PowerPC recompiler rework (#641)

This commit is contained in:
Exzap 2025-04-26 17:59:32 +02:00 committed by GitHub
parent 06233e3462
commit b089ae5b32
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
54 changed files with 15433 additions and 12397 deletions

26
boost.natvis Normal file
View file

@ -0,0 +1,26 @@
<?xml version='1.0' encoding='utf-8'?>
<AutoVisualizer xmlns="http://schemas.microsoft.com/vstudio/debugger/natvis/2010">
<Type Name="boost::container::small_vector&lt;*&gt;">
<Expand>
<Item Name="[size]">m_holder.m_size</Item>
<ArrayItems>
<Size>m_holder.m_size</Size>
<ValuePointer>m_holder.m_start</ValuePointer>
</ArrayItems>
</Expand>
</Type>
<Type Name="boost::container::static_vector&lt;*&gt;">
<DisplayString>{{ size={m_holder.m_size} }}</DisplayString>
<Expand>
<Item Name="[size]" ExcludeView="simple">m_holder.m_size</Item>
<Item Name="[capacity]" ExcludeView="simple">static_capacity</Item>
<ArrayItems>
<Size>m_holder.m_size</Size>
<ValuePointer>($T1*)m_holder.storage.data</ValuePointer>
</ArrayItems>
</Expand>
</Type>
</AutoVisualizer>

View file

@ -67,24 +67,31 @@ add_library(CemuCafe
HW/Espresso/Recompiler/PPCFunctionBoundaryTracker.h
HW/Espresso/Recompiler/PPCRecompiler.cpp
HW/Espresso/Recompiler/PPCRecompiler.h
HW/Espresso/Recompiler/PPCRecompilerImlAnalyzer.cpp
HW/Espresso/Recompiler/IML/IML.h
HW/Espresso/Recompiler/IML/IMLSegment.cpp
HW/Espresso/Recompiler/IML/IMLSegment.h
HW/Espresso/Recompiler/IML/IMLInstruction.cpp
HW/Espresso/Recompiler/IML/IMLInstruction.h
HW/Espresso/Recompiler/IML/IMLDebug.cpp
HW/Espresso/Recompiler/IML/IMLAnalyzer.cpp
HW/Espresso/Recompiler/IML/IMLOptimizer.cpp
HW/Espresso/Recompiler/IML/IMLRegisterAllocator.cpp
HW/Espresso/Recompiler/IML/IMLRegisterAllocator.h
HW/Espresso/Recompiler/IML/IMLRegisterAllocatorRanges.cpp
HW/Espresso/Recompiler/IML/IMLRegisterAllocatorRanges.h
HW/Espresso/Recompiler/PPCRecompilerImlGen.cpp
HW/Espresso/Recompiler/PPCRecompilerImlGenFPU.cpp
HW/Espresso/Recompiler/PPCRecompilerIml.h
HW/Espresso/Recompiler/PPCRecompilerImlOptimizer.cpp
HW/Espresso/Recompiler/PPCRecompilerImlRanges.cpp
HW/Espresso/Recompiler/PPCRecompilerImlRanges.h
HW/Espresso/Recompiler/PPCRecompilerImlRegisterAllocator2.cpp
HW/Espresso/Recompiler/PPCRecompilerImlRegisterAllocator.cpp
HW/Espresso/Recompiler/PPCRecompilerIntermediate.cpp
HW/Espresso/Recompiler/PPCRecompilerX64AVX.cpp
HW/Espresso/Recompiler/PPCRecompilerX64BMI.cpp
HW/Espresso/Recompiler/PPCRecompilerX64.cpp
HW/Espresso/Recompiler/PPCRecompilerX64FPU.cpp
HW/Espresso/Recompiler/PPCRecompilerX64Gen.cpp
HW/Espresso/Recompiler/PPCRecompilerX64GenFPU.cpp
HW/Espresso/Recompiler/PPCRecompilerX64.h
HW/Espresso/Recompiler/x64Emit.hpp
HW/Espresso/Recompiler/BackendX64/BackendX64AVX.cpp
HW/Espresso/Recompiler/BackendX64/BackendX64BMI.cpp
HW/Espresso/Recompiler/BackendX64/BackendX64.cpp
HW/Espresso/Recompiler/BackendX64/BackendX64FPU.cpp
HW/Espresso/Recompiler/BackendX64/BackendX64Gen.cpp
HW/Espresso/Recompiler/BackendX64/BackendX64GenFPU.cpp
HW/Espresso/Recompiler/BackendX64/BackendX64.h
HW/Espresso/Recompiler/BackendX64/X64Emit.hpp
HW/Espresso/Recompiler/BackendX64/x86Emitter.h
HW/Latte/Common/RegisterSerializer.cpp
HW/Latte/Common/RegisterSerializer.h
HW/Latte/Common/ShaderSerializer.cpp

View file

@ -91,13 +91,15 @@ namespace Espresso
BCCTR = 528
};
enum class OPCODE_31
enum class Opcode31
{
TW = 4,
MFTB = 371,
};
inline PrimaryOpcode GetPrimaryOpcode(uint32 opcode) { return (PrimaryOpcode)(opcode >> 26); };
inline Opcode19 GetGroup19Opcode(uint32 opcode) { return (Opcode19)((opcode >> 1) & 0x3FF); };
inline Opcode31 GetGroup31Opcode(uint32 opcode) { return (Opcode31)((opcode >> 1) & 0x3FF); };
struct BOField
{
@ -132,6 +134,12 @@ namespace Espresso
uint8 bo;
};
// returns true if LK bit is set, only valid for branch instructions
inline bool DecodeLK(uint32 opcode)
{
return (opcode & 1) != 0;
}
inline void _decodeForm_I(uint32 opcode, uint32& LI, bool& AA, bool& LK)
{
LI = opcode & 0x3fffffc;
@ -183,13 +191,7 @@ namespace Espresso
_decodeForm_D_branch(opcode, BD, BO, BI, AA, LK);
}
inline void decodeOp_BCLR(uint32 opcode, BOField& BO, uint32& BI, bool& LK)
{
// form XL (with BD field expected to be zero)
_decodeForm_XL(opcode, BO, BI, LK);
}
inline void decodeOp_BCCTR(uint32 opcode, BOField& BO, uint32& BI, bool& LK)
inline void decodeOp_BCSPR(uint32 opcode, BOField& BO, uint32& BI, bool& LK) // BCLR and BCSPR
{
// form XL (with BD field expected to be zero)
_decodeForm_XL(opcode, BO, BI, LK);

View file

@ -3,12 +3,12 @@ static void PPCInterpreter_setXerOV(PPCInterpreter_t* hCPU, bool hasOverflow)
{
if (hasOverflow)
{
hCPU->spr.XER |= XER_SO;
hCPU->spr.XER |= XER_OV;
hCPU->xer_so = 1;
hCPU->xer_ov = 1;
}
else
{
hCPU->spr.XER &= ~XER_OV;
hCPU->xer_ov = 0;
}
}
@ -246,7 +246,7 @@ static void PPCInterpreter_SUBFCO(PPCInterpreter_t* hCPU, uint32 opcode)
uint32 a = hCPU->gpr[rA];
uint32 b = hCPU->gpr[rB];
hCPU->gpr[rD] = ~a + b + 1;
// update xer
// update carry
if (ppc_carry_3(~a, b, 1))
hCPU->xer_ca = 1;
else
@ -848,8 +848,7 @@ static void PPCInterpreter_CMP(PPCInterpreter_t* hCPU, uint32 opcode)
hCPU->cr[cr * 4 + CR_BIT_GT] = 1;
else
hCPU->cr[cr * 4 + CR_BIT_EQ] = 1;
if ((hCPU->spr.XER & XER_SO) != 0)
hCPU->cr[cr * 4 + CR_BIT_SO] = 1;
hCPU->cr[cr * 4 + CR_BIT_SO] = hCPU->xer_so;
PPCInterpreter_nextInstruction(hCPU);
}
@ -871,8 +870,7 @@ static void PPCInterpreter_CMPL(PPCInterpreter_t* hCPU, uint32 opcode)
hCPU->cr[cr * 4 + CR_BIT_GT] = 1;
else
hCPU->cr[cr * 4 + CR_BIT_EQ] = 1;
if ((hCPU->spr.XER & XER_SO) != 0)
hCPU->cr[cr * 4 + CR_BIT_SO] = 1;
hCPU->cr[cr * 4 + CR_BIT_SO] = hCPU->xer_so;
PPCInterpreter_nextInstruction(hCPU);
}
@ -895,8 +893,7 @@ static void PPCInterpreter_CMPI(PPCInterpreter_t* hCPU, uint32 opcode)
hCPU->cr[cr * 4 + CR_BIT_GT] = 1;
else
hCPU->cr[cr * 4 + CR_BIT_EQ] = 1;
if (hCPU->spr.XER & XER_SO)
hCPU->cr[cr * 4 + CR_BIT_SO] = 1;
hCPU->cr[cr * 4 + CR_BIT_SO] = hCPU->xer_so;
PPCInterpreter_nextInstruction(hCPU);
}
@ -919,8 +916,7 @@ static void PPCInterpreter_CMPLI(PPCInterpreter_t* hCPU, uint32 opcode)
hCPU->cr[cr * 4 + CR_BIT_GT] = 1;
else
hCPU->cr[cr * 4 + CR_BIT_EQ] = 1;
if (hCPU->spr.XER & XER_SO)
hCPU->cr[cr * 4 + CR_BIT_SO] = 1;
hCPU->cr[cr * 4 + CR_BIT_SO] = hCPU->xer_so;
PPCInterpreter_nextInstruction(hCPU);
}

View file

@ -32,7 +32,7 @@ espresso_frsqrte_entry_t frsqrteLookupTable[32] =
{0x20c1000, 0x35e},{0x1f12000, 0x332},{0x1d79000, 0x30a},{0x1bf4000, 0x2e6},
};
double frsqrte_espresso(double input)
ATTR_MS_ABI double frsqrte_espresso(double input)
{
unsigned long long x = *(unsigned long long*)&input;
@ -111,7 +111,7 @@ espresso_fres_entry_t fresLookupTable[32] =
{0x88400, 0x11a}, {0x65000, 0x11a}, {0x41c00, 0x108}, {0x20c00, 0x106}
};
double fres_espresso(double input)
ATTR_MS_ABI double fres_espresso(double input)
{
// based on testing we know that fres uses only the first 15 bits of the mantissa
// seee eeee eeee mmmm mmmm mmmm mmmx xxxx .... (s = sign, e = exponent, m = mantissa, x = not used)

View file

@ -50,9 +50,9 @@
#define CR_BIT_EQ 2
#define CR_BIT_SO 3
#define XER_SO (1<<31) // summary overflow bit
#define XER_OV (1<<30) // overflow bit
#define XER_BIT_CA (29) // carry bit index. To accelerate frequent access, this bit is stored as a separate uint8
#define XER_BIT_SO (31) // summary overflow, counterpart to CR SO
#define XER_BIT_OV (30)
// FPSCR
#define FPSCR_VXSNAN (1<<24)
@ -118,7 +118,8 @@
static inline void ppc_update_cr0(PPCInterpreter_t* hCPU, uint32 r)
{
hCPU->cr[CR_BIT_SO] = (hCPU->spr.XER&XER_SO) ? 1 : 0;
cemu_assert_debug(hCPU->xer_so <= 1);
hCPU->cr[CR_BIT_SO] = hCPU->xer_so;
hCPU->cr[CR_BIT_LT] = ((r != 0) ? 1 : 0) & ((r & 0x80000000) ? 1 : 0);
hCPU->cr[CR_BIT_EQ] = (r == 0);
hCPU->cr[CR_BIT_GT] = hCPU->cr[CR_BIT_EQ] ^ hCPU->cr[CR_BIT_LT] ^ 1; // this works because EQ and LT can never be set at the same time. So the only case where GT becomes 1 is when LT=0 and EQ=0
@ -190,8 +191,8 @@ inline double roundTo25BitAccuracy(double d)
return *(double*)&v;
}
double fres_espresso(double input);
double frsqrte_espresso(double input);
ATTR_MS_ABI double fres_espresso(double input);
ATTR_MS_ABI double frsqrte_espresso(double input);
void fcmpu_espresso(PPCInterpreter_t* hCPU, int crfD, double a, double b);

View file

@ -85,7 +85,8 @@ static void PPCInterpreter_STWCX(PPCInterpreter_t* hCPU, uint32 Opcode)
ppc_setCRBit(hCPU, CR_BIT_GT, 0);
ppc_setCRBit(hCPU, CR_BIT_EQ, 1);
}
ppc_setCRBit(hCPU, CR_BIT_SO, (hCPU->spr.XER&XER_SO) != 0 ? 1 : 0);
cemu_assert_debug(hCPU->xer_so <= 1);
ppc_setCRBit(hCPU, CR_BIT_SO, hCPU->xer_so);
// remove reservation
hCPU->reservedMemAddr = 0;
hCPU->reservedMemValue = 0;

View file

@ -63,16 +63,24 @@ void PPCInterpreter_setDEC(PPCInterpreter_t* hCPU, uint32 newValue)
uint32 PPCInterpreter_getXER(PPCInterpreter_t* hCPU)
{
uint32 xerValue = hCPU->spr.XER;
xerValue &= ~(1<<XER_BIT_CA);
if( hCPU->xer_ca )
xerValue |= (1<<XER_BIT_CA);
xerValue &= ~(1 << XER_BIT_CA);
xerValue &= ~(1 << XER_BIT_SO);
xerValue &= ~(1 << XER_BIT_OV);
if (hCPU->xer_ca)
xerValue |= (1 << XER_BIT_CA);
if (hCPU->xer_so)
xerValue |= (1 << XER_BIT_SO);
if (hCPU->xer_ov)
xerValue |= (1 << XER_BIT_OV);
return xerValue;
}
void PPCInterpreter_setXER(PPCInterpreter_t* hCPU, uint32 v)
{
hCPU->spr.XER = v;
hCPU->xer_ca = (v>>XER_BIT_CA)&1;
hCPU->xer_ca = (v >> XER_BIT_CA) & 1;
hCPU->xer_so = (v >> XER_BIT_SO) & 1;
hCPU->xer_ov = (v >> XER_BIT_OV) & 1;
}
uint32 PPCInterpreter_getCoreIndex(PPCInterpreter_t* hCPU)

View file

@ -5,7 +5,6 @@
#include "Cafe/OS/libs/coreinit/coreinit_CodeGen.h"
#include "../Recompiler/PPCRecompiler.h"
#include "../Recompiler/PPCRecompilerX64.h"
#include <float.h>
#include "Cafe/HW/Latte/Core/LatteBufferCache.h"

View file

@ -49,6 +49,8 @@ struct PPCInterpreter_t
uint32 fpscr;
uint8 cr[32]; // 0 -> bit not set, 1 -> bit set (upper 7 bits of each byte must always be zero) (cr0 starts at index 0, cr1 at index 4 ..)
uint8 xer_ca; // carry from xer
uint8 xer_so;
uint8 xer_ov;
uint8 LSQE;
uint8 PSE;
// thread remaining cycles
@ -67,7 +69,8 @@ struct PPCInterpreter_t
uint32 reservedMemValue;
// temporary storage for recompiler
FPR_t temporaryFPR[8];
uint32 temporaryGPR[4];
uint32 temporaryGPR[4]; // deprecated, refactor backend dependency on this away
uint32 temporaryGPR_reg[4];
// values below this are not used by Cafe OS usermode
struct
{

File diff suppressed because it is too large Load diff

View file

@ -1,104 +1,56 @@
typedef struct
#include "../PPCRecompiler.h" // todo - get rid of dependency
#include "x86Emitter.h"
struct x64RelocEntry_t
{
x64RelocEntry_t(uint32 offset, void* extraInfo) : offset(offset), extraInfo(extraInfo) {};
uint32 offset;
uint8 type;
void* extraInfo;
}x64RelocEntry_t;
};
typedef struct
struct x64GenContext_t
{
uint8* codeBuffer;
sint32 codeBufferIndex;
sint32 codeBufferSize;
// cr state
sint32 activeCRRegister; // current x86 condition flags reflect this cr* register
sint32 activeCRState; // describes the way in which x86 flags map to the cr register (signed / unsigned)
IMLSegment* currentSegment{};
x86Assembler64* emitter;
sint32 m_currentInstructionEmitIndex;
x64GenContext_t()
{
emitter = new x86Assembler64();
}
~x64GenContext_t()
{
delete emitter;
}
IMLInstruction* GetNextInstruction(sint32 relativeIndex = 1)
{
sint32 index = m_currentInstructionEmitIndex + relativeIndex;
if(index < 0 || index >= (sint32)currentSegment->imlList.size())
return nullptr;
return currentSegment->imlList.data() + index;
}
// relocate offsets
x64RelocEntry_t* relocateOffsetTable;
sint32 relocateOffsetTableSize;
sint32 relocateOffsetTableCount;
}x64GenContext_t;
// Some of these are defined by winnt.h and gnu headers
#undef REG_EAX
#undef REG_ECX
#undef REG_EDX
#undef REG_EBX
#undef REG_ESP
#undef REG_EBP
#undef REG_ESI
#undef REG_EDI
#undef REG_NONE
#undef REG_RAX
#undef REG_RCX
#undef REG_RDX
#undef REG_RBX
#undef REG_RSP
#undef REG_RBP
#undef REG_RSI
#undef REG_RDI
#undef REG_R8
#undef REG_R9
#undef REG_R10
#undef REG_R11
#undef REG_R12
#undef REG_R13
#undef REG_R14
#undef REG_R15
#define REG_EAX 0
#define REG_ECX 1
#define REG_EDX 2
#define REG_EBX 3
#define REG_ESP 4 // reserved for low half of hCPU pointer
#define REG_EBP 5
#define REG_ESI 6
#define REG_EDI 7
#define REG_NONE -1
#define REG_RAX 0
#define REG_RCX 1
#define REG_RDX 2
#define REG_RBX 3
#define REG_RSP 4 // reserved for hCPU pointer
#define REG_RBP 5
#define REG_RSI 6
#define REG_RDI 7
#define REG_R8 8
#define REG_R9 9
#define REG_R10 10
#define REG_R11 11
#define REG_R12 12
#define REG_R13 13 // reserved to hold pointer to memory base? (Not decided yet)
#define REG_R14 14 // reserved as temporary register
#define REG_R15 15 // reserved for pointer to ppcRecompilerInstanceData
#define REG_AL 0
#define REG_CL 1
#define REG_DL 2
#define REG_BL 3
#define REG_AH 4
#define REG_CH 5
#define REG_DH 6
#define REG_BH 7
std::vector<x64RelocEntry_t> relocateOffsetTable2;
};
// reserved registers
#define REG_RESV_TEMP (REG_R14)
#define REG_RESV_HCPU (REG_RSP)
#define REG_RESV_MEMBASE (REG_R13)
#define REG_RESV_RECDATA (REG_R15)
#define REG_RESV_TEMP (X86_REG_R14)
#define REG_RESV_HCPU (X86_REG_RSP)
#define REG_RESV_MEMBASE (X86_REG_R13)
#define REG_RESV_RECDATA (X86_REG_R15)
// reserved floating-point registers
#define REG_RESV_FPR_TEMP (15)
#define reg32ToReg16(__x) (__x) // deprecated
extern sint32 x64Gen_registerMap[12];
#define tempToRealRegister(__x) (x64Gen_registerMap[__x])
#define tempToRealFPRRegister(__x) (__x)
#define reg32ToReg16(__x) (__x)
// deprecated condition flags
enum
{
X86_CONDITION_EQUAL, // or zero
@ -119,36 +71,23 @@ enum
X86_CONDITION_NONE, // no condition, jump always
};
#define PPCREC_CR_TEMPORARY (8) // never stored
#define PPCREC_CR_STATE_TYPE_UNSIGNED_ARITHMETIC (0) // for signed arithmetic operations (ADD, CMPI)
#define PPCREC_CR_STATE_TYPE_SIGNED_ARITHMETIC (1) // for unsigned arithmetic operations (ADD, CMPI)
#define PPCREC_CR_STATE_TYPE_LOGICAL (2) // for unsigned operations (CMPLI)
#define X86_RELOC_MAKE_RELATIVE (0) // make code imm relative to instruction
#define X64_RELOC_LINK_TO_PPC (1) // translate from ppc address to x86 offset
#define X64_RELOC_LINK_TO_SEGMENT (2) // link to beginning of segment
#define PPC_X64_GPR_USABLE_REGISTERS (16-4)
#define PPC_X64_FPR_USABLE_REGISTERS (16-1) // Use XMM0 - XMM14, XMM15 is the temp register
bool PPCRecompiler_generateX64Code(PPCRecFunction_t* PPCRecFunction, ppcImlGenContext_t* ppcImlGenContext);
void PPCRecompilerX64Gen_crConditionFlags_forget(PPCRecFunction_t* PPCRecFunction, ppcImlGenContext_t* ppcImlGenContext, x64GenContext_t* x64GenContext);
bool PPCRecompiler_generateX64Code(struct PPCRecFunction_t* PPCRecFunction, ppcImlGenContext_t* ppcImlGenContext);
void PPCRecompilerX64Gen_redirectRelativeJump(x64GenContext_t* x64GenContext, sint32 jumpInstructionOffset, sint32 destinationOffset);
void PPCRecompilerX64Gen_generateRecompilerInterfaceFunctions();
void PPCRecompilerX64Gen_imlInstruction_fpr_r_name(PPCRecFunction_t* PPCRecFunction, ppcImlGenContext_t* ppcImlGenContext, x64GenContext_t* x64GenContext, PPCRecImlInstruction_t* imlInstruction);
void PPCRecompilerX64Gen_imlInstruction_fpr_name_r(PPCRecFunction_t* PPCRecFunction, ppcImlGenContext_t* ppcImlGenContext, x64GenContext_t* x64GenContext, PPCRecImlInstruction_t* imlInstruction);
bool PPCRecompilerX64Gen_imlInstruction_fpr_load(PPCRecFunction_t* PPCRecFunction, ppcImlGenContext_t* ppcImlGenContext, x64GenContext_t* x64GenContext, PPCRecImlInstruction_t* imlInstruction, bool indexed);
bool PPCRecompilerX64Gen_imlInstruction_fpr_store(PPCRecFunction_t* PPCRecFunction, ppcImlGenContext_t* ppcImlGenContext, x64GenContext_t* x64GenContext, PPCRecImlInstruction_t* imlInstruction, bool indexed);
void PPCRecompilerX64Gen_imlInstruction_fpr_r_name(PPCRecFunction_t* PPCRecFunction, ppcImlGenContext_t* ppcImlGenContext, x64GenContext_t* x64GenContext, IMLInstruction* imlInstruction);
void PPCRecompilerX64Gen_imlInstruction_fpr_name_r(PPCRecFunction_t* PPCRecFunction, ppcImlGenContext_t* ppcImlGenContext, x64GenContext_t* x64GenContext, IMLInstruction* imlInstruction);
bool PPCRecompilerX64Gen_imlInstruction_fpr_load(PPCRecFunction_t* PPCRecFunction, ppcImlGenContext_t* ppcImlGenContext, x64GenContext_t* x64GenContext, IMLInstruction* imlInstruction, bool indexed);
bool PPCRecompilerX64Gen_imlInstruction_fpr_store(PPCRecFunction_t* PPCRecFunction, ppcImlGenContext_t* ppcImlGenContext, x64GenContext_t* x64GenContext, IMLInstruction* imlInstruction, bool indexed);
void PPCRecompilerX64Gen_imlInstruction_fpr_r_r(PPCRecFunction_t* PPCRecFunction, ppcImlGenContext_t* ppcImlGenContext, x64GenContext_t* x64GenContext, PPCRecImlInstruction_t* imlInstruction);
void PPCRecompilerX64Gen_imlInstruction_fpr_r_r_r(PPCRecFunction_t* PPCRecFunction, ppcImlGenContext_t* ppcImlGenContext, x64GenContext_t* x64GenContext, PPCRecImlInstruction_t* imlInstruction);
void PPCRecompilerX64Gen_imlInstruction_fpr_r_r_r_r(PPCRecFunction_t* PPCRecFunction, ppcImlGenContext_t* ppcImlGenContext, x64GenContext_t* x64GenContext, PPCRecImlInstruction_t* imlInstruction);
void PPCRecompilerX64Gen_imlInstruction_fpr_r(PPCRecFunction_t* PPCRecFunction, ppcImlGenContext_t* ppcImlGenContext, x64GenContext_t* x64GenContext, PPCRecImlInstruction_t* imlInstruction);
void PPCRecompilerX64Gen_imlInstruction_fpr_r_r(PPCRecFunction_t* PPCRecFunction, ppcImlGenContext_t* ppcImlGenContext, x64GenContext_t* x64GenContext, IMLInstruction* imlInstruction);
void PPCRecompilerX64Gen_imlInstruction_fpr_r_r_r(PPCRecFunction_t* PPCRecFunction, ppcImlGenContext_t* ppcImlGenContext, x64GenContext_t* x64GenContext, IMLInstruction* imlInstruction);
void PPCRecompilerX64Gen_imlInstruction_fpr_r_r_r_r(PPCRecFunction_t* PPCRecFunction, ppcImlGenContext_t* ppcImlGenContext, x64GenContext_t* x64GenContext, IMLInstruction* imlInstruction);
void PPCRecompilerX64Gen_imlInstruction_fpr_r(PPCRecFunction_t* PPCRecFunction, ppcImlGenContext_t* ppcImlGenContext, x64GenContext_t* x64GenContext, IMLInstruction* imlInstruction);
void PPCRecompilerX64Gen_imlInstruction_fpr_compare(PPCRecFunction_t* PPCRecFunction, ppcImlGenContext_t* ppcImlGenContext, x64GenContext_t* x64GenContext, IMLInstruction* imlInstruction);
// ASM gen
void x64Gen_writeU8(x64GenContext_t* x64GenContext, uint8 v);
@ -196,9 +135,6 @@ void x64Gen_or_reg64Low8_mem8Reg64(x64GenContext_t* x64GenContext, sint32 dstReg
void x64Gen_and_reg64Low8_mem8Reg64(x64GenContext_t* x64GenContext, sint32 dstRegister, sint32 memRegister64, sint32 memImmS32);
void x64Gen_mov_mem8Reg64_reg64Low8(x64GenContext_t* x64GenContext, sint32 dstRegister, sint32 memRegister64, sint32 memImmS32);
void x64Gen_lock_cmpxchg_mem32Reg64PlusReg64_reg64(x64GenContext_t* x64GenContext, sint32 memRegisterA64, sint32 memRegisterB64, sint32 memImmS32, sint32 srcRegister);
void x64Gen_lock_cmpxchg_mem32Reg64_reg64(x64GenContext_t* x64GenContext, sint32 memRegister64, sint32 memImmS32, sint32 srcRegister);
void x64Gen_add_reg64_reg64(x64GenContext_t* x64GenContext, sint32 destRegister, sint32 srcRegister);
void x64Gen_add_reg64Low32_reg64Low32(x64GenContext_t* x64GenContext, sint32 destRegister, sint32 srcRegister);
void x64Gen_add_reg64_imm32(x64GenContext_t* x64GenContext, sint32 srcRegister, uint32 immU32);
@ -207,9 +143,6 @@ void x64Gen_sub_reg64Low32_reg64Low32(x64GenContext_t* x64GenContext, sint32 des
void x64Gen_sub_reg64Low32_imm32(x64GenContext_t* x64GenContext, sint32 srcRegister, uint32 immU32);
void x64Gen_sub_reg64_imm32(x64GenContext_t* x64GenContext, sint32 srcRegister, uint32 immU32);
void x64Gen_sub_mem32reg64_imm32(x64GenContext_t* x64GenContext, sint32 memRegister, sint32 memImmS32, uint64 immU32);
void x64Gen_sbb_reg64Low32_reg64Low32(x64GenContext_t* x64GenContext, sint32 destRegister, sint32 srcRegister);
void x64Gen_adc_reg64Low32_reg64Low32(x64GenContext_t* x64GenContext, sint32 destRegister, sint32 srcRegister);
void x64Gen_adc_reg64Low32_imm32(x64GenContext_t* x64GenContext, sint32 srcRegister, uint32 immU32);
void x64Gen_dec_mem32(x64GenContext_t* x64GenContext, sint32 memoryRegister, uint32 memoryImmU32);
void x64Gen_imul_reg64Low32_reg64Low32(x64GenContext_t* x64GenContext, sint32 destRegister, sint32 operandRegister);
void x64Gen_idiv_reg64Low32(x64GenContext_t* x64GenContext, sint32 operandRegister);
@ -241,9 +174,7 @@ void x64Gen_not_reg64Low32(x64GenContext_t* x64GenContext, sint32 destRegister);
void x64Gen_neg_reg64Low32(x64GenContext_t* x64GenContext, sint32 destRegister);
void x64Gen_cdq(x64GenContext_t* x64GenContext);
void x64Gen_bswap_reg64(x64GenContext_t* x64GenContext, sint32 destRegister);
void x64Gen_bswap_reg64Lower32bit(x64GenContext_t* x64GenContext, sint32 destRegister);
void x64Gen_bswap_reg64Lower16bit(x64GenContext_t* x64GenContext, sint32 destRegister);
void x64Gen_lzcnt_reg64Low32_reg64Low32(x64GenContext_t* x64GenContext, sint32 destRegister, sint32 srcRegister);
void x64Gen_bsr_reg64Low32_reg64Low32(x64GenContext_t* x64GenContext, sint32 destRegister, sint32 srcRegister);
@ -329,4 +260,8 @@ void x64Gen_movBEZeroExtend_reg64Low16_mem16Reg64PlusReg64(x64GenContext_t* x64G
void x64Gen_movBETruncate_mem32Reg64PlusReg64_reg64(x64GenContext_t* x64GenContext, sint32 memRegisterA64, sint32 memRegisterB64, sint32 memImmS32, sint32 srcRegister);
void x64Gen_shrx_reg64_reg64_reg64(x64GenContext_t* x64GenContext, sint32 registerDst, sint32 registerA, sint32 registerB);
void x64Gen_shlx_reg64_reg64_reg64(x64GenContext_t* x64GenContext, sint32 registerDst, sint32 registerA, sint32 registerB);
void x64Gen_shrx_reg32_reg32_reg32(x64GenContext_t* x64GenContext, sint32 registerDst, sint32 registerA, sint32 registerB);
void x64Gen_sarx_reg64_reg64_reg64(x64GenContext_t* x64GenContext, sint32 registerDst, sint32 registerA, sint32 registerB);
void x64Gen_sarx_reg32_reg32_reg32(x64GenContext_t* x64GenContext, sint32 registerDst, sint32 registerA, sint32 registerB);
void x64Gen_shlx_reg64_reg64_reg64(x64GenContext_t* x64GenContext, sint32 registerDst, sint32 registerA, sint32 registerB);
void x64Gen_shlx_reg32_reg32_reg32(x64GenContext_t* x64GenContext, sint32 registerDst, sint32 registerA, sint32 registerB);

