChainWork < pindexNew->nChainWork)
pindexBestHeader = pindexNew;
setDirtyBlockIndex.insert(pindexNew);
return pindexNew;
}
/** Mark a block as having its data received and checked (up to BLOCK_VALID_TRANSACTIONS). */
bool ReceivedBlockTransactions(const CBlock &block, CValidationState& state, CBlockIndex *pindexNew, const CDiskBlockPos& pos)
{
pindexNew->nTx = block.vtx.size();
pindexNew->nChainTx = 0;
pindexNew->nFile = pos.nFile;
pindexNew->nDataPos = pos.nPos;
pindexNew->nUndoPos = 0;
pindexNew->nStatus |= BLOCK_HAVE_DATA;
if (IsWitnessEnabled(pindexNew->pprev, Params().GetConsensus())) {
pindexNew->nStatus |= BLOCK_OPT_WITNESS;
}
pindexNew->RaiseValidity(BLOCK_VALID_TRANSACTIONS);
setDirtyBlockIndex.insert(pindexNew);
if (pindexNew->pprev == NULL || pindexNew->pprev->nChainTx) {
// If pindexNew is the genesis block or all parents are BLOCK_VALID_TRANSACTIONS.
deque<CBlockIndex*> queue;
queue.push_back(pindexNew);
// Recursively process any descendant blocks that now may be eligible to be connected.
while (!queue.empty()) {
CBlockIndex *pindex = queue.front();
queue.pop_front();
pindex->nChainTx = (pindex->pprev ? pindex->pprev->nChainTx : 0) + pindex->nTx;
{
LOCK(cs_nBlockSequenceId);
pindex->nSequenceId = nBlockSequenceId++;
}
if (chainActive.Tip() == NULL || !setBlockIndexCandidates.value_comp()(pindex, chainActive.Tip())) {
setBlockIndexCandidates.insert(pindex);
}
std::pair<std::multimap<CBlockIndex*, CBlockIndex*>::iterator, std::multimap<CBlockIndex*, CBlockIndex*>::iterator> range = mapBlocksUnlinked.equal_range(pindex);
while (range.first != range.second) {
std::multimap<CBlockIndex*, CBlockIndex*>::iterator it = range.first;
queue.push_back(it->second);
range.first++;
mapBlocksUnlinked.erase(it);
}
}
} else {
if (pindexNew->pprev && pindexNew->pprev->IsValid(BLOCK_VALID_TREE)) {
mapBlocksUnlinked.insert(std::make_pair(pindexNew->pprev, pindexNew));
}
}
2014-05-07 17:10:35 +02:00
return true;
}
bool FindBlockPos(CValidationState &state, CDiskBlockPos &pos, unsigned int nAddSize, unsigned int nHeight, uint64_t nTime, bool fKnown = false)
{
LOCK(cs_LastBlockFile);
unsigned int nFile = fKnown ? pos.nFile : nLastBlockFile;
if (vinfoBlockFile.size() <= nFile) {
vinfoBlockFile.resize(nFile + 1);
}
if (!fKnown) {
while (vinfoBlockFile[nFile].nSize + nAddSize >= MAX_BLOCKFILE_SIZE) {
nFile++;
if (vinfoBlockFile.size() <= nFile) {
vinfoBlockFile.resize(nFile + 1);
}
}
pos.nFile = nFile;
pos.nPos = vinfoBlockFile[nFile].nSize;
}
2015-11-15 20:13:30 -05:00
if ((int)nFile != nLastBlockFile) {
if (!fKnown) {
2015-11-17 22:23:39 -05:00
LogPrintf("Leaving block file %i: %s\n", nLastBlockFile, vinfoBlockFile[nLastBlockFile].ToString());
}
FlushBlockFile(!fKnown);
nLastBlockFile = nFile;
}
vinfoBlockFile[nFile].AddBlock(nHeight, nTime);
if (fKnown)
vinfoBlockFile[nFile].nSize = std::max(pos.nPos + nAddSize, vinfoBlockFile[nFile].nSize);
else
vinfoBlockFile[nFile].nSize += nAddSize;
if (!fKnown) {
unsigned int nOldChunks = (pos.nPos + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE;
unsigned int nNewChunks = (vinfoBlockFile[nFile].nSize + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE;
if (nNewChunks > nOldChunks) {
if (fPruneMode)
fCheckForPruning = true;
if (CheckDiskSpace(nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos)) {
FILE *file = OpenBlockFile(pos);
if (file) {
LogPrintf("Pre-allocating up to position 0x%x in blk%05u.dat\n", nNewChunks * BLOCKFILE_CHUNK_SIZE, pos.nFile);
AllocateFileRange(file, pos.nPos, nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos);
fclose(file);
}
}
else
return state.Error("out of disk space");
}
}
setDirtyFileInfo.insert(nFile);
return true;
}
2013-01-27 00:14:11 +01:00
bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, unsigned int nAddSize)
{
pos.nFile = nFile;
LOCK(cs_LastBlockFile);
unsigned int nNewSize;
pos.nPos = vinfoBlockFile[nFile].nUndoSize;
nNewSize = vinfoBlockFile[nFile].nUndoSize += nAddSize;
setDirtyFileInfo.insert(nFile);
unsigned int nOldChunks = (pos.nPos + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE;
unsigned int nNewChunks = (nNewSize + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE;
if (nNewChunks > nOldChunks) {
if (fPruneMode)
fCheckForPruning = true;
if (CheckDiskSpace(nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos)) {
FILE *file = OpenUndoFile(pos);
if (file) {
LogPrintf("Pre-allocating up to position 0x%x in rev%05u.dat\n", nNewChunks * UNDOFILE_CHUNK_SIZE, pos.nFile);
AllocateFileRange(file, pos.nPos, nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos);
fclose(file);
}
}
else
return state.Error("out of disk space");
}
return true;
}
bool CheckBlockHeader(const CBlockHeader& block, CValidationState& state, const Consensus::Params& consensusParams, bool fCheckPOW)
{
// Check proof of work matches claimed amount
if (fCheckPOW && !CheckProofOfWork(block.GetHash(), block.nBits, consensusParams))
return state.DoS(50, false, REJECT_INVALID, "high-hash", false, "proof of work failed");
return true;
}
bool CheckBlock(const CBlock& block, CValidationState& state, const Consensus::Params& consensusParams, bool fCheckPOW, bool fCheckMerkleRoot)
{
// These are checks that are independent of context.
2015-08-15 23:32:38 +02:00
if (block.fChecked)
return true;
// Check that the header is valid (particularly PoW). This is mostly
// redundant with the call in AcceptBlockHeader.
if (!CheckBlockHeader(block, state, consensusParams, fCheckPOW))
return false;
// Check the merkle root.
if (fCheckMerkleRoot) {
bool mutated;
uint256 hashMerkleRoot2 = BlockMerkleRoot(block, &mutated);
if (block.hashMerkleRoot != hashMerkleRoot2)
return state.DoS(100, false, REJECT_INVALID, "bad-txnmrklroot", true, "hashMerkleRoot mismatch");
// Check for merkle tree malleability (CVE-2012-2459): repeating sequences
// of transactions in a block without affecting the merkle root of a block,
// while still invalidating it.
if (mutated)
return state.DoS(100, false, REJECT_INVALID, "bad-txns-duplicate", true, "duplicate transaction");
}
// All potential-corruption validation must be done before we do any
// transaction validation, as otherwise we may mark the header as invalid
// because we receive the wrong transactions for it.
// Note that witness malleability is checked in ContextualCheckBlock, so no
// checks that use witness data may be performed here.
// Size limits
if (block.vtx.empty() || block.vtx.size() > MAX_BLOCK_BASE_SIZE || ::GetSerializeSize(block, SER_NETWORK, PROTOCOL_VERSION | SERIALIZE_TRANSACTION_NO_WITNESS) > MAX_BLOCK_BASE_SIZE)
return state.DoS(100, false, REJECT_INVALID, "bad-blk-length", false, "size limits failed");
// First transaction must be coinbase, the rest must not be
2013-06-23 19:14:11 -07:00
if (block.vtx.empty() || !block.vtx[0].IsCoinBase())
return state.DoS(100, false, REJECT_INVALID, "bad-cb-missing", false, "first tx is not coinbase");
2013-06-23 19:14:11 -07:00
for (unsigned int i = 1; i < block.vtx.size(); i++)
if (block.vtx[i].IsCoinBase())
return state.DoS(100, false, REJECT_INVALID, "bad-cb-multiple", false, "more than one coinbase");
// Check transactions
for (const auto& tx : block.vtx)
if (!CheckTransaction(tx, state, false))
return state.Invalid(false, state.GetRejectCode(), state.GetRejectReason(),
strprintf("Transaction check failed (tx hash %s) %s", tx.GetHash().ToString(), state.GetDebugMessage()));
unsigned int nSigOps = 0;
for (const auto& tx : block.vtx)
{
nSigOps += GetLegacySigOpCount(tx);
}
if (nSigOps * WITNESS_SCALE_FACTOR > MAX_BLOCK_SIGOPS_COST)
return state.DoS(100, false, REJECT_INVALID, "bad-blk-sigops", false, "out-of-bounds SigOpCount");
2015-08-15 23:32:38 +02:00
if (fCheckPOW && fCheckMerkleRoot)
block.fChecked = true;
return true;
}
static bool CheckIndexAgainstCheckpoint(const CBlockIndex* pindexPrev, CValidationState& state, const CChainParams& chainparams, const uint256& hash)
{
if (*pindexPrev->phashBlock == chainparams.GetConsensus().hashGenesisBlock)
return true;
int nHeight = pindexPrev->nHeight+1;
// Don't accept any forks from the main chain prior to last checkpoint
CBlockIndex* pcheckpoint = Checkpoints::GetLastCheckpoint(chainparams.Checkpoints());
if (pcheckpoint && nHeight < pcheckpoint->nHeight)
return state.DoS(100, error("%s: forked chain older than last checkpoint (height %d)", __func__, nHeight));
return true;
}
bool IsWitnessEnabled(const CBlockIndex* pindexPrev, const Consensus::Params& params)
{
LOCK(cs_main);
return (VersionBitsState(pindexPrev, params, Consensus::DEPLOYMENT_SEGWIT, versionbitscache) == THRESHOLD_ACTIVE);
}
// Compute at which vout of the block's coinbase transaction the witness
// commitment occurs, or -1 if not found.
static int GetWitnessCommitmentIndex(const CBlock& block)
{
int commitpos = -1;
for (size_t o = 0; o < block.vtx[0].vout.size(); o++) {
if (block.vtx[0].vout[o].scriptPubKey.size() >= 38 && block.vtx[0].vout[o].scriptPubKey[0] == OP_RETURN && block.vtx[0].vout[o].scriptPubKey[1] == 0x24 && block.vtx[0].vout[o].scriptPubKey[2] == 0xaa && block.vtx[0].vout[o].scriptPubKey[3] == 0x21 && block.vtx[0].vout[o].scriptPubKey[4] == 0xa9 && block.vtx[0].vout[o].scriptPubKey[5] == 0xed) {
commitpos = o;
}
}
return commitpos;
}
void UpdateUncommittedBlockStructures(CBlock& block, const CBlockIndex* pindexPrev, const Consensus::Params& consensusParams)
{
int commitpos = GetWitnessCommitmentIndex(block);
static const std::vector<unsigned char> nonce(32, 0x00);
if (commitpos != -1 && IsWitnessEnabled(pindexPrev, consensusParams) && block.vtx[0].wit.IsEmpty()) {
block.vtx[0].wit.vtxinwit.resize(1);
block.vtx[0].wit.vtxinwit[0].scriptWitness.stack.resize(1);
block.vtx[0].wit.vtxinwit[0].scriptWitness.stack[0] = nonce;
}
}
std::vector<unsigned char> GenerateCoinbaseCommitment(CBlock& block, const CBlockIndex* pindexPrev, const Consensus::Params& consensusParams)
{
std::vector<unsigned char> commitment;
int commitpos = GetWitnessCommitmentIndex(block);
bool fHaveWitness = false;
for (size_t t = 1; t < block.vtx.size(); t++) {
if (!block.vtx[t].wit.IsNull()) {
fHaveWitness = true;
break;
}
}
std::vector<unsigned char> ret(32, 0x00);
if (fHaveWitness && IsWitnessEnabled(pindexPrev, consensusParams)) {
if (commitpos == -1) {
uint256 witnessroot = BlockWitnessMerkleRoot(block, NULL);
CHash256().Write(witnessroot.begin(), 32).Write(&ret[0], 32).Finalize(witnessroot.begin());
CTxOut out;
out.nValue = 0;
out.scriptPubKey.resize(38);
out.scriptPubKey[0] = OP_RETURN;
out.scriptPubKey[1] = 0x24;
out.scriptPubKey[2] = 0xaa;
out.scriptPubKey[3] = 0x21;
out.scriptPubKey[4] = 0xa9;
out.scriptPubKey[5] = 0xed;
memcpy(&out.scriptPubKey[6], witnessroot.begin(), 32);
commitment = std::vector<unsigned char>(out.scriptPubKey.begin(), out.scriptPubKey.end());
const_cast<std::vector<CTxOut>*>(&block.vtx[0].vout)->push_back(out);
block.vtx[0].UpdateHash();
}
}
UpdateUncommittedBlockStructures(block, pindexPrev, consensusParams);
return commitment;
}
bool ContextualCheckBlockHeader(const CBlockHeader& block, CValidationState& state, const Consensus::Params& consensusParams, const CBlockIndex* pindexPrev, int64_t nAdjustedTime)
{
2016-07-22 08:27:55 +09:00
const int nHeight = pindexPrev == NULL ? 0 : pindexPrev->nHeight + 1;
// Check proof of work
if (block.nBits != GetNextWorkRequired(pindexPrev, &block, consensusParams))
return state.DoS(100, false, REJECT_INVALID, "bad-diffbits", false, "incorrect proof of work");
// Check timestamp against prev
if (block.GetBlockTime() <= pindexPrev->GetMedianTimePast())
return state.Invalid(false, REJECT_INVALID, "time-too-old", "block's timestamp is too early");
2015-01-19 18:37:21 -05:00
// Check timestamp
if (block.GetBlockTime() > nAdjustedTime + 2 * 60 * 60)
return state.Invalid(false, REJECT_INVALID, "time-too-new", "block timestamp too far in the future");
// Reject outdated version blocks when 95% (75% on testnet) of the network has upgraded:
2016-07-22 08:27:55 +09:00
// check for version 2, 3 and 4 upgrades
if((block.nVersion < 2 && nHeight >= consensusParams.BIP34Height) ||
(block.nVersion < 3 && nHeight >= consensusParams.BIP66Height) ||
(block.nVersion < 4 && nHeight >= consensusParams.BIP65Height))
return state.Invalid(false, REJECT_OBSOLETE, strprintf("bad-version(0x%08x)", block.nVersion),
strprintf("rejected nVersion=0x%08x block", block.nVersion));
2015-01-19 18:37:21 -05:00
return true;
}
bool ContextualCheckBlock(const CBlock& block, CValidationState& state, const Consensus::Params& consensusParams, const CBlockIndex* pindexPrev)
{
const int nHeight = pindexPrev == NULL ? 0 : pindexPrev->nHeight + 1;
2016-02-16 16:33:31 +00:00
// Start enforcing BIP113 (Median Time Past) using versionbits logic.
int nLockTimeFlags = 0;
if (VersionBitsState(pindexPrev, consensusParams, Consensus::DEPLOYMENT_CSV, versionbitscache) == THRESHOLD_ACTIVE) {
nLockTimeFlags |= LOCKTIME_MEDIAN_TIME_PAST;
}
int64_t nLockTimeCutoff = (nLockTimeFlags & LOCKTIME_MEDIAN_TIME_PAST)
? pindexPrev->GetMedianTimePast()
: block.GetBlockTime();
// Check that all transactions are finalized
for (const auto& tx : block.vtx) {
if (!IsFinalTx(tx, nHeight, nLockTimeCutoff)) {
return state.DoS(10, false, REJECT_INVALID, "bad-txns-nonfinal", false, "non-final transaction");
}
}
2016-07-22 08:27:55 +09:00
// Enforce rule that the coinbase starts with serialized block height
if (nHeight >= consensusParams.BIP34Height)
{
CScript expect = CScript() << nHeight;
if (block.vtx[0].vin[0].scriptSig.size() < expect.size() ||
!std::equal(expect.begin(), expect.end(), block.vtx[0].vin[0].scriptSig.begin())) {
return state.DoS(100, false, REJECT_INVALID, "bad-cb-height", false, "block height mismatch in coinbase");
}
}
// Validation for witness commitments.
// * We compute the witness hash (which is the hash including witnesses) of all the block's transactions, except the
// coinbase (where 0x0000....0000 is used instead).
// * The coinbase scriptWitness is a stack of a single 32-byte vector, containing a witness nonce (unconstrained).
// * We build a merkle tree with all those witness hashes as leaves (similar to the hashMerkleRoot in the block header).
// * There must be at least one output whose scriptPubKey is a single 36-byte push, the first 4 bytes of which are
// {0xaa, 0x21, 0xa9, 0xed}, and the following 32 bytes are SHA256^2(witness root, witness nonce). In case there are
// multiple, the last one is used.
bool fHaveWitness = false;
if (VersionBitsState(pindexPrev, consensusParams, Consensus::DEPLOYMENT_SEGWIT, versionbitscache) == THRESHOLD_ACTIVE) {
int commitpos = GetWitnessCommitmentIndex(block);
if (commitpos != -1) {
bool malleated = false;
uint256 hashWitness = BlockWitnessMerkleRoot(block, &malleated);
// The malleation check is ignored; as the transaction tree itself
// already does not permit it, it is impossible to trigger in the
// witness tree.
if (block.vtx[0].wit.vtxinwit.size() != 1 || block.vtx[0].wit.vtxinwit[0].scriptWitness.stack.size() != 1 || block.vtx[0].wit.vtxinwit[0].scriptWitness.stack[0].size() != 32) {
return state.DoS(100, false, REJECT_INVALID, "bad-witness-nonce-size", true, strprintf("%s : invalid witness nonce size", __func__));
}
CHash256().Write(hashWitness.begin(), 32).Write(&block.vtx[0].wit.vtxinwit[0].scriptWitness.stack[0][0], 32).Finalize(hashWitness.begin());
if (memcmp(hashWitness.begin(), &block.vtx[0].vout[commitpos].scriptPubKey[6], 32)) {
return state.DoS(100, false, REJECT_INVALID, "bad-witness-merkle-match", true, strprintf("%s : witness merkle commitment mismatch", __func__));
}
fHaveWitness = true;
}
}
// No witness data is allowed in blocks that don't commit to witness data, as this would otherwise leave room for spam
if (!fHaveWitness) {
for (size_t i = 0; i < block.vtx.size(); i++) {
if (!block.vtx[i].wit.IsNull()) {
return state.DoS(100, false, REJECT_INVALID, "unexpected-witness", true, strprintf("%s : unexpected witness data found", __func__));
}
}
}
// After the coinbase witness nonce and commitment are verified,
2016-07-18 13:28:26 -04:00
// we can check if the block weight passes (before we've checked the
// coinbase witness, it would be possible for the weight to be too
// large by filling up the coinbase witness, which doesn't change
// the block hash, so we couldn't mark the block as permanently
// failed).
