Cemu/dependencies/ih264d/common/ih264_iquant_itrans_recon.c
2022-08-22 22:21:23 +02:00

873 lines
30 KiB
C

/******************************************************************************
*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*****************************************************************************
* Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
*/
/**
*******************************************************************************
* @file
* ih264_iquant_itrans_recon.c
*
* @brief
* Contains definition of functions for h264 inverse quantization inverse transformation and recon
*
* @author
* Ittiam
*
* @par List of Functions:
* - ih264_iquant_itrans_recon_4x4()
* - ih264_iquant_itrans_recon_8x8()
* - ih264_iquant_itrans_recon_4x4_dc()
* - ih264_iquant_itrans_recon_8x8_dc()
* - ih264_iquant_itrans_recon_chroma_4x4()
* -ih264_iquant_itrans_recon_chroma_4x4_dc()
*
* @remarks
*
*******************************************************************************
*/
/*****************************************************************************/
/* File Includes */
/*****************************************************************************/
/* User include files */
#include "ih264_typedefs.h"
#include "ih264_defs.h"
#include "ih264_trans_macros.h"
#include "ih264_macros.h"
#include "ih264_platform_macros.h"
#include "ih264_trans_data.h"
#include "ih264_size_defs.h"
#include "ih264_structs.h"
#include "ih264_trans_quant_itrans_iquant.h"
/*
********************************************************************************
*
* @brief This function reconstructs a 4x4 sub block from quantized resiude and
* prediction buffer
*
* @par Description:
* The quantized residue is first inverse quantized, then inverse transformed.
* This inverse transformed content is added to the prediction buffer to recon-
* struct the end output
*
* @param[in] pi2_src
* quantized 4x4 block
*
* @param[in] pu1_pred
* prediction 4x4 block
*
* @param[out] pu1_out
* reconstructed 4x4 block
*
* @param[in] src_strd
* quantization buffer stride
*
* @param[in] pred_strd,
* Prediction buffer stride
*
* @param[in] out_strd
* recon buffer Stride
*
* @param[in] pu2_scaling_list
* pointer to scaling list
*
* @param[in] pu2_norm_adjust
* pointer to inverse scale matrix
*
* @param[in] u4_qp_div_6
* Floor (qp/6)
*
* @param[in] pi4_tmp
* temporary buffer of size 1*16
*
* @returns none
*
* @remarks none
*
*******************************************************************************
*/
void ih264_iquant_itrans_recon_4x4(WORD16 *pi2_src,
UWORD8 *pu1_pred,
UWORD8 *pu1_out,
WORD32 pred_strd,
WORD32 out_strd,
const UWORD16 *pu2_iscal_mat,
const UWORD16 *pu2_weigh_mat,
UWORD32 u4_qp_div_6,
WORD16 *pi2_tmp,
WORD32 iq_start_idx,
WORD16 *pi2_dc_ld_addr
)
{
WORD16 *pi2_src_ptr = pi2_src;
WORD16 *pi2_tmp_ptr = pi2_tmp;
UWORD8 *pu1_pred_ptr = pu1_pred;
UWORD8 *pu1_out_ptr = pu1_out;
WORD16 x0, x1, x2, x3, i;
WORD32 q0, q1, q2, q3;
WORD16 i_macro;
WORD16 rnd_fact = (u4_qp_div_6 < 4) ? 1 << (3 - u4_qp_div_6) : 0;
/* inverse quant */