View file

@ -1,5 +1,4 @@
#include "PPCRecompiler.h"
#include "PPCRecompilerX64.h"
#include "BackendX64.h"
void _x64Gen_writeMODRMDeprecated(x64GenContext_t* x64GenContext, sint32 dataRegister, sint32 memRegisterA64, sint32 memRegisterB64, sint32 memImmS32);
@ -21,11 +20,10 @@ void _x64Gen_vex128_nds(x64GenContext_t* x64GenContext, uint8 opcodeMap, uint8 a
x64Gen_writeU8(x64GenContext, opcode);
}
#define VEX_PP_0F 0 // guessed
#define VEX_PP_0F 0
#define VEX_PP_66_0F 1
#define VEX_PP_F3_0F 2 // guessed
#define VEX_PP_F2_0F 3 // guessed
#define VEX_PP_F3_0F 2
#define VEX_PP_F2_0F 3
void x64Gen_avx_VPUNPCKHQDQ_xmm_xmm_xmm(x64GenContext_t* x64GenContext, sint32 dstRegister, sint32 srcRegisterA, sint32 srcRegisterB)
{

View file

@ -1,5 +1,4 @@
#include "PPCRecompiler.h"
#include "PPCRecompilerX64.h"
#include "BackendX64.h"
void _x64Gen_writeMODRMDeprecated(x64GenContext_t* x64GenContext, sint32 dataRegister, sint32 memRegisterA64, sint32 memRegisterB64, sint32 memImmS32);
@ -69,6 +68,34 @@ void x64Gen_shrx_reg64_reg64_reg64(x64GenContext_t* x64GenContext, sint32 regist
x64Gen_writeU8(x64GenContext, 0xC0 + (registerDst & 7) * 8 + (registerA & 7));
}
void x64Gen_shrx_reg32_reg32_reg32(x64GenContext_t* x64GenContext, sint32 registerDst, sint32 registerA, sint32 registerB)
{
x64Gen_writeU8(x64GenContext, 0xC4);
x64Gen_writeU8(x64GenContext, 0xE2 - ((registerDst >= 8) ? 0x80 : 0) - ((registerA >= 8) ? 0x20 : 0));
x64Gen_writeU8(x64GenContext, 0x7B - registerB * 8);
x64Gen_writeU8(x64GenContext, 0xF7);
x64Gen_writeU8(x64GenContext, 0xC0 + (registerDst & 7) * 8 + (registerA & 7));
}
void x64Gen_sarx_reg64_reg64_reg64(x64GenContext_t* x64GenContext, sint32 registerDst, sint32 registerA, sint32 registerB)
{
// SARX reg64, reg64, reg64
x64Gen_writeU8(x64GenContext, 0xC4);
x64Gen_writeU8(x64GenContext, 0xE2 - ((registerDst >= 8) ? 0x80 : 0) - ((registerA >= 8) ? 0x20 : 0));
x64Gen_writeU8(x64GenContext, 0xFA - registerB * 8);
x64Gen_writeU8(x64GenContext, 0xF7);
x64Gen_writeU8(x64GenContext, 0xC0 + (registerDst & 7) * 8 + (registerA & 7));
}
void x64Gen_sarx_reg32_reg32_reg32(x64GenContext_t* x64GenContext, sint32 registerDst, sint32 registerA, sint32 registerB)
{
x64Gen_writeU8(x64GenContext, 0xC4);
x64Gen_writeU8(x64GenContext, 0xE2 - ((registerDst >= 8) ? 0x80 : 0) - ((registerA >= 8) ? 0x20 : 0));
x64Gen_writeU8(x64GenContext, 0x7A - registerB * 8);
x64Gen_writeU8(x64GenContext, 0xF7);
x64Gen_writeU8(x64GenContext, 0xC0 + (registerDst & 7) * 8 + (registerA & 7));
}
void x64Gen_shlx_reg64_reg64_reg64(x64GenContext_t* x64GenContext, sint32 registerDst, sint32 registerA, sint32 registerB)
{
// SHLX reg64, reg64, reg64
@ -77,4 +104,13 @@ void x64Gen_shlx_reg64_reg64_reg64(x64GenContext_t* x64GenContext, sint32 regist
x64Gen_writeU8(x64GenContext, 0xF9 - registerB * 8);
x64Gen_writeU8(x64GenContext, 0xF7);
x64Gen_writeU8(x64GenContext, 0xC0 + (registerDst & 7) * 8 + (registerA & 7));
}
void x64Gen_shlx_reg32_reg32_reg32(x64GenContext_t* x64GenContext, sint32 registerDst, sint32 registerA, sint32 registerB)
{
x64Gen_writeU8(x64GenContext, 0xC4);
x64Gen_writeU8(x64GenContext, 0xE2 - ((registerDst >= 8) ? 0x80 : 0) - ((registerA >= 8) ? 0x20 : 0));
x64Gen_writeU8(x64GenContext, 0x79 - registerB * 8);
x64Gen_writeU8(x64GenContext, 0xF7);
x64Gen_writeU8(x64GenContext, 0xC0 + (registerDst & 7) * 8 + (registerA & 7));
}

View file

@ -1,62 +1,31 @@
#include "PPCRecompiler.h"
#include "PPCRecompilerIml.h"
#include "PPCRecompilerX64.h"
#include "BackendX64.h"
// x86/x64 extension opcodes that could be useful:
// ANDN
// mulx, rorx, sarx, shlx, shrx
// PDEP, PEXT
void x64Gen_checkBuffer(x64GenContext_t* x64GenContext)
{
// todo
}
void x64Gen_writeU8(x64GenContext_t* x64GenContext, uint8 v)
{
if( x64GenContext->codeBufferIndex+1 > x64GenContext->codeBufferSize )
{
x64GenContext->codeBufferSize *= 2;
x64GenContext->codeBuffer = (uint8*)realloc(x64GenContext->codeBuffer, x64GenContext->codeBufferSize);
}
*(uint8*)(x64GenContext->codeBuffer+x64GenContext->codeBufferIndex) = v;
x64GenContext->codeBufferIndex++;
x64GenContext->emitter->_emitU8(v);
}
void x64Gen_writeU16(x64GenContext_t* x64GenContext, uint32 v)
{
if( x64GenContext->codeBufferIndex+2 > x64GenContext->codeBufferSize )
{
x64GenContext->codeBufferSize *= 2;
x64GenContext->codeBuffer = (uint8*)realloc(x64GenContext->codeBuffer, x64GenContext->codeBufferSize);
}
*(uint16*)(x64GenContext->codeBuffer+x64GenContext->codeBufferIndex) = v;
x64GenContext->codeBufferIndex += 2;
x64GenContext->emitter->_emitU16(v);
}
void x64Gen_writeU32(x64GenContext_t* x64GenContext, uint32 v)
{
if( x64GenContext->codeBufferIndex+4 > x64GenContext->codeBufferSize )
{
x64GenContext->codeBufferSize *= 2;
x64GenContext->codeBuffer = (uint8*)realloc(x64GenContext->codeBuffer, x64GenContext->codeBufferSize);
}
*(uint32*)(x64GenContext->codeBuffer+x64GenContext->codeBufferIndex) = v;
x64GenContext->codeBufferIndex += 4;
x64GenContext->emitter->_emitU32(v);
}
void x64Gen_writeU64(x64GenContext_t* x64GenContext, uint64 v)
{
if( x64GenContext->codeBufferIndex+8 > x64GenContext->codeBufferSize )
{
x64GenContext->codeBufferSize *= 2;
x64GenContext->codeBuffer = (uint8*)realloc(x64GenContext->codeBuffer, x64GenContext->codeBufferSize);
}
*(uint64*)(x64GenContext->codeBuffer+x64GenContext->codeBufferIndex) = v;
x64GenContext->codeBufferIndex += 8;
x64GenContext->emitter->_emitU64(v);
}
#include "x64Emit.hpp"
#include "X64Emit.hpp"
void _x64Gen_writeMODRMDeprecated(x64GenContext_t* x64GenContext, sint32 dataRegister, sint32 memRegisterA64, sint32 memRegisterB64, sint32 memImmS32)
{
@ -67,7 +36,7 @@ void _x64Gen_writeMODRMDeprecated(x64GenContext_t* x64GenContext, sint32 dataReg
forceUseOffset = true;
}
if (memRegisterB64 == REG_NONE)
if (memRegisterB64 == X86_REG_NONE)
{
// memRegisterA64 + memImmS32
uint8 modRM = (dataRegister & 7) * 8 + (memRegisterA64 & 7);
@ -352,7 +321,7 @@ void x64Gen_mov_mem32Reg64_imm32(x64GenContext_t* x64GenContext, sint32 memRegis
void x64Gen_mov_mem64Reg64_imm32(x64GenContext_t* x64GenContext, sint32 memRegister, uint32 memImmU32, uint32 dataImmU32)
{
// MOV QWORD [<memReg>+<memImmU32>], dataImmU32
if( memRegister == REG_R14 )
if( memRegister == X86_REG_R14 )
{
sint32 memImmS32 = (sint32)memImmU32;
if( memImmS32 == 0 )
@ -384,7 +353,7 @@ void x64Gen_mov_mem64Reg64_imm32(x64GenContext_t* x64GenContext, sint32 memRegis
void x64Gen_mov_mem8Reg64_imm8(x64GenContext_t* x64GenContext, sint32 memRegister, uint32 memImmU32, uint8 dataImmU8)
{
// MOV BYTE [<memReg64>+<memImmU32>], dataImmU8
if( memRegister == REG_RSP )
if( memRegister == X86_REG_RSP )
{
sint32 memImmS32 = (sint32)memImmU32;
if( memImmS32 >= -128 && memImmS32 <= 127 )
@ -625,7 +594,7 @@ void _x64_op_reg64Low_mem8Reg64(x64GenContext_t* x64GenContext, sint32 dstRegist
if (memRegister64 >= 8)
x64Gen_writeU8(x64GenContext, 0x41);
x64Gen_writeU8(x64GenContext, opByte);
_x64Gen_writeMODRMDeprecated(x64GenContext, dstRegister, memRegister64, REG_NONE, memImmS32);
_x64Gen_writeMODRMDeprecated(x64GenContext, dstRegister, memRegister64, X86_REG_NONE, memImmS32);
}
void x64Gen_or_reg64Low8_mem8Reg64(x64GenContext_t* x64GenContext, sint32 dstRegister, sint32 memRegister64, sint32 memImmS32)
@ -643,40 +612,6 @@ void x64Gen_mov_mem8Reg64_reg64Low8(x64GenContext_t* x64GenContext, sint32 dstRe
_x64_op_reg64Low_mem8Reg64(x64GenContext, dstRegister, memRegister64, memImmS32, 0x88);
}
void x64Gen_lock_cmpxchg_mem32Reg64PlusReg64_reg64(x64GenContext_t* x64GenContext, sint32 memRegisterA64, sint32 memRegisterB64, sint32 memImmS32, sint32 srcRegister)
{
// LOCK CMPXCHG DWORD [<reg64> + <reg64> + <imm64>], <srcReg64> (low dword)
x64Gen_writeU8(x64GenContext, 0xF0); // LOCK prefix
if( srcRegister >= 8 || memRegisterA64 >= 8|| memRegisterB64 >= 8 )
x64Gen_writeU8(x64GenContext, 0x40+((srcRegister>=8)?4:0)+((memRegisterA64>=8)?1:0)+((memRegisterB64>=8)?2:0));
x64Gen_writeU8(x64GenContext, 0x0F);
x64Gen_writeU8(x64GenContext, 0xB1);
_x64Gen_writeMODRMDeprecated(x64GenContext, srcRegister, memRegisterA64, memRegisterB64, memImmS32);
}
void x64Gen_lock_cmpxchg_mem32Reg64_reg64(x64GenContext_t* x64GenContext, sint32 memRegister64, sint32 memImmS32, sint32 srcRegister)
{
// LOCK CMPXCHG DWORD [<reg64> + <imm64>], <srcReg64> (low dword)
x64Gen_writeU8(x64GenContext, 0xF0); // LOCK prefix
if( srcRegister >= 8 || memRegister64 >= 8 )
x64Gen_writeU8(x64GenContext, 0x40+((srcRegister>=8)?4:0)+((memRegister64>=8)?1:0));
x64Gen_writeU8(x64GenContext, 0x0F);
x64Gen_writeU8(x64GenContext, 0xB1);
if( memImmS32 == 0 )
{
x64Gen_writeU8(x64GenContext, 0x45+(srcRegister&7)*8);
x64Gen_writeU8(x64GenContext, 0x00);
}
else
assert_dbg();
}
void x64Gen_add_reg64_reg64(x64GenContext_t* x64GenContext, sint32 destRegister, sint32 srcRegister)
{
// ADD <destReg>, <srcReg>
@ -732,7 +667,7 @@ void x64Gen_add_reg64Low32_imm32(x64GenContext_t* x64GenContext, sint32 srcRegis
}
else
{
if( srcRegister == REG_RAX )
if( srcRegister == X86_REG_RAX )
{
// special EAX short form
x64Gen_writeU8(x64GenContext, 0x05);
@ -772,7 +707,7 @@ void x64Gen_sub_reg64Low32_imm32(x64GenContext_t* x64GenContext, sint32 srcRegis
}
else
{
if( srcRegister == REG_RAX )
if( srcRegister == X86_REG_RAX )
{
// special EAX short form
x64Gen_writeU8(x64GenContext, 0x2D);
@ -811,7 +746,7 @@ void x64Gen_sub_mem32reg64_imm32(x64GenContext_t* x64GenContext, sint32 memRegis
{
// SUB <mem32_memReg64>, <imm32>
sint32 immS32 = (sint32)immU32;
if( memRegister == REG_RSP )
if( memRegister == X86_REG_RSP )
{
if( memImmS32 >= 128 )
{
@ -843,64 +778,11 @@ void x64Gen_sub_mem32reg64_imm32(x64GenContext_t* x64GenContext, sint32 memRegis
}
}
void x64Gen_sbb_reg64Low32_reg64Low32(x64GenContext_t* x64GenContext, sint32 destRegister, sint32 srcRegister)
{
// SBB <destReg64_low32>, <srcReg64_low32>
if( destRegister >= 8 && srcRegister >= 8 )
x64Gen_writeU8(x64GenContext, 0x45);
else if( srcRegister >= 8 )
x64Gen_writeU8(x64GenContext, 0x44);
else if( destRegister >= 8 )
x64Gen_writeU8(x64GenContext, 0x41);
x64Gen_writeU8(x64GenContext, 0x19);
x64Gen_writeU8(x64GenContext, 0xC0+(srcRegister&7)*8+(destRegister&7));
}
void x64Gen_adc_reg64Low32_reg64Low32(x64GenContext_t* x64GenContext, sint32 destRegister, sint32 srcRegister)
{
// ADC <destReg64_low32>, <srcReg64_low32>
if( destRegister >= 8 && srcRegister >= 8 )
x64Gen_writeU8(x64GenContext, 0x45);
else if( srcRegister >= 8 )
x64Gen_writeU8(x64GenContext, 0x44);
else if( destRegister >= 8 )
x64Gen_writeU8(x64GenContext, 0x41);
x64Gen_writeU8(x64GenContext, 0x11);
x64Gen_writeU8(x64GenContext, 0xC0+(srcRegister&7)*8+(destRegister&7));
}
void x64Gen_adc_reg64Low32_imm32(x64GenContext_t* x64GenContext, sint32 srcRegister, uint32 immU32)
{
sint32 immS32 = (sint32)immU32;
if( srcRegister >= 8 )
x64Gen_writeU8(x64GenContext, 0x41);
if( immS32 >= -128 && immS32 <= 127 )
{
x64Gen_writeU8(x64GenContext, 0x83);
x64Gen_writeU8(x64GenContext, 0xD0+(srcRegister&7));
x64Gen_writeU8(x64GenContext, (uint8)immS32);
}
else
{
if( srcRegister == REG_RAX )
{
// special EAX short form
x64Gen_writeU8(x64GenContext, 0x15);
}
else
{
x64Gen_writeU8(x64GenContext, 0x81);
x64Gen_writeU8(x64GenContext, 0xD0+(srcRegister&7));
}
x64Gen_writeU32(x64GenContext, immU32);
}
}
void x64Gen_dec_mem32(x64GenContext_t* x64GenContext, sint32 memoryRegister, uint32 memoryImmU32)
{
// DEC dword [<reg64>+imm]
sint32 memoryImmS32 = (sint32)memoryImmU32;
if (memoryRegister != REG_RSP)
if (memoryRegister != X86_REG_RSP)
assert_dbg(); // not supported yet
if (memoryImmS32 >= -128 && memoryImmS32 <= 127)
{
@ -981,7 +863,7 @@ void x64Gen_and_reg64Low32_imm32(x64GenContext_t* x64GenContext, sint32 srcRegis
}
else
{
if( srcRegister == REG_RAX )
if( srcRegister == X86_REG_RAX )
{
// special EAX short form
x64Gen_writeU8(x64GenContext, 0x25);
@ -1026,7 +908,7 @@ void x64Gen_test_reg64Low32_imm32(x64GenContext_t* x64GenContext, sint32 srcRegi
sint32 immS32 = (sint32)immU32;
if( srcRegister >= 8 )
x64Gen_writeU8(x64GenContext, 0x41);
if( srcRegister == REG_RAX )
if( srcRegister == X86_REG_RAX )
{
// special EAX short form
x64Gen_writeU8(x64GenContext, 0xA9);
@ -1052,7 +934,7 @@ void x64Gen_cmp_reg64Low32_imm32(x64GenContext_t* x64GenContext, sint32 srcRegis
}
else
{
if( srcRegister == REG_RAX )
if( srcRegister == X86_REG_RAX )
{
// special RAX short form
x64Gen_writeU8(x64GenContext, 0x3D);
@ -1082,7 +964,7 @@ void x64Gen_cmp_reg64Low32_reg64Low32(x64GenContext_t* x64GenContext, sint32 des
void x64Gen_cmp_reg64Low32_mem32reg64(x64GenContext_t* x64GenContext, sint32 destRegister, sint32 memRegister, sint32 memImmS32)
{
// CMP <destReg64_lowDWORD>, DWORD [<memRegister>+<immS32>]
if( memRegister == REG_RSP )
if( memRegister == X86_REG_RSP )
{
if( memImmS32 >= -128 && memImmS32 <= 127 )
assert_dbg(); // todo -> Shorter instruction form
@ -1112,7 +994,7 @@ void x64Gen_or_reg64Low32_imm32(x64GenContext_t* x64GenContext, sint32 srcRegist
}
else
{
if( srcRegister == REG_RAX )
if( srcRegister == X86_REG_RAX )
{
// special EAX short form
x64Gen_writeU8(x64GenContext, 0x0D);
@ -1172,7 +1054,7 @@ void x64Gen_xor_reg64Low32_imm32(x64GenContext_t* x64GenContext, sint32 srcRegis
}
else
{
if( srcRegister == REG_RAX )
if( srcRegister == X86_REG_RAX )
{
// special EAX short form
x64Gen_writeU8(x64GenContext, 0x35);
@ -1326,16 +1208,6 @@ void x64Gen_cdq(x64GenContext_t* x64GenContext)
x64Gen_writeU8(x64GenContext, 0x99);
}
void x64Gen_bswap_reg64(x64GenContext_t* x64GenContext, sint32 destRegister)
{
if( destRegister >= 8 )
x64Gen_writeU8(x64GenContext, 0x41|8);
else
x64Gen_writeU8(x64GenContext, 0x40|8);
x64Gen_writeU8(x64GenContext, 0x0F);
x64Gen_writeU8(x64GenContext, 0xC8+(destRegister&7));
}
void x64Gen_bswap_reg64Lower32bit(x64GenContext_t* x64GenContext, sint32 destRegister)
{
if( destRegister >= 8 )
@ -1344,16 +1216,6 @@ void x64Gen_bswap_reg64Lower32bit(x64GenContext_t* x64GenContext, sint32 destReg
x64Gen_writeU8(x64GenContext, 0xC8+(destRegister&7));
}
void x64Gen_bswap_reg64Lower16bit(x64GenContext_t* x64GenContext, sint32 destRegister)
{
assert_dbg(); // do not use this instruction, it's result is always undefined. Instead use ROL <reg16>, 8
//x64Gen_writeU8(x64GenContext, 0x66);
//if( destRegister >= 8 )
// x64Gen_writeU8(x64GenContext, 0x41);
//x64Gen_writeU8(x64GenContext, 0x0F);
//x64Gen_writeU8(x64GenContext, 0xC8+(destRegister&7));
}
void x64Gen_lzcnt_reg64Low32_reg64Low32(x64GenContext_t* x64GenContext, sint32 destRegister, sint32 srcRegister)
{
// SSE4
@ -1388,7 +1250,7 @@ void x64Gen_setcc_mem8(x64GenContext_t* x64GenContext, sint32 conditionType, sin
{
// SETcc [<reg64>+imm]
sint32 memoryImmS32 = (sint32)memoryImmU32;
if( memoryRegister != REG_RSP )
if( memoryRegister != X86_REG_RSP )
assert_dbg(); // not supported
if( memoryRegister >= 8 )
assert_dbg(); // not supported
@ -1627,7 +1489,7 @@ void x64Gen_bt_mem8(x64GenContext_t* x64GenContext, sint32 memoryRegister, uint3
{
// BT [<reg64>+imm], bitIndex (bit test)
sint32 memoryImmS32 = (sint32)memoryImmU32;
if( memoryRegister != REG_RSP )
if( memoryRegister != X86_REG_RSP )
assert_dbg(); // not supported yet
if( memoryImmS32 >= -128 && memoryImmS32 <= 127 )
{
@ -1662,7 +1524,7 @@ void x64Gen_jmp_imm32(x64GenContext_t* x64GenContext, uint32 destImm32)
void x64Gen_jmp_memReg64(x64GenContext_t* x64GenContext, sint32 memRegister, uint32 immU32)
{
if( memRegister == REG_NONE )
if( memRegister == X86_REG_NONE )
{
assert_dbg();
}