2016-07-18 13:28:26 -04:00
if (GetBlockWeight(block) > MAX_BLOCK_WEIGHT) {
return state.DoS(100, false, REJECT_INVALID, "bad-blk-weight", false, strprintf("%s : weight limit failed", __func__));
}
return true;
}
static bool AcceptBlockHeader(const CBlockHeader& block, CValidationState& state, const CChainParams& chainparams, CBlockIndex** ppindex=NULL)
{
AssertLockHeld(cs_main);
// Check for duplicate
2013-06-23 19:27:02 -07:00
uint256 hash = block.GetHash();
BlockMap::iterator miSelf = mapBlockIndex.find(hash);
CBlockIndex *pindex = NULL;
if (hash != chainparams.GetConsensus().hashGenesisBlock) {
if (miSelf != mapBlockIndex.end()) {
// Block header is already known.
pindex = miSelf->second;
if (ppindex)
*ppindex = pindex;
if (pindex->nStatus & BLOCK_FAILED_MASK)
return state.Invalid(error("%s: block %s is marked invalid", __func__, hash.ToString()), 0, "duplicate");
return true;
}
if (!CheckBlockHeader(block, state, chainparams.GetConsensus()))
return error("%s: Consensus::CheckBlockHeader: %s, %s", __func__, hash.ToString(), FormatStateMessage(state));
// Get prev block index
CBlockIndex* pindexPrev = NULL;
BlockMap::iterator mi = mapBlockIndex.find(block.hashPrevBlock);
if (mi == mapBlockIndex.end())
return state.DoS(10, error("%s: prev block not found", __func__), 0, "bad-prevblk");
pindexPrev = (*mi).second;
if (pindexPrev->nStatus & BLOCK_FAILED_MASK)
return state.DoS(100, error("%s: prev block invalid", __func__), REJECT_INVALID, "bad-prevblk");
assert(pindexPrev);
if (fCheckpointsEnabled && !CheckIndexAgainstCheckpoint(pindexPrev, state, chainparams, hash))
return error("%s: CheckIndexAgainstCheckpoint(): %s", __func__, state.GetRejectReason().c_str());
if (!ContextualCheckBlockHeader(block, state, chainparams.GetConsensus(), pindexPrev, GetAdjustedTime()))
return error("%s: Consensus::ContextualCheckBlockHeader: %s, %s", __func__, hash.ToString(), FormatStateMessage(state));
}
if (pindex == NULL)
pindex = AddToBlockIndex(block);
if (ppindex)
*ppindex = pindex;
CheckBlockIndex(chainparams.GetConsensus());
return true;
}
/** Store block on disk. If dbp is non-NULL, the file is known to already reside on disk */
static bool AcceptBlock(const CBlock& block, CValidationState& state, const CChainParams& chainparams, CBlockIndex** ppindex, bool fRequested, const CDiskBlockPos* dbp, bool* fNewBlock)
{
if (fNewBlock) *fNewBlock = false;
AssertLockHeld(cs_main);
CBlockIndex *pindexDummy = NULL;
CBlockIndex *&pindex = ppindex ? *ppindex : pindexDummy;
if (!AcceptBlockHeader(block, state, chainparams, &pindex))
return false;
// Try to process all requested blocks that we don't have, but only
// process an unrequested block if it's new and has enough work to
// advance our tip, and isn't too many blocks ahead.
bool fAlreadyHave = pindex->nStatus & BLOCK_HAVE_DATA;
bool fHasMoreWork = (chainActive.Tip() ? pindex->nChainWork > chainActive.Tip()->nChainWork : true);
// Blocks that are too out-of-order needlessly limit the effectiveness of
// pruning, because pruning will not delete block files that contain any
// blocks which are too close in height to the tip. Apply this test
// regardless of whether pruning is enabled; it should generally be safe to
// not process unrequested blocks.
bool fTooFarAhead = (pindex->nHeight > int(chainActive.Height() + MIN_BLOCKS_TO_KEEP));
// TODO: Decouple this function from the block download logic by removing fRequested
// This requires some new chain datastructure to efficiently look up if a
// block is in a chain leading to a candidate for best tip, despite not
// being such a candidate itself.
// TODO: deal better with return value and error conditions for duplicate
// and unrequested blocks.
if (fAlreadyHave) return true;
if (!fRequested) { // If we didn't ask for it:
if (pindex->nTx != 0) return true; // This is a previously-processed block that was pruned
if (!fHasMoreWork) return true; // Don't process less-work chains
if (fTooFarAhead) return true; // Block height is too high
}
if (fNewBlock) *fNewBlock = true;
if (!CheckBlock(block, state, chainparams.GetConsensus(), GetAdjustedTime()) ||
!ContextualCheckBlock(block, state, chainparams.GetConsensus(), pindex->pprev)) {
if (state.IsInvalid() && !state.CorruptionPossible()) {
pindex->nStatus |= BLOCK_FAILED_VALID;
setDirtyBlockIndex.insert(pindex);
}
return error("%s: %s", __func__, FormatStateMessage(state));
}
int nHeight = pindex->nHeight;
// Write block to history file
2013-01-29 01:44:19 +01:00
try {
2013-06-23 19:27:02 -07:00
unsigned int nBlockSize = ::GetSerializeSize(block, SER_DISK, CLIENT_VERSION);
2013-01-29 01:44:19 +01:00
CDiskBlockPos blockPos;
if (dbp != NULL)
blockPos = *dbp;
2014-06-28 23:36:06 +02:00
if (!FindBlockPos(state, blockPos, nBlockSize+8, nHeight, block.GetBlockTime(), dbp != NULL))
return error("AcceptBlock(): FindBlockPos failed");
2013-01-29 01:44:19 +01:00
if (dbp == NULL)
if (!WriteBlockToDisk(block, blockPos, chainparams.MessageStart()))
AbortNode(state, "Failed to write block");
if (!ReceivedBlockTransactions(block, state, pindex, blockPos))
return error("AcceptBlock(): ReceivedBlockTransactions failed");
} catch (const std::runtime_error& e) {
return AbortNode(state, std::string("System error: ") + e.what());
2013-01-29 01:44:19 +01:00
}
if (fCheckForPruning)
FlushStateToDisk(state, FLUSH_STATE_NONE); // we just allocated more disk space for block files
return true;
}
bool ProcessNewBlock(CValidationState& state, const CChainParams& chainparams, CNode* pfrom, const CBlock* pblock, bool fForceProcessing, const CDiskBlockPos* dbp, bool fMayBanPeerIfInvalid)
{
{
LOCK(cs_main);
// Store to disk
CBlockIndex *pindex = NULL;
bool fNewBlock = false;
bool ret = AcceptBlock(*pblock, state, chainparams, &pindex, fForceProcessing, dbp, &fNewBlock);
if (pindex && pfrom) {
mapBlockSource[pindex->GetBlockHash()] = std::make_pair(pfrom->GetId(), fMayBanPeerIfInvalid);
if (fNewBlock) pfrom->nLastBlockTime = GetTime();
}
CheckBlockIndex(chainparams.GetConsensus());
if (!ret)
return error("%s: AcceptBlock FAILED", __func__);
2014-05-07 17:10:35 +02:00
}
2016-04-28 16:18:45 +02:00
NotifyHeaderTip();
if (!ActivateBestChain(state, chainparams, pblock))
return error("%s: ActivateBestChain failed", __func__);
2014-05-07 17:10:35 +02:00
return true;
}
bool TestBlockValidity(CValidationState& state, const CChainParams& chainparams, const CBlock& block, CBlockIndex* pindexPrev, bool fCheckPOW, bool fCheckMerkleRoot)
{
AssertLockHeld(cs_main);
assert(pindexPrev && pindexPrev == chainActive.Tip());
if (fCheckpointsEnabled && !CheckIndexAgainstCheckpoint(pindexPrev, state, chainparams, block.GetHash()))
return error("%s: CheckIndexAgainstCheckpoint(): %s", __func__, state.GetRejectReason().c_str());
CCoinsViewCache viewNew(pcoinsTip);
CBlockIndex indexDummy(block);
indexDummy.pprev = pindexPrev;
indexDummy.nHeight = pindexPrev->nHeight + 1;
// NOTE: CheckBlockHeader is called by CheckBlock
if (!ContextualCheckBlockHeader(block, state, chainparams.GetConsensus(), pindexPrev, GetAdjustedTime()))
return error("%s: Consensus::ContextualCheckBlockHeader: %s", __func__, FormatStateMessage(state));
if (!CheckBlock(block, state, chainparams.GetConsensus(), fCheckPOW, fCheckMerkleRoot))
return error("%s: Consensus::CheckBlock: %s", __func__, FormatStateMessage(state));
if (!ContextualCheckBlock(block, state, chainparams.GetConsensus(), pindexPrev))
return error("%s: Consensus::ContextualCheckBlock: %s", __func__, FormatStateMessage(state));
if (!ConnectBlock(block, state, &indexDummy, viewNew, chainparams, true))
return false;
assert(state.IsValid());
return true;
}
/**
* BLOCK PRUNING CODE
*/
/* Calculate the amount of disk space the block & undo files currently use */
uint64_t CalculateCurrentUsage()
{
uint64_t retval = 0;
BOOST_FOREACH(const CBlockFileInfo &file, vinfoBlockFile) {
retval += file.nSize + file.nUndoSize;
}
return retval;
}
/* Prune a block file (modify associated database entries)*/
void PruneOneBlockFile(const int fileNumber)
{
for (BlockMap::iterator it = mapBlockIndex.begin(); it != mapBlockIndex.end(); ++it) {
CBlockIndex* pindex = it->second;
if (pindex->nFile == fileNumber) {
pindex->nStatus &= ~BLOCK_HAVE_DATA;
pindex->nStatus &= ~BLOCK_HAVE_UNDO;
pindex->nFile = 0;
pindex->nDataPos = 0;
pindex->nUndoPos = 0;
setDirtyBlockIndex.insert(pindex);
// Prune from mapBlocksUnlinked -- any block we prune would have
// to be downloaded again in order to consider its chain, at which
// point it would be considered as a candidate for
// mapBlocksUnlinked or setBlockIndexCandidates.
std::pair<std::multimap<CBlockIndex*, CBlockIndex*>::iterator, std::multimap<CBlockIndex*, CBlockIndex*>::iterator> range = mapBlocksUnlinked.equal_range(pindex->pprev);
while (range.first != range.second) {
2016-09-02 18:19:01 +02:00
std::multimap<CBlockIndex *, CBlockIndex *>::iterator _it = range.first;
range.first++;
2016-09-02 18:19:01 +02:00
if (_it->second == pindex) {
mapBlocksUnlinked.erase(_it);
}
}
}
}
vinfoBlockFile[fileNumber].SetNull();
setDirtyFileInfo.insert(fileNumber);
}
void UnlinkPrunedFiles(std::set<int>& setFilesToPrune)
{
for (set<int>::iterator it = setFilesToPrune.begin(); it != setFilesToPrune.end(); ++it) {
CDiskBlockPos pos(*it, 0);
boost::filesystem::remove(GetBlockPosFilename(pos, "blk"));
boost::filesystem::remove(GetBlockPosFilename(pos, "rev"));
LogPrintf("Prune: %s deleted blk/rev (%05u)\n", __func__, *it);
}
}
/* Calculate the block/rev files that should be deleted to remain under target*/
void FindFilesToPrune(std::set<int>& setFilesToPrune, uint64_t nPruneAfterHeight)
{
LOCK2(cs_main, cs_LastBlockFile);
if (chainActive.Tip() == NULL || nPruneTarget == 0) {
return;
}
if ((uint64_t)chainActive.Tip()->nHeight <= nPruneAfterHeight) {
return;
}
unsigned int nLastBlockWeCanPrune = chainActive.Tip()->nHeight - MIN_BLOCKS_TO_KEEP;
uint64_t nCurrentUsage = CalculateCurrentUsage();
// We don't check to prune until after we've allocated new space for files
// So we should leave a buffer under our target to account for another allocation
// before the next pruning.
uint64_t nBuffer = BLOCKFILE_CHUNK_SIZE + UNDOFILE_CHUNK_SIZE;
uint64_t nBytesToPrune;
int count=0;
if (nCurrentUsage + nBuffer >= nPruneTarget) {
for (int fileNumber = 0; fileNumber < nLastBlockFile; fileNumber++) {
nBytesToPrune = vinfoBlockFile[fileNumber].nSize + vinfoBlockFile[fileNumber].nUndoSize;
if (vinfoBlockFile[fileNumber].nSize == 0)
continue;
if (nCurrentUsage + nBuffer < nPruneTarget) // are we below our target?
break;
// don't prune files that could have a block within MIN_BLOCKS_TO_KEEP of the main chain's tip but keep scanning
if (vinfoBlockFile[fileNumber].nHeightLast > nLastBlockWeCanPrune)
continue;
PruneOneBlockFile(fileNumber);
// Queue up the files for removal
setFilesToPrune.insert(fileNumber);
nCurrentUsage -= nBytesToPrune;
count++;
}
}
LogPrint("prune", "Prune: target=%dMiB actual=%dMiB diff=%dMiB max_prune_height=%d removed %d blk/rev pairs\n",
nPruneTarget/1024/1024, nCurrentUsage/1024/1024,
((int64_t)nPruneTarget - (int64_t)nCurrentUsage)/1024/1024,
nLastBlockWeCanPrune, count);
}
bool CheckDiskSpace(uint64_t nAdditionalBytes)
{
uint64_t nFreeBytesAvailable = boost::filesystem::space(GetDataDir()).available;
// Check for nMinDiskSpace bytes (currently 50MB)
if (nFreeBytesAvailable < nMinDiskSpace + nAdditionalBytes)
return AbortNode("Disk space is low!", _("Error: Disk space is low!"));
2013-01-27 01:24:06 +01:00
return true;
}
FILE* OpenDiskFile(const CDiskBlockPos &pos, const char *prefix, bool fReadOnly)
{
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
if (pos.IsNull())
return NULL;
boost::filesystem::path path = GetBlockPosFilename(pos, prefix);
boost::filesystem::create_directories(path.parent_path());
FILE* file = fopen(path.string().c_str(), "rb+");
if (!file && !fReadOnly)
file = fopen(path.string().c_str(), "wb+");
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
if (!file) {
LogPrintf("Unable to open file %s\n", path.string());
return NULL;
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
}
if (pos.nPos) {
if (fseek(file, pos.nPos, SEEK_SET)) {
LogPrintf("Unable to seek to position %u of %s\n", pos.nPos, path.string());
fclose(file);
return NULL;
}
}
return file;
}
FILE* OpenBlockFile(const CDiskBlockPos &pos, bool fReadOnly) {
return OpenDiskFile(pos, "blk", fReadOnly);
}
FILE* OpenUndoFile(const CDiskBlockPos &pos, bool fReadOnly) {
return OpenDiskFile(pos, "rev", fReadOnly);
}
boost::filesystem::path GetBlockPosFilename(const CDiskBlockPos &pos, const char *prefix)
{
2014-09-15 09:56:10 -04:00
return GetDataDir() / "blocks" / strprintf("%s%05u.dat", prefix, pos.nFile);
}
CBlockIndex * InsertBlockIndex(uint256 hash)
{
if (hash.IsNull())
return NULL;
// Return existing
BlockMap::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end())
return (*mi).second;
// Create new
CBlockIndex* pindexNew = new CBlockIndex();
if (!pindexNew)
throw runtime_error(std::string(__func__) + ": new CBlockIndex failed");
mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
return pindexNew;
}
bool static LoadBlockIndexDB(const CChainParams& chainparams)
{
if (!pblocktree->LoadBlockIndexGuts(InsertBlockIndex))
return false;
2013-03-09 12:02:57 -05:00
boost::this_thread::interruption_point();
// Calculate nChainWork
vector<pair<int, CBlockIndex*> > vSortedByHeight;
vSortedByHeight.reserve(mapBlockIndex.size());
BOOST_FOREACH(const PAIRTYPE(uint256, CBlockIndex*)& item, mapBlockIndex)
{
CBlockIndex* pindex = item.second;
vSortedByHeight.push_back(make_pair(pindex->nHeight, pindex));
}
sort(vSortedByHeight.begin(), vSortedByHeight.end());
BOOST_FOREACH(const PAIRTYPE(int, CBlockIndex*)& item, vSortedByHeight)
{
CBlockIndex* pindex = item.second;
pindex->nChainWork = (pindex->pprev ? pindex->pprev->nChainWork : 0) + GetBlockProof(*pindex);
// We can link the chain of blocks for which we've received transactions at some point.
// Pruned nodes may have deleted the block.
if (pindex->nTx > 0) {
if (pindex->pprev) {
if (pindex->pprev->nChainTx) {
pindex->nChainTx = pindex->pprev->nChainTx + pindex->nTx;
} else {
pindex->nChainTx = 0;
mapBlocksUnlinked.insert(std::make_pair(pindex->pprev, pindex));
}
} else {
pindex->nChainTx = pindex->nTx;
}
}
if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS) && (pindex->nChainTx || pindex->pprev == NULL))
setBlockIndexCandidates.insert(pindex);
if (pindex->nStatus & BLOCK_FAILED_MASK && (!pindexBestInvalid || pindex->nChainWork > pindexBestInvalid->nChainWork))
pindexBestInvalid = pindex;
if (pindex->pprev)
pindex->BuildSkip();
if (pindex->IsValid(BLOCK_VALID_TREE) && (pindexBestHeader == NULL || CBlockIndexWorkComparator()(pindexBestHeader, pindex)))
pindexBestHeader = pindex;
}
// Load block file info
pblocktree->ReadLastBlockFile(nLastBlockFile);
vinfoBlockFile.resize(nLastBlockFile + 1);
LogPrintf("%s: last block file = %i\n", __func__, nLastBlockFile);
for (int nFile = 0; nFile <= nLastBlockFile; nFile++) {
pblocktree->ReadBlockFileInfo(nFile, vinfoBlockFile[nFile]);
}
LogPrintf("%s: last block file info: %s\n", __func__, vinfoBlockFile[nLastBlockFile].ToString());
for (int nFile = nLastBlockFile + 1; true; nFile++) {
CBlockFileInfo info;
if (pblocktree->ReadBlockFileInfo(nFile, info)) {
vinfoBlockFile.push_back(info);
} else {
break;
}
}
// Check presence of blk files
LogPrintf("Checking all blk files are present...\n");
set<int> setBlkDataFiles;
BOOST_FOREACH(const PAIRTYPE(uint256, CBlockIndex*)& item, mapBlockIndex)
{
CBlockIndex* pindex = item.second;
if (pindex->nStatus & BLOCK_HAVE_DATA) {
setBlkDataFiles.insert(pindex->nFile);
}
}
for (std::set<int>::iterator it = setBlkDataFiles.begin(); it != setBlkDataFiles.end(); it++)
{
CDiskBlockPos pos(*it, 0);
if (CAutoFile(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION).IsNull()) {
return false;
}
}
// Check whether we have ever pruned block & undo files
pblocktree->ReadFlag("prunedblockfiles", fHavePruned);
if (fHavePruned)
LogPrintf("LoadBlockIndexDB(): Block files have previously been pruned\n");
// Check whether we need to continue reindexing
bool fReindexing = false;
pblocktree->ReadReindexing(fReindexing);
fReindex |= fReindexing;
// Check whether we have a transaction index
pblocktree->ReadFlag("txindex", fTxIndex);
LogPrintf("%s: transaction index %s\n", __func__, fTxIndex ? "enabled" : "disabled");
// Load pointer to end of best chain
BlockMap::iterator it = mapBlockIndex.find(pcoinsTip->GetBestBlock());
if (it == mapBlockIndex.end())
return true;
chainActive.SetTip(it->second);
PruneBlockIndexCandidates();
LogPrintf("%s: hashBestChain=%s height=%d date=%s progress=%f\n", __func__,
chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(),
DateTimeStrFormat("%Y-%m-%d %H:%M:%S", chainActive.Tip()->GetBlockTime()),
Checkpoints::GuessVerificationProgress(chainparams.Checkpoints(), chainActive.Tip()));
return true;
}
2014-05-23 18:04:09 +02:00
CVerifyDB::CVerifyDB()
{
uiInterface.ShowProgress(_("Verifying blocks..."), 0);
}
CVerifyDB::~CVerifyDB()
{
uiInterface.ShowProgress("", 100);
}
bool CVerifyDB::VerifyDB(const CChainParams& chainparams, CCoinsView *coinsview, int nCheckLevel, int nCheckDepth)
{
LOCK(cs_main);
if (chainActive.Tip() == NULL || chainActive.Tip()->pprev == NULL)
return true;
// Verify blocks in the best chain
if (nCheckDepth <= 0)
nCheckDepth = 1000000000; // suffices until the year 19000
if (nCheckDepth > chainActive.Height())
nCheckDepth = chainActive.Height();
nCheckLevel = std::max(0, std::min(4, nCheckLevel));
LogPrintf("Verifying last %i blocks at level %i\n", nCheckDepth, nCheckLevel);
CCoinsViewCache coins(coinsview);
CBlockIndex* pindexState = chainActive.Tip();
CBlockIndex* pindexFailure = NULL;
int nGoodTransactions = 0;
2013-01-27 00:14:11 +01:00
CValidationState state;
int reportDone = 0;
LogPrintf("[0%%]...");
for (CBlockIndex* pindex = chainActive.Tip(); pindex && pindex->pprev; pindex = pindex->pprev)
{
2013-03-09 12:02:57 -05:00
boost::this_thread::interruption_point();
int percentageDone = std::max(1, std::min(99, (int)(((double)(chainActive.Height() - pindex->nHeight)) / (double)nCheckDepth * (nCheckLevel >= 4 ? 50 : 100))));
if (reportDone < percentageDone/10) {
// report every 10% step
LogPrintf("[%d%%]...", percentageDone);
reportDone = percentageDone/10;
}
uiInterface.ShowProgress(_("Verifying blocks..."), percentageDone);
if (pindex->nHeight < chainActive.Height()-nCheckDepth)
break;
if (fPruneMode && !(pindex->nStatus & BLOCK_HAVE_DATA)) {
// If pruning, only go back as far as we have data.