/*horizontal inverse transform */
for(i = 0; i < SUB_BLK_WIDTH_4x4; i++)
{
q0 = pi2_src_ptr[0];
INV_QUANT(q0, pu2_iscal_mat[0], pu2_weigh_mat[0], u4_qp_div_6, rnd_fact,
4);
if (i==0 && iq_start_idx == 1)
q0 = pi2_dc_ld_addr[0]; // Restoring dc value for intra case
q2 = pi2_src_ptr[2];
INV_QUANT(q2, pu2_iscal_mat[2], pu2_weigh_mat[2], u4_qp_div_6, rnd_fact,
4);
x0 = q0 + q2;
x1 = q0 - q2;
q1 = pi2_src_ptr[1];
INV_QUANT(q1, pu2_iscal_mat[1], pu2_weigh_mat[1], u4_qp_div_6, rnd_fact,
4);
q3 = pi2_src_ptr[3];
INV_QUANT(q3, pu2_iscal_mat[3], pu2_weigh_mat[3], u4_qp_div_6, rnd_fact,
4);
x2 = (q1 >> 1) - q3;
x3 = q1 + (q3 >> 1);
pi2_tmp_ptr[0] = x0 + x3;
pi2_tmp_ptr[1] = x1 + x2;
pi2_tmp_ptr[2] = x1 - x2;
pi2_tmp_ptr[3] = x0 - x3;
pi2_src_ptr += SUB_BLK_WIDTH_4x4;
pi2_tmp_ptr += SUB_BLK_WIDTH_4x4;
pu2_iscal_mat += SUB_BLK_WIDTH_4x4;
pu2_weigh_mat += SUB_BLK_WIDTH_4x4;
}
/* vertical inverse transform */
pi2_tmp_ptr = pi2_tmp;
for(i = 0; i < SUB_BLK_WIDTH_4x4; i++)
{
pu1_pred_ptr = pu1_pred;
pu1_out = pu1_out_ptr;
x0 = (pi2_tmp_ptr[0] + pi2_tmp_ptr[8]);
x1 = (pi2_tmp_ptr[0] - pi2_tmp_ptr[8]);
x2 = (pi2_tmp_ptr[4] >> 1) - pi2_tmp_ptr[12];
x3 = pi2_tmp_ptr[4] + (pi2_tmp_ptr[12] >> 1);
/* inverse prediction */
i_macro = x0 + x3;
i_macro = ((i_macro + 32) >> 6);
i_macro += *pu1_pred_ptr;
*pu1_out = CLIP_U8(i_macro);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
i_macro = x1 + x2;
i_macro = ((i_macro + 32) >> 6);
i_macro += *pu1_pred_ptr;
*pu1_out = CLIP_U8(i_macro);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
i_macro = x1 - x2;
i_macro = ((i_macro + 32) >> 6);
i_macro += *pu1_pred_ptr;
*pu1_out = CLIP_U8(i_macro);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
i_macro = x0 - x3;
i_macro = ((i_macro + 32) >> 6);
i_macro += *pu1_pred_ptr;
*pu1_out = CLIP_U8(i_macro);
pi2_tmp_ptr++;
pu1_out_ptr++;
pu1_pred++;
}
}
void ih264_iquant_itrans_recon_4x4_dc(WORD16 *pi2_src,
UWORD8 *pu1_pred,
UWORD8 *pu1_out,
WORD32 pred_strd,
WORD32 out_strd,
const UWORD16 *pu2_iscal_mat,
const UWORD16 *pu2_weigh_mat,
UWORD32 u4_qp_div_6,
WORD16 *pi2_tmp,
WORD32 iq_start_idx,
WORD16 *pi2_dc_ld_addr)
{
UWORD8 *pu1_pred_ptr = pu1_pred;
UWORD8 *pu1_out_ptr = pu1_out;
WORD32 q0;
WORD16 x, i_macro, i;
WORD16 rnd_fact = (u4_qp_div_6 < 4) ? 1 << (3 - u4_qp_div_6) : 0;
UNUSED(pi2_tmp);
if (iq_start_idx == 0)
{
q0 = pi2_src[0];
INV_QUANT(q0, pu2_iscal_mat[0], pu2_weigh_mat[0], u4_qp_div_6, rnd_fact, 4);
}
else
{
q0 = pi2_dc_ld_addr[0]; // Restoring dc value for intra case3
}
i_macro = ((q0 + 32) >> 6);
for(i = 0; i < SUB_BLK_WIDTH_4x4; i++)
{
pu1_pred_ptr = pu1_pred;
pu1_out = pu1_out_ptr;
/* inverse prediction */
x = i_macro + *pu1_pred_ptr;
*pu1_out = CLIP_U8(x);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
x = i_macro + *pu1_pred_ptr;
*pu1_out = CLIP_U8(x);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
x = i_macro + *pu1_pred_ptr;
*pu1_out = CLIP_U8(x);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
x = i_macro + *pu1_pred_ptr;
*pu1_out = CLIP_U8(x);
pu1_out_ptr++;
pu1_pred++;
}
}
/**