View file

@ -1,6 +1,4 @@
#include "PPCRecompiler.h"
#include "PPCRecompilerIml.h"
#include "PPCRecompilerX64.h"
#include "BackendX64.h"
void x64Gen_genSSEVEXPrefix2(x64GenContext_t* x64GenContext, sint32 xmmRegister1, sint32 xmmRegister2, bool use64BitMode)
{
@ -44,7 +42,7 @@ void x64Gen_movupd_xmmReg_memReg128(x64GenContext_t* x64GenContext, sint32 xmmRe
// SSE2
// move two doubles from memory into xmm register
// MOVUPD <xmm>, [<reg>+<imm>]
if( memRegister == REG_ESP )
if( memRegister == X86_REG_ESP )
{
// todo: Short form of instruction if memImmU32 is 0 or in -128 to 127 range
// 66 0F 10 84 E4 23 01 00 00
@ -56,7 +54,7 @@ void x64Gen_movupd_xmmReg_memReg128(x64GenContext_t* x64GenContext, sint32 xmmRe
x64Gen_writeU8(x64GenContext, 0xE4);
x64Gen_writeU32(x64GenContext, memImmU32);
}
else if( memRegister == REG_NONE )
else if( memRegister == X86_REG_NONE )
{
assert_dbg();
//x64Gen_writeU8(x64GenContext, 0x66);
@ -76,7 +74,7 @@ void x64Gen_movupd_memReg128_xmmReg(x64GenContext_t* x64GenContext, sint32 xmmRe
// SSE2
// move two doubles from memory into xmm register
// MOVUPD [<reg>+<imm>], <xmm>
if( memRegister == REG_ESP )
if( memRegister == X86_REG_ESP )
{
// todo: Short form of instruction if memImmU32 is 0 or in -128 to 127 range
x64Gen_writeU8(x64GenContext, 0x66);
@ -87,7 +85,7 @@ void x64Gen_movupd_memReg128_xmmReg(x64GenContext_t* x64GenContext, sint32 xmmRe
x64Gen_writeU8(x64GenContext, 0xE4);
x64Gen_writeU32(x64GenContext, memImmU32);
}
else if( memRegister == REG_NONE )
else if( memRegister == X86_REG_NONE )
{
assert_dbg();
//x64Gen_writeU8(x64GenContext, 0x66);
@ -106,7 +104,7 @@ void x64Gen_movddup_xmmReg_memReg64(x64GenContext_t* x64GenContext, sint32 xmmRe
{
// SSE3
// move one double from memory into lower and upper half of a xmm register
if( memRegister == REG_RSP )
if( memRegister == X86_REG_RSP )
{
// MOVDDUP <xmm>, [<reg>+<imm>]
// todo: Short form of instruction if memImmU32 is 0 or in -128 to 127 range
@ -119,7 +117,7 @@ void x64Gen_movddup_xmmReg_memReg64(x64GenContext_t* x64GenContext, sint32 xmmRe
x64Gen_writeU8(x64GenContext, 0xE4);
x64Gen_writeU32(x64GenContext, memImmU32);
}
else if( memRegister == REG_R15 )
else if( memRegister == X86_REG_R15 )
{
// MOVDDUP <xmm>, [<reg>+<imm>]
// todo: Short form of instruction if memImmU32 is 0 or in -128 to 127 range
@ -131,7 +129,7 @@ void x64Gen_movddup_xmmReg_memReg64(x64GenContext_t* x64GenContext, sint32 xmmRe
x64Gen_writeU8(x64GenContext, 0x87+(xmmRegister&7)*8);
x64Gen_writeU32(x64GenContext, memImmU32);
}
else if( memRegister == REG_NONE )
else if( memRegister == X86_REG_NONE )
{
// MOVDDUP <xmm>, [<imm>]
// 36 F2 0F 12 05 - 00 00 00 00
@ -185,7 +183,7 @@ void x64Gen_movsd_memReg64_xmmReg(x64GenContext_t* x64GenContext, sint32 xmmRegi
{
// SSE2
// move lower 64bits (double) of xmm register to memory location
if( memRegister == REG_NONE )
if( memRegister == X86_REG_NONE )
{
// MOVSD [<imm>], <xmm>
// F2 0F 11 05 - 45 23 01 00
@ -197,7 +195,7 @@ void x64Gen_movsd_memReg64_xmmReg(x64GenContext_t* x64GenContext, sint32 xmmRegi
//x64Gen_writeU8(x64GenContext, 0x05+xmmRegister*8);
//x64Gen_writeU32(x64GenContext, memImmU32);
}
else if( memRegister == REG_RSP )
else if( memRegister == X86_REG_RSP )
{
// MOVSD [RSP+<imm>], <xmm>
// F2 0F 11 84 24 - 33 22 11 00
@ -219,7 +217,7 @@ void x64Gen_movlpd_xmmReg_memReg64(x64GenContext_t* x64GenContext, sint32 xmmReg
{
// SSE3
// move one double from memory into lower half of a xmm register, leave upper half unchanged(?)
if( memRegister == REG_NONE )
if( memRegister == X86_REG_NONE )
{
// MOVLPD <xmm>, [<imm>]
//x64Gen_writeU8(x64GenContext, 0x66);
@ -229,7 +227,7 @@ void x64Gen_movlpd_xmmReg_memReg64(x64GenContext_t* x64GenContext, sint32 xmmReg
//x64Gen_writeU32(x64GenContext, memImmU32);
assert_dbg();
}
else if( memRegister == REG_RSP )
else if( memRegister == X86_REG_RSP )
{
// MOVLPD <xmm>, [<reg64>+<imm>]
// 66 0F 12 84 24 - 33 22 11 00
@ -348,11 +346,11 @@ void x64Gen_mulpd_xmmReg_xmmReg(x64GenContext_t* x64GenContext, sint32 xmmRegist
void x64Gen_mulpd_xmmReg_memReg128(x64GenContext_t* x64GenContext, sint32 xmmRegister, sint32 memRegister, uint32 memImmU32)
{
// SSE2
if (memRegister == REG_NONE)
if (memRegister == X86_REG_NONE)
{
assert_dbg();
}
else if (memRegister == REG_R14)
else if (memRegister == X86_REG_R14)
{
x64Gen_writeU8(x64GenContext, 0x66);
x64Gen_writeU8(x64GenContext, (xmmRegister < 8) ? 0x41 : 0x45);
@ -404,7 +402,7 @@ void x64Gen_comisd_xmmReg_mem64Reg64(x64GenContext_t* x64GenContext, sint32 xmmR
{
// SSE2
// compare bottom double with double from memory location
if( memoryReg == REG_R15 )
if( memoryReg == X86_REG_R15 )
{
x64Gen_writeU8(x64GenContext, 0x66);
x64Gen_genSSEVEXPrefix1(x64GenContext, xmmRegisterDest, true);
@ -432,7 +430,7 @@ void x64Gen_comiss_xmmReg_mem64Reg64(x64GenContext_t* x64GenContext, sint32 xmmR
{
// SSE2
// compare bottom float with float from memory location
if (memoryReg == REG_R15)
if (memoryReg == X86_REG_R15)
{
x64Gen_genSSEVEXPrefix1(x64GenContext, xmmRegisterDest, true);
x64Gen_writeU8(x64GenContext, 0x0F);
@ -448,7 +446,7 @@ void x64Gen_orps_xmmReg_mem128Reg64(x64GenContext_t* x64GenContext, sint32 xmmRe
{
// SSE2
// and xmm register with 128 bit value from memory
if( memReg == REG_R15 )
if( memReg == X86_REG_R15 )
{
x64Gen_genSSEVEXPrefix2(x64GenContext, memReg, xmmRegisterDest, false);
x64Gen_writeU8(x64GenContext, 0x0F);
@ -464,7 +462,7 @@ void x64Gen_xorps_xmmReg_mem128Reg64(x64GenContext_t* x64GenContext, sint32 xmmR
{
// SSE2
// xor xmm register with 128 bit value from memory
if( memReg == REG_R15 )
if( memReg == X86_REG_R15 )
{
x64Gen_genSSEVEXPrefix1(x64GenContext, xmmRegisterDest, true); // todo: should be x64Gen_genSSEVEXPrefix2() with memReg?
x64Gen_writeU8(x64GenContext, 0x0F);
@ -479,11 +477,11 @@ void x64Gen_xorps_xmmReg_mem128Reg64(x64GenContext_t* x64GenContext, sint32 xmmR
void x64Gen_andpd_xmmReg_memReg128(x64GenContext_t* x64GenContext, sint32 xmmRegister, sint32 memRegister, uint32 memImmU32)
{
// SSE2
if (memRegister == REG_NONE)
if (memRegister == X86_REG_NONE)
{
assert_dbg();
}
else if (memRegister == REG_R14)
else if (memRegister == X86_REG_R14)
{
x64Gen_writeU8(x64GenContext, 0x66);
x64Gen_writeU8(x64GenContext, (xmmRegister < 8) ? 0x41 : 0x45);
@ -502,7 +500,7 @@ void x64Gen_andps_xmmReg_mem128Reg64(x64GenContext_t* x64GenContext, sint32 xmmR
{
// SSE2
// and xmm register with 128 bit value from memory
if( memReg == REG_R15 )
if( memReg == X86_REG_R15 )
{
x64Gen_genSSEVEXPrefix1(x64GenContext, xmmRegisterDest, true); // todo: should be x64Gen_genSSEVEXPrefix2() with memReg?
x64Gen_writeU8(x64GenContext, 0x0F);
@ -528,7 +526,7 @@ void x64Gen_pcmpeqd_xmmReg_mem128Reg64(x64GenContext_t* x64GenContext, sint32 xm
{
// SSE2
// doubleword integer compare
if( memReg == REG_R15 )
if( memReg == X86_REG_R15 )
{
x64Gen_writeU8(x64GenContext, 0x66);
x64Gen_genSSEVEXPrefix1(x64GenContext, xmmRegisterDest, true);
@ -610,7 +608,7 @@ void x64Gen_cvtpi2pd_xmmReg_mem64Reg64(x64GenContext_t* x64GenContext, sint32 xm
{
// SSE2
// converts two signed 32bit integers to two doubles
if( memReg == REG_RSP )
if( memReg == X86_REG_RSP )
{
x64Gen_writeU8(x64GenContext, 0x66);
x64Gen_genSSEVEXPrefix1(x64GenContext, xmmRegisterDest, false);
@ -684,7 +682,7 @@ void x64Gen_rcpss_xmmReg_xmmReg(x64GenContext_t* x64GenContext, sint32 xmmRegist
void x64Gen_mulss_xmmReg_memReg64(x64GenContext_t* x64GenContext, sint32 xmmRegister, sint32 memRegister, uint32 memImmU32)
{
// SSE2
if( memRegister == REG_NONE )
if( memRegister == X86_REG_NONE )
{
assert_dbg();
}

View file

@ -203,7 +203,6 @@ template<class opcodeBytes, typename TA, typename TB>
void _x64Gen_writeMODRM_internal(x64GenContext_t* x64GenContext, TA opA, TB opB)
{
static_assert(TA::getType() == MODRM_OPR_TYPE::REG);
x64Gen_checkBuffer(x64GenContext);
// REX prefix
// 0100 WRXB
if constexpr (TA::getType() == MODRM_OPR_TYPE::REG && TB::getType() == MODRM_OPR_TYPE::REG)

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,16 @@
#pragma once
#include "IMLInstruction.h"
#include "IMLSegment.h"
// optimizer passes
void IMLOptimizer_OptimizeDirectFloatCopies(struct ppcImlGenContext_t* ppcImlGenContext);
void IMLOptimizer_OptimizeDirectIntegerCopies(struct ppcImlGenContext_t* ppcImlGenContext);
void PPCRecompiler_optimizePSQLoadAndStore(struct ppcImlGenContext_t* ppcImlGenContext);
void IMLOptimizer_StandardOptimizationPass(ppcImlGenContext_t& ppcImlGenContext);
// debug
void IMLDebug_DisassembleInstruction(const IMLInstruction& inst, std::string& disassemblyLineOut);
void IMLDebug_DumpSegment(struct ppcImlGenContext_t* ctx, IMLSegment* imlSegment, bool printLivenessRangeInfo = false);
void IMLDebug_Dump(struct ppcImlGenContext_t* ppcImlGenContext, bool printLivenessRangeInfo = false);

View file

@ -0,0 +1,5 @@
#include "IML.h"
//#include "PPCRecompilerIml.h"
#include "util/helpers/fixedSizeList.h"
#include "Cafe/HW/Espresso/Interpreter/PPCInterpreterInternal.h"

View file

@ -0,0 +1,528 @@
#include "IML.h"
#include "IMLInstruction.h"
#include "IMLSegment.h"
#include "IMLRegisterAllocatorRanges.h"
#include "util/helpers/StringBuf.h"
#include "../PPCRecompiler.h"
const char* IMLDebug_GetOpcodeName(const IMLInstruction* iml)
{
static char _tempOpcodename[32];
uint32 op = iml->operation;
if (op == PPCREC_IML_OP_ASSIGN)
return "MOV";
else if (op == PPCREC_IML_OP_ADD)
return "ADD";
else if (op == PPCREC_IML_OP_ADD_WITH_CARRY)
return "ADC";
else if (op == PPCREC_IML_OP_SUB)
return "SUB";
else if (op == PPCREC_IML_OP_OR)
return "OR";
else if (op == PPCREC_IML_OP_AND)
return "AND";
else if (op == PPCREC_IML_OP_XOR)
return "XOR";
else if (op == PPCREC_IML_OP_LEFT_SHIFT)
return "LSH";
else if (op == PPCREC_IML_OP_RIGHT_SHIFT_U)
return "RSH";
else if (op == PPCREC_IML_OP_RIGHT_SHIFT_S)
return "ARSH";
else if (op == PPCREC_IML_OP_LEFT_ROTATE)
return "LROT";
else if (op == PPCREC_IML_OP_MULTIPLY_SIGNED)
return "MULS";
else if (op == PPCREC_IML_OP_DIVIDE_SIGNED)
return "DIVS";
sprintf(_tempOpcodename, "OP0%02x_T%d", iml->operation, iml->type);
return _tempOpcodename;
}
std::string IMLDebug_GetRegName(IMLReg r)
{
std::string regName;
uint32 regId = r.GetRegID();
switch (r.GetRegFormat())
{
case IMLRegFormat::F32:
regName.append("f");
break;
case IMLRegFormat::F64:
regName.append("fd");
break;
case IMLRegFormat::I32:
regName.append("i");
break;
case IMLRegFormat::I64:
regName.append("r");
break;
default:
DEBUG_BREAK;
}
regName.append(fmt::format("{}", regId));
return regName;
}
void IMLDebug_AppendRegisterParam(StringBuf& strOutput, IMLReg virtualRegister, bool isLast = false)
{
strOutput.add(IMLDebug_GetRegName(virtualRegister));
if (!isLast)
strOutput.add(", ");
}
void IMLDebug_AppendS32Param(StringBuf& strOutput, sint32 val, bool isLast = false)
{
if (val < 0)
{
strOutput.add("-");
val = -val;
}
strOutput.addFmt("0x{:08x}", val);
if (!isLast)
strOutput.add(", ");
}
void IMLDebug_PrintLivenessRangeInfo(StringBuf& currentLineText, IMLSegment* imlSegment, sint32 offset)
{
// pad to 70 characters
sint32 index = currentLineText.getLen();
while (index < 70)
{
currentLineText.add(" ");
index++;
}
raLivenessRange* subrangeItr = imlSegment->raInfo.linkedList_allSubranges;
while (subrangeItr)
{
if (subrangeItr->interval.start.GetInstructionIndexEx() == offset)
{
if(subrangeItr->interval.start.IsInstructionIndex() && !subrangeItr->interval.start.IsOnInputEdge())
currentLineText.add(".");
else
currentLineText.add("|");
currentLineText.addFmt("{:<4}", subrangeItr->GetVirtualRegister());
}
else if (subrangeItr->interval.end.GetInstructionIndexEx() == offset)
{
if(subrangeItr->interval.end.IsInstructionIndex() && !subrangeItr->interval.end.IsOnOutputEdge())
currentLineText.add("* ");
else
currentLineText.add("| ");
}
else if (subrangeItr->interval.ContainsInstructionIndexEx(offset))
{
currentLineText.add("| ");
}
else
{
currentLineText.add(" ");
}
index += 5;
// next
subrangeItr = subrangeItr->link_allSegmentRanges.next;
}
}
std::string IMLDebug_GetSegmentName(ppcImlGenContext_t* ctx, IMLSegment* seg)
{
if (!ctx)
{
return "<NoNameWithoutCtx>";
}
// find segment index
for (size_t i = 0; i < ctx->segmentList2.size(); i++)
{
if (ctx->segmentList2[i] == seg)
{
return fmt::format("Seg{:04x}", i);
}
}
return "<SegmentNotInCtx>";
}
std::string IMLDebug_GetConditionName(IMLCondition cond)
{
switch (cond)
{
case IMLCondition::EQ:
return "EQ";
case IMLCondition::NEQ:
return "NEQ";
case IMLCondition::UNSIGNED_GT:
return "UGT";
case IMLCondition::UNSIGNED_LT:
return "ULT";
case IMLCondition::SIGNED_GT:
return "SGT";
case IMLCondition::SIGNED_LT:
return "SLT";
default:
cemu_assert_unimplemented();
}
return "ukn";
}
void IMLDebug_DisassembleInstruction(const IMLInstruction& inst, std::string& disassemblyLineOut)
{
const sint32 lineOffsetParameters = 10;//18;
StringBuf strOutput(1024);
strOutput.reset();
if (inst.type == PPCREC_IML_TYPE_R_NAME || inst.type == PPCREC_IML_TYPE_NAME_R)
{
if (inst.type == PPCREC_IML_TYPE_R_NAME)
strOutput.add("R_NAME");
else
strOutput.add("NAME_R");
while ((sint32)strOutput.getLen() < lineOffsetParameters)
strOutput.add(" ");
if(inst.type == PPCREC_IML_TYPE_R_NAME)
IMLDebug_AppendRegisterParam(strOutput, inst.op_r_name.regR);
strOutput.add("name_");
if (inst.op_r_name.name >= PPCREC_NAME_R0 && inst.op_r_name.name < (PPCREC_NAME_R0 + 999))
{
strOutput.addFmt("r{}", inst.op_r_name.name - PPCREC_NAME_R0);
}
else if (inst.op_r_name.name >= PPCREC_NAME_FPR0 && inst.op_r_name.name < (PPCREC_NAME_FPR0 + 999))
{
strOutput.addFmt("f{}", inst.op_r_name.name - PPCREC_NAME_FPR0);
}
else if (inst.op_r_name.name >= PPCREC_NAME_SPR0 && inst.op_r_name.name < (PPCREC_NAME_SPR0 + 999))
{
strOutput.addFmt("spr{}", inst.op_r_name.name - PPCREC_NAME_SPR0);
}
else if (inst.op_r_name.name >= PPCREC_NAME_CR && inst.op_r_name.name <= PPCREC_NAME_CR_LAST)
strOutput.addFmt("cr{}", inst.op_r_name.name - PPCREC_NAME_CR);
else if (inst.op_r_name.name == PPCREC_NAME_XER_CA)
strOutput.add("xer.ca");
else if (inst.op_r_name.name == PPCREC_NAME_XER_SO)
strOutput.add("xer.so");
else if (inst.op_r_name.name == PPCREC_NAME_XER_OV)
strOutput.add("xer.ov");
else if (inst.op_r_name.name == PPCREC_NAME_CPU_MEMRES_EA)
strOutput.add("cpuReservation.ea");
else if (inst.op_r_name.name == PPCREC_NAME_CPU_MEMRES_VAL)
strOutput.add("cpuReservation.value");
else
{
strOutput.addFmt("name_ukn{}", inst.op_r_name.name);
}
if (inst.type != PPCREC_IML_TYPE_R_NAME)
{
strOutput.add(", ");
IMLDebug_AppendRegisterParam(strOutput, inst.op_r_name.regR, true);
}
}
else if (inst.type == PPCREC_IML_TYPE_R_R)
{
strOutput.addFmt("{}", IMLDebug_GetOpcodeName(&inst));
while ((sint32)strOutput.getLen() < lineOffsetParameters)
strOutput.add(" ");
IMLDebug_AppendRegisterParam(strOutput, inst.op_r_r.regR);
IMLDebug_AppendRegisterParam(strOutput, inst.op_r_r.regA, true);
}
else if (inst.type == PPCREC_IML_TYPE_R_R_R)
{
strOutput.addFmt("{}", IMLDebug_GetOpcodeName(&inst));
while ((sint32)strOutput.getLen() < lineOffsetParameters)
strOutput.add(" ");
IMLDebug_AppendRegisterParam(strOutput, inst.op_r_r_r.regR);
IMLDebug_AppendRegisterParam(strOutput, inst.op_r_r_r.regA);
IMLDebug_AppendRegisterParam(strOutput, inst.op_r_r_r.regB, true);
}
else if (inst.type == PPCREC_IML_TYPE_R_R_R_CARRY)
{
strOutput.addFmt("{}", IMLDebug_GetOpcodeName(&inst));
while ((sint32)strOutput.getLen() < lineOffsetParameters)
strOutput.add(" ");
IMLDebug_AppendRegisterParam(strOutput, inst.op_r_r_r_carry.regR);
IMLDebug_AppendRegisterParam(strOutput, inst.op_r_r_r_carry.regA);
IMLDebug_AppendRegisterParam(strOutput, inst.op_r_r_r_carry.regB);
IMLDebug_AppendRegisterParam(strOutput, inst.op_r_r_r_carry.regCarry, true);
}
else if (inst.type == PPCREC_IML_TYPE_COMPARE)
{
strOutput.add("CMP ");
while ((sint32)strOutput.getLen() < lineOffsetParameters)
strOutput.add(" ");
IMLDebug_AppendRegisterParam(strOutput, inst.op_compare.regA);
IMLDebug_AppendRegisterParam(strOutput, inst.op_compare.regB);
strOutput.addFmt("{}", IMLDebug_GetConditionName(inst.op_compare.cond));
strOutput.add(" -> ");
IMLDebug_AppendRegisterParam(strOutput, inst.op_compare.regR, true);
}
else if (inst.type == PPCREC_IML_TYPE_COMPARE_S32)
{
strOutput.add("CMP ");
while ((sint32)strOutput.getLen() < lineOffsetParameters)
strOutput.add(" ");
IMLDebug_AppendRegisterParam(strOutput, inst.op_compare_s32.regA);
strOutput.addFmt("{}", inst.op_compare_s32.immS32);
strOutput.addFmt(", {}", IMLDebug_GetConditionName(inst.op_compare_s32.cond));
strOutput.add(" -> ");
IMLDebug_AppendRegisterParam(strOutput, inst.op_compare_s32.regR, true);
}
else if (inst.type == PPCREC_IML_TYPE_CONDITIONAL_JUMP)
{
strOutput.add("CJUMP ");
while ((sint32)strOutput.getLen() < lineOffsetParameters)
strOutput.add(" ");
IMLDebug_AppendRegisterParam(strOutput, inst.op_conditional_jump.registerBool, true);
if (!inst.op_conditional_jump.mustBeTrue)
strOutput.add("(inverted)");
}
else if (inst.type == PPCREC_IML_TYPE_JUMP)
{
strOutput.add("JUMP");
}
else if (inst.type == PPCREC_IML_TYPE_R_R_S32)
{
strOutput.addFmt("{}", IMLDebug_GetOpcodeName(&inst));
while ((sint32)strOutput.getLen() < lineOffsetParameters)
strOutput.add(" ");
IMLDebug_AppendRegisterParam(strOutput, inst.op_r_r_s32.regR);
IMLDebug_AppendRegisterParam(strOutput, inst.op_r_r_s32.regA);
IMLDebug_AppendS32Param(strOutput, inst.op_r_r_s32.immS32, true);
}
else if (inst.type == PPCREC_IML_TYPE_R_R_S32_CARRY)
{
strOutput.addFmt("{}", IMLDebug_GetOpcodeName(&inst));
while ((sint32)strOutput.getLen() < lineOffsetParameters)
strOutput.add(" ");
IMLDebug_AppendRegisterParam(strOutput, inst.op_r_r_s32_carry.regR);
IMLDebug_AppendRegisterParam(strOutput, inst.op_r_r_s32_carry.regA);
IMLDebug_AppendS32Param(strOutput, inst.op_r_r_s32_carry.immS32);
IMLDebug_AppendRegisterParam(strOutput, inst.op_r_r_s32_carry.regCarry, true);
}
else if (inst.type == PPCREC_IML_TYPE_R_S32)
{
strOutput.addFmt("{}", IMLDebug_GetOpcodeName(&inst));
while ((sint32)strOutput.getLen() < lineOffsetParameters)
strOutput.add(" ");
IMLDebug_AppendRegisterParam(strOutput, inst.op_r_immS32.regR);
IMLDebug_AppendS32Param(strOutput, inst.op_r_immS32.immS32, true);
}
else if (inst.type == PPCREC_IML_TYPE_LOAD || inst.type == PPCREC_IML_TYPE_STORE ||
inst.type == PPCREC_IML_TYPE_LOAD_INDEXED || inst.type == PPCREC_IML_TYPE_STORE_INDEXED)
{
if (inst.type == PPCREC_IML_TYPE_LOAD || inst.type == PPCREC_IML_TYPE_LOAD_INDEXED)
strOutput.add("LD_");
else
strOutput.add("ST_");
if (inst.op_storeLoad.flags2.signExtend)
strOutput.add("S");
else
strOutput.add("U");
strOutput.addFmt("{}", inst.op_storeLoad.copyWidth);
while ((sint32)strOutput.getLen() < lineOffsetParameters)
strOutput.add(" ");
IMLDebug_AppendRegisterParam(strOutput, inst.op_storeLoad.registerData);
if (inst.type == PPCREC_IML_TYPE_LOAD_INDEXED || inst.type == PPCREC_IML_TYPE_STORE_INDEXED)
strOutput.addFmt("[{}+{}]", IMLDebug_GetRegName(inst.op_storeLoad.registerMem), IMLDebug_GetRegName(inst.op_storeLoad.registerMem2));
else
strOutput.addFmt("[{}+{}]", IMLDebug_GetRegName(inst.op_storeLoad.registerMem), inst.op_storeLoad.immS32);
}
else if (inst.type == PPCREC_IML_TYPE_ATOMIC_CMP_STORE)
{
strOutput.add("ATOMIC_ST_U32");
while ((sint32)strOutput.getLen() < lineOffsetParameters)
strOutput.add(" ");
IMLDebug_AppendRegisterParam(strOutput, inst.op_atomic_compare_store.regEA);
IMLDebug_AppendRegisterParam(strOutput, inst.op_atomic_compare_store.regCompareValue);
IMLDebug_AppendRegisterParam(strOutput, inst.op_atomic_compare_store.regWriteValue);
IMLDebug_AppendRegisterParam(strOutput, inst.op_atomic_compare_store.regBoolOut, true);
}
else if (inst.type == PPCREC_IML_TYPE_NO_OP)
{
strOutput.add("NOP");
}
else if (inst.type == PPCREC_IML_TYPE_MACRO)
{
if (inst.operation == PPCREC_IML_MACRO_B_TO_REG)
{
strOutput.addFmt("MACRO B_TO_REG {}", IMLDebug_GetRegName(inst.op_macro.paramReg));
}
else if (inst.operation == PPCREC_IML_MACRO_BL)
{
strOutput.addFmt("MACRO BL 0x{:08x} -> 0x{:08x} cycles (depr): {}", inst.op_macro.param, inst.op_macro.param2, (sint32)inst.op_macro.paramU16);
}
else if (inst.operation == PPCREC_IML_MACRO_B_FAR)
{
strOutput.addFmt("MACRO B_FAR 0x{:08x} -> 0x{:08x} cycles (depr): {}", inst.op_macro.param, inst.op_macro.param2, (sint32)inst.op_macro.paramU16);
}
else if (inst.operation == PPCREC_IML_MACRO_LEAVE)
{
strOutput.addFmt("MACRO LEAVE ppc: 0x{:08x}", inst.op_macro.param);
}
else if (inst.operation == PPCREC_IML_MACRO_HLE)
{
strOutput.addFmt("MACRO HLE ppcAddr: 0x{:08x} funcId: 0x{:08x}", inst.op_macro.param, inst.op_macro.param2);
}
else if (inst.operation == PPCREC_IML_MACRO_COUNT_CYCLES)
{
strOutput.addFmt("MACRO COUNT_CYCLES cycles: {}", inst.op_macro.param);
}
else
{
strOutput.addFmt("MACRO ukn operation {}", inst.operation);
}
}
else if (inst.type == PPCREC_IML_TYPE_FPR_LOAD)
{
strOutput.addFmt("{} = ", IMLDebug_GetRegName(inst.op_storeLoad.registerData));
if (inst.op_storeLoad.flags2.signExtend)
strOutput.add("S");
else
strOutput.add("U");
strOutput.addFmt("{} [{}+{}] mode {}", inst.op_storeLoad.copyWidth / 8, IMLDebug_GetRegName(inst.op_storeLoad.registerMem), inst.op_storeLoad.immS32, inst.op_storeLoad.mode);
if (inst.op_storeLoad.flags2.notExpanded)
{
strOutput.addFmt(" <No expand>");
}
}
else if (inst.type == PPCREC_IML_TYPE_FPR_STORE)
{
if (inst.op_storeLoad.flags2.signExtend)
strOutput.add("S");
else
strOutput.add("U");
strOutput.addFmt("{} [t{}+{}]", inst.op_storeLoad.copyWidth / 8, inst.op_storeLoad.registerMem.GetRegID(), inst.op_storeLoad.immS32);
strOutput.addFmt(" = {} mode {}", IMLDebug_GetRegName(inst.op_storeLoad.registerData), inst.op_storeLoad.mode);
}
else if (inst.type == PPCREC_IML_TYPE_FPR_R_R)
{
strOutput.addFmt("{:>6} ", IMLDebug_GetOpcodeName(&inst));
strOutput.addFmt("{}, {}", IMLDebug_GetRegName(inst.op_fpr_r_r.regR), IMLDebug_GetRegName(inst.op_fpr_r_r.regA));
}
else if (inst.type == PPCREC_IML_TYPE_FPR_R_R_R_R)
{
strOutput.addFmt("{:>6} ", IMLDebug_GetOpcodeName(&inst));
strOutput.addFmt("{}, {}, {}, {}", IMLDebug_GetRegName(inst.op_fpr_r_r_r_r.regR), IMLDebug_GetRegName(inst.op_fpr_r_r_r_r.regA), IMLDebug_GetRegName(inst.op_fpr_r_r_r_r.regB), IMLDebug_GetRegName(inst.op_fpr_r_r_r_r.regC));
}
else if (inst.type == PPCREC_IML_TYPE_FPR_R_R_R)
{
strOutput.addFmt("{:>6} ", IMLDebug_GetOpcodeName(&inst));
strOutput.addFmt("{}, {}, {}", IMLDebug_GetRegName(inst.op_fpr_r_r_r.regR), IMLDebug_GetRegName(inst.op_fpr_r_r_r.regA), IMLDebug_GetRegName(inst.op_fpr_r_r_r.regB));
}
else if (inst.type == PPCREC_IML_TYPE_CJUMP_CYCLE_CHECK)
{
strOutput.addFmt("CYCLE_CHECK");
}
else if (inst.type == PPCREC_IML_TYPE_X86_EFLAGS_JCC)
{
strOutput.addFmt("X86_JCC {}", IMLDebug_GetConditionName(inst.op_x86_eflags_jcc.cond));
}
else
{
strOutput.addFmt("Unknown iml type {}", inst.type);
}
disassemblyLineOut.assign(strOutput.c_str());
}
void IMLDebug_DumpSegment(ppcImlGenContext_t* ctx, IMLSegment* imlSegment, bool printLivenessRangeInfo)
{
StringBuf strOutput(4096);
strOutput.addFmt("SEGMENT {} | PPC=0x{:08x} Loop-depth {}", IMLDebug_GetSegmentName(ctx, imlSegment), imlSegment->ppcAddress, imlSegment->loopDepth);
if (imlSegment->isEnterable)
{
strOutput.addFmt(" ENTERABLE (0x{:08x})", imlSegment->enterPPCAddress);
}
if (imlSegment->deadCodeEliminationHintSeg)
{
strOutput.addFmt(" InheritOverwrite: {}", IMLDebug_GetSegmentName(ctx, imlSegment->deadCodeEliminationHintSeg));
}
cemuLog_log(LogType::Force, "{}", strOutput.c_str());
if (printLivenessRangeInfo)
{
strOutput.reset();
IMLDebug_PrintLivenessRangeInfo(strOutput, imlSegment, RA_INTER_RANGE_START);
cemuLog_log(LogType::Force, "{}", strOutput.c_str());
}
//debug_printf("\n");
strOutput.reset();
std::string disassemblyLine;
for (sint32 i = 0; i < imlSegment->imlList.size(); i++)
{
const IMLInstruction& inst = imlSegment->imlList[i];
// don't log NOP instructions
if (inst.type == PPCREC_IML_TYPE_NO_OP)
continue;
strOutput.reset();
strOutput.addFmt("{:02x} ", i);
//cemuLog_log(LogType::Force, "{:02x} ", i);
disassemblyLine.clear();
IMLDebug_DisassembleInstruction(inst, disassemblyLine);
strOutput.add(disassemblyLine);
if (printLivenessRangeInfo)
{
IMLDebug_PrintLivenessRangeInfo(strOutput, imlSegment, i);
}
cemuLog_log(LogType::Force, "{}", strOutput.c_str());
}
// all ranges
if (printLivenessRangeInfo)
{
strOutput.reset();
strOutput.add("Ranges-VirtReg ");
raLivenessRange* subrangeItr = imlSegment->raInfo.linkedList_allSubranges;
while (subrangeItr)
{
strOutput.addFmt("v{:<4}", (uint32)subrangeItr->GetVirtualRegister());
subrangeItr = subrangeItr->link_allSegmentRanges.next;
}
cemuLog_log(LogType::Force, "{}", strOutput.c_str());
strOutput.reset();
strOutput.add("Ranges-PhysReg ");
subrangeItr = imlSegment->raInfo.linkedList_allSubranges;
while (subrangeItr)
{
strOutput.addFmt("p{:<4}", subrangeItr->GetPhysicalRegister());
subrangeItr = subrangeItr->link_allSegmentRanges.next;
}
cemuLog_log(LogType::Force, "{}", strOutput.c_str());
}
// branch info
strOutput.reset();
strOutput.add("Links from: ");
for (sint32 i = 0; i < imlSegment->list_prevSegments.size(); i++)
{
if (i)
strOutput.add(", ");
strOutput.addFmt("{}", IMLDebug_GetSegmentName(ctx, imlSegment->list_prevSegments[i]).c_str());
}
cemuLog_log(LogType::Force, "{}", strOutput.c_str());
if (imlSegment->nextSegmentBranchNotTaken)
cemuLog_log(LogType::Force, "BranchNotTaken: {}", IMLDebug_GetSegmentName(ctx, imlSegment->nextSegmentBranchNotTaken).c_str());
if (imlSegment->nextSegmentBranchTaken)
cemuLog_log(LogType::Force, "BranchTaken: {}", IMLDebug_GetSegmentName(ctx, imlSegment->nextSegmentBranchTaken).c_str());
if (imlSegment->nextSegmentIsUncertain)
cemuLog_log(LogType::Force, "Dynamic target");
}
void IMLDebug_Dump(ppcImlGenContext_t* ppcImlGenContext, bool printLivenessRangeInfo)
{
for (size_t i = 0; i < ppcImlGenContext->segmentList2.size(); i++)
{
IMLDebug_DumpSegment(ppcImlGenContext, ppcImlGenContext->segmentList2[i], printLivenessRangeInfo);
cemuLog_log(LogType::Force, "");
}
}