LogPrintf("VerifyDB(): block verification stopping at height %d (pruning, no data)\n", pindex->nHeight);
break;
}
CBlock block;
// check level 0: read from disk
if (!ReadBlockFromDisk(block, pindex, chainparams.GetConsensus()))
return error("VerifyDB(): *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
// check level 1: verify block validity
if (nCheckLevel >= 1 && !CheckBlock(block, state, chainparams.GetConsensus()))
return error("%s: *** found bad block at %d, hash=%s (%s)\n", __func__,
pindex->nHeight, pindex->GetBlockHash().ToString(), FormatStateMessage(state));
// check level 2: verify undo validity
if (nCheckLevel >= 2 && pindex) {
CBlockUndo undo;
CDiskBlockPos pos = pindex->GetUndoPos();
if (!pos.IsNull()) {
2014-10-27 14:35:52 +01:00
if (!UndoReadFromDisk(undo, pos, pindex->pprev->GetBlockHash()))
return error("VerifyDB(): *** found bad undo data at %d, hash=%s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
}
}
// check level 3: check for inconsistencies during memory-only disconnect of tip blocks
if (nCheckLevel >= 3 && pindex == pindexState && (coins.DynamicMemoryUsage() + pcoinsTip->DynamicMemoryUsage()) <= nCoinCacheUsage) {
bool fClean = true;
2013-06-23 18:32:58 -07:00
if (!DisconnectBlock(block, state, pindex, coins, &fClean))
return error("VerifyDB(): *** irrecoverable inconsistency in block data at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
pindexState = pindex->pprev;
if (!fClean) {
nGoodTransactions = 0;
pindexFailure = pindex;
} else
nGoodTransactions += block.vtx.size();
}
if (ShutdownRequested())
return true;
}
if (pindexFailure)
return error("VerifyDB(): *** coin database inconsistencies found (last %i blocks, %i good transactions before that)\n", chainActive.Height() - pindexFailure->nHeight + 1, nGoodTransactions);
// check level 4: try reconnecting blocks
if (nCheckLevel >= 4) {
CBlockIndex *pindex = pindexState;
while (pindex != chainActive.Tip()) {
2013-03-09 12:02:57 -05:00
boost::this_thread::interruption_point();
2014-05-23 18:04:09 +02:00
uiInterface.ShowProgress(_("Verifying blocks..."), std::max(1, std::min(99, 100 - (int)(((double)(chainActive.Height() - pindex->nHeight)) / (double)nCheckDepth * 50))));
pindex = chainActive.Next(pindex);
CBlock block;
if (!ReadBlockFromDisk(block, pindex, chainparams.GetConsensus()))
return error("VerifyDB(): *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
if (!ConnectBlock(block, state, pindex, coins, chainparams))
return error("VerifyDB(): *** found unconnectable block at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
}
}
LogPrintf("[DONE].\n");
LogPrintf("No coin database inconsistencies in last %i blocks (%i transactions)\n", chainActive.Height() - pindexState->nHeight, nGoodTransactions);
return true;
}
bool RewindBlockIndex(const CChainParams& params)
{
LOCK(cs_main);
int nHeight = 1;
while (nHeight <= chainActive.Height()) {
if (IsWitnessEnabled(chainActive[nHeight - 1], params.GetConsensus()) && !(chainActive[nHeight]->nStatus & BLOCK_OPT_WITNESS)) {
break;
}
nHeight++;
}
// nHeight is now the height of the first insufficiently-validated block, or tipheight + 1
CValidationState state;
CBlockIndex* pindex = chainActive.Tip();
while (chainActive.Height() >= nHeight) {
if (fPruneMode && !(chainActive.Tip()->nStatus & BLOCK_HAVE_DATA)) {
// If pruning, don't try rewinding past the HAVE_DATA point;
// since older blocks can't be served anyway, there's
// no need to walk further, and trying to DisconnectTip()
// will fail (and require a needless reindex/redownload
// of the blockchain).
break;
}
if (!DisconnectTip(state, params, true)) {
return error("RewindBlockIndex: unable to disconnect block at height %i", pindex->nHeight);
}
// Occasionally flush state to disk.
if (!FlushStateToDisk(state, FLUSH_STATE_PERIODIC))
return false;
}
// Reduce validity flag and have-data flags.
// We do this after actual disconnecting, otherwise we'll end up writing the lack of data
// to disk before writing the chainstate, resulting in a failure to continue if interrupted.
for (BlockMap::iterator it = mapBlockIndex.begin(); it != mapBlockIndex.end(); it++) {
CBlockIndex* pindexIter = it->second;
// Note: If we encounter an insufficiently validated block that
// is on chainActive, it must be because we are a pruning node, and
// this block or some successor doesn't HAVE_DATA, so we were unable to
// rewind all the way. Blocks remaining on chainActive at this point
// must not have their validity reduced.
if (IsWitnessEnabled(pindexIter->pprev, params.GetConsensus()) && !(pindexIter->nStatus & BLOCK_OPT_WITNESS) && !chainActive.Contains(pindexIter)) {
// Reduce validity
pindexIter->nStatus = std::min<unsigned int>(pindexIter->nStatus & BLOCK_VALID_MASK, BLOCK_VALID_TREE) | (pindexIter->nStatus & ~BLOCK_VALID_MASK);
// Remove have-data flags.
pindexIter->nStatus &= ~(BLOCK_HAVE_DATA | BLOCK_HAVE_UNDO);
// Remove storage location.
pindexIter->nFile = 0;
pindexIter->nDataPos = 0;
pindexIter->nUndoPos = 0;
// Remove various other things
pindexIter->nTx = 0;
pindexIter->nChainTx = 0;
pindexIter->nSequenceId = 0;
// Make sure it gets written.
setDirtyBlockIndex.insert(pindexIter);
// Update indexes
setBlockIndexCandidates.erase(pindexIter);
std::pair<std::multimap<CBlockIndex*, CBlockIndex*>::iterator, std::multimap<CBlockIndex*, CBlockIndex*>::iterator> ret = mapBlocksUnlinked.equal_range(pindexIter->pprev);
while (ret.first != ret.second) {
if (ret.first->second == pindexIter) {
mapBlocksUnlinked.erase(ret.first++);
} else {
++ret.first;
}
}
} else if (pindexIter->IsValid(BLOCK_VALID_TRANSACTIONS) && pindexIter->nChainTx) {
setBlockIndexCandidates.insert(pindexIter);
}
}
PruneBlockIndexCandidates();
CheckBlockIndex(params.GetConsensus());
if (!FlushStateToDisk(state, FLUSH_STATE_ALWAYS)) {
return false;
}
return true;
}
// May NOT be used after any connections are up as much
// of the peer-processing logic assumes a consistent
// block index state
void UnloadBlockIndex()
{
LOCK(cs_main);
setBlockIndexCandidates.clear();
chainActive.SetTip(NULL);
pindexBestInvalid = NULL;
pindexBestHeader = NULL;
mempool.clear();
mapOrphanTransactions.clear();
mapOrphanTransactionsByPrev.clear();
mapBlocksUnlinked.clear();
vinfoBlockFile.clear();
nLastBlockFile = 0;
nBlockSequenceId = 1;
setDirtyBlockIndex.clear();
setDirtyFileInfo.clear();
versionbitscache.Clear();
for (int b = 0; b < VERSIONBITS_NUM_BITS; b++) {
warningcache[b].clear();
}
BOOST_FOREACH(BlockMap::value_type& entry, mapBlockIndex) {
delete entry.second;
}
mapBlockIndex.clear();
fHavePruned = false;
}
bool LoadBlockIndex(const CChainParams& chainparams)
{
// Load block index from databases
if (!fReindex && !LoadBlockIndexDB(chainparams))
return false;
return true;
}
bool InitBlockIndex(const CChainParams& chainparams)
{
LOCK(cs_main);
// Check whether we're already initialized
if (chainActive.Genesis() != NULL)
return true;
// Use the provided setting for -txindex in the new database
fTxIndex = GetBoolArg("-txindex", DEFAULT_TXINDEX);
pblocktree->WriteFlag("txindex", fTxIndex);
LogPrintf("Initializing databases...\n");
// Only add the genesis block if not reindexing (in which case we reuse the one already on disk)
if (!fReindex) {
try {
CBlock &block = const_cast<CBlock&>(chainparams.GenesisBlock());
// Start new block file
unsigned int nBlockSize = ::GetSerializeSize(block, SER_DISK, CLIENT_VERSION);
CDiskBlockPos blockPos;
CValidationState state;
2014-06-28 23:36:06 +02:00
if (!FindBlockPos(state, blockPos, nBlockSize+8, 0, block.GetBlockTime()))
return error("LoadBlockIndex(): FindBlockPos failed");
if (!WriteBlockToDisk(block, blockPos, chainparams.MessageStart()))
return error("LoadBlockIndex(): writing genesis block to disk failed");
CBlockIndex *pindex = AddToBlockIndex(block);
if (!ReceivedBlockTransactions(block, state, pindex, blockPos))
return error("LoadBlockIndex(): genesis block not accepted");
// Force a chainstate write so that when we VerifyDB in a moment, it doesn't check stale data
2014-11-14 18:19:26 +01:00
return FlushStateToDisk(state, FLUSH_STATE_ALWAYS);
} catch (const std::runtime_error& e) {
return error("LoadBlockIndex(): failed to initialize block database: %s", e.what());
}
}
return true;
}
bool LoadExternalBlockFile(const CChainParams& chainparams, FILE* fileIn, CDiskBlockPos *dbp)
{
// Map of disk positions for blocks with unknown parent (only used for reindex)
static std::multimap<uint256, CDiskBlockPos> mapBlocksUnknownParent;
int64_t nStart = GetTimeMillis();
int nLoaded = 0;
2013-01-29 01:44:19 +01:00
try {
// This takes over fileIn and calls fclose() on it in the CBufferedFile destructor
CBufferedFile blkdat(fileIn, 2*MAX_BLOCK_SERIALIZED_SIZE, MAX_BLOCK_SERIALIZED_SIZE+8, SER_DISK, CLIENT_VERSION);
uint64_t nRewind = blkdat.GetPos();
while (!blkdat.eof()) {
boost::this_thread::interruption_point();
blkdat.SetPos(nRewind);
nRewind++; // start one byte further next time, in case of failure
blkdat.SetLimit(); // remove former limit
unsigned int nSize = 0;
try {
// locate a header
unsigned char buf[CMessageHeader::MESSAGE_START_SIZE];
blkdat.FindByte(chainparams.MessageStart()[0]);
nRewind = blkdat.GetPos()+1;
blkdat >> FLATDATA(buf);
if (memcmp(buf, chainparams.MessageStart(), CMessageHeader::MESSAGE_START_SIZE))
continue;
// read size
blkdat >> nSize;
if (nSize < 80 || nSize > MAX_BLOCK_SERIALIZED_SIZE)
continue;
} catch (const std::exception&) {
// no valid block header found; don't complain
break;
}
try {
// read block
uint64_t nBlockPos = blkdat.GetPos();
if (dbp)
dbp->nPos = nBlockPos;
blkdat.SetLimit(nBlockPos + nSize);
blkdat.SetPos(nBlockPos);
CBlock block;
blkdat >> block;
nRewind = blkdat.GetPos();
// detect out of order blocks, and store them for later
uint256 hash = block.GetHash();
if (hash != chainparams.GetConsensus().hashGenesisBlock && mapBlockIndex.find(block.hashPrevBlock) == mapBlockIndex.end()) {
LogPrint("reindex", "%s: Out of order block %s, parent %s not known\n", __func__, hash.ToString(),
block.hashPrevBlock.ToString());
if (dbp)
mapBlocksUnknownParent.insert(std::make_pair(block.hashPrevBlock, *dbp));
continue;
}
// process in case the block isn't known yet
if (mapBlockIndex.count(hash) == 0 || (mapBlockIndex[hash]->nStatus & BLOCK_HAVE_DATA) == 0) {
LOCK(cs_main);
CValidationState state;
if (AcceptBlock(block, state, chainparams, NULL, true, dbp, NULL))
nLoaded++;
if (state.IsError())
break;
} else if (hash != chainparams.GetConsensus().hashGenesisBlock && mapBlockIndex[hash]->nHeight % 1000 == 0) {
LogPrint("reindex", "Block Import: already had block %s at height %d\n", hash.ToString(), mapBlockIndex[hash]->nHeight);
}
2016-04-28 16:18:45 +02:00
// Activate the genesis block so normal node progress can continue
if (hash == chainparams.GetConsensus().hashGenesisBlock) {
CValidationState state;
if (!ActivateBestChain(state, chainparams)) {
break;
}
}
2016-04-28 16:18:45 +02:00
NotifyHeaderTip();
// Recursively process earlier encountered successors of this block
deque<uint256> queue;
queue.push_back(hash);
while (!queue.empty()) {
uint256 head = queue.front();
queue.pop_front();
std::pair<std::multimap<uint256, CDiskBlockPos>::iterator, std::multimap<uint256, CDiskBlockPos>::iterator> range = mapBlocksUnknownParent.equal_range(head);
while (range.first != range.second) {
std::multimap<uint256, CDiskBlockPos>::iterator it = range.first;
if (ReadBlockFromDisk(block, it->second, chainparams.GetConsensus()))
{
LogPrint("reindex", "%s: Processing out of order child %s of %s\n", __func__, block.GetHash().ToString(),
head.ToString());
LOCK(cs_main);
CValidationState dummy;
if (AcceptBlock(block, dummy, chainparams, NULL, true, &it->second, NULL))
{
nLoaded++;
queue.push_back(block.GetHash());
}
}
range.first++;
mapBlocksUnknownParent.erase(it);
2016-04-28 16:18:45 +02:00
NotifyHeaderTip();
}
}
} catch (const std::exception& e) {
LogPrintf("%s: Deserialize or I/O error - %s\n", __func__, e.what());
}
}
} catch (const std::runtime_error& e) {
AbortNode(std::string("System error: ") + e.what());
}
if (nLoaded > 0)
LogPrintf("Loaded %i blocks from external file in %dms\n", nLoaded, GetTimeMillis() - nStart);
return nLoaded > 0;
}
void static CheckBlockIndex(const Consensus::Params& consensusParams)
{
if (!fCheckBlockIndex) {
return;
}
LOCK(cs_main);
// During a reindex, we read the genesis block and call CheckBlockIndex before ActivateBestChain,
// so we have the genesis block in mapBlockIndex but no active chain. (A few of the tests when
// iterating the block tree require that chainActive has been initialized.)
if (chainActive.Height() < 0) {
assert(mapBlockIndex.size() <= 1);
return;
}
// Build forward-pointing map of the entire block tree.
std::multimap<CBlockIndex*,CBlockIndex*> forward;
for (BlockMap::iterator it = mapBlockIndex.begin(); it != mapBlockIndex.end(); it++) {
forward.insert(std::make_pair(it->second->pprev, it->second));
}
assert(forward.size() == mapBlockIndex.size());
std::pair<std::multimap<CBlockIndex*,CBlockIndex*>::iterator,std::multimap<CBlockIndex*,CBlockIndex*>::iterator> rangeGenesis = forward.equal_range(NULL);
CBlockIndex *pindex = rangeGenesis.first->second;
rangeGenesis.first++;
assert(rangeGenesis.first == rangeGenesis.second); // There is only one index entry with parent NULL.
// Iterate over the entire block tree, using depth-first search.
// Along the way, remember whether there are blocks on the path from genesis
// block being explored which are the first to have certain properties.
size_t nNodes = 0;
int nHeight = 0;
CBlockIndex* pindexFirstInvalid = NULL; // Oldest ancestor of pindex which is invalid.
CBlockIndex* pindexFirstMissing = NULL; // Oldest ancestor of pindex which does not have BLOCK_HAVE_DATA.
CBlockIndex* pindexFirstNeverProcessed = NULL; // Oldest ancestor of pindex for which nTx == 0.
CBlockIndex* pindexFirstNotTreeValid = NULL; // Oldest ancestor of pindex which does not have BLOCK_VALID_TREE (regardless of being valid or not).
CBlockIndex* pindexFirstNotTransactionsValid = NULL; // Oldest ancestor of pindex which does not have BLOCK_VALID_TRANSACTIONS (regardless of being valid or not).
CBlockIndex* pindexFirstNotChainValid = NULL; // Oldest ancestor of pindex which does not have BLOCK_VALID_CHAIN (regardless of being valid or not).
CBlockIndex* pindexFirstNotScriptsValid = NULL; // Oldest ancestor of pindex which does not have BLOCK_VALID_SCRIPTS (regardless of being valid or not).
while (pindex != NULL) {
nNodes++;
if (pindexFirstInvalid == NULL && pindex->nStatus & BLOCK_FAILED_VALID) pindexFirstInvalid = pindex;
if (pindexFirstMissing == NULL && !(pindex->nStatus & BLOCK_HAVE_DATA)) pindexFirstMissing = pindex;
if (pindexFirstNeverProcessed == NULL && pindex->nTx == 0) pindexFirstNeverProcessed = pindex;
if (pindex->pprev != NULL && pindexFirstNotTreeValid == NULL && (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_TREE) pindexFirstNotTreeValid = pindex;
if (pindex->pprev != NULL && pindexFirstNotTransactionsValid == NULL && (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_TRANSACTIONS) pindexFirstNotTransactionsValid = pindex;
if (pindex->pprev != NULL && pindexFirstNotChainValid == NULL && (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_CHAIN) pindexFirstNotChainValid = pindex;
if (pindex->pprev != NULL && pindexFirstNotScriptsValid == NULL && (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_SCRIPTS) pindexFirstNotScriptsValid = pindex;
// Begin: actual consistency checks.
if (pindex->pprev == NULL) {
// Genesis block checks.
assert(pindex->GetBlockHash() == consensusParams.hashGenesisBlock); // Genesis block's hash must match.
assert(pindex == chainActive.Genesis()); // The current active chain's genesis block must be this block.
}
if (pindex->nChainTx == 0) assert(pindex->nSequenceId <= 0); // nSequenceId can't be set positive for blocks that aren't linked (negative is used for preciousblock)
// VALID_TRANSACTIONS is equivalent to nTx > 0 for all nodes (whether or not pruning has occurred).
// HAVE_DATA is only equivalent to nTx > 0 (or VALID_TRANSACTIONS) if no pruning has occurred.
if (!fHavePruned) {
// If we've never pruned, then HAVE_DATA should be equivalent to nTx > 0
assert(!(pindex->nStatus & BLOCK_HAVE_DATA) == (pindex->nTx == 0));
assert(pindexFirstMissing == pindexFirstNeverProcessed);
} else {
// If we have pruned, then we can only say that HAVE_DATA implies nTx > 0
if (pindex->nStatus & BLOCK_HAVE_DATA) assert(pindex->nTx > 0);
}
if (pindex->nStatus & BLOCK_HAVE_UNDO) assert(pindex->nStatus & BLOCK_HAVE_DATA);
assert(((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_TRANSACTIONS) == (pindex->nTx > 0)); // This is pruning-independent.
// All parents having had data (at some point) is equivalent to all parents being VALID_TRANSACTIONS, which is equivalent to nChainTx being set.
assert((pindexFirstNeverProcessed != NULL) == (pindex->nChainTx == 0)); // nChainTx != 0 is used to signal that all parent blocks have been processed (but may have been pruned).
assert((pindexFirstNotTransactionsValid != NULL) == (pindex->nChainTx == 0));
assert(pindex->nHeight == nHeight); // nHeight must be consistent.
assert(pindex->pprev == NULL || pindex->nChainWork >= pindex->pprev->nChainWork); // For every block except the genesis block, the chainwork must be larger than the parent's.
assert(nHeight < 2 || (pindex->pskip && (pindex->pskip->nHeight < nHeight))); // The pskip pointer must point back for all but the first 2 blocks.
assert(pindexFirstNotTreeValid == NULL); // All mapBlockIndex entries must at least be TREE valid
if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_TREE) assert(pindexFirstNotTreeValid == NULL); // TREE valid implies all parents are TREE valid
if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_CHAIN) assert(pindexFirstNotChainValid == NULL); // CHAIN valid implies all parents are CHAIN valid
if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_SCRIPTS) assert(pindexFirstNotScriptsValid == NULL); // SCRIPTS valid implies all parents are SCRIPTS valid
if (pindexFirstInvalid == NULL) {
// Checks for not-invalid blocks.
assert((pindex->nStatus & BLOCK_FAILED_MASK) == 0); // The failed mask cannot be set for blocks without invalid parents.
}
if (!CBlockIndexWorkComparator()(pindex, chainActive.Tip()) && pindexFirstNeverProcessed == NULL) {
if (pindexFirstInvalid == NULL) {
// If this block sorts at least as good as the current tip and
// is valid and we have all data for its parents, it must be in
// setBlockIndexCandidates. chainActive.Tip() must also be there
// even if some data has been pruned.
if (pindexFirstMissing == NULL || pindex == chainActive.Tip()) {
assert(setBlockIndexCandidates.count(pindex));
}
// If some parent is missing, then it could be that this block was in
// setBlockIndexCandidates but had to be removed because of the missing data.
// In this case it must be in mapBlocksUnlinked -- see test below.