*******************************************************************************
*
* @brief
* This function performs inverse quant and Inverse transform type Ci4 for 8x8 block
*
* @par Description:
* Performs inverse transform Ci8 and adds the residue to get the
* reconstructed block
*
* @param[in] pi2_src
* Input 8x8coefficients
*
* @param[in] pu1_pred
* Prediction 8x8 block
*
* @param[out] pu1_recon
* Output 8x8 block
*
* @param[in] q_div
* QP/6
*
* @param[in] q_rem
* QP%6
*
* @param[in] q_lev
* Quantizer level
*
* @param[in] src_strd
* Input stride
*
* @param[in] pred_strd,
* Prediction stride
*
* @param[in] out_strd
* Output Stride
*
* @param[in] pi4_tmp
* temporary buffer of size 1*16 we dont need a bigger blcok since we reuse
* the tmp for each block
*
* @param[in] pu4_iquant_mat
* Pointer to the inverse quantization matrix
*
* @returns Void
*
* @remarks
* None
*
*******************************************************************************
*/
void ih264_iquant_itrans_recon_8x8(WORD16 *pi2_src,
UWORD8 *pu1_pred,
UWORD8 *pu1_out,
WORD32 pred_strd,
WORD32 out_strd,
const UWORD16 *pu2_iscale_mat,
const UWORD16 *pu2_weigh_mat,
UWORD32 qp_div,
WORD16 *pi2_tmp,
WORD32 iq_start_idx,
WORD16 *pi2_dc_ld_addr
)
{
WORD32 i;
WORD16 *pi2_tmp_ptr = pi2_tmp;
UWORD8 *pu1_pred_ptr = pu1_pred;
UWORD8 *pu1_out_ptr = pu1_out;
WORD16 i_z0, i_z1, i_z2, i_z3, i_z4, i_z5, i_z6, i_z7;
WORD16 i_y0, i_y1, i_y2, i_y3, i_y4, i_y5, i_y6, i_y7;
WORD16 i_macro;
WORD32 q;
WORD32 rnd_fact = (qp_div < 6) ? (1 << (5 - qp_div)) : 0;
UNUSED(iq_start_idx);
UNUSED(pi2_dc_ld_addr);
/*************************************************************/
/* De quantization of coefficients. Will be replaced by SIMD */
/* operations on platform. Note : DC coeff is not scaled */
/*************************************************************/
for(i = 0; i < (SUB_BLK_WIDTH_8x8 * SUB_BLK_WIDTH_8x8); i++)
{
q = pi2_src[i];
INV_QUANT(q, pu2_iscale_mat[i], pu2_weigh_mat[i], qp_div, rnd_fact, 6);
pi2_tmp_ptr[i] = q;
}
/* Perform Inverse transform */
/*--------------------------------------------------------------------*/
/* IDCT [ Horizontal transformation ] */
/*--------------------------------------------------------------------*/
for(i = 0; i < SUB_BLK_WIDTH_8x8; i++)
{
/*------------------------------------------------------------------*/
/* y0 = w0 + w4 */
/* y1 = -w3 + w5 - w7 - (w7 >> 1) */
/* y2 = w0 - w4 */
/* y3 = w1 + w7 - w3 - (w3 >> 1) */
/* y4 = (w2 >> 1) - w6 */
/* y5 = -w1 + w7 + w5 + (w5 >> 1) */
/* y6 = w2 + (w6 >> 1) */
/* y7 = w3 + w5 + w1 + (w1 >> 1) */
/*------------------------------------------------------------------*/
i_y0 = (pi2_tmp_ptr[0] + pi2_tmp_ptr[4] );
i_y1 = ((WORD32)(-pi2_tmp_ptr[3]) + pi2_tmp_ptr[5] - pi2_tmp_ptr[7]
- (pi2_tmp_ptr[7] >> 1));
i_y2 = (pi2_tmp_ptr[0] - pi2_tmp_ptr[4] );
i_y3 = ((WORD32)pi2_tmp_ptr[1] + pi2_tmp_ptr[7] - pi2_tmp_ptr[3]
- (pi2_tmp_ptr[3] >> 1));
i_y4 = ((pi2_tmp_ptr[2] >> 1) - pi2_tmp_ptr[6] );
i_y5 = ((WORD32)(-pi2_tmp_ptr[1]) + pi2_tmp_ptr[7] + pi2_tmp_ptr[5]
+ (pi2_tmp_ptr[5] >> 1));
i_y6 = (pi2_tmp_ptr[2] + (pi2_tmp_ptr[6] >> 1));