View file

@ -0,0 +1,669 @@
#include "IMLInstruction.h"
#include "IML.h"
#include "../PPCRecompiler.h"
#include "../PPCRecompilerIml.h"
// return true if an instruction has side effects on top of just reading and writing registers
bool IMLInstruction::HasSideEffects() const
{
bool hasSideEffects = true;
if(type == PPCREC_IML_TYPE_R_R || type == PPCREC_IML_TYPE_R_R_S32 || type == PPCREC_IML_TYPE_COMPARE || type == PPCREC_IML_TYPE_COMPARE_S32)
hasSideEffects = false;
// todo - add more cases
return hasSideEffects;
}
void IMLInstruction::CheckRegisterUsage(IMLUsedRegisters* registersUsed) const
{
registersUsed->readGPR1 = IMLREG_INVALID;
registersUsed->readGPR2 = IMLREG_INVALID;
registersUsed->readGPR3 = IMLREG_INVALID;
registersUsed->readGPR4 = IMLREG_INVALID;
registersUsed->writtenGPR1 = IMLREG_INVALID;
registersUsed->writtenGPR2 = IMLREG_INVALID;
if (type == PPCREC_IML_TYPE_R_NAME)
{
registersUsed->writtenGPR1 = op_r_name.regR;
}
else if (type == PPCREC_IML_TYPE_NAME_R)
{
registersUsed->readGPR1 = op_r_name.regR;
}
else if (type == PPCREC_IML_TYPE_R_R)
{
if (operation == PPCREC_IML_OP_X86_CMP)
{
// both operands are read only
registersUsed->readGPR1 = op_r_r.regR;
registersUsed->readGPR2 = op_r_r.regA;
}
else if (
operation == PPCREC_IML_OP_ASSIGN ||
operation == PPCREC_IML_OP_ENDIAN_SWAP ||
operation == PPCREC_IML_OP_CNTLZW ||
operation == PPCREC_IML_OP_NOT ||
operation == PPCREC_IML_OP_NEG ||
operation == PPCREC_IML_OP_ASSIGN_S16_TO_S32 ||
operation == PPCREC_IML_OP_ASSIGN_S8_TO_S32)
{
// result is written, operand is read
registersUsed->writtenGPR1 = op_r_r.regR;
registersUsed->readGPR1 = op_r_r.regA;
}
else
cemu_assert_unimplemented();
}
else if (type == PPCREC_IML_TYPE_R_S32)
{
cemu_assert_debug(operation != PPCREC_IML_OP_ADD &&
operation != PPCREC_IML_OP_SUB &&
operation != PPCREC_IML_OP_AND &&
operation != PPCREC_IML_OP_OR &&
operation != PPCREC_IML_OP_XOR); // deprecated, use r_r_s32 for these
if (operation == PPCREC_IML_OP_LEFT_ROTATE)
{
// register operand is read and write
registersUsed->readGPR1 = op_r_immS32.regR;
registersUsed->writtenGPR1 = op_r_immS32.regR;
}
else if (operation == PPCREC_IML_OP_X86_CMP)
{
// register operand is read only
registersUsed->readGPR1 = op_r_immS32.regR;
}
else
{
// register operand is write only
// todo - use explicit lists, avoid default cases
registersUsed->writtenGPR1 = op_r_immS32.regR;
}
}
else if (type == PPCREC_IML_TYPE_R_R_S32)
{
registersUsed->writtenGPR1 = op_r_r_s32.regR;
registersUsed->readGPR1 = op_r_r_s32.regA;
}
else if (type == PPCREC_IML_TYPE_R_R_S32_CARRY)
{
registersUsed->writtenGPR1 = op_r_r_s32_carry.regR;
registersUsed->readGPR1 = op_r_r_s32_carry.regA;
// some operations read carry
switch (operation)
{
case PPCREC_IML_OP_ADD_WITH_CARRY:
registersUsed->readGPR2 = op_r_r_s32_carry.regCarry;
break;
case PPCREC_IML_OP_ADD:
break;
default:
cemu_assert_unimplemented();
}
// carry is always written
registersUsed->writtenGPR2 = op_r_r_s32_carry.regCarry;
}
else if (type == PPCREC_IML_TYPE_R_R_R)
{
// in all cases result is written and other operands are read only
// with the exception of XOR, where if regA == regB then all bits are zeroed out. So we don't consider it a read
registersUsed->writtenGPR1 = op_r_r_r.regR;
if(!(operation == PPCREC_IML_OP_XOR && op_r_r_r.regA == op_r_r_r.regB))
{
registersUsed->readGPR1 = op_r_r_r.regA;
registersUsed->readGPR2 = op_r_r_r.regB;
}
}
else if (type == PPCREC_IML_TYPE_R_R_R_CARRY)
{
registersUsed->writtenGPR1 = op_r_r_r_carry.regR;
registersUsed->readGPR1 = op_r_r_r_carry.regA;
registersUsed->readGPR2 = op_r_r_r_carry.regB;
// some operations read carry
switch (operation)
{
case PPCREC_IML_OP_ADD_WITH_CARRY:
registersUsed->readGPR3 = op_r_r_r_carry.regCarry;
break;
case PPCREC_IML_OP_ADD:
break;
default:
cemu_assert_unimplemented();
}
// carry is always written
registersUsed->writtenGPR2 = op_r_r_r_carry.regCarry;
}
else if (type == PPCREC_IML_TYPE_CJUMP_CYCLE_CHECK)
{
// no effect on registers
}
else if (type == PPCREC_IML_TYPE_NO_OP)
{
// no effect on registers
}
else if (type == PPCREC_IML_TYPE_MACRO)
{
if (operation == PPCREC_IML_MACRO_BL || operation == PPCREC_IML_MACRO_B_FAR || operation == PPCREC_IML_MACRO_LEAVE || operation == PPCREC_IML_MACRO_DEBUGBREAK || operation == PPCREC_IML_MACRO_COUNT_CYCLES || operation == PPCREC_IML_MACRO_HLE)
{
// no effect on registers
}
else if (operation == PPCREC_IML_MACRO_B_TO_REG)
{
cemu_assert_debug(op_macro.paramReg.IsValid());
registersUsed->readGPR1 = op_macro.paramReg;
}
else
cemu_assert_unimplemented();
}
else if (type == PPCREC_IML_TYPE_COMPARE)
{
registersUsed->readGPR1 = op_compare.regA;
registersUsed->readGPR2 = op_compare.regB;
registersUsed->writtenGPR1 = op_compare.regR;
}
else if (type == PPCREC_IML_TYPE_COMPARE_S32)
{
registersUsed->readGPR1 = op_compare_s32.regA;
registersUsed->writtenGPR1 = op_compare_s32.regR;
}
else if (type == PPCREC_IML_TYPE_CONDITIONAL_JUMP)
{
registersUsed->readGPR1 = op_conditional_jump.registerBool;
}
else if (type == PPCREC_IML_TYPE_JUMP)
{
// no registers affected
}
else if (type == PPCREC_IML_TYPE_LOAD)
{
registersUsed->writtenGPR1 = op_storeLoad.registerData;
if (op_storeLoad.registerMem.IsValid())
registersUsed->readGPR1 = op_storeLoad.registerMem;
}
else if (type == PPCREC_IML_TYPE_LOAD_INDEXED)
{
registersUsed->writtenGPR1 = op_storeLoad.registerData;
if (op_storeLoad.registerMem.IsValid())
registersUsed->readGPR1 = op_storeLoad.registerMem;
if (op_storeLoad.registerMem2.IsValid())
registersUsed->readGPR2 = op_storeLoad.registerMem2;
}
else if (type == PPCREC_IML_TYPE_STORE)
{
registersUsed->readGPR1 = op_storeLoad.registerData;
if (op_storeLoad.registerMem.IsValid())
registersUsed->readGPR2 = op_storeLoad.registerMem;
}
else if (type == PPCREC_IML_TYPE_STORE_INDEXED)
{
registersUsed->readGPR1 = op_storeLoad.registerData;
if (op_storeLoad.registerMem.IsValid())
registersUsed->readGPR2 = op_storeLoad.registerMem;
if (op_storeLoad.registerMem2.IsValid())
registersUsed->readGPR3 = op_storeLoad.registerMem2;
}
else if (type == PPCREC_IML_TYPE_ATOMIC_CMP_STORE)
{
registersUsed->readGPR1 = op_atomic_compare_store.regEA;
registersUsed->readGPR2 = op_atomic_compare_store.regCompareValue;
registersUsed->readGPR3 = op_atomic_compare_store.regWriteValue;
registersUsed->writtenGPR1 = op_atomic_compare_store.regBoolOut;
}
else if (type == PPCREC_IML_TYPE_CALL_IMM)
{
if (op_call_imm.regParam0.IsValid())
registersUsed->readGPR1 = op_call_imm.regParam0;
if (op_call_imm.regParam1.IsValid())
registersUsed->readGPR2 = op_call_imm.regParam1;
if (op_call_imm.regParam2.IsValid())
registersUsed->readGPR3 = op_call_imm.regParam2;
registersUsed->writtenGPR1 = op_call_imm.regReturn;
}
else if (type == PPCREC_IML_TYPE_FPR_LOAD)
{
// fpr load operation
registersUsed->writtenGPR1 = op_storeLoad.registerData;
// address is in gpr register
if (op_storeLoad.registerMem.IsValid())
registersUsed->readGPR1 = op_storeLoad.registerMem;
// determine partially written result
switch (op_storeLoad.mode)
{
case PPCREC_FPR_LD_MODE_PSQ_GENERIC_PS0:
case PPCREC_FPR_LD_MODE_PSQ_GENERIC_PS0_PS1:
cemu_assert_debug(op_storeLoad.registerGQR.IsValid());
registersUsed->readGPR2 = op_storeLoad.registerGQR;
break;
case PPCREC_FPR_LD_MODE_DOUBLE_INTO_PS0:
// PS1 remains the same
cemu_assert_debug(op_storeLoad.registerGQR.IsInvalid());
registersUsed->readGPR2 = op_storeLoad.registerData;
break;
case PPCREC_FPR_LD_MODE_SINGLE_INTO_PS0_PS1:
case PPCREC_FPR_LD_MODE_PSQ_FLOAT_PS0_PS1:
case PPCREC_FPR_LD_MODE_PSQ_FLOAT_PS0:
case PPCREC_FPR_LD_MODE_PSQ_S16_PS0:
case PPCREC_FPR_LD_MODE_PSQ_S16_PS0_PS1:
case PPCREC_FPR_LD_MODE_PSQ_U16_PS0_PS1:
case PPCREC_FPR_LD_MODE_PSQ_U16_PS0:
case PPCREC_FPR_LD_MODE_PSQ_S8_PS0_PS1:
case PPCREC_FPR_LD_MODE_PSQ_U8_PS0_PS1:
case PPCREC_FPR_LD_MODE_PSQ_U8_PS0:
case PPCREC_FPR_LD_MODE_PSQ_S8_PS0:
cemu_assert_debug(op_storeLoad.registerGQR.IsInvalid());
break;
default:
cemu_assert_unimplemented();
}
}
else if (type == PPCREC_IML_TYPE_FPR_LOAD_INDEXED)
{
// fpr load operation
registersUsed->writtenGPR1 = op_storeLoad.registerData;
// address is in gpr registers
if (op_storeLoad.registerMem.IsValid())
registersUsed->readGPR1 = op_storeLoad.registerMem;
if (op_storeLoad.registerMem2.IsValid())
registersUsed->readGPR2 = op_storeLoad.registerMem2;
// determine partially written result
switch (op_storeLoad.mode)
{
case PPCREC_FPR_LD_MODE_PSQ_GENERIC_PS0:
case PPCREC_FPR_LD_MODE_PSQ_GENERIC_PS0_PS1:
cemu_assert_debug(op_storeLoad.registerGQR.IsValid());
registersUsed->readGPR3 = op_storeLoad.registerGQR;
break;
case PPCREC_FPR_LD_MODE_DOUBLE_INTO_PS0:
// PS1 remains the same
cemu_assert_debug(op_storeLoad.registerGQR.IsInvalid());
registersUsed->readGPR3 = op_storeLoad.registerData;
break;
case PPCREC_FPR_LD_MODE_SINGLE_INTO_PS0_PS1:
case PPCREC_FPR_LD_MODE_PSQ_FLOAT_PS0_PS1:
case PPCREC_FPR_LD_MODE_PSQ_FLOAT_PS0:
case PPCREC_FPR_LD_MODE_PSQ_S16_PS0:
case PPCREC_FPR_LD_MODE_PSQ_S16_PS0_PS1:
case PPCREC_FPR_LD_MODE_PSQ_U16_PS0_PS1:
case PPCREC_FPR_LD_MODE_PSQ_U16_PS0:
case PPCREC_FPR_LD_MODE_PSQ_S8_PS0_PS1:
case PPCREC_FPR_LD_MODE_PSQ_U8_PS0_PS1:
case PPCREC_FPR_LD_MODE_PSQ_U8_PS0:
cemu_assert_debug(op_storeLoad.registerGQR.IsInvalid());
break;
default:
cemu_assert_unimplemented();
}
}
else if (type == PPCREC_IML_TYPE_FPR_STORE)
{
// fpr store operation
registersUsed->readGPR1 = op_storeLoad.registerData;
if (op_storeLoad.registerMem.IsValid())
registersUsed->readGPR2 = op_storeLoad.registerMem;
// PSQ generic stores also access GQR
switch (op_storeLoad.mode)
{
case PPCREC_FPR_ST_MODE_PSQ_GENERIC_PS0:
case PPCREC_FPR_ST_MODE_PSQ_GENERIC_PS0_PS1:
cemu_assert_debug(op_storeLoad.registerGQR.IsValid());
registersUsed->readGPR3 = op_storeLoad.registerGQR;
break;
default:
cemu_assert_debug(op_storeLoad.registerGQR.IsInvalid());
break;
}
}
else if (type == PPCREC_IML_TYPE_FPR_STORE_INDEXED)
{
// fpr store operation
registersUsed->readGPR1 = op_storeLoad.registerData;
// address is in gpr registers
if (op_storeLoad.registerMem.IsValid())
registersUsed->readGPR2 = op_storeLoad.registerMem;
if (op_storeLoad.registerMem2.IsValid())
registersUsed->readGPR3 = op_storeLoad.registerMem2;
// PSQ generic stores also access GQR
switch (op_storeLoad.mode)
{
case PPCREC_FPR_ST_MODE_PSQ_GENERIC_PS0:
case PPCREC_FPR_ST_MODE_PSQ_GENERIC_PS0_PS1:
cemu_assert_debug(op_storeLoad.registerGQR.IsValid());
registersUsed->readGPR4 = op_storeLoad.registerGQR;
break;
default:
cemu_assert_debug(op_storeLoad.registerGQR.IsInvalid());
break;
}
}
else if (type == PPCREC_IML_TYPE_FPR_R_R)
{
// fpr operation
if (operation == PPCREC_IML_OP_FPR_COPY_BOTTOM_TO_BOTTOM_AND_TOP ||
operation == PPCREC_IML_OP_FPR_COPY_TOP_TO_BOTTOM_AND_TOP ||
operation == PPCREC_IML_OP_FPR_COPY_BOTTOM_AND_TOP_SWAPPED ||
operation == PPCREC_IML_OP_ASSIGN ||
operation == PPCREC_IML_OP_FPR_NEGATE_PAIR ||
operation == PPCREC_IML_OP_FPR_ABS_PAIR ||
operation == PPCREC_IML_OP_FPR_FRES_PAIR ||
operation == PPCREC_IML_OP_FPR_FRSQRTE_PAIR)
{
// operand read, result written
registersUsed->readGPR1 = op_fpr_r_r.regA;
registersUsed->writtenGPR1 = op_fpr_r_r.regR;
}
else if (
operation == PPCREC_IML_OP_FPR_COPY_BOTTOM_TO_BOTTOM ||
operation == PPCREC_IML_OP_FPR_COPY_BOTTOM_TO_TOP ||
operation == PPCREC_IML_OP_FPR_COPY_TOP_TO_TOP ||
operation == PPCREC_IML_OP_FPR_COPY_TOP_TO_BOTTOM ||
operation == PPCREC_IML_OP_FPR_EXPAND_BOTTOM32_TO_BOTTOM64_AND_TOP64 ||
operation == PPCREC_IML_OP_FPR_BOTTOM_FCTIWZ ||
operation == PPCREC_IML_OP_FPR_BOTTOM_RECIPROCAL_SQRT
)
{
// operand read, result read and (partially) written
registersUsed->readGPR1 = op_fpr_r_r.regA;
registersUsed->readGPR2 = op_fpr_r_r.regR;
registersUsed->writtenGPR1 = op_fpr_r_r.regR;
}
else if (operation == PPCREC_IML_OP_FPR_MULTIPLY_BOTTOM ||
operation == PPCREC_IML_OP_FPR_MULTIPLY_PAIR ||
operation == PPCREC_IML_OP_FPR_DIVIDE_BOTTOM ||
operation == PPCREC_IML_OP_FPR_DIVIDE_PAIR ||
operation == PPCREC_IML_OP_FPR_ADD_BOTTOM ||
operation == PPCREC_IML_OP_FPR_ADD_PAIR ||
operation == PPCREC_IML_OP_FPR_SUB_PAIR ||
operation == PPCREC_IML_OP_FPR_SUB_BOTTOM)
{
// operand read, result read and written
registersUsed->readGPR1 = op_fpr_r_r.regA;
registersUsed->readGPR2 = op_fpr_r_r.regR;
registersUsed->writtenGPR1 = op_fpr_r_r.regR;
}
else if (operation == PPCREC_IML_OP_FPR_FCMPU_BOTTOM ||
operation == PPCREC_IML_OP_FPR_FCMPU_TOP ||
operation == PPCREC_IML_OP_FPR_FCMPO_BOTTOM)
{
// operand read, result read
registersUsed->readGPR1 = op_fpr_r_r.regA;
registersUsed->readGPR2 = op_fpr_r_r.regR;
}
else
cemu_assert_unimplemented();
}
else if (type == PPCREC_IML_TYPE_FPR_R_R_R)
{
// fpr operation
registersUsed->readGPR1 = op_fpr_r_r_r.regA;
registersUsed->readGPR2 = op_fpr_r_r_r.regB;
registersUsed->writtenGPR1 = op_fpr_r_r_r.regR;
// handle partially written result
switch (operation)
{
case PPCREC_IML_OP_FPR_MULTIPLY_BOTTOM:
case PPCREC_IML_OP_FPR_ADD_BOTTOM:
case PPCREC_IML_OP_FPR_SUB_BOTTOM:
registersUsed->readGPR3 = op_fpr_r_r_r.regR;
break;
case PPCREC_IML_OP_FPR_SUB_PAIR:
break;
default:
cemu_assert_unimplemented();
}
}
else if (type == PPCREC_IML_TYPE_FPR_R_R_R_R)
{
// fpr operation
registersUsed->readGPR1 = op_fpr_r_r_r_r.regA;
registersUsed->readGPR2 = op_fpr_r_r_r_r.regB;
registersUsed->readGPR3 = op_fpr_r_r_r_r.regC;
registersUsed->writtenGPR1 = op_fpr_r_r_r_r.regR;
// handle partially written result
switch (operation)
{
case PPCREC_IML_OP_FPR_SELECT_BOTTOM:
registersUsed->readGPR4 = op_fpr_r_r_r_r.regR;
break;
case PPCREC_IML_OP_FPR_SUM0:
case PPCREC_IML_OP_FPR_SUM1:
case PPCREC_IML_OP_FPR_SELECT_PAIR:
break;
default:
cemu_assert_unimplemented();
}
}
else if (type == PPCREC_IML_TYPE_FPR_R)
{
// fpr operation
if (operation == PPCREC_IML_OP_FPR_NEGATE_BOTTOM ||
operation == PPCREC_IML_OP_FPR_ABS_BOTTOM ||
operation == PPCREC_IML_OP_FPR_NEGATIVE_ABS_BOTTOM ||
operation == PPCREC_IML_OP_FPR_EXPAND_BOTTOM32_TO_BOTTOM64_AND_TOP64 ||
operation == PPCREC_IML_OP_FPR_ROUND_TO_SINGLE_PRECISION_BOTTOM ||
operation == PPCREC_IML_OP_FPR_ROUND_TO_SINGLE_PRECISION_PAIR)
{
registersUsed->readGPR1 = op_fpr_r.regR;
registersUsed->writtenGPR1 = op_fpr_r.regR;
}
else
cemu_assert_unimplemented();
}
else if (type == PPCREC_IML_TYPE_FPR_COMPARE)
{
registersUsed->writtenGPR1 = op_fpr_compare.regR;
registersUsed->readGPR1 = op_fpr_compare.regA;
registersUsed->readGPR2 = op_fpr_compare.regB;
}
else if (type == PPCREC_IML_TYPE_X86_EFLAGS_JCC)
{
// no registers read or written (except for the implicit eflags)
}
else
{
cemu_assert_unimplemented();
}
}
IMLReg replaceRegisterIdMultiple(IMLReg reg, const std::unordered_map<IMLRegID, IMLRegID>& translationTable)
{
if (reg.IsInvalid())
return reg;
const auto& it = translationTable.find(reg.GetRegID());
cemu_assert_debug(it != translationTable.cend());
IMLReg alteredReg = reg;
alteredReg.SetRegID(it->second);
return alteredReg;
}
void IMLInstruction::RewriteGPR(const std::unordered_map<IMLRegID, IMLRegID>& translationTable)
{
if (type == PPCREC_IML_TYPE_R_NAME)
{
op_r_name.regR = replaceRegisterIdMultiple(op_r_name.regR, translationTable);
}
else if (type == PPCREC_IML_TYPE_NAME_R)
{
op_r_name.regR = replaceRegisterIdMultiple(op_r_name.regR, translationTable);
}
else if (type == PPCREC_IML_TYPE_R_R)
{
op_r_r.regR = replaceRegisterIdMultiple(op_r_r.regR, translationTable);
op_r_r.regA = replaceRegisterIdMultiple(op_r_r.regA, translationTable);
}
else if (type == PPCREC_IML_TYPE_R_S32)
{
op_r_immS32.regR = replaceRegisterIdMultiple(op_r_immS32.regR, translationTable);
}
else if (type == PPCREC_IML_TYPE_R_R_S32)
{
op_r_r_s32.regR = replaceRegisterIdMultiple(op_r_r_s32.regR, translationTable);
op_r_r_s32.regA = replaceRegisterIdMultiple(op_r_r_s32.regA, translationTable);
}
else if (type == PPCREC_IML_TYPE_R_R_S32_CARRY)
{
op_r_r_s32_carry.regR = replaceRegisterIdMultiple(op_r_r_s32_carry.regR, translationTable);
op_r_r_s32_carry.regA = replaceRegisterIdMultiple(op_r_r_s32_carry.regA, translationTable);
op_r_r_s32_carry.regCarry = replaceRegisterIdMultiple(op_r_r_s32_carry.regCarry, translationTable);
}
else if (type == PPCREC_IML_TYPE_R_R_R)
{
op_r_r_r.regR = replaceRegisterIdMultiple(op_r_r_r.regR, translationTable);
op_r_r_r.regA = replaceRegisterIdMultiple(op_r_r_r.regA, translationTable);
op_r_r_r.regB = replaceRegisterIdMultiple(op_r_r_r.regB, translationTable);
}
else if (type == PPCREC_IML_TYPE_R_R_R_CARRY)
{
op_r_r_r_carry.regR = replaceRegisterIdMultiple(op_r_r_r_carry.regR, translationTable);
op_r_r_r_carry.regA = replaceRegisterIdMultiple(op_r_r_r_carry.regA, translationTable);
op_r_r_r_carry.regB = replaceRegisterIdMultiple(op_r_r_r_carry.regB, translationTable);
op_r_r_r_carry.regCarry = replaceRegisterIdMultiple(op_r_r_r_carry.regCarry, translationTable);
}
else if (type == PPCREC_IML_TYPE_COMPARE)
{
op_compare.regR = replaceRegisterIdMultiple(op_compare.regR, translationTable);
op_compare.regA = replaceRegisterIdMultiple(op_compare.regA, translationTable);
op_compare.regB = replaceRegisterIdMultiple(op_compare.regB, translationTable);
}
else if (type == PPCREC_IML_TYPE_COMPARE_S32)
{
op_compare_s32.regR = replaceRegisterIdMultiple(op_compare_s32.regR, translationTable);
op_compare_s32.regA = replaceRegisterIdMultiple(op_compare_s32.regA, translationTable);
}
else if (type == PPCREC_IML_TYPE_CONDITIONAL_JUMP)
{
op_conditional_jump.registerBool = replaceRegisterIdMultiple(op_conditional_jump.registerBool, translationTable);
}
else if (type == PPCREC_IML_TYPE_CJUMP_CYCLE_CHECK || type == PPCREC_IML_TYPE_JUMP)
{
// no effect on registers
}
else if (type == PPCREC_IML_TYPE_NO_OP)
{
// no effect on registers
}
else if (type == PPCREC_IML_TYPE_MACRO)
{
if (operation == PPCREC_IML_MACRO_BL || operation == PPCREC_IML_MACRO_B_FAR || operation == PPCREC_IML_MACRO_LEAVE || operation == PPCREC_IML_MACRO_DEBUGBREAK || operation == PPCREC_IML_MACRO_HLE || operation == PPCREC_IML_MACRO_COUNT_CYCLES)
{
// no effect on registers
}
else if (operation == PPCREC_IML_MACRO_B_TO_REG)
{
op_macro.paramReg = replaceRegisterIdMultiple(op_macro.paramReg, translationTable);
}
else
{
cemu_assert_unimplemented();
}
}
else if (type == PPCREC_IML_TYPE_LOAD)
{
op_storeLoad.registerData = replaceRegisterIdMultiple(op_storeLoad.registerData, translationTable);
if (op_storeLoad.registerMem.IsValid())
{
op_storeLoad.registerMem = replaceRegisterIdMultiple(op_storeLoad.registerMem, translationTable);
}
}
else if (type == PPCREC_IML_TYPE_LOAD_INDEXED)
{
op_storeLoad.registerData = replaceRegisterIdMultiple(op_storeLoad.registerData, translationTable);
if (op_storeLoad.registerMem.IsValid())
op_storeLoad.registerMem = replaceRegisterIdMultiple(op_storeLoad.registerMem, translationTable);
if (op_storeLoad.registerMem2.IsValid())
op_storeLoad.registerMem2 = replaceRegisterIdMultiple(op_storeLoad.registerMem2, translationTable);
}
else if (type == PPCREC_IML_TYPE_STORE)
{
op_storeLoad.registerData = replaceRegisterIdMultiple(op_storeLoad.registerData, translationTable);
if (op_storeLoad.registerMem.IsValid())
op_storeLoad.registerMem = replaceRegisterIdMultiple(op_storeLoad.registerMem, translationTable);
}
else if (type == PPCREC_IML_TYPE_STORE_INDEXED)
{
op_storeLoad.registerData = replaceRegisterIdMultiple(op_storeLoad.registerData, translationTable);
if (op_storeLoad.registerMem.IsValid())
op_storeLoad.registerMem = replaceRegisterIdMultiple(op_storeLoad.registerMem, translationTable);
if (op_storeLoad.registerMem2.IsValid())
op_storeLoad.registerMem2 = replaceRegisterIdMultiple(op_storeLoad.registerMem2, translationTable);
}
else if (type == PPCREC_IML_TYPE_ATOMIC_CMP_STORE)
{
op_atomic_compare_store.regEA = replaceRegisterIdMultiple(op_atomic_compare_store.regEA, translationTable);
op_atomic_compare_store.regCompareValue = replaceRegisterIdMultiple(op_atomic_compare_store.regCompareValue, translationTable);
op_atomic_compare_store.regWriteValue = replaceRegisterIdMultiple(op_atomic_compare_store.regWriteValue, translationTable);
op_atomic_compare_store.regBoolOut = replaceRegisterIdMultiple(op_atomic_compare_store.regBoolOut, translationTable);
}
else if (type == PPCREC_IML_TYPE_CALL_IMM)
{
op_call_imm.regReturn = replaceRegisterIdMultiple(op_call_imm.regReturn, translationTable);
if (op_call_imm.regParam0.IsValid())
op_call_imm.regParam0 = replaceRegisterIdMultiple(op_call_imm.regParam0, translationTable);
if (op_call_imm.regParam1.IsValid())
op_call_imm.regParam1 = replaceRegisterIdMultiple(op_call_imm.regParam1, translationTable);
if (op_call_imm.regParam2.IsValid())
op_call_imm.regParam2 = replaceRegisterIdMultiple(op_call_imm.regParam2, translationTable);
}
else if (type == PPCREC_IML_TYPE_FPR_LOAD)
{
op_storeLoad.registerData = replaceRegisterIdMultiple(op_storeLoad.registerData, translationTable);
op_storeLoad.registerMem = replaceRegisterIdMultiple(op_storeLoad.registerMem, translationTable);
op_storeLoad.registerGQR = replaceRegisterIdMultiple(op_storeLoad.registerGQR, translationTable);
}
else if (type == PPCREC_IML_TYPE_FPR_LOAD_INDEXED)
{
op_storeLoad.registerData = replaceRegisterIdMultiple(op_storeLoad.registerData, translationTable);
op_storeLoad.registerMem = replaceRegisterIdMultiple(op_storeLoad.registerMem, translationTable);
op_storeLoad.registerMem2 = replaceRegisterIdMultiple(op_storeLoad.registerMem2, translationTable);
op_storeLoad.registerGQR = replaceRegisterIdMultiple(op_storeLoad.registerGQR, translationTable);
}
else if (type == PPCREC_IML_TYPE_FPR_STORE)
{
op_storeLoad.registerData = replaceRegisterIdMultiple(op_storeLoad.registerData, translationTable);
op_storeLoad.registerMem = replaceRegisterIdMultiple(op_storeLoad.registerMem, translationTable);
op_storeLoad.registerGQR = replaceRegisterIdMultiple(op_storeLoad.registerGQR, translationTable);
}
else if (type == PPCREC_IML_TYPE_FPR_STORE_INDEXED)
{
op_storeLoad.registerData = replaceRegisterIdMultiple(op_storeLoad.registerData, translationTable);
op_storeLoad.registerMem = replaceRegisterIdMultiple(op_storeLoad.registerMem, translationTable);
op_storeLoad.registerMem2 = replaceRegisterIdMultiple(op_storeLoad.registerMem2, translationTable);
op_storeLoad.registerGQR = replaceRegisterIdMultiple(op_storeLoad.registerGQR, translationTable);
}
else if (type == PPCREC_IML_TYPE_FPR_R)
{
op_fpr_r.regR = replaceRegisterIdMultiple(op_fpr_r.regR, translationTable);
}
else if (type == PPCREC_IML_TYPE_FPR_R_R)
{
op_fpr_r_r.regR = replaceRegisterIdMultiple(op_fpr_r_r.regR, translationTable);
op_fpr_r_r.regA = replaceRegisterIdMultiple(op_fpr_r_r.regA, translationTable);
}
else if (type == PPCREC_IML_TYPE_FPR_R_R_R)
{
op_fpr_r_r_r.regR = replaceRegisterIdMultiple(op_fpr_r_r_r.regR, translationTable);
op_fpr_r_r_r.regA = replaceRegisterIdMultiple(op_fpr_r_r_r.regA, translationTable);
op_fpr_r_r_r.regB = replaceRegisterIdMultiple(op_fpr_r_r_r.regB, translationTable);
}
else if (type == PPCREC_IML_TYPE_FPR_R_R_R_R)
{
op_fpr_r_r_r_r.regR = replaceRegisterIdMultiple(op_fpr_r_r_r_r.regR, translationTable);
op_fpr_r_r_r_r.regA = replaceRegisterIdMultiple(op_fpr_r_r_r_r.regA, translationTable);
op_fpr_r_r_r_r.regB = replaceRegisterIdMultiple(op_fpr_r_r_r_r.regB, translationTable);
op_fpr_r_r_r_r.regC = replaceRegisterIdMultiple(op_fpr_r_r_r_r.regC, translationTable);
}
else if (type == PPCREC_IML_TYPE_FPR_COMPARE)
{
op_fpr_compare.regA = replaceRegisterIdMultiple(op_fpr_compare.regA, translationTable);
op_fpr_compare.regB = replaceRegisterIdMultiple(op_fpr_compare.regB, translationTable);
op_fpr_compare.regR = replaceRegisterIdMultiple(op_fpr_compare.regR, translationTable);
}
else if (type == PPCREC_IML_TYPE_X86_EFLAGS_JCC)
{
// no registers read or written (except for the implicit eflags)
}
else
{
cemu_assert_unimplemented();
}
}