}
} else { // If this block sorts worse than the current tip or some ancestor's block has never been seen, it cannot be in setBlockIndexCandidates.
assert(setBlockIndexCandidates.count(pindex) == 0);
}
// Check whether this block is in mapBlocksUnlinked.
std::pair<std::multimap<CBlockIndex*,CBlockIndex*>::iterator,std::multimap<CBlockIndex*,CBlockIndex*>::iterator> rangeUnlinked = mapBlocksUnlinked.equal_range(pindex->pprev);
bool foundInUnlinked = false;
while (rangeUnlinked.first != rangeUnlinked.second) {
assert(rangeUnlinked.first->first == pindex->pprev);
if (rangeUnlinked.first->second == pindex) {
foundInUnlinked = true;
break;
}
rangeUnlinked.first++;
}
if (pindex->pprev && (pindex->nStatus & BLOCK_HAVE_DATA) && pindexFirstNeverProcessed != NULL && pindexFirstInvalid == NULL) {
// If this block has block data available, some parent was never received, and has no invalid parents, it must be in mapBlocksUnlinked.
assert(foundInUnlinked);
}
if (!(pindex->nStatus & BLOCK_HAVE_DATA)) assert(!foundInUnlinked); // Can't be in mapBlocksUnlinked if we don't HAVE_DATA
if (pindexFirstMissing == NULL) assert(!foundInUnlinked); // We aren't missing data for any parent -- cannot be in mapBlocksUnlinked.
if (pindex->pprev && (pindex->nStatus & BLOCK_HAVE_DATA) && pindexFirstNeverProcessed == NULL && pindexFirstMissing != NULL) {
// We HAVE_DATA for this block, have received data for all parents at some point, but we're currently missing data for some parent.
assert(fHavePruned); // We must have pruned.
// This block may have entered mapBlocksUnlinked if:
// - it has a descendant that at some point had more work than the
// tip, and
// - we tried switching to that descendant but were missing
// data for some intermediate block between chainActive and the
// tip.
// So if this block is itself better than chainActive.Tip() and it wasn't in
// setBlockIndexCandidates, then it must be in mapBlocksUnlinked.
if (!CBlockIndexWorkComparator()(pindex, chainActive.Tip()) && setBlockIndexCandidates.count(pindex) == 0) {
if (pindexFirstInvalid == NULL) {
assert(foundInUnlinked);
}
}
}
// assert(pindex->GetBlockHash() == pindex->GetBlockHeader().GetHash()); // Perhaps too slow
// End: actual consistency checks.
// Try descending into the first subnode.
std::pair<std::multimap<CBlockIndex*,CBlockIndex*>::iterator,std::multimap<CBlockIndex*,CBlockIndex*>::iterator> range = forward.equal_range(pindex);
if (range.first != range.second) {
// A subnode was found.
pindex = range.first->second;
nHeight++;
continue;
}
// This is a leaf node.
// Move upwards until we reach a node of which we have not yet visited the last child.
while (pindex) {
// We are going to either move to a parent or a sibling of pindex.
// If pindex was the first with a certain property, unset the corresponding variable.
if (pindex == pindexFirstInvalid) pindexFirstInvalid = NULL;
if (pindex == pindexFirstMissing) pindexFirstMissing = NULL;
if (pindex == pindexFirstNeverProcessed) pindexFirstNeverProcessed = NULL;
if (pindex == pindexFirstNotTreeValid) pindexFirstNotTreeValid = NULL;
if (pindex == pindexFirstNotTransactionsValid) pindexFirstNotTransactionsValid = NULL;
if (pindex == pindexFirstNotChainValid) pindexFirstNotChainValid = NULL;
if (pindex == pindexFirstNotScriptsValid) pindexFirstNotScriptsValid = NULL;
// Find our parent.
CBlockIndex* pindexPar = pindex->pprev;
// Find which child we just visited.
std::pair<std::multimap<CBlockIndex*,CBlockIndex*>::iterator,std::multimap<CBlockIndex*,CBlockIndex*>::iterator> rangePar = forward.equal_range(pindexPar);
while (rangePar.first->second != pindex) {
assert(rangePar.first != rangePar.second); // Our parent must have at least the node we're coming from as child.
rangePar.first++;
}
// Proceed to the next one.
rangePar.first++;
if (rangePar.first != rangePar.second) {
// Move to the sibling.
pindex = rangePar.first->second;
break;
} else {
// Move up further.
pindex = pindexPar;
nHeight--;
continue;
}
}
}
// Check that we actually traversed the entire map.
assert(nNodes == forward.size());
}
2015-05-31 15:36:44 +02:00
std::string GetWarnings(const std::string& strFor)
{
string strStatusBar;
string strRPC;
string strGUI;
const string uiAlertSeperator = "<hr />";
if (!CLIENT_VERSION_IS_RELEASE) {
strStatusBar = "This is a pre-release test build - use at your own risk - do not use for mining or merchant applications";
strGUI = _("This is a pre-release test build - use at your own risk - do not use for mining or merchant applications");
}
if (GetBoolArg("-testsafemode", DEFAULT_TESTSAFEMODE))
strStatusBar = strRPC = strGUI = "testsafemode enabled";
// Misc warnings like out of disk space and clock is wrong
if (strMiscWarning != "")
{
strStatusBar = strMiscWarning;
strGUI += (strGUI.empty() ? "" : uiAlertSeperator) + strMiscWarning;
}
if (fLargeWorkForkFound)
{
strStatusBar = strRPC = "Warning: The network does not appear to fully agree! Some miners appear to be experiencing issues.";
2016-09-10 11:41:01 -07:00
strGUI += (strGUI.empty() ? "" : uiAlertSeperator) + _("Warning: The network does not appear to fully agree! Some miners appear to be experiencing issues.");
}
else if (fLargeWorkInvalidChainFound)
{
strStatusBar = strRPC = "Warning: We do not appear to fully agree with our peers! You may need to upgrade, or other nodes may need to upgrade.";
2016-09-10 11:41:01 -07:00
strGUI += (strGUI.empty() ? "" : uiAlertSeperator) + _("Warning: We do not appear to fully agree with our peers! You may need to upgrade, or other nodes may need to upgrade.");
}
if (strFor == "gui")
return strGUI;
else if (strFor == "statusbar")
return strStatusBar;
else if (strFor == "rpc")
return strRPC;
assert(!"GetWarnings(): invalid parameter");
return "error";
}
//////////////////////////////////////////////////////////////////////////////
//
// blockchain -> download logic notification
//
PeerLogicValidation::PeerLogicValidation(CConnman* connmanIn) : connman(connmanIn) {
// Initialize global variables that cannot be constructed at startup.
recentRejects.reset(new CRollingBloomFilter(120000, 0.000001));
}
void PeerLogicValidation::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) {
const int nNewHeight = pindexNew->nHeight;
connman->SetBestHeight(nNewHeight);
if (!fInitialDownload) {
// Find the hashes of all blocks that weren't previously in the best chain.
std::vector<uint256> vHashes;
const CBlockIndex *pindexToAnnounce = pindexNew;
while (pindexToAnnounce != pindexFork) {
vHashes.push_back(pindexToAnnounce->GetBlockHash());
pindexToAnnounce = pindexToAnnounce->pprev;
if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) {
// Limit announcements in case of a huge reorganization.
// Rely on the peer's synchronization mechanism in that case.
break;
}
}
// Relay inventory, but don't relay old inventory during initial block download.
connman->ForEachNode([nNewHeight, &vHashes](CNode* pnode) {
if (nNewHeight > (pnode->nStartingHeight != -1 ? pnode->nStartingHeight - 2000 : 0)) {
BOOST_REVERSE_FOREACH(const uint256& hash, vHashes) {
pnode->PushBlockHash(hash);
}
}
});
}
nTimeBestReceived = GetTime();
}
void PeerLogicValidation::BlockChecked(const CBlock& block, const CValidationState& state) {
LOCK(cs_main);
const uint256 hash(block.GetHash());
std::map<uint256, std::pair<NodeId, bool>>::iterator it = mapBlockSource.find(hash);
int nDoS = 0;
if (state.IsInvalid(nDoS)) {
if (it != mapBlockSource.end() && State(it->second.first)) {
assert (state.GetRejectCode() < REJECT_INTERNAL); // Blocks are never rejected with internal reject codes
CBlockReject reject = {(unsigned char)state.GetRejectCode(), state.GetRejectReason().substr(0, MAX_REJECT_MESSAGE_LENGTH), hash};
State(it->second.first)->rejects.push_back(reject);
if (nDoS > 0 && it->second.second)
Misbehaving(it->second.first, nDoS);
}
}
if (it != mapBlockSource.end())
mapBlockSource.erase(it);
}
//////////////////////////////////////////////////////////////////////////////
//
// Messages
//
bool static AlreadyHave(const CInv& inv) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
{
switch (inv.type)
{
case MSG_TX:
case MSG_WITNESS_TX:
{
assert(recentRejects);
if (chainActive.Tip()->GetBlockHash() != hashRecentRejectsChainTip)
{
// If the chain tip has changed previously rejected transactions
// might be now valid, e.g. due to a nLockTime'd tx becoming valid,
// or a double-spend. Reset the rejects filter and give those
// txs a second chance.
hashRecentRejectsChainTip = chainActive.Tip()->GetBlockHash();
recentRejects->reset();
}
// Use pcoinsTip->HaveCoinsInCache as a quick approximation to exclude
// requesting or processing some txs which have already been included in a block
return recentRejects->contains(inv.hash) ||
mempool.exists(inv.hash) ||
mapOrphanTransactions.count(inv.hash) ||
pcoinsTip->HaveCoinsInCache(inv.hash);
}
case MSG_BLOCK:
case MSG_WITNESS_BLOCK:
return mapBlockIndex.count(inv.hash);
}
// Don't know what it is, just say we already got one
return true;
}
static void RelayTransaction(const CTransaction& tx, CConnman& connman)
{
CInv inv(MSG_TX, tx.GetHash());
connman.ForEachNode([&inv](CNode* pnode)
{
pnode->PushInventory(inv);
});
}
static void RelayAddress(const CAddress& addr, bool fReachable, CConnman& connman)
{
int nRelayNodes = fReachable ? 2 : 1; // limited relaying of addresses outside our network(s)
// Relay to a limited number of other nodes
// Use deterministic randomness to send to the same nodes for 24 hours
// at a time so the addrKnowns of the chosen nodes prevent repeats
uint64_t hashAddr = addr.GetHash();
std::multimap<uint64_t, CNode*> mapMix;
const CSipHasher hasher = connman.GetDeterministicRandomizer(RANDOMIZER_ID_ADDRESS_RELAY).Write(hashAddr << 32).Write((GetTime() + hashAddr) / (24*60*60));
FastRandomContext insecure_rand;
auto sortfunc = [&mapMix, &hasher](CNode* pnode) {
if (pnode->nVersion >= CADDR_TIME_VERSION) {
uint64_t hashKey = CSipHasher(hasher).Write(pnode->id).Finalize();
mapMix.emplace(hashKey, pnode);
}
};
auto pushfunc = [&addr, &mapMix, &nRelayNodes, &insecure_rand] {
for (auto mi = mapMix.begin(); mi != mapMix.end() && nRelayNodes-- > 0; ++mi)
mi->second->PushAddress(addr, insecure_rand);
};
connman.ForEachNodeThen(std::move(sortfunc), std::move(pushfunc));
}
void static ProcessGetData(CNode* pfrom, const Consensus::Params& consensusParams, CConnman& connman)
{
std::deque<CInv>::iterator it = pfrom->vRecvGetData.begin();
unsigned int nMaxSendBufferSize = connman.GetSendBufferSize();
vector<CInv> vNotFound;
LOCK(cs_main);
while (it != pfrom->vRecvGetData.end()) {
// Don't bother if send buffer is too full to respond anyway
if (pfrom->nSendSize >= nMaxSendBufferSize)
break;
const CInv &inv = *it;
{
2013-03-09 12:02:57 -05:00
boost::this_thread::interruption_point();
it++;
if (inv.type == MSG_BLOCK || inv.type == MSG_FILTERED_BLOCK || inv.type == MSG_CMPCT_BLOCK || inv.type == MSG_WITNESS_BLOCK)
{
bool send = false;
BlockMap::iterator mi = mapBlockIndex.find(inv.hash);
if (mi != mapBlockIndex.end())
{
if (chainActive.Contains(mi->second)) {
2014-02-10 16:31:06 +01:00
send = true;
} else {
static const int nOneMonth = 30 * 24 * 60 * 60;
// To prevent fingerprinting attacks, only send blocks outside of the active
// chain if they are valid, and no more than a month older (both in time, and in
// best equivalent proof of work) than the best header chain we know about.
send = mi->second->IsValid(BLOCK_VALID_SCRIPTS) && (pindexBestHeader != NULL) &&
(pindexBestHeader->GetBlockTime() - mi->second->GetBlockTime() < nOneMonth) &&
(GetBlockProofEquivalentTime(*pindexBestHeader, *mi->second, *pindexBestHeader, consensusParams) < nOneMonth);
if (!send) {
LogPrintf("%s: ignoring request from peer=%i for old block that isn't in the main chain\n", __func__, pfrom->GetId());
}
}
}
// disconnect node in case we have reached the outbound limit for serving historical blocks
// never disconnect whitelisted nodes
static const int nOneWeek = 7 * 24 * 60 * 60; // assume > 1 week = historical
if (send && connman.OutboundTargetReached(true) && ( ((pindexBestHeader != NULL) && (pindexBestHeader->GetBlockTime() - mi->second->GetBlockTime() > nOneWeek)) || inv.type == MSG_FILTERED_BLOCK) && !pfrom->fWhitelisted)
{
LogPrint("net", "historical block serving limit reached, disconnect peer=%d\n", pfrom->GetId());
//disconnect node
pfrom->fDisconnect = true;
send = false;
}
// Pruned nodes may have deleted the block, so check whether
// it's available before trying to send.
if (send && (mi->second->nStatus & BLOCK_HAVE_DATA))
{
// Send block from disk
CBlock block;
if (!ReadBlockFromDisk(block, (*mi).second, consensusParams))
assert(!"cannot load block from disk");
if (inv.type == MSG_BLOCK)
connman.PushMessageWithFlag(pfrom, SERIALIZE_TRANSACTION_NO_WITNESS, NetMsgType::BLOCK, block);
else if (inv.type == MSG_WITNESS_BLOCK)
connman.PushMessage(pfrom, NetMsgType::BLOCK, block);
else if (inv.type == MSG_FILTERED_BLOCK)
{
bool sendMerkleBlock = false;
CMerkleBlock merkleBlock;
{
LOCK(pfrom->cs_filter);
if (pfrom->pfilter) {
sendMerkleBlock = true;
merkleBlock = CMerkleBlock(block, *pfrom->pfilter);
}
}
if (sendMerkleBlock) {
connman.PushMessage(pfrom, NetMsgType::MERKLEBLOCK, merkleBlock);
// CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see
// This avoids hurting performance by pointlessly requiring a round-trip
2015-04-28 14:48:28 +00:00
// Note that there is currently no way for a node to request any single transactions we didn't send here -
// they must either disconnect and retry or request the full block.
// Thus, the protocol spec specified allows for us to provide duplicate txn here,
// however we MUST always provide at least what the remote peer needs
typedef std::pair<unsigned int, uint256> PairType;
BOOST_FOREACH(PairType& pair, merkleBlock.vMatchedTxn)
connman.PushMessageWithFlag(pfrom, SERIALIZE_TRANSACTION_NO_WITNESS, NetMsgType::TX, block.vtx[pair.first]);
}
// else
// no response
}
else if (inv.type == MSG_CMPCT_BLOCK)
{
// If a peer is asking for old blocks, we're almost guaranteed
// they wont have a useful mempool to match against a compact block,
2016-08-13 11:21:13 -06:00
// and we don't feel like constructing the object for them, so
// instead we respond with the full, non-compact block.
bool fPeerWantsWitness = State(pfrom->GetId())->fWantsCmpctWitness;
if (CanDirectFetch(consensusParams) && mi->second->nHeight >= chainActive.Height() - MAX_CMPCTBLOCK_DEPTH) {
CBlockHeaderAndShortTxIDs cmpctblock(block, fPeerWantsWitness);
connman.PushMessageWithFlag(pfrom, fPeerWantsWitness ? 0 : SERIALIZE_TRANSACTION_NO_WITNESS, NetMsgType::CMPCTBLOCK, cmpctblock);
} else
connman.PushMessageWithFlag(pfrom, fPeerWantsWitness ? 0 : SERIALIZE_TRANSACTION_NO_WITNESS, NetMsgType::BLOCK, block);
}
2015-04-28 14:47:17 +00:00
// Trigger the peer node to send a getblocks request for the next batch of inventory
if (inv.hash == pfrom->hashContinue)
{
// Bypass PushInventory, this must send even if redundant,
// and we want it right after the last block so they don't
// wait for other stuff first.
vector<CInv> vInv;
vInv.push_back(CInv(MSG_BLOCK, chainActive.Tip()->GetBlockHash()));
connman.PushMessage(pfrom, NetMsgType::INV, vInv);
pfrom->hashContinue.SetNull();
}
}
}
else if (inv.type == MSG_TX || inv.type == MSG_WITNESS_TX)
{
// Send stream from relay memory
bool push = false;
auto mi = mapRelay.find(inv.hash);
if (mi != mapRelay.end()) {
connman.PushMessageWithFlag(pfrom, inv.type == MSG_TX ? SERIALIZE_TRANSACTION_NO_WITNESS : 0, NetMsgType::TX, *mi->second);
push = true;
} else if (pfrom->timeLastMempoolReq) {
auto txinfo = mempool.info(inv.hash);
// To protect privacy, do not answer getdata using the mempool when
// that TX couldn't have been INVed in reply to a MEMPOOL request.
if (txinfo.tx && txinfo.nTime <= pfrom->timeLastMempoolReq) {
connman.PushMessageWithFlag(pfrom, inv.type == MSG_TX ? SERIALIZE_TRANSACTION_NO_WITNESS : 0, NetMsgType::TX, *txinfo.tx);
push = true;
}
}
if (!push) {
vNotFound.push_back(inv);
}
}
// Track requests for our stuff.