i_y7 = ((WORD32)pi2_tmp_ptr[3] + pi2_tmp_ptr[5] + pi2_tmp_ptr[1]
+ (pi2_tmp_ptr[1] >> 1));
/*------------------------------------------------------------------*/
/* z0 = y0 + y6 */
/* z1 = y1 + (y7 >> 2) */
/* z2 = y2 + y4 */
/* z3 = y3 + (y5 >> 2) */
/* z4 = y2 - y4 */
/* z5 = (y3 >> 2) - y5 */
/* z6 = y0 - y6 */
/* z7 = y7 - (y1 >> 2) */
/*------------------------------------------------------------------*/
i_z0 = i_y0 + i_y6;
i_z1 = i_y1 + (i_y7 >> 2);
i_z2 = i_y2 + i_y4;
i_z3 = i_y3 + (i_y5 >> 2);
i_z4 = i_y2 - i_y4;
i_z5 = (i_y3 >> 2) - i_y5;
i_z6 = i_y0 - i_y6;
i_z7 = i_y7 - (i_y1 >> 2);
/*------------------------------------------------------------------*/
/* x0 = z0 + z7 */
/* x1 = z2 + z5 */
/* x2 = z4 + z3 */
/* x3 = z6 + z1 */
/* x4 = z6 - z1 */
/* x5 = z4 - z3 */
/* x6 = z2 - z5 */
/* x7 = z0 - z7 */
/*------------------------------------------------------------------*/
pi2_tmp_ptr[0] = i_z0 + i_z7;
pi2_tmp_ptr[1] = i_z2 + i_z5;
pi2_tmp_ptr[2] = i_z4 + i_z3;
pi2_tmp_ptr[3] = i_z6 + i_z1;
pi2_tmp_ptr[4] = i_z6 - i_z1;
pi2_tmp_ptr[5] = i_z4 - i_z3;
pi2_tmp_ptr[6] = i_z2 - i_z5;
pi2_tmp_ptr[7] = i_z0 - i_z7;
/* move to the next row */
//pi2_src_ptr += SUB_BLK_WIDTH_8x8;
pi2_tmp_ptr += SUB_BLK_WIDTH_8x8;
}
/*--------------------------------------------------------------------*/
/* IDCT [ Vertical transformation] and Xij = (xij + 32)>>6 */
/* */
/* Add the prediction and store it back to reconstructed frame buffer */
/* [Prediction buffer itself in this case] */
/*--------------------------------------------------------------------*/
pi2_tmp_ptr = pi2_tmp;
for(i = 0; i < SUB_BLK_WIDTH_8x8; i++)
{
pu1_pred_ptr = pu1_pred;
pu1_out = pu1_out_ptr;
/*------------------------------------------------------------------*/
/* y0j = w0j + w4j */
/* y1j = -w3j + w5j -w7j -(w7j >> 1) */
/* y2j = w0j -w4j */
/* y3j = w1j + w7j -w3j -(w3j >> 1) */
/* y4j = ( w2j >> 1 ) -w6j */
/* y5j = -w1j + w7j + w5j + (w5j >> 1) */
/* y6j = w2j + ( w6j >> 1 ) */
/* y7j = w3j + w5j + w1j + (w1j >> 1) */
/*------------------------------------------------------------------*/
i_y0 = pi2_tmp_ptr[0] + pi2_tmp_ptr[32];
i_y1 = (WORD32)(-pi2_tmp_ptr[24]) + pi2_tmp_ptr[40] - pi2_tmp_ptr[56]
- (pi2_tmp_ptr[56] >> 1);
i_y2 = pi2_tmp_ptr[0] - pi2_tmp_ptr[32];
i_y3 = (WORD32)pi2_tmp_ptr[8] + pi2_tmp_ptr[56] - pi2_tmp_ptr[24]
- (pi2_tmp_ptr[24] >> 1);
i_y4 = (pi2_tmp_ptr[16] >> 1) - pi2_tmp_ptr[48];
i_y5 = (WORD32)(-pi2_tmp_ptr[8]) + pi2_tmp_ptr[56] + pi2_tmp_ptr[40]
+ (pi2_tmp_ptr[40] >> 1);
i_y6 = pi2_tmp_ptr[16] + (pi2_tmp_ptr[48] >> 1);
i_y7 = (WORD32)pi2_tmp_ptr[24] + pi2_tmp_ptr[40] + pi2_tmp_ptr[8]
+ (pi2_tmp_ptr[8] >> 1);
/*------------------------------------------------------------------*/
/* z0j = y0j + y6j */
/* z1j = y1j + (y7j >> 2) */
/* z2j = y2j + y4j */
/* z3j = y3j + (y5j >> 2) */
/* z4j = y2j -y4j */
/* z5j = (y3j >> 2) -y5j */
/* z6j = y0j -y6j */
/* z7j = y7j -(y1j >> 2) */
/*------------------------------------------------------------------*/
i_z0 = i_y0 + i_y6;
i_z1 = i_y1 + (i_y7 >> 2);
i_z2 = i_y2 + i_y4;