View file

@ -0,0 +1,785 @@
#pragma once
using IMLRegID = uint16; // 16 bit ID
using IMLPhysReg = sint32; // arbitrary value that is up to the architecture backend, usually this will be the register index. A value of -1 is reserved and means not assigned
// format of IMLReg:
// 0-15 (16 bit) IMLRegID
// 19-23 (5 bit) Offset In elements, for SIMD registers
// 24-27 (4 bit) IMLRegFormat RegFormat
// 28-31 (4 bit) IMLRegFormat BaseFormat
enum class IMLRegFormat : uint8
{
INVALID_FORMAT,
I64,
I32,
I16,
I8,
// I1 ?
F64,
F32,
TYPE_COUNT,
};
class IMLReg
{
public:
IMLReg()
{
m_raw = 0; // 0 is invalid
}
IMLReg(IMLRegFormat baseRegFormat, IMLRegFormat regFormat, uint8 viewOffset, IMLRegID regId)
{
m_raw = 0;
m_raw |= ((uint8)baseRegFormat << 28);
m_raw |= ((uint8)regFormat << 24);
m_raw |= (uint32)regId;
}
IMLReg(IMLReg&& baseReg, IMLRegFormat viewFormat, uint8 viewOffset, IMLRegID regId)
{
DEBUG_BREAK;
//m_raw = 0;
//m_raw |= ((uint8)baseRegFormat << 28);
//m_raw |= ((uint8)viewFormat << 24);
//m_raw |= (uint32)regId;
}
IMLReg(const IMLReg& other) : m_raw(other.m_raw) {}
IMLRegFormat GetBaseFormat() const
{
return (IMLRegFormat)((m_raw >> 28) & 0xF);
}
IMLRegFormat GetRegFormat() const
{
return (IMLRegFormat)((m_raw >> 24) & 0xF);
}
IMLRegID GetRegID() const
{
cemu_assert_debug(GetBaseFormat() != IMLRegFormat::INVALID_FORMAT);
cemu_assert_debug(GetRegFormat() != IMLRegFormat::INVALID_FORMAT);
return (IMLRegID)(m_raw & 0xFFFF);
}
void SetRegID(IMLRegID regId)
{
cemu_assert_debug(regId <= 0xFFFF);
m_raw &= ~0xFFFF;
m_raw |= (uint32)regId;
}
bool IsInvalid() const
{
return GetBaseFormat() == IMLRegFormat::INVALID_FORMAT;
}
bool IsValid() const
{
return GetBaseFormat() != IMLRegFormat::INVALID_FORMAT;
}
bool IsValidAndSameRegID(IMLRegID regId) const
{
return IsValid() && GetRegID() == regId;
}
// compare all fields
bool operator==(const IMLReg& other) const
{
return m_raw == other.m_raw;
}
private:
uint32 m_raw;
};
static const IMLReg IMLREG_INVALID(IMLRegFormat::INVALID_FORMAT, IMLRegFormat::INVALID_FORMAT, 0, 0);
static const IMLRegID IMLRegID_INVALID(0xFFFF);
using IMLName = uint32;
enum
{
PPCREC_IML_OP_ASSIGN, // '=' operator
PPCREC_IML_OP_ENDIAN_SWAP, // '=' operator with 32bit endian swap
PPCREC_IML_OP_MULTIPLY_SIGNED, // '*' operator (signed multiply)
PPCREC_IML_OP_MULTIPLY_HIGH_UNSIGNED, // unsigned 64bit multiply, store only high 32bit-word of result
PPCREC_IML_OP_MULTIPLY_HIGH_SIGNED, // signed 64bit multiply, store only high 32bit-word of result
PPCREC_IML_OP_DIVIDE_SIGNED, // '/' operator (signed divide)
PPCREC_IML_OP_DIVIDE_UNSIGNED, // '/' operator (unsigned divide)
// binary operation
PPCREC_IML_OP_OR, // '|' operator
PPCREC_IML_OP_AND, // '&' operator
PPCREC_IML_OP_XOR, // '^' operator
PPCREC_IML_OP_LEFT_ROTATE, // left rotate operator
PPCREC_IML_OP_LEFT_SHIFT, // shift left operator
PPCREC_IML_OP_RIGHT_SHIFT_U, // right shift operator (unsigned)
PPCREC_IML_OP_RIGHT_SHIFT_S, // right shift operator (signed)
// ppc
PPCREC_IML_OP_SLW, // SLW (shift based on register by up to 63 bits)
PPCREC_IML_OP_SRW, // SRW (shift based on register by up to 63 bits)
PPCREC_IML_OP_CNTLZW,
// FPU
PPCREC_IML_OP_FPR_ADD_BOTTOM,
PPCREC_IML_OP_FPR_ADD_PAIR,
PPCREC_IML_OP_FPR_SUB_PAIR,
PPCREC_IML_OP_FPR_SUB_BOTTOM,
PPCREC_IML_OP_FPR_MULTIPLY_BOTTOM,
PPCREC_IML_OP_FPR_MULTIPLY_PAIR,
PPCREC_IML_OP_FPR_DIVIDE_BOTTOM,
PPCREC_IML_OP_FPR_DIVIDE_PAIR,
PPCREC_IML_OP_FPR_COPY_BOTTOM_TO_BOTTOM_AND_TOP,
PPCREC_IML_OP_FPR_COPY_TOP_TO_BOTTOM_AND_TOP,
PPCREC_IML_OP_FPR_COPY_BOTTOM_TO_BOTTOM,
PPCREC_IML_OP_FPR_COPY_BOTTOM_TO_TOP, // leave bottom of destination untouched
PPCREC_IML_OP_FPR_COPY_TOP_TO_TOP, // leave bottom of destination untouched
PPCREC_IML_OP_FPR_COPY_TOP_TO_BOTTOM, // leave top of destination untouched
PPCREC_IML_OP_FPR_COPY_BOTTOM_AND_TOP_SWAPPED,
PPCREC_IML_OP_FPR_EXPAND_BOTTOM32_TO_BOTTOM64_AND_TOP64, // expand bottom f32 to f64 in bottom and top half
PPCREC_IML_OP_FPR_FCMPO_BOTTOM, // deprecated
PPCREC_IML_OP_FPR_FCMPU_BOTTOM, // deprecated
PPCREC_IML_OP_FPR_FCMPU_TOP, // deprecated
PPCREC_IML_OP_FPR_NEGATE_BOTTOM,
PPCREC_IML_OP_FPR_NEGATE_PAIR,
PPCREC_IML_OP_FPR_ABS_BOTTOM, // abs(fp0)
PPCREC_IML_OP_FPR_ABS_PAIR,
PPCREC_IML_OP_FPR_FRES_PAIR, // 1.0/fp approx (Espresso accuracy)
PPCREC_IML_OP_FPR_FRSQRTE_PAIR, // 1.0/sqrt(fp) approx (Espresso accuracy)
PPCREC_IML_OP_FPR_NEGATIVE_ABS_BOTTOM, // -abs(fp0)
PPCREC_IML_OP_FPR_ROUND_TO_SINGLE_PRECISION_BOTTOM, // round 64bit double to 64bit double with 32bit float precision (in bottom half of xmm register)
PPCREC_IML_OP_FPR_ROUND_TO_SINGLE_PRECISION_PAIR, // round two 64bit doubles to 64bit double with 32bit float precision
PPCREC_IML_OP_FPR_BOTTOM_RECIPROCAL_SQRT,
PPCREC_IML_OP_FPR_BOTTOM_FCTIWZ,
PPCREC_IML_OP_FPR_SELECT_BOTTOM, // selectively copy bottom value from operand B or C based on value in operand A
PPCREC_IML_OP_FPR_SELECT_PAIR, // selectively copy top/bottom from operand B or C based on value in top/bottom of operand A
// PS
PPCREC_IML_OP_FPR_SUM0,
PPCREC_IML_OP_FPR_SUM1,
// R_R_R only
// R_R_S32 only
// R_R_R + R_R_S32
PPCREC_IML_OP_ADD, // also R_R_R_CARRY
PPCREC_IML_OP_SUB,
// R_R only
PPCREC_IML_OP_NOT,
PPCREC_IML_OP_NEG,
PPCREC_IML_OP_ASSIGN_S16_TO_S32,
PPCREC_IML_OP_ASSIGN_S8_TO_S32,
// R_R_R_carry
PPCREC_IML_OP_ADD_WITH_CARRY, // similar to ADD but also adds carry bit (0 or 1)
// X86 extension
PPCREC_IML_OP_X86_CMP, // R_R and R_S32
PPCREC_IML_OP_INVALID
};
#define PPCREC_IML_OP_FPR_COPY_PAIR (PPCREC_IML_OP_ASSIGN)
enum
{
PPCREC_IML_MACRO_B_TO_REG, // branch to PPC address in register (used for BCCTR, BCLR)
PPCREC_IML_MACRO_BL, // call to different function (can be within same function)
PPCREC_IML_MACRO_B_FAR, // branch to different function
PPCREC_IML_MACRO_COUNT_CYCLES, // decrease current remaining thread cycles by a certain amount
PPCREC_IML_MACRO_HLE, // HLE function call
PPCREC_IML_MACRO_LEAVE, // leaves recompiler and switches to interpeter
// debugging
PPCREC_IML_MACRO_DEBUGBREAK, // throws a debugbreak
};
enum class IMLCondition : uint8
{
EQ,
NEQ,
SIGNED_GT,
SIGNED_LT,
UNSIGNED_GT,
UNSIGNED_LT,
// floating point conditions
UNORDERED_GT, // a > b, false if either is NaN
UNORDERED_LT, // a < b, false if either is NaN
UNORDERED_EQ, // a == b, false if either is NaN
UNORDERED_U, // unordered (true if either operand is NaN)
ORDERED_GT,
ORDERED_LT,
ORDERED_EQ,
ORDERED_U
};
enum
{
PPCREC_IML_TYPE_NONE,
PPCREC_IML_TYPE_NO_OP, // no-op instruction
PPCREC_IML_TYPE_R_R, // r* = (op) *r (can also be r* (op) *r)
PPCREC_IML_TYPE_R_R_R, // r* = r* (op) r*
PPCREC_IML_TYPE_R_R_R_CARRY, // r* = r* (op) r* (reads and/or updates carry)
PPCREC_IML_TYPE_R_R_S32, // r* = r* (op) s32*
PPCREC_IML_TYPE_R_R_S32_CARRY, // r* = r* (op) s32* (reads and/or updates carry)
PPCREC_IML_TYPE_LOAD, // r* = [r*+s32*]
PPCREC_IML_TYPE_LOAD_INDEXED, // r* = [r*+r*]
PPCREC_IML_TYPE_STORE, // [r*+s32*] = r*
PPCREC_IML_TYPE_STORE_INDEXED, // [r*+r*] = r*
PPCREC_IML_TYPE_R_NAME, // r* = name
PPCREC_IML_TYPE_NAME_R, // name* = r*
PPCREC_IML_TYPE_R_S32, // r* (op) imm
PPCREC_IML_TYPE_MACRO,
PPCREC_IML_TYPE_CJUMP_CYCLE_CHECK, // jumps only if remaining thread cycles < 0
// conditions and branches
PPCREC_IML_TYPE_COMPARE, // r* = r* CMP[cond] r*
PPCREC_IML_TYPE_COMPARE_S32, // r* = r* CMP[cond] imm
PPCREC_IML_TYPE_JUMP, // jump always
PPCREC_IML_TYPE_CONDITIONAL_JUMP, // jump conditionally based on boolean value in register
// atomic
PPCREC_IML_TYPE_ATOMIC_CMP_STORE,
// function call
PPCREC_IML_TYPE_CALL_IMM, // call to fixed immediate address
// FPR
PPCREC_IML_TYPE_FPR_LOAD, // r* = (bitdepth) [r*+s32*] (single or paired single mode)
PPCREC_IML_TYPE_FPR_LOAD_INDEXED, // r* = (bitdepth) [r*+r*] (single or paired single mode)
PPCREC_IML_TYPE_FPR_STORE, // (bitdepth) [r*+s32*] = r* (single or paired single mode)
PPCREC_IML_TYPE_FPR_STORE_INDEXED, // (bitdepth) [r*+r*] = r* (single or paired single mode)
PPCREC_IML_TYPE_FPR_R_R,
PPCREC_IML_TYPE_FPR_R_R_R,
PPCREC_IML_TYPE_FPR_R_R_R_R,
PPCREC_IML_TYPE_FPR_R,
PPCREC_IML_TYPE_FPR_COMPARE, // r* = r* CMP[cond] r*
// X86 specific
PPCREC_IML_TYPE_X86_EFLAGS_JCC,
};
enum // IMLName
{
PPCREC_NAME_NONE,
PPCREC_NAME_TEMPORARY = 1000,
PPCREC_NAME_R0 = 2000,
PPCREC_NAME_SPR0 = 3000,
PPCREC_NAME_FPR0 = 4000,
PPCREC_NAME_TEMPORARY_FPR0 = 5000, // 0 to 7
PPCREC_NAME_XER_CA = 6000, // carry bit from XER
PPCREC_NAME_XER_OV = 6001, // overflow bit from XER
PPCREC_NAME_XER_SO = 6002, // summary overflow bit from XER
PPCREC_NAME_CR = 7000, // CR register bits (31 to 0)
PPCREC_NAME_CR_LAST = PPCREC_NAME_CR+31,
PPCREC_NAME_CPU_MEMRES_EA = 8000,
PPCREC_NAME_CPU_MEMRES_VAL = 8001
};
#define PPC_REC_INVALID_REGISTER 0xFF // deprecated. Use IMLREG_INVALID instead
enum
{
// fpr load
PPCREC_FPR_LD_MODE_SINGLE_INTO_PS0,
PPCREC_FPR_LD_MODE_SINGLE_INTO_PS0_PS1,
PPCREC_FPR_LD_MODE_DOUBLE_INTO_PS0,
PPCREC_FPR_LD_MODE_PSQ_GENERIC_PS0,
PPCREC_FPR_LD_MODE_PSQ_GENERIC_PS0_PS1,
PPCREC_FPR_LD_MODE_PSQ_FLOAT_PS0,
PPCREC_FPR_LD_MODE_PSQ_FLOAT_PS0_PS1,
PPCREC_FPR_LD_MODE_PSQ_S16_PS0,
PPCREC_FPR_LD_MODE_PSQ_S16_PS0_PS1,
PPCREC_FPR_LD_MODE_PSQ_U16_PS0,
PPCREC_FPR_LD_MODE_PSQ_U16_PS0_PS1,
PPCREC_FPR_LD_MODE_PSQ_S8_PS0,
PPCREC_FPR_LD_MODE_PSQ_S8_PS0_PS1,
PPCREC_FPR_LD_MODE_PSQ_U8_PS0,
PPCREC_FPR_LD_MODE_PSQ_U8_PS0_PS1,
// fpr store
PPCREC_FPR_ST_MODE_SINGLE_FROM_PS0, // store 1 single precision float from ps0
PPCREC_FPR_ST_MODE_DOUBLE_FROM_PS0, // store 1 double precision float from ps0
PPCREC_FPR_ST_MODE_UI32_FROM_PS0, // store raw low-32bit of PS0
PPCREC_FPR_ST_MODE_PSQ_GENERIC_PS0_PS1,
PPCREC_FPR_ST_MODE_PSQ_GENERIC_PS0,
PPCREC_FPR_ST_MODE_PSQ_FLOAT_PS0_PS1,
PPCREC_FPR_ST_MODE_PSQ_FLOAT_PS0,
PPCREC_FPR_ST_MODE_PSQ_S8_PS0,
PPCREC_FPR_ST_MODE_PSQ_S8_PS0_PS1,
PPCREC_FPR_ST_MODE_PSQ_U8_PS0,
PPCREC_FPR_ST_MODE_PSQ_U8_PS0_PS1,
PPCREC_FPR_ST_MODE_PSQ_U16_PS0,
PPCREC_FPR_ST_MODE_PSQ_U16_PS0_PS1,
PPCREC_FPR_ST_MODE_PSQ_S16_PS0,
PPCREC_FPR_ST_MODE_PSQ_S16_PS0_PS1,
};
struct IMLUsedRegisters
{
IMLUsedRegisters() {};
bool IsWrittenByRegId(IMLRegID regId) const
{
if (writtenGPR1.IsValid() && writtenGPR1.GetRegID() == regId)
return true;
if (writtenGPR2.IsValid() && writtenGPR2.GetRegID() == regId)
return true;
return false;
}
bool IsBaseGPRWritten(IMLReg imlReg) const
{
cemu_assert_debug(imlReg.IsValid());
auto regId = imlReg.GetRegID();
return IsWrittenByRegId(regId);
}
template<typename Fn>
void ForEachWrittenGPR(Fn F) const
{
if (writtenGPR1.IsValid())
F(writtenGPR1);
if (writtenGPR2.IsValid())
F(writtenGPR2);
}
template<typename Fn>
void ForEachReadGPR(Fn F) const
{
if (readGPR1.IsValid())
F(readGPR1);
if (readGPR2.IsValid())
F(readGPR2);
if (readGPR3.IsValid())
F(readGPR3);
if (readGPR4.IsValid())
F(readGPR4);
}
template<typename Fn>
void ForEachAccessedGPR(Fn F) const
{
// GPRs
if (readGPR1.IsValid())
F(readGPR1, false);
if (readGPR2.IsValid())
F(readGPR2, false);
if (readGPR3.IsValid())
F(readGPR3, false);
if (readGPR4.IsValid())
F(readGPR4, false);
if (writtenGPR1.IsValid())
F(writtenGPR1, true);
if (writtenGPR2.IsValid())
F(writtenGPR2, true);
}
IMLReg readGPR1;
IMLReg readGPR2;
IMLReg readGPR3;
IMLReg readGPR4;
IMLReg writtenGPR1;
IMLReg writtenGPR2;
};
struct IMLInstruction
{
IMLInstruction() {}
IMLInstruction(const IMLInstruction& other)
{
memcpy(this, &other, sizeof(IMLInstruction));
}
uint8 type;
uint8 operation;
union
{
struct
{
uint8 _padding[7];
}padding;
struct
{
IMLReg regR;
IMLReg regA;
}op_r_r;
struct
{
IMLReg regR;
IMLReg regA;
IMLReg regB;
}op_r_r_r;
struct
{
IMLReg regR;
IMLReg regA;
IMLReg regB;
IMLReg regCarry;
}op_r_r_r_carry;
struct
{
IMLReg regR;
IMLReg regA;
sint32 immS32;
}op_r_r_s32;
struct
{
IMLReg regR;
IMLReg regA;
IMLReg regCarry;
sint32 immS32;
}op_r_r_s32_carry;
struct
{
IMLReg regR;
IMLName name;
}op_r_name; // alias op_name_r
struct
{
IMLReg regR;
sint32 immS32;
}op_r_immS32;
struct
{
uint32 param;
uint32 param2;
uint16 paramU16;
IMLReg paramReg;
}op_macro;
struct
{
IMLReg registerData;
IMLReg registerMem;
IMLReg registerMem2;
IMLReg registerGQR;
uint8 copyWidth;
struct
{
bool swapEndian : 1;
bool signExtend : 1;
bool notExpanded : 1; // for floats
}flags2;
uint8 mode; // transfer mode (copy width, ps0/ps1 behavior)
sint32 immS32;
}op_storeLoad;
struct
{
uintptr_t callAddress;
IMLReg regParam0;
IMLReg regParam1;
IMLReg regParam2;
IMLReg regReturn;
}op_call_imm;
struct
{
IMLReg regR;
IMLReg regA;
}op_fpr_r_r;
struct
{
IMLReg regR;
IMLReg regA;
IMLReg regB;
}op_fpr_r_r_r;
struct
{
IMLReg regR;
IMLReg regA;
IMLReg regB;
IMLReg regC;
}op_fpr_r_r_r_r;
struct
{
IMLReg regR;
}op_fpr_r;
struct
{
IMLReg regR; // stores the boolean result of the comparison
IMLReg regA;
IMLReg regB;
IMLCondition cond;
}op_fpr_compare;
struct
{
IMLReg regR; // stores the boolean result of the comparison
IMLReg regA;
IMLReg regB;
IMLCondition cond;
}op_compare;
struct
{
IMLReg regR; // stores the boolean result of the comparison
IMLReg regA;
sint32 immS32;
IMLCondition cond;
}op_compare_s32;
struct
{
IMLReg registerBool;
bool mustBeTrue;
}op_conditional_jump;
struct
{
IMLReg regEA;
IMLReg regCompareValue;
IMLReg regWriteValue;
IMLReg regBoolOut;
}op_atomic_compare_store;
// conditional operations (emitted if supported by target platform)
struct
{
// r_s32
IMLReg regR;
sint32 immS32;
// condition
uint8 crRegisterIndex;
uint8 crBitIndex;
bool bitMustBeSet;
}op_conditional_r_s32;
// X86 specific
struct
{
IMLCondition cond;
bool invertedCondition;
}op_x86_eflags_jcc;
};
bool IsSuffixInstruction() const
{
if (type == PPCREC_IML_TYPE_MACRO && operation == PPCREC_IML_MACRO_BL ||
type == PPCREC_IML_TYPE_MACRO && operation == PPCREC_IML_MACRO_B_FAR ||
type == PPCREC_IML_TYPE_MACRO && operation == PPCREC_IML_MACRO_B_TO_REG ||
type == PPCREC_IML_TYPE_MACRO && operation == PPCREC_IML_MACRO_LEAVE ||
type == PPCREC_IML_TYPE_MACRO && operation == PPCREC_IML_MACRO_HLE ||
type == PPCREC_IML_TYPE_CJUMP_CYCLE_CHECK ||
type == PPCREC_IML_TYPE_JUMP ||
type == PPCREC_IML_TYPE_CONDITIONAL_JUMP ||
type == PPCREC_IML_TYPE_X86_EFLAGS_JCC)
return true;
return false;
}
// instruction setters
void make_no_op()
{
type = PPCREC_IML_TYPE_NO_OP;
operation = 0;
}
void make_r_name(IMLReg regR, IMLName name)
{
cemu_assert_debug(regR.GetBaseFormat() == regR.GetRegFormat()); // for name load/store instructions the register must match the base format
type = PPCREC_IML_TYPE_R_NAME;
operation = PPCREC_IML_OP_ASSIGN;
op_r_name.regR = regR;
op_r_name.name = name;
}
void make_name_r(IMLName name, IMLReg regR)
{
cemu_assert_debug(regR.GetBaseFormat() == regR.GetRegFormat()); // for name load/store instructions the register must match the base format
type = PPCREC_IML_TYPE_NAME_R;
operation = PPCREC_IML_OP_ASSIGN;
op_r_name.regR = regR;
op_r_name.name = name;
}
void make_debugbreak(uint32 currentPPCAddress = 0)
{
make_macro(PPCREC_IML_MACRO_DEBUGBREAK, 0, currentPPCAddress, 0, IMLREG_INVALID);
}
void make_macro(uint32 macroId, uint32 param, uint32 param2, uint16 paramU16, IMLReg regParam)
{
this->type = PPCREC_IML_TYPE_MACRO;
this->operation = macroId;
this->op_macro.param = param;
this->op_macro.param2 = param2;
this->op_macro.paramU16 = paramU16;
this->op_macro.paramReg = regParam;
}
void make_cjump_cycle_check()
{
this->type = PPCREC_IML_TYPE_CJUMP_CYCLE_CHECK;
this->operation = 0;
}
void make_r_r(uint32 operation, IMLReg regR, IMLReg regA)
{
this->type = PPCREC_IML_TYPE_R_R;
this->operation = operation;
this->op_r_r.regR = regR;
this->op_r_r.regA = regA;
}
void make_r_s32(uint32 operation, IMLReg regR, sint32 immS32)
{
this->type = PPCREC_IML_TYPE_R_S32;
this->operation = operation;
this->op_r_immS32.regR = regR;
this->op_r_immS32.immS32 = immS32;
}
void make_r_r_r(uint32 operation, IMLReg regR, IMLReg regA, IMLReg regB)
{
this->type = PPCREC_IML_TYPE_R_R_R;
this->operation = operation;
this->op_r_r_r.regR = regR;
this->op_r_r_r.regA = regA;
this->op_r_r_r.regB = regB;
}
void make_r_r_r_carry(uint32 operation, IMLReg regR, IMLReg regA, IMLReg regB, IMLReg regCarry)
{
this->type = PPCREC_IML_TYPE_R_R_R_CARRY;
this->operation = operation;
this->op_r_r_r_carry.regR = regR;
this->op_r_r_r_carry.regA = regA;
this->op_r_r_r_carry.regB = regB;
this->op_r_r_r_carry.regCarry = regCarry;
}
void make_r_r_s32(uint32 operation, IMLReg regR, IMLReg regA, sint32 immS32)
{
this->type = PPCREC_IML_TYPE_R_R_S32;
this->operation = operation;
this->op_r_r_s32.regR = regR;
this->op_r_r_s32.regA = regA;
this->op_r_r_s32.immS32 = immS32;
}
void make_r_r_s32_carry(uint32 operation, IMLReg regR, IMLReg regA, sint32 immS32, IMLReg regCarry)
{
this->type = PPCREC_IML_TYPE_R_R_S32_CARRY;
this->operation = operation;
this->op_r_r_s32_carry.regR = regR;
this->op_r_r_s32_carry.regA = regA;
this->op_r_r_s32_carry.immS32 = immS32;
this->op_r_r_s32_carry.regCarry = regCarry;
}
void make_compare(IMLReg regA, IMLReg regB, IMLReg regR, IMLCondition cond)
{
this->type = PPCREC_IML_TYPE_COMPARE;
this->operation = PPCREC_IML_OP_INVALID;
this->op_compare.regR = regR;
this->op_compare.regA = regA;
this->op_compare.regB = regB;
this->op_compare.cond = cond;
}
void make_compare_s32(IMLReg regA, sint32 immS32, IMLReg regR, IMLCondition cond)
{
this->type = PPCREC_IML_TYPE_COMPARE_S32;
this->operation = PPCREC_IML_OP_INVALID;
this->op_compare_s32.regR = regR;
this->op_compare_s32.regA = regA;
this->op_compare_s32.immS32 = immS32;
this->op_compare_s32.cond = cond;
}
void make_conditional_jump(IMLReg regBool, bool mustBeTrue)
{
this->type = PPCREC_IML_TYPE_CONDITIONAL_JUMP;
this->operation = PPCREC_IML_OP_INVALID;
this->op_conditional_jump.registerBool = regBool;
this->op_conditional_jump.mustBeTrue = mustBeTrue;
}
void make_jump()
{
this->type = PPCREC_IML_TYPE_JUMP;
this->operation = PPCREC_IML_OP_INVALID;
}
// load from memory
void make_r_memory(IMLReg regD, IMLReg regMem, sint32 immS32, uint32 copyWidth, bool signExtend, bool switchEndian)
{
this->type = PPCREC_IML_TYPE_LOAD;
this->operation = 0;
this->op_storeLoad.registerData = regD;
this->op_storeLoad.registerMem = regMem;
this->op_storeLoad.immS32 = immS32;
this->op_storeLoad.copyWidth = copyWidth;
this->op_storeLoad.flags2.swapEndian = switchEndian;
this->op_storeLoad.flags2.signExtend = signExtend;
}
// store to memory
void make_memory_r(IMLReg regS, IMLReg regMem, sint32 immS32, uint32 copyWidth, bool switchEndian)
{
this->type = PPCREC_IML_TYPE_STORE;
this->operation = 0;
this->op_storeLoad.registerData = regS;
this->op_storeLoad.registerMem = regMem;
this->op_storeLoad.immS32 = immS32;
this->op_storeLoad.copyWidth = copyWidth;
this->op_storeLoad.flags2.swapEndian = switchEndian;
this->op_storeLoad.flags2.signExtend = false;
}
void make_atomic_cmp_store(IMLReg regEA, IMLReg regCompareValue, IMLReg regWriteValue, IMLReg regSuccessOutput)
{
this->type = PPCREC_IML_TYPE_ATOMIC_CMP_STORE;
this->operation = 0;
this->op_atomic_compare_store.regEA = regEA;
this->op_atomic_compare_store.regCompareValue = regCompareValue;
this->op_atomic_compare_store.regWriteValue = regWriteValue;
this->op_atomic_compare_store.regBoolOut = regSuccessOutput;
}
void make_call_imm(uintptr_t callAddress, IMLReg param0, IMLReg param1, IMLReg param2, IMLReg regReturn)
{
this->type = PPCREC_IML_TYPE_CALL_IMM;
this->operation = 0;
this->op_call_imm.callAddress = callAddress;
this->op_call_imm.regParam0 = param0;
this->op_call_imm.regParam1 = param1;
this->op_call_imm.regParam2 = param2;
this->op_call_imm.regReturn = regReturn;
}
void make_fpr_compare(IMLReg regA, IMLReg regB, IMLReg regR, IMLCondition cond)
{
this->type = PPCREC_IML_TYPE_FPR_COMPARE;
this->operation = -999;
this->op_fpr_compare.regR = regR;
this->op_fpr_compare.regA = regA;
this->op_fpr_compare.regB = regB;
this->op_fpr_compare.cond = cond;
}
/* X86 specific */
void make_x86_eflags_jcc(IMLCondition cond, bool invertedCondition)
{
this->type = PPCREC_IML_TYPE_X86_EFLAGS_JCC;
this->operation = -999;
this->op_x86_eflags_jcc.cond = cond;
this->op_x86_eflags_jcc.invertedCondition = invertedCondition;
}
void CheckRegisterUsage(IMLUsedRegisters* registersUsed) const;
bool HasSideEffects() const; // returns true if the instruction has side effects beyond just reading and writing registers. Dead code elimination uses this to know if an instruction can be dropped when the regular register outputs are not used
void RewriteGPR(const std::unordered_map<IMLRegID, IMLRegID>& translationTable);
};
// architecture specific constants
namespace IMLArchX86
{
static constexpr int PHYSREG_GPR_BASE = 0;
static constexpr int PHYSREG_FPR_BASE = 16;
};