GetMainSignals().Inventory(inv.hash);
if (inv.type == MSG_BLOCK || inv.type == MSG_FILTERED_BLOCK || inv.type == MSG_CMPCT_BLOCK || inv.type == MSG_WITNESS_BLOCK)
break;
}
}
pfrom->vRecvGetData.erase(pfrom->vRecvGetData.begin(), it);
if (!vNotFound.empty()) {
// Let the peer know that we didn't find what it asked for, so it doesn't
// have to wait around forever. Currently only SPV clients actually care
// about this message: it's needed when they are recursively walking the
// dependencies of relevant unconfirmed transactions. SPV clients want to
// do that because they want to know about (and store and rebroadcast and
// risk analyze) the dependencies of transactions relevant to them, without
// having to download the entire memory pool.
connman.PushMessage(pfrom, NetMsgType::NOTFOUND, vNotFound);
}
}
uint32_t GetFetchFlags(CNode* pfrom, CBlockIndex* pprev, const Consensus::Params& chainparams) {
uint32_t nFetchFlags = 0;
if ((pfrom->GetLocalServices() & NODE_WITNESS) && State(pfrom->GetId())->fHaveWitness) {
nFetchFlags |= MSG_WITNESS_FLAG;
}
return nFetchFlags;
}
2016-05-26 14:26:01 -04:00
bool static ProcessMessage(CNode* pfrom, string strCommand, CDataStream& vRecv, int64_t nTimeReceived, const CChainParams& chainparams, CConnman& connman)
{
unsigned int nMaxSendBufferSize = connman.GetSendBufferSize();
LogPrint("net", "received: %s (%u bytes) peer=%d\n", SanitizeString(strCommand), vRecv.size(), pfrom->id);
if (mapArgs.count("-dropmessagestest") && GetRand(atoi(mapArgs["-dropmessagestest"])) == 0)
{
LogPrintf("dropmessagestest DROPPING RECV MESSAGE\n");
return true;
}
if (!(pfrom->GetLocalServices() & NODE_BLOOM) &&
(strCommand == NetMsgType::FILTERLOAD ||
strCommand == NetMsgType::FILTERADD))
{
if (pfrom->nVersion >= NO_BLOOM_VERSION) {
LOCK(cs_main);
Misbehaving(pfrom->GetId(), 100);
return false;
} else {
pfrom->fDisconnect = true;
return false;
}
}
if (strCommand == NetMsgType::VERSION)
{
// Feeler connections exist only to verify if address is online.
if (pfrom->fFeeler) {
assert(pfrom->fInbound == false);
pfrom->fDisconnect = true;
}
// Each connection can only send one version message
if (pfrom->nVersion != 0)
{
connman.PushMessageWithVersion(pfrom, INIT_PROTO_VERSION, NetMsgType::REJECT, strCommand, REJECT_DUPLICATE, string("Duplicate version message"));
LOCK(cs_main);
2013-11-18 01:25:17 +01:00
Misbehaving(pfrom->GetId(), 1);
return false;
}
int64_t nTime;
CAddress addrMe;
CAddress addrFrom;
uint64_t nNonce = 1;
uint64_t nServiceInt;
vRecv >> pfrom->nVersion >> nServiceInt >> nTime >> addrMe;
pfrom->nServices = ServiceFlags(nServiceInt);
if (!pfrom->fInbound)
{
connman.SetServices(pfrom->addr, pfrom->nServices);
}
if (pfrom->nServicesExpected & ~pfrom->nServices)
{
LogPrint("net", "peer=%d does not offer the expected services (%08x offered, %08x expected); disconnecting\n", pfrom->id, pfrom->nServices, pfrom->nServicesExpected);
connman.PushMessageWithVersion(pfrom, INIT_PROTO_VERSION, NetMsgType::REJECT, strCommand, REJECT_NONSTANDARD,
strprintf("Expected to offer services %08x", pfrom->nServicesExpected));
pfrom->fDisconnect = true;
return false;
}
if (pfrom->nVersion < MIN_PEER_PROTO_VERSION)
{
// disconnect from peers older than this proto version
LogPrintf("peer=%d using obsolete version %i; disconnecting\n", pfrom->id, pfrom->nVersion);
connman.PushMessageWithVersion(pfrom, INIT_PROTO_VERSION, NetMsgType::REJECT, strCommand, REJECT_OBSOLETE,
2013-10-28 16:36:11 +10:00
strprintf("Version must be %d or greater", MIN_PEER_PROTO_VERSION));
pfrom->fDisconnect = true;
return false;
}
if (pfrom->nVersion == 10300)
pfrom->nVersion = 300;
if (!vRecv.empty())
vRecv >> addrFrom >> nNonce;
2013-11-26 12:52:21 +01:00
if (!vRecv.empty()) {
vRecv >> LIMITED_STRING(pfrom->strSubVer, MAX_SUBVERSION_LENGTH);
2013-11-26 12:52:21 +01:00
pfrom->cleanSubVer = SanitizeString(pfrom->strSubVer);
}
if (!vRecv.empty()) {
vRecv >> pfrom->nStartingHeight;
}
{
LOCK(pfrom->cs_filter);
if (!vRecv.empty())
vRecv >> pfrom->fRelayTxes; // set to true after we get the first filter* message
else
pfrom->fRelayTxes = true;
}
// Disconnect if we connected to ourself
if (pfrom->fInbound && !connman.CheckIncomingNonce(nNonce))
{
LogPrintf("connected to self at %s, disconnecting\n", pfrom->addr.ToString());
pfrom->fDisconnect = true;
return true;
}
pfrom->addrLocal = addrMe;
if (pfrom->fInbound && addrMe.IsRoutable())
{
SeenLocal(addrMe);
}
2011-01-24 10:42:17 -05:00
// Be shy and don't send version until we hear
if (pfrom->fInbound)
PushNodeVersion(pfrom, connman, GetAdjustedTime());
2011-01-24 10:42:17 -05:00
pfrom->fClient = !(pfrom->nServices & NODE_NETWORK);
if((pfrom->nServices & NODE_WITNESS))
{
LOCK(cs_main);
State(pfrom->GetId())->fHaveWitness = true;
}
2014-10-28 09:33:55 -07:00
// Potentially mark this peer as a preferred download peer.
{
LOCK(cs_main);
2014-10-28 09:33:55 -07:00
UpdatePreferredDownload(pfrom, State(pfrom->GetId()));
}
// Change version
connman.PushMessageWithVersion(pfrom, INIT_PROTO_VERSION, NetMsgType::VERACK);
pfrom->SetSendVersion(min(pfrom->nVersion, PROTOCOL_VERSION));
if (!pfrom->fInbound)
{
// Advertise our address
if (fListen && !IsInitialBlockDownload())
{
CAddress addr = GetLocalAddress(&pfrom->addr, pfrom->GetLocalServices());
FastRandomContext insecure_rand;
2012-02-12 13:45:24 +01:00
if (addr.IsRoutable())
{
LogPrint("net", "ProcessMessages: advertising address %s\n", addr.ToString());
pfrom->PushAddress(addr, insecure_rand);
} else if (IsPeerAddrLocalGood(pfrom)) {
addr.SetIP(pfrom->addrLocal);
LogPrint("net", "ProcessMessages: advertising address %s\n", addr.ToString());
pfrom->PushAddress(addr, insecure_rand);
}
}
// Get recent addresses
if (pfrom->fOneShot || pfrom->nVersion >= CADDR_TIME_VERSION || connman.GetAddressCount() < 1000)
{
connman.PushMessage(pfrom, NetMsgType::GETADDR);
pfrom->fGetAddr = true;
}
connman.MarkAddressGood(pfrom->addr);
}
pfrom->fSuccessfullyConnected = true;
string remoteAddr;
if (fLogIPs)
remoteAddr = ", peeraddr=" + pfrom->addr.ToString();
LogPrintf("receive version message: %s: version %d, blocks=%d, us=%s, peer=%d%s\n",
pfrom->cleanSubVer, pfrom->nVersion,
pfrom->nStartingHeight, addrMe.ToString(), pfrom->id,
remoteAddr);
2014-12-15 11:06:15 +01:00
int64_t nTimeOffset = nTime - GetTime();
pfrom->nTimeOffset = nTimeOffset;
AddTimeData(pfrom->addr, nTimeOffset);
}
else if (pfrom->nVersion == 0)
{
// Must have a version message before anything else
LOCK(cs_main);
2013-11-18 01:25:17 +01:00
Misbehaving(pfrom->GetId(), 1);
return false;
}
else if (strCommand == NetMsgType::VERACK)
{
pfrom->SetRecvVersion(min(pfrom->nVersion, PROTOCOL_VERSION));
// Mark this node as currently connected, so we update its timestamp later.
if (pfrom->fNetworkNode) {
LOCK(cs_main);
State(pfrom->GetId())->fCurrentlyConnected = true;
}
if (pfrom->nVersion >= SENDHEADERS_VERSION) {
// Tell our peer we prefer to receive headers rather than inv's
// We send this to non-NODE NETWORK peers as well, because even
// non-NODE NETWORK peers can announce blocks (such as pruning
// nodes)
connman.PushMessage(pfrom, NetMsgType::SENDHEADERS);
}
if (pfrom->nVersion >= SHORT_IDS_BLOCKS_VERSION) {
// Tell our peer we are willing to provide version 1 or 2 cmpctblocks
// However, we do not request new block announcements using
// cmpctblock messages.
// We send this to non-NODE NETWORK peers as well, because
// they may wish to request compact blocks from us
bool fAnnounceUsingCMPCTBLOCK = false;
uint64_t nCMPCTBLOCKVersion = 2;
if (pfrom->GetLocalServices() & NODE_WITNESS)
connman.PushMessage(pfrom, NetMsgType::SENDCMPCT, fAnnounceUsingCMPCTBLOCK, nCMPCTBLOCKVersion);
nCMPCTBLOCKVersion = 1;
connman.PushMessage(pfrom, NetMsgType::SENDCMPCT, fAnnounceUsingCMPCTBLOCK, nCMPCTBLOCKVersion);
}
}
else if (strCommand == NetMsgType::ADDR)
{
vector<CAddress> vAddr;
vRecv >> vAddr;
// Don't want addr from older versions unless seeding
if (pfrom->nVersion < CADDR_TIME_VERSION && connman.GetAddressCount() > 1000)
return true;
if (vAddr.size() > 1000)
{
LOCK(cs_main);
2013-11-18 01:25:17 +01:00
Misbehaving(pfrom->GetId(), 20);
return error("message addr size() = %u", vAddr.size());
}
// Store the new addresses
vector<CAddress> vAddrOk;
int64_t nNow = GetAdjustedTime();
int64_t nSince = nNow - 10 * 60;
BOOST_FOREACH(CAddress& addr, vAddr)
{
2013-03-09 12:02:57 -05:00
boost::this_thread::interruption_point();
2016-06-13 16:01:21 +02:00
if ((addr.nServices & REQUIRED_SERVICES) != REQUIRED_SERVICES)
continue;
if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60)
addr.nTime = nNow - 5 * 24 * 60 * 60;
pfrom->AddAddressKnown(addr);
bool fReachable = IsReachable(addr);
if (addr.nTime > nSince && !pfrom->fGetAddr && vAddr.size() <= 10 && addr.IsRoutable())
{
// Relay to a limited number of other nodes
RelayAddress(addr, fReachable, connman);
}
// Do not store addresses outside our network
if (fReachable)
vAddrOk.push_back(addr);
}
connman.AddNewAddresses(vAddrOk, pfrom->addr, 2 * 60 * 60);
if (vAddr.size() < 1000)
pfrom->fGetAddr = false;
if (pfrom->fOneShot)
pfrom->fDisconnect = true;
}
else if (strCommand == NetMsgType::SENDHEADERS)
{
LOCK(cs_main);
State(pfrom->GetId())->fPreferHeaders = true;
}
else if (strCommand == NetMsgType::SENDCMPCT)
{
bool fAnnounceUsingCMPCTBLOCK = false;
uint64_t nCMPCTBLOCKVersion = 0;
vRecv >> fAnnounceUsingCMPCTBLOCK >> nCMPCTBLOCKVersion;
if (nCMPCTBLOCKVersion == 1 || ((pfrom->GetLocalServices() & NODE_WITNESS) && nCMPCTBLOCKVersion == 2)) {
LOCK(cs_main);
// fProvidesHeaderAndIDs is used to "lock in" version of compact blocks we send (fWantsCmpctWitness)
if (!State(pfrom->GetId())->fProvidesHeaderAndIDs) {
State(pfrom->GetId())->fProvidesHeaderAndIDs = true;
State(pfrom->GetId())->fWantsCmpctWitness = nCMPCTBLOCKVersion == 2;
}
if (State(pfrom->GetId())->fWantsCmpctWitness == (nCMPCTBLOCKVersion == 2)) // ignore later version announces
State(pfrom->GetId())->fPreferHeaderAndIDs = fAnnounceUsingCMPCTBLOCK;
if (!State(pfrom->GetId())->fSupportsDesiredCmpctVersion) {
if (pfrom->GetLocalServices() & NODE_WITNESS)
State(pfrom->GetId())->fSupportsDesiredCmpctVersion = (nCMPCTBLOCKVersion == 2);
else
State(pfrom->GetId())->fSupportsDesiredCmpctVersion = (nCMPCTBLOCKVersion == 1);
}
}
}
else if (strCommand == NetMsgType::INV)
{
vector<CInv> vInv;
vRecv >> vInv;
if (vInv.size() > MAX_INV_SZ)
{
LOCK(cs_main);
2013-11-18 01:25:17 +01:00
Misbehaving(pfrom->GetId(), 20);
return error("message inv size() = %u", vInv.size());
}
bool fBlocksOnly = !fRelayTxes;
// Allow whitelisted peers to send data other than blocks in blocks only mode if whitelistrelay is true
if (pfrom->fWhitelisted && GetBoolArg("-whitelistrelay", DEFAULT_WHITELISTRELAY))
fBlocksOnly = false;
LOCK(cs_main);
uint32_t nFetchFlags = GetFetchFlags(pfrom, chainActive.Tip(), chainparams.GetConsensus());
std::vector<CInv> vToFetch;
for (unsigned int nInv = 0; nInv < vInv.size(); nInv++)
{
CInv &inv = vInv[nInv];
2013-03-09 12:02:57 -05:00
boost::this_thread::interruption_point();
bool fAlreadyHave = AlreadyHave(inv);
LogPrint("net", "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom->id);
if (inv.type == MSG_TX) {
inv.type |= nFetchFlags;
}
if (inv.type == MSG_BLOCK) {
2014-06-23 00:00:26 +02:00
UpdateBlockAvailability(pfrom->GetId(), inv.hash);
if (!fAlreadyHave && !fImporting && !fReindex && !mapBlocksInFlight.count(inv.hash)) {
2015-04-28 14:48:28 +00:00
// First request the headers preceding the announced block. In the normal fully-synced
// case where a new block is announced that succeeds the current tip (no reorganization),
// there are no such headers.
// Secondly, and only when we are close to being synced, we request the announced block directly,
// to avoid an extra round-trip. Note that we must *first* ask for the headers, so by the
// time the block arrives, the header chain leading up to it is already validated. Not
// doing this will result in the received block being rejected as an orphan in case it is
// not a direct successor.
connman.PushMessage(pfrom, NetMsgType::GETHEADERS, chainActive.GetLocator(pindexBestHeader), inv.hash);
CNodeState *nodestate = State(pfrom->GetId());
if (CanDirectFetch(chainparams.GetConsensus()) &&
nodestate->nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER &&
(!IsWitnessEnabled(chainActive.Tip(), chainparams.GetConsensus()) || State(pfrom->GetId())->fHaveWitness)) {
inv.type |= nFetchFlags;
if (nodestate->fSupportsDesiredCmpctVersion)
vToFetch.push_back(CInv(MSG_CMPCT_BLOCK, inv.hash));
else
vToFetch.push_back(inv);
// Mark block as in flight already, even though the actual "getdata" message only goes out
// later (within the same cs_main lock, though).
MarkBlockAsInFlight(pfrom->GetId(), inv.hash, chainparams.GetConsensus());
}
2014-09-02 17:16:32 +07:00
LogPrint("net", "getheaders (%d) %s to peer=%d\n", pindexBestHeader->nHeight, inv.hash.ToString(), pfrom->id);
}
}
else
{
pfrom->AddInventoryKnown(inv);
if (fBlocksOnly)
LogPrint("net", "transaction (%s) inv sent in violation of protocol peer=%d\n", inv.hash.ToString(), pfrom->id);
else if (!fAlreadyHave && !fImporting && !fReindex && !IsInitialBlockDownload())
pfrom->AskFor(inv);
}
2014-06-23 00:00:26 +02:00
// Track requests for our stuff
GetMainSignals().Inventory(inv.hash);
2014-09-09 09:26:52 +02:00
if (pfrom->nSendSize > (nMaxSendBufferSize * 2)) {
2014-09-09 09:26:52 +02:00
Misbehaving(pfrom->GetId(), 50);
return error("send buffer size() = %u", pfrom->nSendSize);
}
}
if (!vToFetch.empty())
connman.PushMessage(pfrom, NetMsgType::GETDATA, vToFetch);
}
else if (strCommand == NetMsgType::GETDATA)
{
vector<CInv> vInv;
vRecv >> vInv;
if (vInv.size() > MAX_INV_SZ)
{
LOCK(cs_main);
2013-11-18 01:25:17 +01:00
Misbehaving(pfrom->GetId(), 20);
return error("message getdata size() = %u", vInv.size());
}
if (fDebug || (vInv.size() != 1))
LogPrint("net", "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom->id);
if ((fDebug && vInv.size() > 0) || (vInv.size() == 1))
LogPrint("net", "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom->id);
pfrom->vRecvGetData.insert(pfrom->vRecvGetData.end(), vInv.begin(), vInv.end());
ProcessGetData(pfrom, chainparams.GetConsensus(), connman);
}
else if (strCommand == NetMsgType::GETBLOCKS)
{
CBlockLocator locator;
uint256 hashStop;
vRecv >> locator >> hashStop;
LOCK(cs_main);
// Find the last block the caller has in the main chain
2014-09-03 02:52:01 +02:00
CBlockIndex* pindex = FindForkInGlobalIndex(chainActive, locator);
// Send the rest of the chain
if (pindex)
pindex = chainActive.Next(pindex);
int nLimit = 500;
LogPrint("net", "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom->id);
for (; pindex; pindex = chainActive.Next(pindex))
{
if (pindex->GetBlockHash() == hashStop)
{
LogPrint("net", " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
break;
}
// If pruning, don't inv blocks unless we have on disk and are likely to still have
// for some reasonable time window (1 hour) that block relay might require.
const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / chainparams.GetConsensus().nPowTargetSpacing;
if (fPruneMode && (!(pindex->nStatus & BLOCK_HAVE_DATA) || pindex->nHeight <= chainActive.Tip()->nHeight - nPrunedBlocksLikelyToHave))
{
LogPrint("net", " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
break;
}
pfrom->PushInventory(CInv(MSG_BLOCK, pindex->GetBlockHash()));
if (--nLimit <= 0)
{
2015-04-28 14:47:17 +00:00
// When this block is requested, we'll send an inv that'll
// trigger the peer to getblocks the next batch of inventory.
LogPrint("net", " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
pfrom->hashContinue = pindex->GetBlockHash();
break;
}
}
}
else if (strCommand == NetMsgType::GETBLOCKTXN)
{
BlockTransactionsRequest req;
vRecv >> req;
LOCK(cs_main);
BlockMap::iterator it = mapBlockIndex.find(req.blockhash);
if (it == mapBlockIndex.end() || !(it->second->nStatus & BLOCK_HAVE_DATA)) {
LogPrintf("Peer %d sent us a getblocktxn for a block we don't have", pfrom->id);
return true;
}
if (it->second->nHeight < chainActive.Height() - MAX_BLOCKTXN_DEPTH) {
// If an older block is requested (should never happen in practice,
// but can happen in tests) send a block response instead of a
// blocktxn response. Sending a full block response instead of a
// small blocktxn response is preferable in the case where a peer
// might maliciously send lots of getblocktxn requests to trigger
// expensive disk reads, because it will require the peer to
// actually receive all the data read from disk over the network.
LogPrint("net", "Peer %d sent us a getblocktxn for a block > %i deep", pfrom->id, MAX_BLOCKTXN_DEPTH);
CInv inv;
inv.type = State(pfrom->GetId())->fWantsCmpctWitness ? MSG_WITNESS_BLOCK : MSG_BLOCK;
inv.hash = req.blockhash;
pfrom->vRecvGetData.push_back(inv);
ProcessGetData(pfrom, chainparams.GetConsensus(), connman);
return true;
}
CBlock block;
assert(ReadBlockFromDisk(block, it->second, chainparams.GetConsensus()));
BlockTransactions resp(req);
for (size_t i = 0; i < req.indexes.size(); i++) {
if (req.indexes[i] >= block.vtx.size()) {
Misbehaving(pfrom->GetId(), 100);
LogPrintf("Peer %d sent us a getblocktxn with out-of-bounds tx indices", pfrom->id);
return true;
}
resp.txn[i] = block.vtx[req.indexes[i]];
}
connman.PushMessageWithFlag(pfrom, State(pfrom->GetId())->fWantsCmpctWitness ? 0 : SERIALIZE_TRANSACTION_NO_WITNESS, NetMsgType::BLOCKTXN, resp);
}
else if (strCommand == NetMsgType::GETHEADERS)
{
CBlockLocator locator;
uint256 hashStop;
vRecv >> locator >> hashStop;
LOCK(cs_main);
if (IsInitialBlockDownload() && !pfrom->fWhitelisted) {
LogPrint("net", "Ignoring getheaders from peer=%d because node is in initial block download\n", pfrom->id);
return true;
}
CNodeState *nodestate = State(pfrom->GetId());
CBlockIndex* pindex = NULL;
if (locator.IsNull())
{
// If locator is null, return the hashStop block
BlockMap::iterator mi = mapBlockIndex.find(hashStop);
if (mi == mapBlockIndex.end())
return true;
pindex = (*mi).second;
}
else
{
// Find the last block the caller has in the main chain
2014-09-03 02:52:01 +02:00
pindex = FindForkInGlobalIndex(chainActive, locator);
if (pindex)
pindex = chainActive.Next(pindex);
}
// we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end
vector<CBlock> vHeaders;
int nLimit = MAX_HEADERS_RESULTS;
LogPrint("net", "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom->id);
for (; pindex; pindex = chainActive.Next(pindex))
{
vHeaders.push_back(pindex->GetBlockHeader());
if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
break;
}
// pindex can be NULL either if we sent chainActive.Tip() OR
// if our peer has chainActive.Tip() (and thus we are sending an empty
// headers message). In both cases it's safe to update
// pindexBestHeaderSent to be our tip.
nodestate->pindexBestHeaderSent = pindex ? pindex : chainActive.Tip();
connman.PushMessage(pfrom, NetMsgType::HEADERS, vHeaders);
}
else if (strCommand == NetMsgType::TX)
{
// Stop processing the transaction early if
// We are in blocks only mode and peer is either not whitelisted or whitelistrelay is off
if (!fRelayTxes && (!pfrom->fWhitelisted || !GetBoolArg("-whitelistrelay", DEFAULT_WHITELISTRELAY)))
{
LogPrint("net", "transaction sent in violation of protocol peer=%d\n", pfrom->id);
return true;
}
deque<COutPoint> vWorkQueue;
vector<uint256> vEraseQueue;
CTransaction tx;
vRecv >> tx;
CInv inv(MSG_TX, tx.GetHash());
pfrom->AddInventoryKnown(inv);
LOCK(cs_main);
bool fMissingInputs = false;
2013-01-27 00:14:11 +01:00
CValidationState state;
pfrom->setAskFor.erase(inv.hash);
mapAlreadyAskedFor.erase(inv.hash);
if (!AlreadyHave(inv) && AcceptToMemoryPool(mempool, state, tx, true, &fMissingInputs)) {
mempool.check(pcoinsTip);
RelayTransaction(tx, connman);
for (unsigned int i = 0; i < tx.vout.size(); i++) {
vWorkQueue.emplace_back(inv.hash, i);
}
pfrom->nLastTXTime = GetTime();
LogPrint("mempool", "AcceptToMemoryPool: peer=%d: accepted %s (poolsz %u txn, %u kB)\n",
pfrom->id,
tx.GetHash().ToString(),
mempool.size(), mempool.DynamicMemoryUsage() / 1000);
// Recursively process any orphan transactions that depended on this one
set<NodeId> setMisbehaving;
while (!vWorkQueue.empty()) {
auto itByPrev = mapOrphanTransactionsByPrev.find(vWorkQueue.front());
vWorkQueue.pop_front();
if (itByPrev == mapOrphanTransactionsByPrev.end())
continue;
for (auto mi = itByPrev->second.begin();
mi != itByPrev->second.end();
++mi)
{
const CTransaction& orphanTx = (*mi)->second.tx;
const uint256& orphanHash = orphanTx.GetHash();
NodeId fromPeer = (*mi)->second.fromPeer;
bool fMissingInputs2 = false;
// Use a dummy CValidationState so someone can't setup nodes to counter-DoS based on orphan
// resolution (that is, feeding people an invalid transaction based on LegitTxX in order to get
// anyone relaying LegitTxX banned)
CValidationState stateDummy;
if (setMisbehaving.count(fromPeer))
continue;
if (AcceptToMemoryPool(mempool, stateDummy, orphanTx, true, &fMissingInputs2)) {
LogPrint("mempool", " accepted orphan tx %s\n", orphanHash.ToString());
RelayTransaction(orphanTx, connman);
for (unsigned int i = 0; i < orphanTx.vout.size(); i++) {
vWorkQueue.emplace_back(orphanHash, i);
}
vEraseQueue.push_back(orphanHash);
}
else if (!fMissingInputs2)
{
int nDos = 0;
if (stateDummy.IsInvalid(nDos) && nDos > 0)
{
// Punish peer that gave us an invalid orphan tx
Misbehaving(fromPeer, nDos);
setMisbehaving.insert(fromPeer);
LogPrint("mempool", " invalid orphan tx %s\n", orphanHash.ToString());
}
// Has inputs but not accepted to mempool
// Probably non-standard or insufficient fee/priority
LogPrint("mempool", " removed orphan tx %s\n", orphanHash.ToString());
vEraseQueue.push_back(orphanHash);
if (orphanTx.wit.IsNull() && !stateDummy.CorruptionPossible()) {
// Do not use rejection cache for witness transactions or
// witness-stripped transactions, as they can have been malleated.