i_z3 = i_y3 + (i_y5 >> 2);
i_z4 = i_y2 - i_y4;
i_z5 = (i_y3 >> 2) - i_y5;
i_z6 = i_y0 - i_y6;
i_z7 = i_y7 - (i_y1 >> 2);
/*------------------------------------------------------------------*/
/* x0j = z0j + z7j */
/* x1j = z2j + z5j */
/* x2j = z4j + z3j */
/* x3j = z6j + z1j */
/* x4j = z6j -z1j */
/* x5j = z4j -z3j */
/* x6j = z2j -z5j */
/* x7j = z0j -z7j */
/*------------------------------------------------------------------*/
i_macro = ((i_z0 + i_z7 + 32) >> 6) + *pu1_pred_ptr;
*pu1_out = CLIP_U8(i_macro);
/* Change uc_recBuffer to Point to next element in the same column*/
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
i_macro = ((i_z2 + i_z5 + 32) >> 6) + *pu1_pred_ptr;
*pu1_out = CLIP_U8(i_macro);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
i_macro = ((i_z4 + i_z3 + 32) >> 6) + *pu1_pred_ptr;
*pu1_out = CLIP_U8(i_macro);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
i_macro = ((i_z6 + i_z1 + 32) >> 6) + *pu1_pred_ptr;
*pu1_out = CLIP_U8(i_macro);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
i_macro = ((i_z6 - i_z1 + 32) >> 6) + *pu1_pred_ptr;
*pu1_out = CLIP_U8(i_macro);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
i_macro = ((i_z4 - i_z3 + 32) >> 6) + *pu1_pred_ptr;
*pu1_out = CLIP_U8(i_macro);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
i_macro = ((i_z2 - i_z5 + 32) >> 6) + *pu1_pred_ptr;
*pu1_out = CLIP_U8(i_macro);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
i_macro = ((i_z0 - i_z7 + 32) >> 6) + *pu1_pred_ptr;
*pu1_out = CLIP_U8(i_macro);
pi2_tmp_ptr++;
pu1_out_ptr++;
pu1_pred++;
}
}
void ih264_iquant_itrans_recon_8x8_dc(WORD16 *pi2_src,
UWORD8 *pu1_pred,
UWORD8 *pu1_out,
WORD32 pred_strd,
WORD32 out_strd,
const UWORD16 *pu2_iscale_mat,
const UWORD16 *pu2_weigh_mat,
UWORD32 qp_div,
WORD16 *pi2_tmp,
WORD32 iq_start_idx,
WORD16 *pi2_dc_ld_addr)
{
UWORD8 *pu1_pred_ptr = pu1_pred;
UWORD8 *pu1_out_ptr = pu1_out;
WORD16 x, i, i_macro;
WORD32 q;
WORD32 rnd_fact = (qp_div < 6) ? (1 << (5 - qp_div)) : 0;
UNUSED(pi2_tmp);
UNUSED(iq_start_idx);
UNUSED(pi2_dc_ld_addr);
/*************************************************************/
/* Dequantization of coefficients. Will be replaced by SIMD */
/* operations on platform. Note : DC coeff is not scaled */
/*************************************************************/
q = pi2_src[0];
INV_QUANT(q, pu2_iscale_mat[0], pu2_weigh_mat[0], qp_div, rnd_fact, 6);
i_macro = (q + 32) >> 6;
/* Perform Inverse transform */
/*--------------------------------------------------------------------*/
/* IDCT [ Horizontal transformation ] */
/*--------------------------------------------------------------------*/
/*--------------------------------------------------------------------*/
/* IDCT [ Vertical transformation] and Xij = (xij + 32)>>6 */
/* */
/* Add the prediction and store it back to reconstructed frame buffer */
/* [Prediction buffer itself in this case] */
/*--------------------------------------------------------------------*/
for(i = 0; i < SUB_BLK_WIDTH_8x8; i++)
{
pu1_pred_ptr = pu1_pred;
pu1_out = pu1_out_ptr;