View file

@ -0,0 +1,794 @@
#include "Cafe/HW/Espresso/Interpreter/PPCInterpreterInternal.h"
#include "Cafe/HW/Espresso/Recompiler/IML/IML.h"
#include "Cafe/HW/Espresso/Recompiler/IML/IMLInstruction.h"
#include "../PPCRecompiler.h"
#include "../PPCRecompilerIml.h"
#include "../BackendX64/BackendX64.h"
#include "Common/FileStream.h"
#include <boost/container/static_vector.hpp>
#include <boost/container/small_vector.hpp>
IMLReg _FPRRegFromID(IMLRegID regId)
{
return IMLReg(IMLRegFormat::F64, IMLRegFormat::F64, 0, regId);
}
void PPCRecompiler_optimizeDirectFloatCopiesScanForward(ppcImlGenContext_t* ppcImlGenContext, IMLSegment* imlSegment, sint32 imlIndexLoad, IMLReg fprReg)
{
IMLRegID fprIndex = fprReg.GetRegID();
IMLInstruction* imlInstructionLoad = imlSegment->imlList.data() + imlIndexLoad;
if (imlInstructionLoad->op_storeLoad.flags2.notExpanded)
return;
IMLUsedRegisters registersUsed;
sint32 scanRangeEnd = std::min<sint32>(imlIndexLoad + 25, imlSegment->imlList.size()); // don't scan too far (saves performance and also the chances we can merge the load+store become low at high distances)
bool foundMatch = false;
sint32 lastStore = -1;
for (sint32 i = imlIndexLoad + 1; i < scanRangeEnd; i++)
{
IMLInstruction* imlInstruction = imlSegment->imlList.data() + i;
if (imlInstruction->IsSuffixInstruction())
break;
// check if FPR is stored
if ((imlInstruction->type == PPCREC_IML_TYPE_FPR_STORE && imlInstruction->op_storeLoad.mode == PPCREC_FPR_ST_MODE_SINGLE_FROM_PS0) ||
(imlInstruction->type == PPCREC_IML_TYPE_FPR_STORE_INDEXED && imlInstruction->op_storeLoad.mode == PPCREC_FPR_ST_MODE_SINGLE_FROM_PS0))
{
if (imlInstruction->op_storeLoad.registerData.GetRegID() == fprIndex)
{
if (foundMatch == false)
{
// flag the load-single instruction as "don't expand" (leave single value as-is)
imlInstructionLoad->op_storeLoad.flags2.notExpanded = true;
}
// also set the flag for the store instruction
IMLInstruction* imlInstructionStore = imlInstruction;
imlInstructionStore->op_storeLoad.flags2.notExpanded = true;
foundMatch = true;
lastStore = i + 1;
continue;
}
}
// check if FPR is overwritten (we can actually ignore read operations?)
imlInstruction->CheckRegisterUsage(&registersUsed);
if (registersUsed.writtenGPR1.IsValidAndSameRegID(fprIndex) || registersUsed.writtenGPR2.IsValidAndSameRegID(fprIndex))
break;
if (registersUsed.readGPR1.IsValidAndSameRegID(fprIndex))
break;
if (registersUsed.readGPR2.IsValidAndSameRegID(fprIndex))
break;
if (registersUsed.readGPR3.IsValidAndSameRegID(fprIndex))
break;
if (registersUsed.readGPR4.IsValidAndSameRegID(fprIndex))
break;
}
if (foundMatch)
{
// insert expand instruction after store
IMLInstruction* newExpand = PPCRecompiler_insertInstruction(imlSegment, lastStore);
PPCRecompilerImlGen_generateNewInstruction_fpr_r(ppcImlGenContext, newExpand, PPCREC_IML_OP_FPR_EXPAND_BOTTOM32_TO_BOTTOM64_AND_TOP64, _FPRRegFromID(fprIndex));
}
}
/*
* Scans for patterns:
* <Load sp float into register f>
* <Random unrelated instructions>
* <Store sp float from register f>
* For these patterns the store and load is modified to work with un-extended values (float remains as float, no double conversion)
* The float->double extension is then executed later
* Advantages:
* Keeps denormals and other special float values intact
* Slightly improves performance
*/
void IMLOptimizer_OptimizeDirectFloatCopies(ppcImlGenContext_t* ppcImlGenContext)
{
for (IMLSegment* segIt : ppcImlGenContext->segmentList2)
{
for (sint32 i = 0; i < segIt->imlList.size(); i++)
{
IMLInstruction* imlInstruction = segIt->imlList.data() + i;
if (imlInstruction->type == PPCREC_IML_TYPE_FPR_LOAD && imlInstruction->op_storeLoad.mode == PPCREC_FPR_LD_MODE_SINGLE_INTO_PS0_PS1)
{
PPCRecompiler_optimizeDirectFloatCopiesScanForward(ppcImlGenContext, segIt, i, imlInstruction->op_storeLoad.registerData);
}
else if (imlInstruction->type == PPCREC_IML_TYPE_FPR_LOAD_INDEXED && imlInstruction->op_storeLoad.mode == PPCREC_FPR_LD_MODE_SINGLE_INTO_PS0_PS1)
{
PPCRecompiler_optimizeDirectFloatCopiesScanForward(ppcImlGenContext, segIt, i, imlInstruction->op_storeLoad.registerData);
}
}
}
}
void PPCRecompiler_optimizeDirectIntegerCopiesScanForward(ppcImlGenContext_t* ppcImlGenContext, IMLSegment* imlSegment, sint32 imlIndexLoad, IMLReg gprReg)
{
cemu_assert_debug(gprReg.GetBaseFormat() == IMLRegFormat::I64); // todo - proper handling required for non-standard sizes
cemu_assert_debug(gprReg.GetRegFormat() == IMLRegFormat::I32);
IMLRegID gprIndex = gprReg.GetRegID();
IMLInstruction* imlInstructionLoad = imlSegment->imlList.data() + imlIndexLoad;
if ( imlInstructionLoad->op_storeLoad.flags2.swapEndian == false )
return;
bool foundMatch = false;
IMLUsedRegisters registersUsed;
sint32 scanRangeEnd = std::min<sint32>(imlIndexLoad + 25, imlSegment->imlList.size()); // don't scan too far (saves performance and also the chances we can merge the load+store become low at high distances)
sint32 i = imlIndexLoad + 1;
for (; i < scanRangeEnd; i++)
{
IMLInstruction* imlInstruction = imlSegment->imlList.data() + i;
if (imlInstruction->IsSuffixInstruction())
break;
// check if GPR is stored
if ((imlInstruction->type == PPCREC_IML_TYPE_STORE && imlInstruction->op_storeLoad.copyWidth == 32 ) )
{
if (imlInstruction->op_storeLoad.registerMem.GetRegID() == gprIndex)
break;
if (imlInstruction->op_storeLoad.registerData.GetRegID() == gprIndex)
{
IMLInstruction* imlInstructionStore = imlInstruction;
if (foundMatch == false)
{
// switch the endian swap flag for the load instruction
imlInstructionLoad->op_storeLoad.flags2.swapEndian = !imlInstructionLoad->op_storeLoad.flags2.swapEndian;
foundMatch = true;
}
// switch the endian swap flag for the store instruction
imlInstructionStore->op_storeLoad.flags2.swapEndian = !imlInstructionStore->op_storeLoad.flags2.swapEndian;
// keep scanning
continue;
}
}
// check if GPR is accessed
imlInstruction->CheckRegisterUsage(&registersUsed);
if (registersUsed.readGPR1.IsValidAndSameRegID(gprIndex) ||
registersUsed.readGPR2.IsValidAndSameRegID(gprIndex) ||
registersUsed.readGPR3.IsValidAndSameRegID(gprIndex))
{
break;
}
if (registersUsed.IsBaseGPRWritten(gprReg))
return; // GPR overwritten, we don't need to byte swap anymore
}
if (foundMatch)
{
PPCRecompiler_insertInstruction(imlSegment, i)->make_r_r(PPCREC_IML_OP_ENDIAN_SWAP, gprReg, gprReg);
}
}
/*
* Scans for patterns:
* <Load sp integer into register r>
* <Random unrelated instructions>
* <Store sp integer from register r>
* For these patterns the store and load is modified to work with non-swapped values
* The big_endian->little_endian conversion is then executed later
* Advantages:
* Slightly improves performance
*/
void IMLOptimizer_OptimizeDirectIntegerCopies(ppcImlGenContext_t* ppcImlGenContext)
{
for (IMLSegment* segIt : ppcImlGenContext->segmentList2)
{
for (sint32 i = 0; i < segIt->imlList.size(); i++)
{
IMLInstruction* imlInstruction = segIt->imlList.data() + i;
if (imlInstruction->type == PPCREC_IML_TYPE_LOAD && imlInstruction->op_storeLoad.copyWidth == 32 && imlInstruction->op_storeLoad.flags2.swapEndian )
{
PPCRecompiler_optimizeDirectIntegerCopiesScanForward(ppcImlGenContext, segIt, i, imlInstruction->op_storeLoad.registerData);
}
}
}
}
IMLName PPCRecompilerImlGen_GetRegName(ppcImlGenContext_t* ppcImlGenContext, IMLReg reg);
sint32 _getGQRIndexFromRegister(ppcImlGenContext_t* ppcImlGenContext, IMLReg gqrReg)
{
if (gqrReg.IsInvalid())
return -1;
sint32 namedReg = PPCRecompilerImlGen_GetRegName(ppcImlGenContext, gqrReg);
if (namedReg >= (PPCREC_NAME_SPR0 + SPR_UGQR0) && namedReg <= (PPCREC_NAME_SPR0 + SPR_UGQR7))
{
return namedReg - (PPCREC_NAME_SPR0 + SPR_UGQR0);
}
else
{
cemu_assert_suspicious();
}
return -1;
}
bool PPCRecompiler_isUGQRValueKnown(ppcImlGenContext_t* ppcImlGenContext, sint32 gqrIndex, uint32& gqrValue)
{
// UGQR 2 to 7 are initialized by the OS and we assume that games won't ever permanently touch those
// todo - hack - replace with more accurate solution
if (gqrIndex == 2)
gqrValue = 0x00040004;
else if (gqrIndex == 3)
gqrValue = 0x00050005;
else if (gqrIndex == 4)
gqrValue = 0x00060006;
else if (gqrIndex == 5)
gqrValue = 0x00070007;
else
return false;
return true;
}
/*
* If value of GQR can be predicted for a given PSQ load or store instruction then replace it with an optimized version
*/
void PPCRecompiler_optimizePSQLoadAndStore(ppcImlGenContext_t* ppcImlGenContext)
{
for (IMLSegment* segIt : ppcImlGenContext->segmentList2)
{
for(IMLInstruction& instIt : segIt->imlList)
{
if (instIt.type == PPCREC_IML_TYPE_FPR_LOAD || instIt.type == PPCREC_IML_TYPE_FPR_LOAD_INDEXED)
{
if(instIt.op_storeLoad.mode != PPCREC_FPR_LD_MODE_PSQ_GENERIC_PS0 &&
instIt.op_storeLoad.mode != PPCREC_FPR_LD_MODE_PSQ_GENERIC_PS0_PS1 )
continue;
// get GQR value
cemu_assert_debug(instIt.op_storeLoad.registerGQR.IsValid());
sint32 gqrIndex = _getGQRIndexFromRegister(ppcImlGenContext, instIt.op_storeLoad.registerGQR);
cemu_assert(gqrIndex >= 0);
if (ppcImlGenContext->tracking.modifiesGQR[gqrIndex])
continue;
uint32 gqrValue;
if (!PPCRecompiler_isUGQRValueKnown(ppcImlGenContext, gqrIndex, gqrValue))
continue;
uint32 formatType = (gqrValue >> 16) & 7;
uint32 scale = (gqrValue >> 24) & 0x3F;
if (scale != 0)
continue; // only generic handler supports scale
if (instIt.op_storeLoad.mode == PPCREC_FPR_LD_MODE_PSQ_GENERIC_PS0)
{
if (formatType == 0)
instIt.op_storeLoad.mode = PPCREC_FPR_LD_MODE_PSQ_FLOAT_PS0;
else if (formatType == 4)
instIt.op_storeLoad.mode = PPCREC_FPR_LD_MODE_PSQ_U8_PS0;
else if (formatType == 5)
instIt.op_storeLoad.mode = PPCREC_FPR_LD_MODE_PSQ_U16_PS0;
else if (formatType == 6)
instIt.op_storeLoad.mode = PPCREC_FPR_LD_MODE_PSQ_S8_PS0;
else if (formatType == 7)
instIt.op_storeLoad.mode = PPCREC_FPR_LD_MODE_PSQ_S16_PS0;
if (instIt.op_storeLoad.mode != PPCREC_FPR_LD_MODE_PSQ_GENERIC_PS0)
instIt.op_storeLoad.registerGQR = IMLREG_INVALID;
}
else if (instIt.op_storeLoad.mode == PPCREC_FPR_LD_MODE_PSQ_GENERIC_PS0_PS1)
{
if (formatType == 0)
instIt.op_storeLoad.mode = PPCREC_FPR_LD_MODE_PSQ_FLOAT_PS0_PS1;
else if (formatType == 4)
instIt.op_storeLoad.mode = PPCREC_FPR_LD_MODE_PSQ_U8_PS0_PS1;
else if (formatType == 5)
instIt.op_storeLoad.mode = PPCREC_FPR_LD_MODE_PSQ_U16_PS0_PS1;
else if (formatType == 6)
instIt.op_storeLoad.mode = PPCREC_FPR_LD_MODE_PSQ_S8_PS0_PS1;
else if (formatType == 7)
instIt.op_storeLoad.mode = PPCREC_FPR_LD_MODE_PSQ_S16_PS0_PS1;
if (instIt.op_storeLoad.mode != PPCREC_FPR_LD_MODE_PSQ_GENERIC_PS0_PS1)
instIt.op_storeLoad.registerGQR = IMLREG_INVALID;
}
}
else if (instIt.type == PPCREC_IML_TYPE_FPR_STORE || instIt.type == PPCREC_IML_TYPE_FPR_STORE_INDEXED)
{
if(instIt.op_storeLoad.mode != PPCREC_FPR_ST_MODE_PSQ_GENERIC_PS0 &&
instIt.op_storeLoad.mode != PPCREC_FPR_ST_MODE_PSQ_GENERIC_PS0_PS1)
continue;
// get GQR value
cemu_assert_debug(instIt.op_storeLoad.registerGQR.IsValid());
sint32 gqrIndex = _getGQRIndexFromRegister(ppcImlGenContext, instIt.op_storeLoad.registerGQR);
cemu_assert(gqrIndex >= 0 && gqrIndex < 8);
if (ppcImlGenContext->tracking.modifiesGQR[gqrIndex])
continue;
uint32 gqrValue;
if(!PPCRecompiler_isUGQRValueKnown(ppcImlGenContext, gqrIndex, gqrValue))
continue;
uint32 formatType = (gqrValue >> 16) & 7;
uint32 scale = (gqrValue >> 24) & 0x3F;
if (scale != 0)
continue; // only generic handler supports scale
if (instIt.op_storeLoad.mode == PPCREC_FPR_ST_MODE_PSQ_GENERIC_PS0)
{
if (formatType == 0)
instIt.op_storeLoad.mode = PPCREC_FPR_ST_MODE_PSQ_FLOAT_PS0;
else if (formatType == 4)
instIt.op_storeLoad.mode = PPCREC_FPR_ST_MODE_PSQ_U8_PS0;
else if (formatType == 5)
instIt.op_storeLoad.mode = PPCREC_FPR_ST_MODE_PSQ_U16_PS0;
else if (formatType == 6)
instIt.op_storeLoad.mode = PPCREC_FPR_ST_MODE_PSQ_S8_PS0;
else if (formatType == 7)
instIt.op_storeLoad.mode = PPCREC_FPR_ST_MODE_PSQ_S16_PS0;
if (instIt.op_storeLoad.mode != PPCREC_FPR_ST_MODE_PSQ_GENERIC_PS0)
instIt.op_storeLoad.registerGQR = IMLREG_INVALID;
}
else if (instIt.op_storeLoad.mode == PPCREC_FPR_ST_MODE_PSQ_GENERIC_PS0_PS1)
{
if (formatType == 0)
instIt.op_storeLoad.mode = PPCREC_FPR_ST_MODE_PSQ_FLOAT_PS0_PS1;
else if (formatType == 4)
instIt.op_storeLoad.mode = PPCREC_FPR_ST_MODE_PSQ_U8_PS0_PS1;
else if (formatType == 5)
instIt.op_storeLoad.mode = PPCREC_FPR_ST_MODE_PSQ_U16_PS0_PS1;
else if (formatType == 6)
instIt.op_storeLoad.mode = PPCREC_FPR_ST_MODE_PSQ_S8_PS0_PS1;
else if (formatType == 7)
instIt.op_storeLoad.mode = PPCREC_FPR_ST_MODE_PSQ_S16_PS0_PS1;
if (instIt.op_storeLoad.mode != PPCREC_FPR_ST_MODE_PSQ_GENERIC_PS0_PS1)
instIt.op_storeLoad.registerGQR = IMLREG_INVALID;
}
}
}
}
}
// analyses register dependencies across the entire function
// per segment this will generate information about which registers need to be preserved and which ones don't (e.g. are overwritten)
class IMLOptimizerRegIOAnalysis
{
public:
// constructor with segment pointer list as span
IMLOptimizerRegIOAnalysis(std::span<IMLSegment*> segmentList, uint32 maxRegId) : m_segmentList(segmentList), m_maxRegId(maxRegId)
{
m_segRegisterInOutList.resize(segmentList.size());
}
struct IMLSegmentRegisterInOut
{
// todo - since our register ID range is usually pretty small (<64) we could use integer bitmasks to accelerate this? There is a helper class used in RA code already
std::unordered_set<IMLRegID> regWritten; // registers which are modified in this segment
std::unordered_set<IMLRegID> regImported; // registers which are read in this segment before they are written (importing value from previous segments)
std::unordered_set<IMLRegID> regForward; // registers which are not read or written in this segment, but are imported into a later segment (propagated info)
};
// calculate which registers are imported (read-before-written) and forwarded (read-before-written by a later segment) per segment
// then in a second step propagate the dependencies across linked segments
void ComputeDepedencies()
{
std::vector<IMLSegmentRegisterInOut>& segRegisterInOutList = m_segRegisterInOutList;
IMLSegmentRegisterInOut* segIO = segRegisterInOutList.data();
uint32 index = 0;
for(auto& seg : m_segmentList)
{
seg->momentaryIndex = index;
index++;
for(auto& instr : seg->imlList)
{
IMLUsedRegisters registerUsage;
instr.CheckRegisterUsage(&registerUsage);
// registers are considered imported if they are read before being written in this seg
registerUsage.ForEachReadGPR([&](IMLReg gprReg) {
IMLRegID gprId = gprReg.GetRegID();
if (!segIO->regWritten.contains(gprId))
{
segIO->regImported.insert(gprId);
}
});
registerUsage.ForEachWrittenGPR([&](IMLReg gprReg) {
IMLRegID gprId = gprReg.GetRegID();
segIO->regWritten.insert(gprId);
});
}
segIO++;
}
// for every exit segment, import all registers
for(auto& seg : m_segmentList)
{
if (!seg->nextSegmentIsUncertain)
continue;
if(seg->deadCodeEliminationHintSeg)
continue;
IMLSegmentRegisterInOut& segIO = segRegisterInOutList[seg->momentaryIndex];
for(uint32 i=0; i<=m_maxRegId; i++)
{
segIO.regImported.insert((IMLRegID)i);
}
}
// broadcast dependencies across segment chains
std::unordered_set<uint32> segIdsWhichNeedUpdate;
for (uint32 i = 0; i < m_segmentList.size(); i++)
{
segIdsWhichNeedUpdate.insert(i);
}
while(!segIdsWhichNeedUpdate.empty())
{
auto firstIt = segIdsWhichNeedUpdate.begin();
uint32 segId = *firstIt;
segIdsWhichNeedUpdate.erase(firstIt);
// forward regImported and regForward to earlier segments into their regForward, unless the register is written
auto& curSeg = m_segmentList[segId];
IMLSegmentRegisterInOut& curSegIO = segRegisterInOutList[segId];
for(auto& prevSeg : curSeg->list_prevSegments)
{
IMLSegmentRegisterInOut& prevSegIO = segRegisterInOutList[prevSeg->momentaryIndex];
bool prevSegChanged = false;
for(auto& regId : curSegIO.regImported)