// See https://github.com/bitcoin/bitcoin/issues/8279 for details.
assert(recentRejects);
recentRejects->insert(orphanHash);
}
}
mempool.check(pcoinsTip);
}
}
BOOST_FOREACH(uint256 hash, vEraseQueue)
EraseOrphanTx(hash);
}
else if (fMissingInputs)
{
bool fRejectedParents = false; // It may be the case that the orphans parents have all been rejected
BOOST_FOREACH(const CTxIn& txin, tx.vin) {
if (recentRejects->contains(txin.prevout.hash)) {
fRejectedParents = true;
break;
}
}
if (!fRejectedParents) {
BOOST_FOREACH(const CTxIn& txin, tx.vin) {
2016-09-02 18:19:01 +02:00
CInv _inv(MSG_TX, txin.prevout.hash);
pfrom->AddInventoryKnown(_inv);
if (!AlreadyHave(_inv)) pfrom->AskFor(_inv);
}
AddOrphanTx(tx, pfrom->GetId());
2012-02-29 10:14:18 -05:00
// DoS prevention: do not allow mapOrphanTransactions to grow unbounded
unsigned int nMaxOrphanTx = (unsigned int)std::max((int64_t)0, GetArg("-maxorphantx", DEFAULT_MAX_ORPHAN_TRANSACTIONS));
unsigned int nEvicted = LimitOrphanTxSize(nMaxOrphanTx);
if (nEvicted > 0)
LogPrint("mempool", "mapOrphan overflow, removed %u tx\n", nEvicted);
} else {
LogPrint("mempool", "not keeping orphan with rejected parents %s\n",tx.GetHash().ToString());
}
} else {
if (tx.wit.IsNull() && !state.CorruptionPossible()) {
// Do not use rejection cache for witness transactions or
// witness-stripped transactions, as they can have been malleated.
// See https://github.com/bitcoin/bitcoin/issues/8279 for details.
assert(recentRejects);
recentRejects->insert(tx.GetHash());
}
if (pfrom->fWhitelisted && GetBoolArg("-whitelistforcerelay", DEFAULT_WHITELISTFORCERELAY)) {
// Always relay transactions received from whitelisted peers, even
// if they were already in the mempool or rejected from it due
// to policy, allowing the node to function as a gateway for
// nodes hidden behind it.
//
// Never relay transactions that we would assign a non-zero DoS
// score for, as we expect peers to do the same with us in that
// case.
int nDoS = 0;
if (!state.IsInvalid(nDoS) || nDoS == 0) {
LogPrintf("Force relaying tx %s from whitelisted peer=%d\n", tx.GetHash().ToString(), pfrom->id);
RelayTransaction(tx, connman);
} else {
LogPrintf("Not relaying invalid transaction %s from whitelisted peer=%d (%s)\n", tx.GetHash().ToString(), pfrom->id, FormatStateMessage(state));
}
}
}
int nDoS = 0;
if (state.IsInvalid(nDoS))
2014-02-10 16:31:06 +01:00
{
LogPrint("mempoolrej", "%s from peer=%d was not accepted: %s\n", tx.GetHash().ToString(),
pfrom->id,
FormatStateMessage(state));
if (state.GetRejectCode() < REJECT_INTERNAL) // Never send AcceptToMemoryPool's internal codes over P2P
connman.PushMessage(pfrom, NetMsgType::REJECT, strCommand, (unsigned char)state.GetRejectCode(),
state.GetRejectReason().substr(0, MAX_REJECT_MESSAGE_LENGTH), inv.hash);
if (nDoS > 0) {
2013-11-18 01:25:17 +01:00
Misbehaving(pfrom->GetId(), nDoS);
}
2013-10-28 16:36:11 +10:00
}
}
else if (strCommand == NetMsgType::CMPCTBLOCK && !fImporting && !fReindex) // Ignore blocks received while importing
{
CBlockHeaderAndShortTxIDs cmpctblock;
vRecv >> cmpctblock;
LOCK(cs_main);
if (mapBlockIndex.find(cmpctblock.header.hashPrevBlock) == mapBlockIndex.end()) {
// Doesn't connect (or is genesis), instead of DoSing in AcceptBlockHeader, request deeper headers
if (!IsInitialBlockDownload())
connman.PushMessage(pfrom, NetMsgType::GETHEADERS, chainActive.GetLocator(pindexBestHeader), uint256());
return true;
}
CBlockIndex *pindex = NULL;
CValidationState state;
if (!AcceptBlockHeader(cmpctblock.header, state, chainparams, &pindex)) {
int nDoS;
if (state.IsInvalid(nDoS)) {
if (nDoS > 0)
Misbehaving(pfrom->GetId(), nDoS);
LogPrintf("Peer %d sent us invalid header via cmpctblock\n", pfrom->id);
return true;
}
}
// If AcceptBlockHeader returned true, it set pindex
assert(pindex);
UpdateBlockAvailability(pfrom->GetId(), pindex->GetBlockHash());
std::map<uint256, pair<NodeId, list<QueuedBlock>::iterator> >::iterator blockInFlightIt = mapBlocksInFlight.find(pindex->GetBlockHash());
bool fAlreadyInFlight = blockInFlightIt != mapBlocksInFlight.end();
if (pindex->nStatus & BLOCK_HAVE_DATA) // Nothing to do here
return true;
if (pindex->nChainWork <= chainActive.Tip()->nChainWork || // We know something better
pindex->nTx != 0) { // We had this block at some point, but pruned it
if (fAlreadyInFlight) {
// We requested this block for some reason, but our mempool will probably be useless
// so we just grab the block via normal getdata
std::vector<CInv> vInv(1);
vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(pfrom, pindex->pprev, chainparams.GetConsensus()), cmpctblock.header.GetHash());
connman.PushMessage(pfrom, NetMsgType::GETDATA, vInv);
}
return true;
}
// If we're not close to tip yet, give up and let parallel block fetch work its magic
if (!fAlreadyInFlight && !CanDirectFetch(chainparams.GetConsensus()))
return true;
CNodeState *nodestate = State(pfrom->GetId());
if (IsWitnessEnabled(pindex->pprev, chainparams.GetConsensus()) && !nodestate->fSupportsDesiredCmpctVersion) {
// Don't bother trying to process compact blocks from v1 peers
// after segwit activates.
return true;
}
// We want to be a bit conservative just to be extra careful about DoS
// possibilities in compact block processing...
if (pindex->nHeight <= chainActive.Height() + 2) {
if ((!fAlreadyInFlight && nodestate->nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) ||
(fAlreadyInFlight && blockInFlightIt->second.first == pfrom->GetId())) {
list<QueuedBlock>::iterator *queuedBlockIt = NULL;
if (!MarkBlockAsInFlight(pfrom->GetId(), pindex->GetBlockHash(), chainparams.GetConsensus(), pindex, &queuedBlockIt)) {
if (!(*queuedBlockIt)->partialBlock)
(*queuedBlockIt)->partialBlock.reset(new PartiallyDownloadedBlock(&mempool));
else {
// The block was already in flight using compact blocks from the same peer
LogPrint("net", "Peer sent us compact block we were already syncing!\n");
return true;
}
}
PartiallyDownloadedBlock& partialBlock = *(*queuedBlockIt)->partialBlock;
ReadStatus status = partialBlock.InitData(cmpctblock);
if (status == READ_STATUS_INVALID) {
MarkBlockAsReceived(pindex->GetBlockHash()); // Reset in-flight state in case of whitelist
Misbehaving(pfrom->GetId(), 100);
LogPrintf("Peer %d sent us invalid compact block\n", pfrom->id);
return true;
} else if (status == READ_STATUS_FAILED) {
// Duplicate txindexes, the block is now in-flight, so just request it
std::vector<CInv> vInv(1);
vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(pfrom, pindex->pprev, chainparams.GetConsensus()), cmpctblock.header.GetHash());
connman.PushMessage(pfrom, NetMsgType::GETDATA, vInv);
return true;
}
if (!fAlreadyInFlight && mapBlocksInFlight.size() == 1 && pindex->pprev->IsValid(BLOCK_VALID_CHAIN)) {
// We seem to be rather well-synced, so it appears pfrom was the first to provide us
// with this block! Let's get them to announce using compact blocks in the future.
MaybeSetPeerAsAnnouncingHeaderAndIDs(nodestate, pfrom, connman);
}
BlockTransactionsRequest req;
for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) {
if (!partialBlock.IsTxAvailable(i))
req.indexes.push_back(i);
}
if (req.indexes.empty()) {
// Dirty hack to jump to BLOCKTXN code (TODO: move message handling into their own functions)
BlockTransactions txn;
txn.blockhash = cmpctblock.header.GetHash();
CDataStream blockTxnMsg(SER_NETWORK, PROTOCOL_VERSION);
blockTxnMsg << txn;
2016-05-26 14:26:01 -04:00
return ProcessMessage(pfrom, NetMsgType::BLOCKTXN, blockTxnMsg, nTimeReceived, chainparams, connman);
} else {
req.blockhash = pindex->GetBlockHash();
connman.PushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
}
}
} else {
if (fAlreadyInFlight) {
// We requested this block, but its far into the future, so our
// mempool will probably be useless - request the block normally
std::vector<CInv> vInv(1);
vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(pfrom, pindex->pprev, chainparams.GetConsensus()), cmpctblock.header.GetHash());
connman.PushMessage(pfrom, NetMsgType::GETDATA, vInv);
return true;
} else {
// If this was an announce-cmpctblock, we want the same treatment as a header message
// Dirty hack to process as if it were just a headers message (TODO: move message handling into their own functions)
std::vector<CBlock> headers;
headers.push_back(cmpctblock.header);
CDataStream vHeadersMsg(SER_NETWORK, PROTOCOL_VERSION);
vHeadersMsg << headers;
2016-05-26 14:26:01 -04:00
return ProcessMessage(pfrom, NetMsgType::HEADERS, vHeadersMsg, nTimeReceived, chainparams, connman);
}
}
}
else if (strCommand == NetMsgType::BLOCKTXN && !fImporting && !fReindex) // Ignore blocks received while importing
{
BlockTransactions resp;
vRecv >> resp;
CBlock block;
bool fBlockRead = false;
{
LOCK(cs_main);
map<uint256, pair<NodeId, list<QueuedBlock>::iterator> >::iterator it = mapBlocksInFlight.find(resp.blockhash);
if (it == mapBlocksInFlight.end() || !it->second.second->partialBlock ||
it->second.first != pfrom->GetId()) {
LogPrint("net", "Peer %d sent us block transactions for block we weren't expecting\n", pfrom->id);
return true;
}
PartiallyDownloadedBlock& partialBlock = *it->second.second->partialBlock;
ReadStatus status = partialBlock.FillBlock(block, resp.txn);
if (status == READ_STATUS_INVALID) {
MarkBlockAsReceived(resp.blockhash); // Reset in-flight state in case of whitelist
Misbehaving(pfrom->GetId(), 100);
LogPrintf("Peer %d sent us invalid compact block/non-matching block transactions\n", pfrom->id);
return true;
} else if (status == READ_STATUS_FAILED) {
// Might have collided, fall back to getdata now :(
std::vector<CInv> invs;
invs.push_back(CInv(MSG_BLOCK | GetFetchFlags(pfrom, chainActive.Tip(), chainparams.GetConsensus()), resp.blockhash));
connman.PushMessage(pfrom, NetMsgType::GETDATA, invs);
} else {
// Block is either okay, or possibly we received
// READ_STATUS_CHECKBLOCK_FAILED.
// Note that CheckBlock can only fail for one of a few reasons:
// 1. bad-proof-of-work (impossible here, because we've already
// accepted the header)
// 2. merkleroot doesn't match the transactions given (already
// caught in FillBlock with READ_STATUS_FAILED, so
// impossible here)
// 3. the block is otherwise invalid (eg invalid coinbase,
// block is too big, too many legacy sigops, etc).
// So if CheckBlock failed, #3 is the only possibility.
// Under BIP 152, we don't DoS-ban unless proof of work is
// invalid (we don't require all the stateless checks to have
// been run). This is handled below, so just treat this as
// though the block was successfully read, and rely on the
// handling in ProcessNewBlock to ensure the block index is
// updated, reject messages go out, etc.
MarkBlockAsReceived(resp.blockhash); // it is now an empty pointer
fBlockRead = true;
}
} // Don't hold cs_main when we call into ProcessNewBlock
if (fBlockRead) {
CValidationState state;
// Since we requested this block (it was in mapBlocksInFlight), force it to be processed,
// even if it would not be a candidate for new tip (missing previous block, chain not long enough, etc)
// BIP 152 permits peers to relay compact blocks after validating
// the header only; we should not punish peers if the block turns
// out to be invalid.
ProcessNewBlock(state, chainparams, pfrom, &block, true, NULL, false);
int nDoS;
if (state.IsInvalid(nDoS)) {
assert (state.GetRejectCode() < REJECT_INTERNAL); // Blocks are never rejected with internal reject codes
connman.PushMessage(pfrom, NetMsgType::REJECT, strCommand, (unsigned char)state.GetRejectCode(),
state.GetRejectReason().substr(0, MAX_REJECT_MESSAGE_LENGTH), block.GetHash());
}
}
}
else if (strCommand == NetMsgType::HEADERS && !fImporting && !fReindex) // Ignore headers received while importing
{
std::vector<CBlockHeader> headers;
// Bypass the normal CBlock deserialization, as we don't want to risk deserializing 2000 full blocks.
unsigned int nCount = ReadCompactSize(vRecv);
if (nCount > MAX_HEADERS_RESULTS) {
LOCK(cs_main);
Misbehaving(pfrom->GetId(), 20);
return error("headers message size = %u", nCount);
}
headers.resize(nCount);
for (unsigned int n = 0; n < nCount; n++) {
vRecv >> headers[n];
ReadCompactSize(vRecv); // ignore tx count; assume it is 0.
}
2016-04-28 16:18:45 +02:00
{
LOCK(cs_main);
if (nCount == 0) {
// Nothing interesting. Stop asking this peers for more headers.
return true;
}
CNodeState *nodestate = State(pfrom->GetId());
// If this looks like it could be a block announcement (nCount <
// MAX_BLOCKS_TO_ANNOUNCE), use special logic for handling headers that
// don't connect:
// - Send a getheaders message in response to try to connect the chain.
// - The peer can send up to MAX_UNCONNECTING_HEADERS in a row that
// don't connect before giving DoS points
// - Once a headers message is received that is valid and does connect,
// nUnconnectingHeaders gets reset back to 0.
if (mapBlockIndex.find(headers[0].hashPrevBlock) == mapBlockIndex.end() && nCount < MAX_BLOCKS_TO_ANNOUNCE) {
nodestate->nUnconnectingHeaders++;
connman.PushMessage(pfrom, NetMsgType::GETHEADERS, chainActive.GetLocator(pindexBestHeader), uint256());
LogPrint("net", "received header %s: missing prev block %s, sending getheaders (%d) to end (peer=%d, nUnconnectingHeaders=%d)\n",
headers[0].GetHash().ToString(),
headers[0].hashPrevBlock.ToString(),
pindexBestHeader->nHeight,
pfrom->id, nodestate->nUnconnectingHeaders);
// Set hashLastUnknownBlock for this peer, so that if we
// eventually get the headers - even from a different peer -
// we can use this peer to download.
UpdateBlockAvailability(pfrom->GetId(), headers.back().GetHash());
if (nodestate->nUnconnectingHeaders % MAX_UNCONNECTING_HEADERS == 0) {
Misbehaving(pfrom->GetId(), 20);
}
return true;
}
CBlockIndex *pindexLast = NULL;
BOOST_FOREACH(const CBlockHeader& header, headers) {
CValidationState state;
if (pindexLast != NULL && header.hashPrevBlock != pindexLast->GetBlockHash()) {
Misbehaving(pfrom->GetId(), 20);
return error("non-continuous headers sequence");
}
if (!AcceptBlockHeader(header, state, chainparams, &pindexLast)) {
int nDoS;
if (state.IsInvalid(nDoS)) {
if (nDoS > 0)
Misbehaving(pfrom->GetId(), nDoS);
return error("invalid header received");
}
}
}
if (nodestate->nUnconnectingHeaders > 0) {
LogPrint("net", "peer=%d: resetting nUnconnectingHeaders (%d -> 0)\n", pfrom->id, nodestate->nUnconnectingHeaders);
}
nodestate->nUnconnectingHeaders = 0;
assert(pindexLast);
UpdateBlockAvailability(pfrom->GetId(), pindexLast->GetBlockHash());
if (nCount == MAX_HEADERS_RESULTS) {
// Headers message had its maximum size; the peer may have more headers.
// TODO: optimize: if pindexLast is an ancestor of chainActive.Tip or pindexBestHeader, continue
// from there instead.
2014-09-02 17:16:32 +07:00
LogPrint("net", "more getheaders (%d) to end to peer=%d (startheight:%d)\n", pindexLast->nHeight, pfrom->id, pfrom->nStartingHeight);
connman.PushMessage(pfrom, NetMsgType::GETHEADERS, chainActive.GetLocator(pindexLast), uint256());
}
bool fCanDirectFetch = CanDirectFetch(chainparams.GetConsensus());
// If this set of headers is valid and ends in a block with at least as
// much work as our tip, download as much as possible.
if (fCanDirectFetch && pindexLast->IsValid(BLOCK_VALID_TREE) && chainActive.Tip()->nChainWork <= pindexLast->nChainWork) {
vector<CBlockIndex *> vToFetch;
CBlockIndex *pindexWalk = pindexLast;
// Calculate all the blocks we'd need to switch to pindexLast, up to a limit.
while (pindexWalk && !chainActive.Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
if (!(pindexWalk->nStatus & BLOCK_HAVE_DATA) &&
!mapBlocksInFlight.count(pindexWalk->GetBlockHash()) &&
(!IsWitnessEnabled(pindexWalk->pprev, chainparams.GetConsensus()) || State(pfrom->GetId())->fHaveWitness)) {
// We don't have this block, and it's not yet in flight.
vToFetch.push_back(pindexWalk);
}
pindexWalk = pindexWalk->pprev;
}
// If pindexWalk still isn't on our main chain, we're looking at a
// very large reorg at a time we think we're close to caught up to
// the main chain -- this shouldn't really happen. Bail out on the
// direct fetch and rely on parallel download instead.
if (!chainActive.Contains(pindexWalk)) {
LogPrint("net", "Large reorg, won't direct fetch to %s (%d)\n",
pindexLast->GetBlockHash().ToString(),
pindexLast->nHeight);
} else {
vector<CInv> vGetData;
// Download as much as possible, from earliest to latest.