x = i_macro + *pu1_pred_ptr;
*pu1_out = CLIP_U8(x);
/* Change uc_recBuffer to Point to next element in the same column*/
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
x = i_macro + *pu1_pred_ptr;
*pu1_out = CLIP_U8(x);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
x = i_macro + *pu1_pred_ptr;
*pu1_out = CLIP_U8(x);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
x = i_macro + *pu1_pred_ptr;
*pu1_out = CLIP_U8(x);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
x = i_macro + *pu1_pred_ptr;
*pu1_out = CLIP_U8(x);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
x = i_macro + *pu1_pred_ptr;
*pu1_out = CLIP_U8(x);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
x = i_macro + *pu1_pred_ptr;
*pu1_out = CLIP_U8(x);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
x = i_macro + *pu1_pred_ptr;
*pu1_out = CLIP_U8(x);
pu1_out_ptr++;
pu1_pred++;
}
}
/*
********************************************************************************
*
* @brief This function reconstructs a 4x4 sub block from quantized resiude and
* prediction buffer
*
* @par Description:
* The quantized residue is first inverse quantized, then inverse transformed.
* This inverse transformed content is added to the prediction buffer to recon-
* struct the end output
*
* @param[in] pi2_src
* quantized 4x4 block
*
* @param[in] pu1_pred
* prediction 4x4 block
*
* @param[out] pu1_out
* reconstructed 4x4 block
*
* @param[in] src_strd
* quantization buffer stride
*
* @param[in] pred_strd,
* Prediction buffer stride
*
* @param[in] out_strd
* recon buffer Stride
*
* @param[in] pu2_scaling_list
* pointer to scaling list
*
* @param[in] pu2_norm_adjust
* pointer to inverse scale matrix
*
* @param[in] u4_qp_div_6
* Floor (qp/6)
*
* @param[in] pi4_tmp
* temporary buffer of size 1*16
*
* @returns none
*
* @remarks none
*
*******************************************************************************
*/
void ih264_iquant_itrans_recon_chroma_4x4(WORD16 *pi2_src,
UWORD8 *pu1_pred,
UWORD8 *pu1_out,
WORD32 pred_strd,
WORD32 out_strd,
const UWORD16 *pu2_iscal_mat,
const UWORD16 *pu2_weigh_mat,
UWORD32 u4_qp_div_6,
WORD16 *pi2_tmp,
WORD16 *pi2_dc_src)
{
WORD16 *pi2_src_ptr = pi2_src;
WORD16 *pi2_tmp_ptr = pi2_tmp;
UWORD8 *pu1_pred_ptr = pu1_pred;
UWORD8 *pu1_out_ptr = pu1_out;
WORD16 x0, x1, x2, x3, i;
WORD32 q0, q1, q2, q3;
WORD16 i_macro;
WORD16 rnd_fact = (u4_qp_div_6 < 4) ? 1 << (3 - u4_qp_div_6) : 0;
/* inverse quant */
/*horizontal inverse transform */
for(i = 0; i < SUB_BLK_WIDTH_4x4; i++)
{
if(i==0)
{
q0 = pi2_dc_src[0];
}
else
{
q0 = pi2_src_ptr[0];
INV_QUANT(q0, pu2_iscal_mat[0], pu2_weigh_mat[0], u4_qp_div_6, rnd_fact, 4);
}
q2 = pi2_src_ptr[2];
INV_QUANT(q2, pu2_iscal_mat[2], pu2_weigh_mat[2], u4_qp_div_6, rnd_fact,
4);
x0 = q0 + q2;
x1 = q0 - q2;
q1 = pi2_src_ptr[1];
INV_QUANT(q1, pu2_iscal_mat[1], pu2_weigh_mat[1], u4_qp_div_6, rnd_fact,
4);
q3 = pi2_src_ptr[3];
INV_QUANT(q3, pu2_iscal_mat[3], pu2_weigh_mat[3], u4_qp_div_6, rnd_fact,
4);
x2 = (q1 >> 1) - q3;
x3 = q1 + (q3 >> 1);
pi2_tmp_ptr[0] = x0 + x3;