{
if (!prevSegIO.regWritten.contains(regId))
prevSegChanged |= prevSegIO.regForward.insert(regId).second;
}
for(auto& regId : curSegIO.regForward)
{
if (!prevSegIO.regWritten.contains(regId))
prevSegChanged |= prevSegIO.regForward.insert(regId).second;
}
if(prevSegChanged)
segIdsWhichNeedUpdate.insert(prevSeg->momentaryIndex);
}
// same for hint links
for(auto& prevSeg : curSeg->list_deadCodeHintBy)
{
IMLSegmentRegisterInOut& prevSegIO = segRegisterInOutList[prevSeg->momentaryIndex];
bool prevSegChanged = false;
for(auto& regId : curSegIO.regImported)
{
if (!prevSegIO.regWritten.contains(regId))
prevSegChanged |= prevSegIO.regForward.insert(regId).second;
}
for(auto& regId : curSegIO.regForward)
{
if (!prevSegIO.regWritten.contains(regId))
prevSegChanged |= prevSegIO.regForward.insert(regId).second;
}
if(prevSegChanged)
segIdsWhichNeedUpdate.insert(prevSeg->momentaryIndex);
}
}
}
std::unordered_set<IMLRegID> GetRegistersNeededAtEndOfSegment(IMLSegment& seg)
{
std::unordered_set<IMLRegID> regsNeeded;
if(seg.nextSegmentIsUncertain)
{
if(seg.deadCodeEliminationHintSeg)
{
auto& nextSegIO = m_segRegisterInOutList[seg.deadCodeEliminationHintSeg->momentaryIndex];
regsNeeded.insert(nextSegIO.regImported.begin(), nextSegIO.regImported.end());
regsNeeded.insert(nextSegIO.regForward.begin(), nextSegIO.regForward.end());
}
else
{
// add all regs
for(uint32 i = 0; i <= m_maxRegId; i++)
regsNeeded.insert(i);
}
return regsNeeded;
}
if(seg.nextSegmentBranchTaken)
{
auto& nextSegIO = m_segRegisterInOutList[seg.nextSegmentBranchTaken->momentaryIndex];
regsNeeded.insert(nextSegIO.regImported.begin(), nextSegIO.regImported.end());
regsNeeded.insert(nextSegIO.regForward.begin(), nextSegIO.regForward.end());
}
if(seg.nextSegmentBranchNotTaken)
{
auto& nextSegIO = m_segRegisterInOutList[seg.nextSegmentBranchNotTaken->momentaryIndex];
regsNeeded.insert(nextSegIO.regImported.begin(), nextSegIO.regImported.end());
regsNeeded.insert(nextSegIO.regForward.begin(), nextSegIO.regForward.end());
}
return regsNeeded;
}
bool IsRegisterNeededAtEndOfSegment(IMLSegment& seg, IMLRegID regId)
{
if(seg.nextSegmentIsUncertain)
{
if(!seg.deadCodeEliminationHintSeg)
return true;
auto& nextSegIO = m_segRegisterInOutList[seg.deadCodeEliminationHintSeg->momentaryIndex];
if(nextSegIO.regImported.contains(regId))
return true;
if(nextSegIO.regForward.contains(regId))
return true;
return false;
}
if(seg.nextSegmentBranchTaken)
{
auto& nextSegIO = m_segRegisterInOutList[seg.nextSegmentBranchTaken->momentaryIndex];
if(nextSegIO.regImported.contains(regId))
return true;
if(nextSegIO.regForward.contains(regId))
return true;
}
if(seg.nextSegmentBranchNotTaken)
{
auto& nextSegIO = m_segRegisterInOutList[seg.nextSegmentBranchNotTaken->momentaryIndex];
if(nextSegIO.regImported.contains(regId))
return true;
if(nextSegIO.regForward.contains(regId))
return true;
}
return false;
}
private:
std::span<IMLSegment*> m_segmentList;
uint32 m_maxRegId;
std::vector<IMLSegmentRegisterInOut> m_segRegisterInOutList;
};
// scan backwards starting from index and return the index of the first found instruction which writes to the given register (by id)
sint32 IMLUtil_FindInstructionWhichWritesRegister(IMLSegment& seg, sint32 startIndex, IMLReg reg, sint32 maxScanDistance = -1)
{
sint32 endIndex = std::max<sint32>(startIndex - maxScanDistance, 0);
for (sint32 i = startIndex; i >= endIndex; i--)
{
IMLInstruction& imlInstruction = seg.imlList[i];
IMLUsedRegisters registersUsed;
imlInstruction.CheckRegisterUsage(&registersUsed);
if (registersUsed.IsBaseGPRWritten(reg))
return i;
}
return -1;
}
// returns true if the instruction can safely be moved while keeping ordering constraints and data dependencies intact
// initialIndex is inclusive, targetIndex is exclusive
bool IMLUtil_CanMoveInstructionTo(IMLSegment& seg, sint32 initialIndex, sint32 targetIndex)
{
boost::container::static_vector<IMLRegID, 8> regsWritten;
boost::container::static_vector<IMLRegID, 8> regsRead;
// get list of read and written registers
IMLUsedRegisters registersUsed;
seg.imlList[initialIndex].CheckRegisterUsage(&registersUsed);
registersUsed.ForEachAccessedGPR([&](IMLReg reg, bool isWritten) {
if (isWritten)
regsWritten.push_back(reg.GetRegID());
else
regsRead.push_back(reg.GetRegID());
});
// check all the instructions inbetween
if(initialIndex < targetIndex)
{
sint32 scanStartIndex = initialIndex+1; // +1 to skip the moving instruction itself
sint32 scanEndIndex = targetIndex;
for (sint32 i = scanStartIndex; i < scanEndIndex; i++)
{
IMLUsedRegisters registersUsed;
seg.imlList[i].CheckRegisterUsage(&registersUsed);
// in order to be able to move an instruction past another instruction, any of the read registers must not be modified (written)
// and any of it's written registers must not be read
bool canMove = true;
registersUsed.ForEachAccessedGPR([&](IMLReg reg, bool isWritten) {
IMLRegID regId = reg.GetRegID();
if (!isWritten)
canMove = canMove && std::find(regsWritten.begin(), regsWritten.end(), regId) == regsWritten.end();
else
canMove = canMove && std::find(regsRead.begin(), regsRead.end(), regId) == regsRead.end();
});
if(!canMove)
return false;
}
}
else
{
cemu_assert_unimplemented(); // backwards scan is todo
return false;
}
return true;
}
sint32 IMLUtil_CountRegisterReadsInRange(IMLSegment& seg, sint32 scanStartIndex, sint32 scanEndIndex, IMLRegID regId)
{
cemu_assert_debug(scanStartIndex <= scanEndIndex);
cemu_assert_debug(scanEndIndex < seg.imlList.size());
sint32 count = 0;
for (sint32 i = scanStartIndex; i <= scanEndIndex; i++)
{
IMLUsedRegisters registersUsed;
seg.imlList[i].CheckRegisterUsage(&registersUsed);
registersUsed.ForEachReadGPR([&](IMLReg reg) {
if (reg.GetRegID() == regId)
count++;
});
}
return count;
}
// move instruction from one index to another
// instruction will be inserted before the instruction at targetIndex
// returns the new instruction index of the moved instruction
sint32 IMLUtil_MoveInstructionTo(IMLSegment& seg, sint32 initialIndex, sint32 targetIndex)
{
cemu_assert_debug(initialIndex != targetIndex);
IMLInstruction temp = seg.imlList[initialIndex];
if (initialIndex < targetIndex)
{
cemu_assert_debug(targetIndex > 0);
targetIndex--;
for(size_t i=initialIndex; i<targetIndex; i++)
seg.imlList[i] = seg.imlList[i+1];
seg.imlList[targetIndex] = temp;
return targetIndex;
}
else
{
cemu_assert_unimplemented(); // testing needed
std::copy(seg.imlList.begin() + targetIndex, seg.imlList.begin() + initialIndex, seg.imlList.begin() + targetIndex + 1);
seg.imlList[targetIndex] = temp;
return targetIndex;
}
}
// x86 specific
bool IMLOptimizerX86_ModifiesEFlags(IMLInstruction& inst)
{
// this is a very conservative implementation. There are more cases but this is good enough for now
if(inst.type == PPCREC_IML_TYPE_NAME_R || inst.type == PPCREC_IML_TYPE_R_NAME)
return false;
if((inst.type == PPCREC_IML_TYPE_R_R || inst.type == PPCREC_IML_TYPE_R_S32) && inst.operation == PPCREC_IML_OP_ASSIGN)
return false;
return true; // if we dont know for sure, assume it does
}
void IMLOptimizer_DebugPrintSeg(ppcImlGenContext_t& ppcImlGenContext, IMLSegment& seg)
{
printf("----------------\n");
IMLDebug_DumpSegment(&ppcImlGenContext, &seg);
fflush(stdout);
}
void IMLOptimizer_RemoveDeadCodeFromSegment(IMLOptimizerRegIOAnalysis& regIoAnalysis, IMLSegment& seg)
{
// algorithm works like this:
// Calculate which registers need to be preserved at the end of each segment
// Then for each segment:
// - Iterate instructions backwards
// - Maintain a list of registers which are read at a later point (initially this is the list from the first step)
// - If an instruction only modifies registers which are not in the read list and has no side effects, then it is dead code and can be replaced with a no-op
std::unordered_set<IMLRegID> regsNeeded = regIoAnalysis.GetRegistersNeededAtEndOfSegment(seg);
// start with suffix instruction
if(seg.HasSuffixInstruction())
{
IMLInstruction& imlInstruction = seg.imlList[seg.GetSuffixInstructionIndex()];
IMLUsedRegisters registersUsed;
imlInstruction.CheckRegisterUsage(&registersUsed);
registersUsed.ForEachWrittenGPR([&](IMLReg reg) {
regsNeeded.erase(reg.GetRegID());
});
registersUsed.ForEachReadGPR([&](IMLReg reg) {
regsNeeded.insert(reg.GetRegID());
});
}
// iterate instructions backwards
for (sint32 i = seg.imlList.size() - (seg.HasSuffixInstruction() ? 2:1); i >= 0; i--)
{
IMLInstruction& imlInstruction = seg.imlList[i];
IMLUsedRegisters registersUsed;
imlInstruction.CheckRegisterUsage(&registersUsed);
// register read -> remove from overwritten list
// register written -> add to overwritten list
// check if this instruction only writes registers which will never be read
bool onlyWritesRedundantRegisters = true;
registersUsed.ForEachWrittenGPR([&](IMLReg reg) {
if (regsNeeded.contains(reg.GetRegID()))
onlyWritesRedundantRegisters = false;
});
// check if any of the written registers are read after this point
registersUsed.ForEachWrittenGPR([&](IMLReg reg) {
regsNeeded.erase(reg.GetRegID());
});
registersUsed.ForEachReadGPR([&](IMLReg reg) {
regsNeeded.insert(reg.GetRegID());
});
if(!imlInstruction.HasSideEffects() && onlyWritesRedundantRegisters)
{
imlInstruction.make_no_op();
}
}
}
void IMLOptimizerX86_SubstituteCJumpForEflagsJump(IMLOptimizerRegIOAnalysis& regIoAnalysis, IMLSegment& seg)
{
// convert and optimize bool condition jumps to eflags condition jumps
// - Moves eflag setter (e.g. cmp) closer to eflags consumer (conditional jump) if necessary. If not possible but required then exit early
// - Since we only rely on eflags, the boolean register can be optimized out if DCE considers it unused
// - Further detect and optimize patterns like DEC + CMP + JCC into fused ops (todo)
// check if this segment ends with a conditional jump
if(!seg.HasSuffixInstruction())
return;
sint32 cjmpInstIndex = seg.GetSuffixInstructionIndex();
if(cjmpInstIndex < 0)
return;
IMLInstruction& cjumpInstr = seg.imlList[cjmpInstIndex];
if( cjumpInstr.type != PPCREC_IML_TYPE_CONDITIONAL_JUMP )
return;
IMLReg regCondBool = cjumpInstr.op_conditional_jump.registerBool;
bool invertedCondition = !cjumpInstr.op_conditional_jump.mustBeTrue;
// find the instruction which sets the bool
sint32 cmpInstrIndex = IMLUtil_FindInstructionWhichWritesRegister(seg, cjmpInstIndex-1, regCondBool, 20);
if(cmpInstrIndex < 0)
return;
// check if its an instruction combo which can be optimized (currently only cmp + cjump) and get the condition
IMLInstruction& condSetterInstr = seg.imlList[cmpInstrIndex];
IMLCondition cond;
if(condSetterInstr.type == PPCREC_IML_TYPE_COMPARE)
cond = condSetterInstr.op_compare.cond;
else if(condSetterInstr.type == PPCREC_IML_TYPE_COMPARE_S32)
cond = condSetterInstr.op_compare_s32.cond;
else
return;
// check if instructions inbetween modify eflags
sint32 indexEflagsSafeStart = -1; // index of the first instruction which does not modify eflags up to cjump
for(sint32 i = cjmpInstIndex-1; i > cmpInstrIndex; i--)
{
if(IMLOptimizerX86_ModifiesEFlags(seg.imlList[i]))
{
indexEflagsSafeStart = i+1;
break;
}
}
if(indexEflagsSafeStart >= 0)
{
cemu_assert(indexEflagsSafeStart > 0);
// there are eflags-modifying instructions inbetween the bool setter and cjump
// try to move the eflags setter close enough to the cjump (to indexEflagsSafeStart)
bool canMove = IMLUtil_CanMoveInstructionTo(seg, cmpInstrIndex, indexEflagsSafeStart);
if(!canMove)
{
return;
}
else
{
cmpInstrIndex = IMLUtil_MoveInstructionTo(seg, cmpInstrIndex, indexEflagsSafeStart);
}
}
// we can turn the jump into an eflags jump
cjumpInstr.make_x86_eflags_jcc(cond, invertedCondition);
if (IMLUtil_CountRegisterReadsInRange(seg, cmpInstrIndex, cjmpInstIndex, regCondBool.GetRegID()) > 1 || regIoAnalysis.IsRegisterNeededAtEndOfSegment(seg, regCondBool.GetRegID()))
return; // bool register is used beyond the CMP, we can't drop it
auto& cmpInstr = seg.imlList[cmpInstrIndex];
cemu_assert_debug(cmpInstr.type == PPCREC_IML_TYPE_COMPARE || cmpInstr.type == PPCREC_IML_TYPE_COMPARE_S32);
if(cmpInstr.type == PPCREC_IML_TYPE_COMPARE)
{
IMLReg regA = cmpInstr.op_compare.regA;
IMLReg regB = cmpInstr.op_compare.regB;
seg.imlList[cmpInstrIndex].make_r_r(PPCREC_IML_OP_X86_CMP, regA, regB);
}
else
{
IMLReg regA = cmpInstr.op_compare_s32.regA;
sint32 val = cmpInstr.op_compare_s32.immS32;
seg.imlList[cmpInstrIndex].make_r_s32(PPCREC_IML_OP_X86_CMP, regA, val);
}
}
void IMLOptimizer_StandardOptimizationPassForSegment(IMLOptimizerRegIOAnalysis& regIoAnalysis, IMLSegment& seg)
{
IMLOptimizer_RemoveDeadCodeFromSegment(regIoAnalysis, seg);
// x86 specific optimizations
IMLOptimizerX86_SubstituteCJumpForEflagsJump(regIoAnalysis, seg); // this pass should be applied late since it creates invisible eflags dependencies (which would break further register dependency analysis)
}
void IMLOptimizer_StandardOptimizationPass(ppcImlGenContext_t& ppcImlGenContext)
{
IMLOptimizerRegIOAnalysis regIoAnalysis(ppcImlGenContext.segmentList2, ppcImlGenContext.GetMaxRegId());
regIoAnalysis.ComputeDepedencies();
for (IMLSegment* segIt : ppcImlGenContext.segmentList2)
{
IMLOptimizer_StandardOptimizationPassForSegment(regIoAnalysis, *segIt);
}
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,125 @@
#pragma once
// container for storing a set of register indices
// specifically optimized towards storing typical range of physical register indices (expected to be below 64)
class IMLPhysRegisterSet
{
public:
void SetAvailable(uint32 index)
{
cemu_assert_debug(index < 64);
m_regBitmask |= ((uint64)1 << index);
}
void SetReserved(uint32 index)
{
cemu_assert_debug(index < 64);
m_regBitmask &= ~((uint64)1 << index);
}
void SetAllAvailable()
{
m_regBitmask = ~0ull;
}
bool HasAllAvailable() const
{
return m_regBitmask == ~0ull;
}
bool IsAvailable(uint32 index) const
{
return (m_regBitmask & ((uint64)1 << index)) != 0;
}
IMLPhysRegisterSet& operator&=(const IMLPhysRegisterSet& other)
{
this->m_regBitmask &= other.m_regBitmask;
return *this;
}
IMLPhysRegisterSet& operator=(const IMLPhysRegisterSet& other)
{
this->m_regBitmask = other.m_regBitmask;
return *this;
}
void RemoveRegisters(const IMLPhysRegisterSet& other)
{
this->m_regBitmask &= ~other.m_regBitmask;
}
bool HasAnyAvailable() const
{
return m_regBitmask != 0;
}
bool HasExactlyOneAvailable() const
{
return m_regBitmask != 0 && (m_regBitmask & (m_regBitmask - 1)) == 0;
}
// returns index of first available register. Do not call when HasAnyAvailable() == false
IMLPhysReg GetFirstAvailableReg()
{
cemu_assert_debug(m_regBitmask != 0);
sint32 regIndex = 0;
auto tmp = m_regBitmask;
while ((tmp & 0xFF) == 0)
{
regIndex += 8;
tmp >>= 8;
}
while ((tmp & 0x1) == 0)
{
regIndex++;
tmp >>= 1;
}
return regIndex;
}
// returns index of next available register (search includes any register index >= startIndex)
// returns -1 if there is no more register
IMLPhysReg GetNextAvailableReg(sint32 startIndex) const
{
if (startIndex >= 64)
return -1;
uint32 regIndex = startIndex;
auto tmp = m_regBitmask;
tmp >>= regIndex;
if (!tmp)
return -1;
while ((tmp & 0xFF) == 0)
{
regIndex += 8;
tmp >>= 8;
}
while ((tmp & 0x1) == 0)
{
regIndex++;
tmp >>= 1;
}
return regIndex;
}
sint32 CountAvailableRegs() const
{
return std::popcount(m_regBitmask);
}
private:
uint64 m_regBitmask{ 0 };
};
struct IMLRegisterAllocatorParameters
{
inline IMLPhysRegisterSet& GetPhysRegPool(IMLRegFormat regFormat)
{
return perTypePhysPool[stdx::to_underlying(regFormat)];
}
IMLPhysRegisterSet perTypePhysPool[stdx::to_underlying(IMLRegFormat::TYPE_COUNT)];
std::unordered_map<IMLRegID, IMLName> regIdToName;
};
void IMLRegisterAllocator_AllocateRegisters(ppcImlGenContext_t* ppcImlGenContext, IMLRegisterAllocatorParameters& raParam);