BOOST_REVERSE_FOREACH(CBlockIndex *pindex, vToFetch) {
if (nodestate->nBlocksInFlight >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
// Can't download any more from this peer
break;
}
uint32_t nFetchFlags = GetFetchFlags(pfrom, pindex->pprev, chainparams.GetConsensus());
vGetData.push_back(CInv(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash()));
MarkBlockAsInFlight(pfrom->GetId(), pindex->GetBlockHash(), chainparams.GetConsensus(), pindex);
LogPrint("net", "Requesting block %s from peer=%d\n",
pindex->GetBlockHash().ToString(), pfrom->id);
}
if (vGetData.size() > 1) {
LogPrint("net", "Downloading blocks toward %s (%d) via headers direct fetch\n",
pindexLast->GetBlockHash().ToString(), pindexLast->nHeight);
}
if (vGetData.size() > 0) {
if (nodestate->fSupportsDesiredCmpctVersion && vGetData.size() == 1 && mapBlocksInFlight.size() == 1 && pindexLast->pprev->IsValid(BLOCK_VALID_CHAIN)) {
// We seem to be rather well-synced, so it appears pfrom was the first to provide us
// with this block! Let's get them to announce using compact blocks in the future.
MaybeSetPeerAsAnnouncingHeaderAndIDs(nodestate, pfrom, connman);
// In any case, we want to download using a compact block, not a regular one
vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash);
}
connman.PushMessage(pfrom, NetMsgType::GETDATA, vGetData);
}
}
}
2016-04-28 16:18:45 +02:00
}
NotifyHeaderTip();
}
else if (strCommand == NetMsgType::BLOCK && !fImporting && !fReindex) // Ignore blocks received while importing
{
CBlock block;
vRecv >> block;
LogPrint("net", "received block %s peer=%d\n", block.GetHash().ToString(), pfrom->id);
2013-01-27 00:14:11 +01:00
CValidationState state;
// Process all blocks from whitelisted peers, even if not requested,
// unless we're still syncing with the network.
// Such an unrequested block may still be processed, subject to the
// conditions in AcceptBlock().
bool forceProcessing = pfrom->fWhitelisted && !IsInitialBlockDownload();
{
LOCK(cs_main);
// Also always process if we requested the block explicitly, as we may
// need it even though it is not a candidate for a new best tip.
forceProcessing |= MarkBlockAsReceived(block.GetHash());
}
ProcessNewBlock(state, chainparams, pfrom, &block, forceProcessing, NULL, true);
int nDoS;
if (state.IsInvalid(nDoS)) {
assert (state.GetRejectCode() < REJECT_INTERNAL); // Blocks are never rejected with internal reject codes
connman.PushMessage(pfrom, NetMsgType::REJECT, strCommand, (unsigned char)state.GetRejectCode(),
state.GetRejectReason().substr(0, MAX_REJECT_MESSAGE_LENGTH), block.GetHash());
if (nDoS > 0) {
LOCK(cs_main);
Misbehaving(pfrom->GetId(), nDoS);
}
}
}
else if (strCommand == NetMsgType::GETADDR)
{
// This asymmetric behavior for inbound and outbound connections was introduced
// to prevent a fingerprinting attack: an attacker can send specific fake addresses
// to users' AddrMan and later request them by sending getaddr messages.
// Making nodes which are behind NAT and can only make outgoing connections ignore
// the getaddr message mitigates the attack.
if (!pfrom->fInbound) {
LogPrint("net", "Ignoring \"getaddr\" from outbound connection. peer=%d\n", pfrom->id);
return true;
}
// Only send one GetAddr response per connection to reduce resource waste
// and discourage addr stamping of INV announcements.
if (pfrom->fSentAddr) {
LogPrint("net", "Ignoring repeated \"getaddr\". peer=%d\n", pfrom->id);
return true;
}
pfrom->fSentAddr = true;
pfrom->vAddrToSend.clear();
vector<CAddress> vAddr = connman.GetAddresses();
FastRandomContext insecure_rand;
BOOST_FOREACH(const CAddress &addr, vAddr)
pfrom->PushAddress(addr, insecure_rand);
}
else if (strCommand == NetMsgType::MEMPOOL)
{
if (!(pfrom->GetLocalServices() & NODE_BLOOM) && !pfrom->fWhitelisted)
{
LogPrint("net", "mempool request with bloom filters disabled, disconnect peer=%d\n", pfrom->GetId());
pfrom->fDisconnect = true;
return true;
}
if (connman.OutboundTargetReached(false) && !pfrom->fWhitelisted)
{
LogPrint("net", "mempool request with bandwidth limit reached, disconnect peer=%d\n", pfrom->GetId());
pfrom->fDisconnect = true;
return true;
}
LOCK(pfrom->cs_inventory);
pfrom->fSendMempool = true;
}
else if (strCommand == NetMsgType::PING)
{
if (pfrom->nVersion > BIP0031_VERSION)
{
uint64_t nonce = 0;
vRecv >> nonce;
// Echo the message back with the nonce. This allows for two useful features:
//
// 1) A remote node can quickly check if the connection is operational
// 2) Remote nodes can measure the latency of the network thread. If this node
// is overloaded it won't respond to pings quickly and the remote node can
// avoid sending us more work, like chain download requests.
//
// The nonce stops the remote getting confused between different pings: without
// it, if the remote node sends a ping once per second and this node takes 5
// seconds to respond to each, the 5th ping the remote sends would appear to
// return very quickly.
connman.PushMessage(pfrom, NetMsgType::PONG, nonce);
}
}
else if (strCommand == NetMsgType::PONG)
{
int64_t pingUsecEnd = nTimeReceived;
uint64_t nonce = 0;
size_t nAvail = vRecv.in_avail();
bool bPingFinished = false;
std::string sProblem;
if (nAvail >= sizeof(nonce)) {
vRecv >> nonce;
// Only process pong message if there is an outstanding ping (old ping without nonce should never pong)
if (pfrom->nPingNonceSent != 0) {
if (nonce == pfrom->nPingNonceSent) {
// Matching pong received, this ping is no longer outstanding
bPingFinished = true;
int64_t pingUsecTime = pingUsecEnd - pfrom->nPingUsecStart;
if (pingUsecTime > 0) {
// Successful ping time measurement, replace previous
pfrom->nPingUsecTime = pingUsecTime;
2015-08-13 02:31:46 -07:00
pfrom->nMinPingUsecTime = std::min(pfrom->nMinPingUsecTime, pingUsecTime);
} else {
// This should never happen
sProblem = "Timing mishap";
}
} else {
// Nonce mismatches are normal when pings are overlapping
sProblem = "Nonce mismatch";
if (nonce == 0) {
2015-04-28 14:48:28 +00:00
// This is most likely a bug in another implementation somewhere; cancel this ping
bPingFinished = true;
sProblem = "Nonce zero";
}
}
} else {
sProblem = "Unsolicited pong without ping";
}
} else {
2015-04-28 14:48:28 +00:00
// This is most likely a bug in another implementation somewhere; cancel this ping
bPingFinished = true;
sProblem = "Short payload";
}
if (!(sProblem.empty())) {
LogPrint("net", "pong peer=%d: %s, %x expected, %x received, %u bytes\n",
pfrom->id,
sProblem,
pfrom->nPingNonceSent,
nonce,
nAvail);
}
if (bPingFinished) {
pfrom->nPingNonceSent = 0;
}
}
else if (strCommand == NetMsgType::FILTERLOAD)
{
CBloomFilter filter;
vRecv >> filter;
if (!filter.IsWithinSizeConstraints())
{
// There is no excuse for sending a too-large filter
LOCK(cs_main);
2013-11-18 01:25:17 +01:00
Misbehaving(pfrom->GetId(), 100);
}
else
{
LOCK(pfrom->cs_filter);
delete pfrom->pfilter;
pfrom->pfilter = new CBloomFilter(filter);
pfrom->pfilter->UpdateEmptyFull();
pfrom->fRelayTxes = true;
}
}
else if (strCommand == NetMsgType::FILTERADD)
{
vector<unsigned char> vData;
vRecv >> vData;
// Nodes must NEVER send a data item > 520 bytes (the max size for a script data object,
// and thus, the maximum size any matched object can have) in a filteradd message
bool bad = false;
if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) {
bad = true;
} else {
LOCK(pfrom->cs_filter);
if (pfrom->pfilter) {
pfrom->pfilter->insert(vData);
} else {
bad = true;
}
}
if (bad) {
LOCK(cs_main);
Misbehaving(pfrom->GetId(), 100);
}
}
else if (strCommand == NetMsgType::FILTERCLEAR)
{
LOCK(pfrom->cs_filter);
if (pfrom->GetLocalServices() & NODE_BLOOM) {
delete pfrom->pfilter;
pfrom->pfilter = new CBloomFilter();
}
pfrom->fRelayTxes = true;
}
else if (strCommand == NetMsgType::REJECT)
2013-10-28 16:36:11 +10:00
{
2014-09-12 16:37:53 +02:00
if (fDebug) {
try {
string strMsg; unsigned char ccode; string strReason;
vRecv >> LIMITED_STRING(strMsg, CMessageHeader::COMMAND_SIZE) >> ccode >> LIMITED_STRING(strReason, MAX_REJECT_MESSAGE_LENGTH);
2013-10-28 16:36:11 +10:00
2014-09-12 16:37:53 +02:00
ostringstream ss;
ss << strMsg << " code " << itostr(ccode) << ": " << strReason;
2013-10-28 16:36:11 +10:00
if (strMsg == NetMsgType::BLOCK || strMsg == NetMsgType::TX)
2014-09-12 16:37:53 +02:00
{
uint256 hash;
vRecv >> hash;
ss << ": hash " << hash.ToString();
}
LogPrint("net", "Reject %s\n", SanitizeString(ss.str()));
} catch (const std::ios_base::failure&) {
2014-09-12 16:37:53 +02:00
// Avoid feedback loops by preventing reject messages from triggering a new reject message.
LogPrint("net", "Unparseable reject message received\n");
2013-10-28 16:36:11 +10:00
}
}
}
else if (strCommand == NetMsgType::FEEFILTER) {
CAmount newFeeFilter = 0;
vRecv >> newFeeFilter;
if (MoneyRange(newFeeFilter)) {
{
LOCK(pfrom->cs_feeFilter);
pfrom->minFeeFilter = newFeeFilter;
}
LogPrint("net", "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom->id);
}
}
2016-07-29 17:42:12 +02:00
else if (strCommand == NetMsgType::NOTFOUND) {
// We do not care about the NOTFOUND message, but logging an Unknown Command
// message would be undesirable as we transmit it ourselves.
}
else {
// Ignore unknown commands for extensibility
2014-06-27 11:03:24 +07:00
LogPrint("net", "Unknown command \"%s\" from peer=%d\n", SanitizeString(strCommand), pfrom->id);
}
return true;
}
// requires LOCK(cs_vRecvMsg)
2016-05-26 14:26:01 -04:00
bool ProcessMessages(CNode* pfrom, CConnman& connman)
{
const CChainParams& chainparams = Params();
unsigned int nMaxSendBufferSize = connman.GetSendBufferSize();
//if (fDebug)
// LogPrintf("%s(%u messages)\n", __func__, pfrom->vRecvMsg.size());
//
// Message format
// (4) message start
// (12) command
// (4) size
// (4) checksum
// (x) data
//
bool fOk = true;
if (!pfrom->vRecvGetData.empty())
ProcessGetData(pfrom, chainparams.GetConsensus(), connman);
// this maintains the order of responses
if (!pfrom->vRecvGetData.empty()) return fOk;
std::deque<CNetMessage>::iterator it = pfrom->vRecvMsg.begin();
while (!pfrom->fDisconnect && it != pfrom->vRecvMsg.end()) {
// Don't bother if send buffer is too full to respond anyway
if (pfrom->nSendSize >= nMaxSendBufferSize)
break;
// get next message
CNetMessage& msg = *it;
//if (fDebug)
// LogPrintf("%s(message %u msgsz, %u bytes, complete:%s)\n", __func__,
// msg.hdr.nMessageSize, msg.vRecv.size(),
// msg.complete() ? "Y" : "N");
// end, if an incomplete message is found
if (!msg.complete())
break;
// at this point, any failure means we can delete the current message
it++;
// Scan for message start
if (memcmp(msg.hdr.pchMessageStart, chainparams.MessageStart(), CMessageHeader::MESSAGE_START_SIZE) != 0) {
LogPrintf("PROCESSMESSAGE: INVALID MESSAGESTART %s peer=%d\n", SanitizeString(msg.hdr.GetCommand()), pfrom->id);
fOk = false;
break;
}
// Read header
CMessageHeader& hdr = msg.hdr;
if (!hdr.IsValid(chainparams.MessageStart()))
{
LogPrintf("PROCESSMESSAGE: ERRORS IN HEADER %s peer=%d\n", SanitizeString(hdr.GetCommand()), pfrom->id);
continue;
}
string strCommand = hdr.GetCommand();
// Message size
unsigned int nMessageSize = hdr.nMessageSize;
// Checksum
CDataStream& vRecv = msg.vRecv;
const uint256& hash = msg.GetMessageHash();
if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0)
{
LogPrintf("%s(%s, %u bytes): CHECKSUM ERROR expected %s was %s\n", __func__,
SanitizeString(strCommand), nMessageSize,
HexStr(hash.begin(), hash.begin()+CMessageHeader::CHECKSUM_SIZE),
HexStr(hdr.pchChecksum, hdr.pchChecksum+CMessageHeader::CHECKSUM_SIZE));
continue;
}
// Process message
bool fRet = false;
try
{
2016-05-26 14:26:01 -04:00
fRet = ProcessMessage(pfrom, strCommand, vRecv, msg.nTime, chainparams, connman);
2013-03-09 12:02:57 -05:00
boost::this_thread::interruption_point();
}
catch (const std::ios_base::failure& e)
{
connman.PushMessageWithVersion(pfrom, INIT_PROTO_VERSION, NetMsgType::REJECT, strCommand, REJECT_MALFORMED, string("error parsing message"));
if (strstr(e.what(), "end of data"))
{
2012-07-26 00:48:39 +00:00
// Allow exceptions from under-length message on vRecv
LogPrintf("%s(%s, %u bytes): Exception '%s' caught, normally caused by a message being shorter than its stated length\n", __func__, SanitizeString(strCommand), nMessageSize, e.what());
}
else if (strstr(e.what(), "size too large"))
{
2012-07-26 00:48:39 +00:00
// Allow exceptions from over-long size
LogPrintf("%s(%s, %u bytes): Exception '%s' caught\n", __func__, SanitizeString(strCommand), nMessageSize, e.what());
}
else if (strstr(e.what(), "non-canonical ReadCompactSize()"))
{
// Allow exceptions from non-canonical encoding
LogPrintf("%s(%s, %u bytes): Exception '%s' caught\n", __func__, SanitizeString(strCommand), nMessageSize, e.what());
}
else
{
PrintExceptionContinue(&e, "ProcessMessages()");
}
}
catch (const boost::thread_interrupted&) {
2013-03-09 12:02:57 -05:00
throw;
}
catch (const std::exception& e) {
PrintExceptionContinue(&e, "ProcessMessages()");
} catch (...) {
PrintExceptionContinue(NULL, "ProcessMessages()");
}
if (!fRet)
LogPrintf("%s(%s, %u bytes) FAILED peer=%d\n", __func__, SanitizeString(strCommand), nMessageSize, pfrom->id);
break;
}
// In case the connection got shut down, its receive buffer was wiped
if (!pfrom->fDisconnect)
pfrom->vRecvMsg.erase(pfrom->vRecvMsg.begin(), it);
return fOk;
}
class CompareInvMempoolOrder
{
CTxMemPool *mp;
public:
2016-09-02 18:19:01 +02:00
CompareInvMempoolOrder(CTxMemPool *_mempool)
{
2016-09-02 18:19:01 +02:00
mp = _mempool;
}
bool operator()(std::set<uint256>::iterator a, std::set<uint256>::iterator b)
{
/* As std::make_heap produces a max-heap, we want the entries with the
* fewest ancestors/highest fee to sort later. */
return mp->CompareDepthAndScore(*b, *a);
}
};
2016-05-26 14:26:01 -04:00
bool SendMessages(CNode* pto, CConnman& connman)
{
const Consensus::Params& consensusParams = Params().GetConsensus();
{
2015-04-28 14:47:17 +00:00
// Don't send anything until we get its version message
if (pto->nVersion == 0)
return true;
//
// Message: ping
//
bool pingSend = false;
if (pto->fPingQueued) {
// RPC ping request by user
pingSend = true;
}
if (pto->nPingNonceSent == 0 && pto->nPingUsecStart + PING_INTERVAL * 1000000 < GetTimeMicros()) {
// Ping automatically sent as a latency probe & keepalive.
pingSend = true;
}
if (pingSend && !pto->fDisconnect) {
uint64_t nonce = 0;
while (nonce == 0) {
GetRandBytes((unsigned char*)&nonce, sizeof(nonce));
}
pto->fPingQueued = false;
pto->nPingUsecStart = GetTimeMicros();
if (pto->nVersion > BIP0031_VERSION) {
pto->nPingNonceSent = nonce;
connman.PushMessage(pto, NetMsgType::PING, nonce);
} else {
// Peer is too old to support ping command with nonce, pong will never arrive.
pto->nPingNonceSent = 0;
connman.PushMessage(pto, NetMsgType::PING);
}
}
TRY_LOCK(cs_main, lockMain); // Acquire cs_main for IsInitialBlockDownload() and CNodeState()
if (!lockMain)
return true;
// Address refresh broadcast
int64_t nNow = GetTimeMicros();
if (!IsInitialBlockDownload() && pto->nNextLocalAddrSend < nNow) {
AdvertiseLocal(pto);
pto->nNextLocalAddrSend = PoissonNextSend(nNow, AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL);
}
//
// Message: addr
//
if (pto->nNextAddrSend < nNow) {
pto->nNextAddrSend = PoissonNextSend(nNow, AVG_ADDRESS_BROADCAST_INTERVAL);
vector<CAddress> vAddr;
vAddr.reserve(pto->vAddrToSend.size());
BOOST_FOREACH(const CAddress& addr, pto->vAddrToSend)
{
if (!pto->addrKnown.contains(addr.GetKey()))
{
pto->addrKnown.insert(addr.GetKey());
vAddr.push_back(addr);
// receiver rejects addr messages larger than 1000
if (vAddr.size() >= 1000)
{
connman.PushMessage(pto, NetMsgType::ADDR, vAddr);
vAddr.clear();
}
}
}
pto->vAddrToSend.clear();
if (!vAddr.empty())
connman.PushMessage(pto, NetMsgType::ADDR, vAddr);
// we only send the big addr message once
if (pto->vAddrToSend.capacity() > 40)
pto->vAddrToSend.shrink_to_fit();
}
CNodeState &state = *State(pto->GetId());
if (state.fShouldBan) {
if (pto->fWhitelisted)
LogPrintf("Warning: not punishing whitelisted peer %s!\n", pto->addr.ToString());
2013-11-18 01:25:17 +01:00
else {
pto->fDisconnect = true;
if (pto->addr.IsLocal())
LogPrintf("Warning: not banning local peer %s!\n", pto->addr.ToString());
else
{
connman.Ban(pto->addr, BanReasonNodeMisbehaving);
}
2013-11-18 01:25:17 +01:00
}
state.fShouldBan = false;
2013-11-18 01:25:17 +01:00
}
BOOST_FOREACH(const CBlockReject& reject, state.rejects)
connman.PushMessage(pto, NetMsgType::REJECT, (string)NetMsgType::BLOCK, reject.chRejectCode, reject.strRejectReason, reject.hashBlock);
state.rejects.clear();
// Start block sync
if (pindexBestHeader == NULL)
pindexBestHeader = chainActive.Tip();
2014-10-28 09:33:55 -07:00
bool fFetch = state.fPreferredDownload || (nPreferredDownload == 0 && !pto->fClient && !pto->fOneShot); // Download if this is a nice peer, or we have no nice peers and this one might do.
if (!state.fSyncStarted && !pto->fClient && !pto->fDisconnect && !fImporting && !fReindex) {
// Only actively request headers from a single peer, unless we're close to today.
if ((nSyncStarted == 0 && fFetch) || pindexBestHeader->GetBlockTime() > GetAdjustedTime() - 24 * 60 * 60) {
state.fSyncStarted = true;
nSyncStarted++;
const CBlockIndex *pindexStart = pindexBestHeader;
/* If possible, start at the block preceding the currently
best known header. This ensures that we always get a
non-empty list of headers back as long as the peer
is up-to-date. With a non-empty response, we can initialise
the peer's known best block. This wouldn't be possible
if we requested starting at pindexBestHeader and
got back an empty response. */
if (pindexStart->pprev)
pindexStart = pindexStart->pprev;
2014-09-02 17:16:32 +07:00
LogPrint("net", "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->id, pto->nStartingHeight);
connman.PushMessage(pto, NetMsgType::GETHEADERS, chainActive.GetLocator(pindexStart), uint256());
}
}
// Resend wallet transactions that haven't gotten in a block yet
// Except during reindex, importing and IBD, when old wallet
// transactions become unconfirmed and spams other nodes.
if (!fReindex && !fImporting && !IsInitialBlockDownload())
{
GetMainSignals().Broadcast(nTimeBestReceived, &connman);
}
//
// Try sending block announcements via headers
//
{
// If we have less than MAX_BLOCKS_TO_ANNOUNCE in our
// list of block hashes we're relaying, and our peer wants
// headers announcements, then find the first header
// not yet known to our peer but would connect, and send.