pi2_tmp_ptr[1] = x1 + x2;
pi2_tmp_ptr[2] = x1 - x2;
pi2_tmp_ptr[3] = x0 - x3;
pi2_src_ptr += SUB_BLK_WIDTH_4x4;
pi2_tmp_ptr += SUB_BLK_WIDTH_4x4;
pu2_iscal_mat += SUB_BLK_WIDTH_4x4;
pu2_weigh_mat += SUB_BLK_WIDTH_4x4;
}
/* vertical inverse transform */
pi2_tmp_ptr = pi2_tmp;
for(i = 0; i < SUB_BLK_WIDTH_4x4; i++)
{
pu1_pred_ptr = pu1_pred;
pu1_out = pu1_out_ptr;
x0 = (pi2_tmp_ptr[0] + pi2_tmp_ptr[8]);
x1 = (pi2_tmp_ptr[0] - pi2_tmp_ptr[8]);
x2 = (pi2_tmp_ptr[4] >> 1) - pi2_tmp_ptr[12];
x3 = pi2_tmp_ptr[4] + (pi2_tmp_ptr[12] >> 1);
/* inverse prediction */
i_macro = x0 + x3;
i_macro = ((i_macro + 32) >> 6);
i_macro += *pu1_pred_ptr;
*pu1_out = CLIP_U8(i_macro);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
i_macro = x1 + x2;
i_macro = ((i_macro + 32) >> 6);
i_macro += *pu1_pred_ptr;
*pu1_out = CLIP_U8(i_macro);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
i_macro = x1 - x2;
i_macro = ((i_macro + 32) >> 6);
i_macro += *pu1_pred_ptr;
*pu1_out = CLIP_U8(i_macro);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
i_macro = x0 - x3;
i_macro = ((i_macro + 32) >> 6);
i_macro += *pu1_pred_ptr;
*pu1_out = CLIP_U8(i_macro);
pi2_tmp_ptr++;
pu1_out_ptr+= 2; //Interleaved store for output
pu1_pred+= 2; //Interleaved load for pred buffer
}
}
/*
********************************************************************************
*
* @brief This function reconstructs a 4x4 sub block from quantized resiude and
* prediction buffer if only dc value is present for residue
*
* @par Description:
* The quantized residue is first inverse quantized,
* This inverse quantized content is added to the prediction buffer to recon-
* struct the end output
*
* @param[in] pi2_src
* quantized dc coefficient
*
* @param[in] pu1_pred
* prediction 4x4 block in interleaved format
*
* @param[in] pred_strd,
* Prediction buffer stride in interleaved format
*
* @param[in] out_strd
* recon buffer Stride
*
* @returns none
*
* @remarks none
*
*******************************************************************************
*/
void ih264_iquant_itrans_recon_chroma_4x4_dc(WORD16 *pi2_src,
UWORD8 *pu1_pred,
UWORD8 *pu1_out,
WORD32 pred_strd,
WORD32 out_strd,
const UWORD16 *pu2_iscal_mat,
const UWORD16 *pu2_weigh_mat,
UWORD32 u4_qp_div_6,
WORD16 *pi2_tmp,
WORD16 *pi2_dc_src)
{
UWORD8 *pu1_pred_ptr = pu1_pred;
UWORD8 *pu1_out_ptr = pu1_out;
WORD32 q0;
WORD16 x, i_macro, i;
UNUSED(pi2_src);
UNUSED(pu2_iscal_mat);
UNUSED(pu2_weigh_mat);
UNUSED(u4_qp_div_6);
UNUSED(pi2_tmp);
q0 = pi2_dc_src[0]; // Restoring dc value for intra case3
i_macro = ((q0 + 32) >> 6);
for(i = 0; i < SUB_BLK_WIDTH_4x4; i++)
{
pu1_pred_ptr = pu1_pred;
pu1_out = pu1_out_ptr;
/* inverse prediction */
x = i_macro + *pu1_pred_ptr;
*pu1_out = CLIP_U8(x);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
x = i_macro + *pu1_pred_ptr;
*pu1_out = CLIP_U8(x);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
x = i_macro + *pu1_pred_ptr;
*pu1_out = CLIP_U8(x);
pu1_pred_ptr += pred_strd;
pu1_out += out_strd;
x = i_macro + *pu1_pred_ptr;
*pu1_out = CLIP_U8(x);
pu1_out_ptr+=2;
pu1_pred+=2;
}
}