// If no header would connect, or if we have too many
// blocks, or if the peer doesn't want headers, just
// add all to the inv queue.
LOCK(pto->cs_inventory);
vector<CBlock> vHeaders;
bool fRevertToInv = ((!state.fPreferHeaders &&
(!state.fPreferHeaderAndIDs || pto->vBlockHashesToAnnounce.size() > 1)) ||
pto->vBlockHashesToAnnounce.size() > MAX_BLOCKS_TO_ANNOUNCE);
CBlockIndex *pBestIndex = NULL; // last header queued for delivery
ProcessBlockAvailability(pto->id); // ensure pindexBestKnownBlock is up-to-date
if (!fRevertToInv) {
bool fFoundStartingHeader = false;
// Try to find first header that our peer doesn't have, and
// then send all headers past that one. If we come across any
// headers that aren't on chainActive, give up.
BOOST_FOREACH(const uint256 &hash, pto->vBlockHashesToAnnounce) {
BlockMap::iterator mi = mapBlockIndex.find(hash);
assert(mi != mapBlockIndex.end());
CBlockIndex *pindex = mi->second;
if (chainActive[pindex->nHeight] != pindex) {
// Bail out if we reorged away from this block
fRevertToInv = true;
break;
}
if (pBestIndex != NULL && pindex->pprev != pBestIndex) {
// This means that the list of blocks to announce don't
// connect to each other.
// This shouldn't really be possible to hit during
// regular operation (because reorgs should take us to
// a chain that has some block not on the prior chain,
// which should be caught by the prior check), but one
// way this could happen is by using invalidateblock /
// reconsiderblock repeatedly on the tip, causing it to
// be added multiple times to vBlockHashesToAnnounce.
// Robustly deal with this rare situation by reverting
// to an inv.
fRevertToInv = true;
break;
}
pBestIndex = pindex;
if (fFoundStartingHeader) {
// add this to the headers message
vHeaders.push_back(pindex->GetBlockHeader());
} else if (PeerHasHeader(&state, pindex)) {
continue; // keep looking for the first new block
} else if (pindex->pprev == NULL || PeerHasHeader(&state, pindex->pprev)) {
// Peer doesn't have this header but they do have the prior one.
// Start sending headers.
fFoundStartingHeader = true;
vHeaders.push_back(pindex->GetBlockHeader());
} else {
// Peer doesn't have this header or the prior one -- nothing will
// connect, so bail out.
fRevertToInv = true;
break;
}
}
}
if (!fRevertToInv && !vHeaders.empty()) {
if (vHeaders.size() == 1 && state.fPreferHeaderAndIDs) {
// We only send up to 1 block as header-and-ids, as otherwise
// probably means we're doing an initial-ish-sync or they're slow
LogPrint("net", "%s sending header-and-ids %s to peer %d\n", __func__,
vHeaders.front().GetHash().ToString(), pto->id);
//TODO: Shouldn't need to reload block from disk, but requires refactor
CBlock block;
assert(ReadBlockFromDisk(block, pBestIndex, consensusParams));
CBlockHeaderAndShortTxIDs cmpctblock(block, state.fWantsCmpctWitness);
connman.PushMessageWithFlag(pto, state.fWantsCmpctWitness ? 0 : SERIALIZE_TRANSACTION_NO_WITNESS, NetMsgType::CMPCTBLOCK, cmpctblock);
state.pindexBestHeaderSent = pBestIndex;
} else if (state.fPreferHeaders) {
if (vHeaders.size() > 1) {
LogPrint("net", "%s: %u headers, range (%s, %s), to peer=%d\n", __func__,
vHeaders.size(),
vHeaders.front().GetHash().ToString(),
vHeaders.back().GetHash().ToString(), pto->id);
} else {
LogPrint("net", "%s: sending header %s to peer=%d\n", __func__,
vHeaders.front().GetHash().ToString(), pto->id);
}
connman.PushMessage(pto, NetMsgType::HEADERS, vHeaders);
state.pindexBestHeaderSent = pBestIndex;
} else
fRevertToInv = true;
}
if (fRevertToInv) {
// If falling back to using an inv, just try to inv the tip.
// The last entry in vBlockHashesToAnnounce was our tip at some point
// in the past.
if (!pto->vBlockHashesToAnnounce.empty()) {
const uint256 &hashToAnnounce = pto->vBlockHashesToAnnounce.back();
BlockMap::iterator mi = mapBlockIndex.find(hashToAnnounce);
assert(mi != mapBlockIndex.end());
CBlockIndex *pindex = mi->second;
// Warn if we're announcing a block that is not on the main chain.
// This should be very rare and could be optimized out.
// Just log for now.
if (chainActive[pindex->nHeight] != pindex) {
LogPrint("net", "Announcing block %s not on main chain (tip=%s)\n",
hashToAnnounce.ToString(), chainActive.Tip()->GetBlockHash().ToString());
}
// If the peer's chain has this block, don't inv it back.
if (!PeerHasHeader(&state, pindex)) {
pto->PushInventory(CInv(MSG_BLOCK, hashToAnnounce));
LogPrint("net", "%s: sending inv peer=%d hash=%s\n", __func__,
pto->id, hashToAnnounce.ToString());
}
}
}
pto->vBlockHashesToAnnounce.clear();
}
//
// Message: inventory
//
vector<CInv> vInv;
{
LOCK(pto->cs_inventory);
vInv.reserve(std::max<size_t>(pto->vInventoryBlockToSend.size(), INVENTORY_BROADCAST_MAX));
// Add blocks
BOOST_FOREACH(const uint256& hash, pto->vInventoryBlockToSend) {
vInv.push_back(CInv(MSG_BLOCK, hash));
if (vInv.size() == MAX_INV_SZ) {
connman.PushMessage(pto, NetMsgType::INV, vInv);
vInv.clear();
}
}
pto->vInventoryBlockToSend.clear();
// Check whether periodic sends should happen
bool fSendTrickle = pto->fWhitelisted;
if (pto->nNextInvSend < nNow) {
fSendTrickle = true;
// Use half the delay for outbound peers, as there is less privacy concern for them.
pto->nNextInvSend = PoissonNextSend(nNow, INVENTORY_BROADCAST_INTERVAL >> !pto->fInbound);
}
// Time to send but the peer has requested we not relay transactions.
if (fSendTrickle) {
LOCK(pto->cs_filter);
if (!pto->fRelayTxes) pto->setInventoryTxToSend.clear();
}
// Respond to BIP35 mempool requests
if (fSendTrickle && pto->fSendMempool) {
auto vtxinfo = mempool.infoAll();
pto->fSendMempool = false;
CAmount filterrate = 0;
{
LOCK(pto->cs_feeFilter);
filterrate = pto->minFeeFilter;
}
LOCK(pto->cs_filter);
for (const auto& txinfo : vtxinfo) {
const uint256& hash = txinfo.tx->GetHash();
CInv inv(MSG_TX, hash);
pto->setInventoryTxToSend.erase(hash);
if (filterrate) {
if (txinfo.feeRate.GetFeePerK() < filterrate)
continue;
}
if (pto->pfilter) {
if (!pto->pfilter->IsRelevantAndUpdate(*txinfo.tx)) continue;
}
pto->filterInventoryKnown.insert(hash);
vInv.push_back(inv);
if (vInv.size() == MAX_INV_SZ) {
connman.PushMessage(pto, NetMsgType::INV, vInv);
vInv.clear();
}
}
pto->timeLastMempoolReq = GetTime();
}
// Determine transactions to relay
if (fSendTrickle) {
// Produce a vector with all candidates for sending
vector<std::set<uint256>::iterator> vInvTx;
vInvTx.reserve(pto->setInventoryTxToSend.size());
for (std::set<uint256>::iterator it = pto->setInventoryTxToSend.begin(); it != pto->setInventoryTxToSend.end(); it++) {
vInvTx.push_back(it);
}
CAmount filterrate = 0;
{
LOCK(pto->cs_feeFilter);
filterrate = pto->minFeeFilter;
}
// Topologically and fee-rate sort the inventory we send for privacy and priority reasons.
// A heap is used so that not all items need sorting if only a few are being sent.
CompareInvMempoolOrder compareInvMempoolOrder(&mempool);
std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
// No reason to drain out at many times the network's capacity,
// especially since we have many peers and some will draw much shorter delays.
unsigned int nRelayedTransactions = 0;
LOCK(pto->cs_filter);
while (!vInvTx.empty() && nRelayedTransactions < INVENTORY_BROADCAST_MAX) {
// Fetch the top element from the heap
std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
std::set<uint256>::iterator it = vInvTx.back();
vInvTx.pop_back();
uint256 hash = *it;
// Remove it from the to-be-sent set
pto->setInventoryTxToSend.erase(it);
// Check if not in the filter already
if (pto->filterInventoryKnown.contains(hash)) {
continue;
}
// Not in the mempool anymore? don't bother sending it.
auto txinfo = mempool.info(hash);
if (!txinfo.tx) {
continue;
}
if (filterrate && txinfo.feeRate.GetFeePerK() < filterrate) {
continue;
}
if (pto->pfilter && !pto->pfilter->IsRelevantAndUpdate(*txinfo.tx)) continue;
// Send
vInv.push_back(CInv(MSG_TX, hash));
nRelayedTransactions++;
{
// Expire old relay messages
while (!vRelayExpiration.empty() && vRelayExpiration.front().first < nNow)
{
mapRelay.erase(vRelayExpiration.front().second);
vRelayExpiration.pop_front();
}
auto ret = mapRelay.insert(std::make_pair(hash, std::move(txinfo.tx)));
if (ret.second) {
vRelayExpiration.push_back(std::make_pair(nNow + 15 * 60 * 1000000, ret.first));
}
}
if (vInv.size() == MAX_INV_SZ) {
connman.PushMessage(pto, NetMsgType::INV, vInv);
vInv.clear();
}
pto->filterInventoryKnown.insert(hash);
}
}
}
if (!vInv.empty())
connman.PushMessage(pto, NetMsgType::INV, vInv);
// Detect whether we're stalling
nNow = GetTimeMicros();
if (!pto->fDisconnect && state.nStallingSince && state.nStallingSince < nNow - 1000000 * BLOCK_STALLING_TIMEOUT) {
// Stalling only triggers when the block download window cannot move. During normal steady state,
// the download window should be much larger than the to-be-downloaded set of blocks, so disconnection
// should only happen during initial block download.
LogPrintf("Peer=%d is stalling block download, disconnecting\n", pto->id);
pto->fDisconnect = true;
}
// In case there is a block that has been in flight from this peer for 2 + 0.5 * N times the block interval
// (with N the number of peers from which we're downloading validated blocks), disconnect due to timeout.
// We compensate for other peers to prevent killing off peers due to our own downstream link
2015-04-28 14:48:28 +00:00
// being saturated. We only count validated in-flight blocks so peers can't advertise non-existing block hashes
// to unreasonably increase our timeout.
if (!pto->fDisconnect && state.vBlocksInFlight.size() > 0) {
QueuedBlock &queuedBlock = state.vBlocksInFlight.front();
int nOtherPeersWithValidatedDownloads = nPeersWithValidatedDownloads - (state.nBlocksInFlightValidHeaders > 0);
if (nNow > state.nDownloadingSince + consensusParams.nPowTargetSpacing * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) {
LogPrintf("Timeout downloading block %s from peer=%d, disconnecting\n", queuedBlock.hash.ToString(), pto->id);
pto->fDisconnect = true;
}
}
//
// Message: getdata (blocks)
//
vector<CInv> vGetData;
if (!pto->fDisconnect && !pto->fClient && (fFetch || !IsInitialBlockDownload()) && state.nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
vector<CBlockIndex*> vToDownload;
NodeId staller = -1;
FindNextBlocksToDownload(pto->GetId(), MAX_BLOCKS_IN_TRANSIT_PER_PEER - state.nBlocksInFlight, vToDownload, staller, consensusParams);
BOOST_FOREACH(CBlockIndex *pindex, vToDownload) {
uint32_t nFetchFlags = GetFetchFlags(pto, pindex->pprev, consensusParams);
vGetData.push_back(CInv(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash()));
MarkBlockAsInFlight(pto->GetId(), pindex->GetBlockHash(), consensusParams, pindex);
LogPrint("net", "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(),
pindex->nHeight, pto->id);
}
if (state.nBlocksInFlight == 0 && staller != -1) {
2014-09-04 01:31:01 +07:00
if (State(staller)->nStallingSince == 0) {
State(staller)->nStallingSince = nNow;
2014-09-04 01:31:01 +07:00
LogPrint("net", "Stall started peer=%d\n", staller);
}
}
}
//
// Message: getdata (non-blocks)
//
while (!pto->fDisconnect && !pto->mapAskFor.empty() && (*pto->mapAskFor.begin()).first <= nNow)
{
const CInv& inv = (*pto->mapAskFor.begin()).second;
if (!AlreadyHave(inv))
{
if (fDebug)
LogPrint("net", "Requesting %s peer=%d\n", inv.ToString(), pto->id);
vGetData.push_back(inv);
if (vGetData.size() >= 1000)
{
connman.PushMessage(pto, NetMsgType::GETDATA, vGetData);
vGetData.clear();
}
} else {
//If we're not going to ask, don't expect a response.
pto->setAskFor.erase(inv.hash);
}
pto->mapAskFor.erase(pto->mapAskFor.begin());
}
if (!vGetData.empty())
connman.PushMessage(pto, NetMsgType::GETDATA, vGetData);
//
// Message: feefilter
//
// We don't want white listed peers to filter txs to us if we have -whitelistforcerelay
if (pto->nVersion >= FEEFILTER_VERSION && GetBoolArg("-feefilter", DEFAULT_FEEFILTER) &&
!(pto->fWhitelisted && GetBoolArg("-whitelistforcerelay", DEFAULT_WHITELISTFORCERELAY))) {
CAmount currentFilter = mempool.GetMinFee(GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000).GetFeePerK();
int64_t timeNow = GetTimeMicros();
if (timeNow > pto->nextSendTimeFeeFilter) {
CAmount filterToSend = filterRounder.round(currentFilter);
if (filterToSend != pto->lastSentFeeFilter) {
connman.PushMessage(pto, NetMsgType::FEEFILTER, filterToSend);
pto->lastSentFeeFilter = filterToSend;
}
pto->nextSendTimeFeeFilter = PoissonNextSend(timeNow, AVG_FEEFILTER_BROADCAST_INTERVAL);
}
// If the fee filter has changed substantially and it's still more than MAX_FEEFILTER_CHANGE_DELAY
// until scheduled broadcast, then move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY.
else if (timeNow + MAX_FEEFILTER_CHANGE_DELAY * 1000000 < pto->nextSendTimeFeeFilter &&
(currentFilter < 3 * pto->lastSentFeeFilter / 4 || currentFilter > 4 * pto->lastSentFeeFilter / 3)) {
pto->nextSendTimeFeeFilter = timeNow + GetRandInt(MAX_FEEFILTER_CHANGE_DELAY) * 1000000;
}
}
}
return true;
}
std::string CBlockFileInfo::ToString() const {
return strprintf("CBlockFileInfo(blocks=%u, size=%u, heights=%u...%u, time=%s...%s)", nBlocks, nSize, nHeightFirst, nHeightLast, DateTimeStrFormat("%Y-%m-%d", nTimeFirst), DateTimeStrFormat("%Y-%m-%d", nTimeLast));
}
2016-03-03 21:00:03 +01:00
ThresholdState VersionBitsTipState(const Consensus::Params& params, Consensus::DeploymentPos pos)
{
LOCK(cs_main);
return VersionBitsState(chainActive.Tip(), params, pos, versionbitscache);
}
int VersionBitsTipStateSinceHeight(const Consensus::Params& params, Consensus::DeploymentPos pos)
{
LOCK(cs_main);
return VersionBitsStateSinceHeight(chainActive.Tip(), params, pos, versionbitscache);
}
2016-10-30 23:53:38 -07:00
static const uint64_t MEMPOOL_DUMP_VERSION = 1;
bool LoadMempool(void)
{
int64_t nExpiryTimeout = GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60;
FILE* filestr = fopen((GetDataDir() / "mempool.dat").string().c_str(), "r");
CAutoFile file(filestr, SER_DISK, CLIENT_VERSION);
if (file.IsNull()) {
LogPrintf("Failed to open mempool file from disk. Continuing anyway.\n");
return false;
}
int64_t count = 0;
int64_t skipped = 0;
int64_t failed = 0;
int64_t nNow = GetTime();
try {
uint64_t version;
file >> version;
if (version != MEMPOOL_DUMP_VERSION) {
return false;
}
uint64_t num;
file >> num;
double prioritydummy = 0;
while (num--) {
CTransaction tx;
int64_t nTime;
int64_t nFeeDelta;
file >> tx;
file >> nTime;
file >> nFeeDelta;
CAmount amountdelta = nFeeDelta;
if (amountdelta) {
mempool.PrioritiseTransaction(tx.GetHash(), tx.GetHash().ToString(), prioritydummy, amountdelta);
}
CValidationState state;
if (nTime + nExpiryTimeout > nNow) {
LOCK(cs_main);
AcceptToMemoryPoolWithTime(mempool, state, tx, true, NULL, nTime);
if (state.IsValid()) {
++count;
} else {
++failed;
}
} else {
++skipped;
}
}
std::map<uint256, CAmount> mapDeltas;
file >> mapDeltas;
for (const auto& i : mapDeltas) {
mempool.PrioritiseTransaction(i.first, i.first.ToString(), prioritydummy, i.second);
}
} catch (const std::exception& e) {
LogPrintf("Failed to deserialize mempool data on disk: %s. Continuing anyway.\n", e.what());
return false;
}
LogPrintf("Imported mempool transactions from disk: %i successes, %i failed, %i expired\n", count, failed, skipped);
return true;
}
void DumpMempool(void)
{
int64_t start = GetTimeMicros();
std::map<uint256, CAmount> mapDeltas;
std::vector<TxMempoolInfo> vinfo;
{
LOCK(mempool.cs);
for (const auto &i : mempool.mapDeltas) {
mapDeltas[i.first] = i.second.first;
}
vinfo = mempool.infoAll();
}
int64_t mid = GetTimeMicros();
try {
FILE* filestr = fopen((GetDataDir() / "mempool.dat.new").string().c_str(), "w");
if (!filestr) {
return;
}
CAutoFile file(filestr, SER_DISK, CLIENT_VERSION);
uint64_t version = MEMPOOL_DUMP_VERSION;
file << version;
file << (uint64_t)vinfo.size();
for (const auto& i : vinfo) {
file << *(i.tx);
file << (int64_t)i.nTime;
file << (int64_t)i.nFeeDelta;
mapDeltas.erase(i.tx->GetHash());
}
file << mapDeltas;
FileCommit(file.Get());
file.fclose();
RenameOver(GetDataDir() / "mempool.dat.new", GetDataDir() / "mempool.dat");
int64_t last = GetTimeMicros();
LogPrintf("Dumped mempool: %gs to copy, %gs to dump\n", (mid-start)*0.000001, (last-mid)*0.000001);
} catch (const std::exception& e) {
LogPrintf("Failed to dump mempool: %s. Continuing anyway.\n", e.what());
}
}
class CMainCleanup
{
public:
CMainCleanup() {}
~CMainCleanup() {
// block headers
BlockMap::iterator it1 = mapBlockIndex.begin();
for (; it1 != mapBlockIndex.end(); it1++)
delete (*it1).second;
mapBlockIndex.clear();
// orphan transactions
mapOrphanTransactions.clear();
mapOrphanTransactionsByPrev.clear();
}
} instance_of_cmaincleanup;