View file

@ -0,0 +1,635 @@
#include "../PPCRecompiler.h"
#include "../PPCRecompilerIml.h"
#include "IMLRegisterAllocatorRanges.h"
#include "util/helpers/MemoryPool.h"
uint32 IMLRA_GetNextIterationIndex();
IMLRegID raLivenessRange::GetVirtualRegister() const
{
return virtualRegister;
}
sint32 raLivenessRange::GetPhysicalRegister() const
{
return physicalRegister;
}
IMLName raLivenessRange::GetName() const
{
return name;
}
void raLivenessRange::SetPhysicalRegister(IMLPhysReg physicalRegister)
{
this->physicalRegister = physicalRegister;
}
void raLivenessRange::SetPhysicalRegisterForCluster(IMLPhysReg physicalRegister)
{
auto clusterRanges = GetAllSubrangesInCluster();
for(auto& range : clusterRanges)
range->physicalRegister = physicalRegister;
}
boost::container::small_vector<raLivenessRange*, 128> raLivenessRange::GetAllSubrangesInCluster()
{
uint32 iterationIndex = IMLRA_GetNextIterationIndex();
boost::container::small_vector<raLivenessRange*, 128> subranges;
subranges.push_back(this);
this->lastIterationIndex = iterationIndex;
size_t i = 0;
while(i<subranges.size())
{
raLivenessRange* cur = subranges[i];
i++;
// check successors
if(cur->subrangeBranchTaken && cur->subrangeBranchTaken->lastIterationIndex != iterationIndex)
{
cur->subrangeBranchTaken->lastIterationIndex = iterationIndex;
subranges.push_back(cur->subrangeBranchTaken);
}
if(cur->subrangeBranchNotTaken && cur->subrangeBranchNotTaken->lastIterationIndex != iterationIndex)
{
cur->subrangeBranchNotTaken->lastIterationIndex = iterationIndex;
subranges.push_back(cur->subrangeBranchNotTaken);
}
// check predecessors
for(auto& prev : cur->previousRanges)
{
if(prev->lastIterationIndex != iterationIndex)
{
prev->lastIterationIndex = iterationIndex;
subranges.push_back(prev);
}
}
}
return subranges;
}
void raLivenessRange::GetAllowedRegistersExRecursive(raLivenessRange* range, uint32 iterationIndex, IMLPhysRegisterSet& allowedRegs)
{
range->lastIterationIndex = iterationIndex;
for (auto& it : range->list_fixedRegRequirements)
allowedRegs &= it.allowedReg;
// check successors
if (range->subrangeBranchTaken && range->subrangeBranchTaken->lastIterationIndex != iterationIndex)
GetAllowedRegistersExRecursive(range->subrangeBranchTaken, iterationIndex, allowedRegs);
if (range->subrangeBranchNotTaken && range->subrangeBranchNotTaken->lastIterationIndex != iterationIndex)
GetAllowedRegistersExRecursive(range->subrangeBranchNotTaken, iterationIndex, allowedRegs);
// check predecessors
for (auto& prev : range->previousRanges)
{
if (prev->lastIterationIndex != iterationIndex)
GetAllowedRegistersExRecursive(prev, iterationIndex, allowedRegs);
}
};
bool raLivenessRange::GetAllowedRegistersEx(IMLPhysRegisterSet& allowedRegisters)
{
uint32 iterationIndex = IMLRA_GetNextIterationIndex();
allowedRegisters.SetAllAvailable();
GetAllowedRegistersExRecursive(this, iterationIndex, allowedRegisters);
return !allowedRegisters.HasAllAvailable();
}
IMLPhysRegisterSet raLivenessRange::GetAllowedRegisters(IMLPhysRegisterSet regPool)
{
IMLPhysRegisterSet fixedRegRequirements = regPool;
if(interval.ExtendsPreviousSegment() || interval.ExtendsIntoNextSegment())
{
auto clusterRanges = GetAllSubrangesInCluster();
for(auto& subrange : clusterRanges)
{
for(auto& fixedRegLoc : subrange->list_fixedRegRequirements)
fixedRegRequirements &= fixedRegLoc.allowedReg;
}
return fixedRegRequirements;
}
for(auto& fixedRegLoc : list_fixedRegRequirements)
fixedRegRequirements &= fixedRegLoc.allowedReg;
return fixedRegRequirements;
}
void PPCRecRARange_addLink_perVirtualGPR(std::unordered_map<IMLRegID, raLivenessRange*>& root, raLivenessRange* subrange)
{
IMLRegID regId = subrange->GetVirtualRegister();
auto it = root.find(regId);
if (it == root.end())
{
// new single element
root.try_emplace(regId, subrange);
subrange->link_sameVirtualRegister.prev = nullptr;
subrange->link_sameVirtualRegister.next = nullptr;
}
else
{
// insert in first position
raLivenessRange* priorFirst = it->second;
subrange->link_sameVirtualRegister.next = priorFirst;
it->second = subrange;
subrange->link_sameVirtualRegister.prev = nullptr;
priorFirst->link_sameVirtualRegister.prev = subrange;
}
}
void PPCRecRARange_addLink_allSegmentRanges(raLivenessRange** root, raLivenessRange* subrange)
{
subrange->link_allSegmentRanges.next = *root;
if (*root)
(*root)->link_allSegmentRanges.prev = subrange;
subrange->link_allSegmentRanges.prev = nullptr;
*root = subrange;
}
void PPCRecRARange_removeLink_perVirtualGPR(std::unordered_map<IMLRegID, raLivenessRange*>& root, raLivenessRange* subrange)
{
#ifdef CEMU_DEBUG_ASSERT
raLivenessRange* cur = root.find(subrange->GetVirtualRegister())->second;
bool hasRangeFound = false;
while(cur)
{
if(cur == subrange)
{
hasRangeFound = true;
break;
}
cur = cur->link_sameVirtualRegister.next;
}
cemu_assert_debug(hasRangeFound);
#endif
IMLRegID regId = subrange->GetVirtualRegister();
raLivenessRange* nextRange = subrange->link_sameVirtualRegister.next;
raLivenessRange* prevRange = subrange->link_sameVirtualRegister.prev;
raLivenessRange* newBase = prevRange ? prevRange : nextRange;
if (prevRange)
prevRange->link_sameVirtualRegister.next = subrange->link_sameVirtualRegister.next;
if (nextRange)
nextRange->link_sameVirtualRegister.prev = subrange->link_sameVirtualRegister.prev;
if (!prevRange)
{
if (nextRange)
{
root.find(regId)->second = nextRange;
}
else
{
cemu_assert_debug(root.find(regId)->second == subrange);
root.erase(regId);
}
}
#ifdef CEMU_DEBUG_ASSERT
subrange->link_sameVirtualRegister.prev = (raLivenessRange*)1;
subrange->link_sameVirtualRegister.next = (raLivenessRange*)1;
#endif
}
void PPCRecRARange_removeLink_allSegmentRanges(raLivenessRange** root, raLivenessRange* subrange)
{
raLivenessRange* tempPrev = subrange->link_allSegmentRanges.prev;
if (subrange->link_allSegmentRanges.prev)
subrange->link_allSegmentRanges.prev->link_allSegmentRanges.next = subrange->link_allSegmentRanges.next;
else
(*root) = subrange->link_allSegmentRanges.next;
if (subrange->link_allSegmentRanges.next)
subrange->link_allSegmentRanges.next->link_allSegmentRanges.prev = tempPrev;
#ifdef CEMU_DEBUG_ASSERT
subrange->link_allSegmentRanges.prev = (raLivenessRange*)1;
subrange->link_allSegmentRanges.next = (raLivenessRange*)1;
#endif
}
MemoryPoolPermanentObjects<raLivenessRange> memPool_livenessSubrange(4096);
// startPosition and endPosition are inclusive
raLivenessRange* IMLRA_CreateRange(ppcImlGenContext_t* ppcImlGenContext, IMLSegment* imlSegment, IMLRegID virtualRegister, IMLName name, raInstructionEdge startPosition, raInstructionEdge endPosition)
{
raLivenessRange* range = memPool_livenessSubrange.acquireObj();
range->previousRanges.clear();
range->list_accessLocations.clear();
range->list_fixedRegRequirements.clear();
range->imlSegment = imlSegment;
cemu_assert_debug(startPosition <= endPosition);
range->interval.start = startPosition;
range->interval.end = endPosition;
// register mapping
range->virtualRegister = virtualRegister;
range->name = name;
range->physicalRegister = -1;
// default values
range->hasStore = false;
range->hasStoreDelayed = false;
range->lastIterationIndex = 0;
range->subrangeBranchNotTaken = nullptr;
range->subrangeBranchTaken = nullptr;
cemu_assert_debug(range->previousRanges.empty());
range->_noLoad = false;
// add to segment linked lists
PPCRecRARange_addLink_perVirtualGPR(imlSegment->raInfo.linkedList_perVirtualRegister, range);
PPCRecRARange_addLink_allSegmentRanges(&imlSegment->raInfo.linkedList_allSubranges, range);
return range;
}
void _unlinkSubrange(raLivenessRange* range)
{
IMLSegment* imlSegment = range->imlSegment;
PPCRecRARange_removeLink_perVirtualGPR(imlSegment->raInfo.linkedList_perVirtualRegister, range);
PPCRecRARange_removeLink_allSegmentRanges(&imlSegment->raInfo.linkedList_allSubranges, range);
// unlink reverse references
if(range->subrangeBranchTaken)
range->subrangeBranchTaken->previousRanges.erase(std::find(range->subrangeBranchTaken->previousRanges.begin(), range->subrangeBranchTaken->previousRanges.end(), range));
if(range->subrangeBranchNotTaken)
range->subrangeBranchNotTaken->previousRanges.erase(std::find(range->subrangeBranchNotTaken->previousRanges.begin(), range->subrangeBranchNotTaken->previousRanges.end(), range));
range->subrangeBranchTaken = (raLivenessRange*)(uintptr_t)-1;
range->subrangeBranchNotTaken = (raLivenessRange*)(uintptr_t)-1;
// remove forward references
for(auto& prev : range->previousRanges)
{
if(prev->subrangeBranchTaken == range)
prev->subrangeBranchTaken = nullptr;
if(prev->subrangeBranchNotTaken == range)
prev->subrangeBranchNotTaken = nullptr;
}
range->previousRanges.clear();
}
void IMLRA_DeleteRange(ppcImlGenContext_t* ppcImlGenContext, raLivenessRange* range)
{
_unlinkSubrange(range);
range->list_accessLocations.clear();
range->list_fixedRegRequirements.clear();
memPool_livenessSubrange.releaseObj(range);
}
void IMLRA_DeleteRangeCluster(ppcImlGenContext_t* ppcImlGenContext, raLivenessRange* range)
{
auto clusterRanges = range->GetAllSubrangesInCluster();
for (auto& subrange : clusterRanges)
IMLRA_DeleteRange(ppcImlGenContext, subrange);
}
void IMLRA_DeleteAllRanges(ppcImlGenContext_t* ppcImlGenContext)
{
for(auto& seg : ppcImlGenContext->segmentList2)
{
raLivenessRange* cur;
while(cur = seg->raInfo.linkedList_allSubranges)
IMLRA_DeleteRange(ppcImlGenContext, cur);
seg->raInfo.linkedList_allSubranges = nullptr;
seg->raInfo.linkedList_perVirtualRegister.clear();
}
}
void IMLRA_MergeSubranges(ppcImlGenContext_t* ppcImlGenContext, raLivenessRange* subrange, raLivenessRange* absorbedSubrange)
{
#ifdef CEMU_DEBUG_ASSERT
PPCRecRA_debugValidateSubrange(subrange);
PPCRecRA_debugValidateSubrange(absorbedSubrange);
if (subrange->imlSegment != absorbedSubrange->imlSegment)
assert_dbg();
cemu_assert_debug(subrange->interval.end == absorbedSubrange->interval.start);
if (subrange->subrangeBranchTaken || subrange->subrangeBranchNotTaken)
assert_dbg();
if (subrange == absorbedSubrange)
assert_dbg();
#endif
// update references
subrange->subrangeBranchTaken = absorbedSubrange->subrangeBranchTaken;
subrange->subrangeBranchNotTaken = absorbedSubrange->subrangeBranchNotTaken;
absorbedSubrange->subrangeBranchTaken = nullptr;
absorbedSubrange->subrangeBranchNotTaken = nullptr;
if(subrange->subrangeBranchTaken)
*std::find(subrange->subrangeBranchTaken->previousRanges.begin(), subrange->subrangeBranchTaken->previousRanges.end(), absorbedSubrange) = subrange;
if(subrange->subrangeBranchNotTaken)
*std::find(subrange->subrangeBranchNotTaken->previousRanges.begin(), subrange->subrangeBranchNotTaken->previousRanges.end(), absorbedSubrange) = subrange;
// merge usage locations
for (auto& accessLoc : absorbedSubrange->list_accessLocations)
subrange->list_accessLocations.push_back(accessLoc);
absorbedSubrange->list_accessLocations.clear();
// merge fixed reg locations
#ifdef CEMU_DEBUG_ASSERT
if(!subrange->list_fixedRegRequirements.empty() && !absorbedSubrange->list_fixedRegRequirements.empty())
{
cemu_assert_debug(subrange->list_fixedRegRequirements.back().pos < absorbedSubrange->list_fixedRegRequirements.front().pos);
}
#endif
for (auto& fixedReg : absorbedSubrange->list_fixedRegRequirements)
subrange->list_fixedRegRequirements.push_back(fixedReg);
absorbedSubrange->list_fixedRegRequirements.clear();
subrange->interval.end = absorbedSubrange->interval.end;
PPCRecRA_debugValidateSubrange(subrange);
IMLRA_DeleteRange(ppcImlGenContext, absorbedSubrange);
}
// remove all inter-segment connections from the range cluster and split it into local ranges. Ranges are trimmed and if they have no access location they will be removed
void IMLRA_ExplodeRangeCluster(ppcImlGenContext_t* ppcImlGenContext, raLivenessRange* originRange)
{
cemu_assert_debug(originRange->interval.ExtendsPreviousSegment() || originRange->interval.ExtendsIntoNextSegment()); // only call this on ranges that span multiple segments
auto clusterRanges = originRange->GetAllSubrangesInCluster();
for (auto& subrange : clusterRanges)
{
if (subrange->list_accessLocations.empty())
continue;
raInterval interval;
interval.SetInterval(subrange->list_accessLocations.front().pos, subrange->list_accessLocations.back().pos);
raLivenessRange* newSubrange = IMLRA_CreateRange(ppcImlGenContext, subrange->imlSegment, subrange->GetVirtualRegister(), subrange->GetName(), interval.start, interval.end);
// copy locations and fixed reg indices
newSubrange->list_accessLocations = subrange->list_accessLocations;
newSubrange->list_fixedRegRequirements = subrange->list_fixedRegRequirements;
if(originRange->HasPhysicalRegister())
{
cemu_assert_debug(subrange->list_fixedRegRequirements.empty()); // avoid unassigning a register from a range with a fixed register requirement
}
// validate
if(!newSubrange->list_accessLocations.empty())
{
cemu_assert_debug(newSubrange->list_accessLocations.front().pos >= newSubrange->interval.start);
cemu_assert_debug(newSubrange->list_accessLocations.back().pos <= newSubrange->interval.end);
}
if(!newSubrange->list_fixedRegRequirements.empty())
{
cemu_assert_debug(newSubrange->list_fixedRegRequirements.front().pos >= newSubrange->interval.start); // fixed register requirements outside of the actual access range probably means there is a mistake in GetInstructionFixedRegisters()
cemu_assert_debug(newSubrange->list_fixedRegRequirements.back().pos <= newSubrange->interval.end);
}
}
// delete the original range cluster
IMLRA_DeleteRangeCluster(ppcImlGenContext, originRange);
}
#ifdef CEMU_DEBUG_ASSERT
void PPCRecRA_debugValidateSubrange(raLivenessRange* range)
{
// validate subrange
if (range->subrangeBranchTaken && range->subrangeBranchTaken->imlSegment != range->imlSegment->nextSegmentBranchTaken)
assert_dbg();
if (range->subrangeBranchNotTaken && range->subrangeBranchNotTaken->imlSegment != range->imlSegment->nextSegmentBranchNotTaken)
assert_dbg();
if(range->subrangeBranchTaken || range->subrangeBranchNotTaken)
{
cemu_assert_debug(range->interval.end.ConnectsToNextSegment());
}
if(!range->previousRanges.empty())
{
cemu_assert_debug(range->interval.start.ConnectsToPreviousSegment());
}
// validate locations
if (!range->list_accessLocations.empty())
{
cemu_assert_debug(range->list_accessLocations.front().pos >= range->interval.start);
cemu_assert_debug(range->list_accessLocations.back().pos <= range->interval.end);
}
// validate fixed reg requirements
if (!range->list_fixedRegRequirements.empty())
{
cemu_assert_debug(range->list_fixedRegRequirements.front().pos >= range->interval.start);
cemu_assert_debug(range->list_fixedRegRequirements.back().pos <= range->interval.end);
for(sint32 i = 0; i < (sint32)range->list_fixedRegRequirements.size()-1; i++)
cemu_assert_debug(range->list_fixedRegRequirements[i].pos < range->list_fixedRegRequirements[i+1].pos);
}
}
#else
void PPCRecRA_debugValidateSubrange(raLivenessRange* range) {}
#endif
// trim start and end of range to match first and last read/write locations
// does not trim start/endpoints which extend into the next/previous segment
void IMLRA_TrimRangeToUse(raLivenessRange* range)
{
if(range->list_accessLocations.empty())
{
// special case where we trim ranges extending from other segments to a single instruction edge
cemu_assert_debug(!range->interval.start.IsInstructionIndex() || !range->interval.end.IsInstructionIndex());
if(range->interval.start.IsInstructionIndex())
range->interval.start = range->interval.end;
if(range->interval.end.IsInstructionIndex())
range->interval.end = range->interval.start;
return;
}
// trim start and end
raInterval prevInterval = range->interval;
if(range->interval.start.IsInstructionIndex())
range->interval.start = range->list_accessLocations.front().pos;
if(range->interval.end.IsInstructionIndex())
range->interval.end = range->list_accessLocations.back().pos;
// extra checks
#ifdef CEMU_DEBUG_ASSERT
cemu_assert_debug(range->interval.start <= range->interval.end);
for(auto& loc : range->list_accessLocations)
{
cemu_assert_debug(range->interval.ContainsEdge(loc.pos));
}
cemu_assert_debug(prevInterval.ContainsWholeInterval(range->interval));
#endif
}
// split range at the given position
// After the split there will be two ranges:
// head -> subrange is shortened to end at splitIndex (exclusive)
// tail -> a new subrange that ranges from splitIndex (inclusive) to the end of the original subrange
// if head has a physical register assigned it will not carry over to tail
// The return value is the tail range
// If trimToUsage is true, the end of the head subrange and the start of the tail subrange will be shrunk to fit the read/write locations within. If there are no locations then the range will be deleted
raLivenessRange* IMLRA_SplitRange(ppcImlGenContext_t* ppcImlGenContext, raLivenessRange*& subrange, raInstructionEdge splitPosition, bool trimToUsage)
{
cemu_assert_debug(splitPosition.IsInstructionIndex());
cemu_assert_debug(!subrange->interval.IsNextSegmentOnly() && !subrange->interval.IsPreviousSegmentOnly());
cemu_assert_debug(subrange->interval.ContainsEdge(splitPosition));
// determine new intervals
raInterval headInterval, tailInterval;
headInterval.SetInterval(subrange->interval.start, splitPosition-1);
tailInterval.SetInterval(splitPosition, subrange->interval.end);
cemu_assert_debug(headInterval.start <= headInterval.end);
cemu_assert_debug(tailInterval.start <= tailInterval.end);
// create tail
raLivenessRange* tailSubrange = IMLRA_CreateRange(ppcImlGenContext, subrange->imlSegment, subrange->GetVirtualRegister(), subrange->GetName(), tailInterval.start, tailInterval.end);
tailSubrange->SetPhysicalRegister(subrange->GetPhysicalRegister());
// carry over branch targets and update reverse references
tailSubrange->subrangeBranchTaken = subrange->subrangeBranchTaken;
tailSubrange->subrangeBranchNotTaken = subrange->subrangeBranchNotTaken;
subrange->subrangeBranchTaken = nullptr;
subrange->subrangeBranchNotTaken = nullptr;
if(tailSubrange->subrangeBranchTaken)
*std::find(tailSubrange->subrangeBranchTaken->previousRanges.begin(), tailSubrange->subrangeBranchTaken->previousRanges.end(), subrange) = tailSubrange;
if(tailSubrange->subrangeBranchNotTaken)
*std::find(tailSubrange->subrangeBranchNotTaken->previousRanges.begin(), tailSubrange->subrangeBranchNotTaken->previousRanges.end(), subrange) = tailSubrange;
// we assume that list_locations is ordered by instruction index and contains no duplicate indices, so lets check that here just in case
#ifdef CEMU_DEBUG_ASSERT
if(subrange->list_accessLocations.size() > 1)
{
for(size_t i=0; i<subrange->list_accessLocations.size()-1; i++)
{
cemu_assert_debug(subrange->list_accessLocations[i].pos < subrange->list_accessLocations[i+1].pos);
}
}
#endif
// split locations
auto it = std::lower_bound(
subrange->list_accessLocations.begin(), subrange->list_accessLocations.end(), splitPosition,
[](const raAccessLocation& accessLoc, raInstructionEdge value) { return accessLoc.pos < value; }
);
size_t originalCount = subrange->list_accessLocations.size();
tailSubrange->list_accessLocations.insert(tailSubrange->list_accessLocations.end(), it, subrange->list_accessLocations.end());
subrange->list_accessLocations.erase(it, subrange->list_accessLocations.end());
cemu_assert_debug(subrange->list_accessLocations.empty() || subrange->list_accessLocations.back().pos < splitPosition);
cemu_assert_debug(tailSubrange->list_accessLocations.empty() || tailSubrange->list_accessLocations.front().pos >= splitPosition);
cemu_assert_debug(subrange->list_accessLocations.size() + tailSubrange->list_accessLocations.size() == originalCount);
// split fixed reg requirements
for (sint32 i = 0; i < subrange->list_fixedRegRequirements.size(); i++)
{
raFixedRegRequirement* fixedReg = subrange->list_fixedRegRequirements.data() + i;
if (tailInterval.ContainsEdge(fixedReg->pos))
{
tailSubrange->list_fixedRegRequirements.push_back(*fixedReg);
}
}
// remove tail fixed reg requirements from head
for (sint32 i = 0; i < subrange->list_fixedRegRequirements.size(); i++)
{
raFixedRegRequirement* fixedReg = subrange->list_fixedRegRequirements.data() + i;
if (!headInterval.ContainsEdge(fixedReg->pos))
{
subrange->list_fixedRegRequirements.resize(i);
break;
}
}
// adjust intervals
subrange->interval = headInterval;
tailSubrange->interval = tailInterval;
// trim to hole
if(trimToUsage)
{
if(subrange->list_accessLocations.empty() && (subrange->interval.start.IsInstructionIndex() && subrange->interval.end.IsInstructionIndex()))
{
IMLRA_DeleteRange(ppcImlGenContext, subrange);
subrange = nullptr;
}
else
{
IMLRA_TrimRangeToUse(subrange);
}
if(tailSubrange->list_accessLocations.empty() && (tailSubrange->interval.start.IsInstructionIndex() && tailSubrange->interval.end.IsInstructionIndex()))
{
IMLRA_DeleteRange(ppcImlGenContext, tailSubrange);
tailSubrange = nullptr;
}
else
{
IMLRA_TrimRangeToUse(tailSubrange);
}
}
// validation
cemu_assert_debug(!subrange || subrange->interval.start <= subrange->interval.end);
cemu_assert_debug(!tailSubrange || tailSubrange->interval.start <= tailSubrange->interval.end);
cemu_assert_debug(!tailSubrange || tailSubrange->interval.start >= splitPosition);
if (!trimToUsage)
cemu_assert_debug(!tailSubrange || tailSubrange->interval.start == splitPosition);
if(subrange)
PPCRecRA_debugValidateSubrange(subrange);
if(tailSubrange)
PPCRecRA_debugValidateSubrange(tailSubrange);
return tailSubrange;
}
sint32 IMLRA_GetSegmentReadWriteCost(IMLSegment* imlSegment)
{
sint32 v = imlSegment->loopDepth + 1;
v *= 5;
return v*v; // 25, 100, 225, 400
}
// calculate additional cost of range that it would have after calling _ExplodeRange() on it
sint32 IMLRA_CalculateAdditionalCostOfRangeExplode(raLivenessRange* subrange)
{
auto ranges = subrange->GetAllSubrangesInCluster();
sint32 cost = 0;//-PPCRecRARange_estimateTotalCost(ranges);
for (auto& subrange : ranges)
{
if (subrange->list_accessLocations.empty())
continue; // this range would be deleted and thus has no cost
sint32 segmentLoadStoreCost = IMLRA_GetSegmentReadWriteCost(subrange->imlSegment);
bool hasAdditionalLoad = subrange->interval.ExtendsPreviousSegment();
bool hasAdditionalStore = subrange->interval.ExtendsIntoNextSegment();
if(hasAdditionalLoad && subrange->list_accessLocations.front().IsWrite()) // if written before read then a load isn't necessary
{
cemu_assert_debug(!subrange->list_accessLocations.front().IsRead());
cost += segmentLoadStoreCost;
}
if(hasAdditionalStore)
{
bool hasWrite = std::find_if(subrange->list_accessLocations.begin(), subrange->list_accessLocations.end(), [](const raAccessLocation& loc) { return loc.IsWrite(); }) != subrange->list_accessLocations.end();
if(!hasWrite) // ranges which don't modify their value do not need to be stored
cost += segmentLoadStoreCost;
}
}
// todo - properly calculating all the data-flow dependency based costs is more complex so this currently is an approximation
return cost;
}
sint32 IMLRA_CalculateAdditionalCostAfterSplit(raLivenessRange* subrange, raInstructionEdge splitPosition)
{
// validation
#ifdef CEMU_DEBUG_ASSERT
if (subrange->interval.ExtendsIntoNextSegment())
assert_dbg();
#endif
cemu_assert_debug(splitPosition.IsInstructionIndex());
sint32 cost = 0;
// find split position in location list
if (subrange->list_accessLocations.empty())
return 0;
if (splitPosition <= subrange->list_accessLocations.front().pos)
return 0;
if (splitPosition > subrange->list_accessLocations.back().pos)
return 0;
size_t firstTailLocationIndex = 0;
for (size_t i = 0; i < subrange->list_accessLocations.size(); i++)
{
if (subrange->list_accessLocations[i].pos >= splitPosition)
{
firstTailLocationIndex = i;
break;
}
}
std::span<raAccessLocation> headLocations{subrange->list_accessLocations.data(), firstTailLocationIndex};
std::span<raAccessLocation> tailLocations{subrange->list_accessLocations.data() + firstTailLocationIndex, subrange->list_accessLocations.size() - firstTailLocationIndex};
cemu_assert_debug(headLocations.empty() || headLocations.back().pos < splitPosition);
cemu_assert_debug(tailLocations.empty() || tailLocations.front().pos >= splitPosition);
sint32 segmentLoadStoreCost = IMLRA_GetSegmentReadWriteCost(subrange->imlSegment);
auto CalculateCostFromLocationRange = [segmentLoadStoreCost](std::span<raAccessLocation> locations, bool trackLoadCost = true, bool trackStoreCost = true) -> sint32
{
if(locations.empty())
return 0;
sint32 cost = 0;
if(locations.front().IsRead() && trackLoadCost)
cost += segmentLoadStoreCost; // not overwritten, so there is a load cost
bool hasWrite = std::find_if(locations.begin(), locations.end(), [](const raAccessLocation& loc) { return loc.IsWrite(); }) != locations.end();
if(hasWrite && trackStoreCost)
cost += segmentLoadStoreCost; // modified, so there is a store cost
return cost;
};
sint32 baseCost = CalculateCostFromLocationRange(subrange->list_accessLocations);
bool tailOverwritesValue = !tailLocations.empty() && !tailLocations.front().IsRead() && tailLocations.front().IsWrite();
sint32 newCost = CalculateCostFromLocationRange(headLocations) + CalculateCostFromLocationRange(tailLocations, !tailOverwritesValue, true);
cemu_assert_debug(newCost >= baseCost);
cost = newCost - baseCost;
return cost;
}

View file

@ -0,0 +1,364 @@
#pragma once
#include "IMLRegisterAllocator.h"
struct raLivenessSubrangeLink
{
struct raLivenessRange* prev;
struct raLivenessRange* next;
};
struct raInstructionEdge
{
friend struct raInterval;
public:
raInstructionEdge()
{
index = 0;
}
raInstructionEdge(sint32 instructionIndex, bool isInputEdge)
{
Set(instructionIndex, isInputEdge);
}
void Set(sint32 instructionIndex, bool isInputEdge)
{
if(instructionIndex == RA_INTER_RANGE_START || instructionIndex == RA_INTER_RANGE_END)
{
index = instructionIndex;
return;
}
index = instructionIndex * 2 + (isInputEdge ? 0 : 1);
cemu_assert_debug(index >= 0 && index < 0x100000*2); // make sure index value is sane
}
void SetRaw(sint32 index)
{
this->index = index;
cemu_assert_debug(index == RA_INTER_RANGE_START || index == RA_INTER_RANGE_END || (index >= 0 && index < 0x100000*2)); // make sure index value is sane
}
// sint32 GetRaw()
// {
// this->index = index;
// }
std::string GetDebugString()
{
if(index == RA_INTER_RANGE_START)
return "RA_START";
else if(index == RA_INTER_RANGE_END)
return "RA_END";
std::string str = fmt::format("{}", GetInstructionIndex());
if(IsOnInputEdge())
str += "i";
else if(IsOnOutputEdge())
str += "o";
return str;
}
sint32 GetInstructionIndex() const
{
cemu_assert_debug(index != RA_INTER_RANGE_START && index != RA_INTER_RANGE_END);
return index >> 1;
}
// returns instruction index or RA_INTER_RANGE_START/RA_INTER_RANGE_END
sint32 GetInstructionIndexEx() const
{
if(index == RA_INTER_RANGE_START || index == RA_INTER_RANGE_END)
return index;
return index >> 1;
}
sint32 GetRaw() const
{
return index;
}
bool IsOnInputEdge() const
{
cemu_assert_debug(index != RA_INTER_RANGE_START && index != RA_INTER_RANGE_END);
return (index&1) == 0;
}
bool IsOnOutputEdge() const
{
cemu_assert_debug(index != RA_INTER_RANGE_START && index != RA_INTER_RANGE_END);
return (index&1) != 0;
}
bool ConnectsToPreviousSegment() const
{
return index == RA_INTER_RANGE_START;
}
bool ConnectsToNextSegment() const
{
return index == RA_INTER_RANGE_END;
}
bool IsInstructionIndex() const
{
return index != RA_INTER_RANGE_START && index != RA_INTER_RANGE_END;
}
// comparison operators
bool operator>(const raInstructionEdge& other) const
{
return index > other.index;
}
bool operator<(const raInstructionEdge& other) const
{
return index < other.index;
}
bool operator<=(const raInstructionEdge& other) const
{
return index <= other.index;
}
bool operator>=(const raInstructionEdge& other) const
{
return index >= other.index;
}
bool operator==(const raInstructionEdge& other) const
{
return index == other.index;
}
raInstructionEdge operator+(sint32 offset) const
{
cemu_assert_debug(IsInstructionIndex());
cemu_assert_debug(offset >= 0 && offset < RA_INTER_RANGE_END);
raInstructionEdge edge;
edge.index = index + offset;
return edge;
}
raInstructionEdge operator-(sint32 offset) const
{
cemu_assert_debug(IsInstructionIndex());
cemu_assert_debug(offset >= 0 && offset < RA_INTER_RANGE_END);
raInstructionEdge edge;
edge.index = index - offset;
return edge;
}
raInstructionEdge& operator++()
{
cemu_assert_debug(IsInstructionIndex());
index++;
return *this;
}
private:
sint32 index; // can also be RA_INTER_RANGE_START or RA_INTER_RANGE_END, otherwise contains instruction index * 2
};
struct raAccessLocation
{
raAccessLocation(raInstructionEdge pos) : pos(pos) {}
bool IsRead() const
{
return pos.IsOnInputEdge();
}
bool IsWrite() const
{
return pos.IsOnOutputEdge();
}
raInstructionEdge pos;
};
struct raInterval
{
raInterval()
{
}
raInterval(raInstructionEdge start, raInstructionEdge end)
{
SetInterval(start, end);
}
// isStartOnInput = Input+Output edge on first instruction. If false then only output
// isEndOnOutput = Input+Output edge on last instruction. If false then only input
void SetInterval(sint32 start, bool isStartOnInput, sint32 end, bool isEndOnOutput)
{
this->start.Set(start, isStartOnInput);
this->end.Set(end, !isEndOnOutput);
}
void SetInterval(raInstructionEdge start, raInstructionEdge end)
{
cemu_assert_debug(start <= end);
this->start = start;
this->end = end;
}
void SetStart(const raInstructionEdge& edge)
{
start = edge;
}
void SetEnd(const raInstructionEdge& edge)
{
end = edge;
}
sint32 GetStartIndex() const
{
return start.GetInstructionIndex();
}
sint32 GetEndIndex() const
{
return end.GetInstructionIndex();
}
bool ExtendsPreviousSegment() const
{
return start.ConnectsToPreviousSegment();
}
bool ExtendsIntoNextSegment() const
{
return end.ConnectsToNextSegment();
}
bool IsNextSegmentOnly() const
{
return start.ConnectsToNextSegment() && end.ConnectsToNextSegment();
}
bool IsPreviousSegmentOnly() const
{
return start.ConnectsToPreviousSegment() && end.ConnectsToPreviousSegment();
}
// returns true if range is contained within a single segment
bool IsLocal() const
{
return start.GetRaw() > RA_INTER_RANGE_START && end.GetRaw() < RA_INTER_RANGE_END;
}
bool ContainsInstructionIndex(sint32 instructionIndex) const
{
cemu_assert_debug(instructionIndex != RA_INTER_RANGE_START && instructionIndex != RA_INTER_RANGE_END);
return instructionIndex >= start.GetInstructionIndexEx() && instructionIndex <= end.GetInstructionIndexEx();
}
// similar to ContainsInstructionIndex, but allows RA_INTER_RANGE_START/END as input
bool ContainsInstructionIndexEx(sint32 instructionIndex) const
{
if(instructionIndex == RA_INTER_RANGE_START)
return start.ConnectsToPreviousSegment();
if(instructionIndex == RA_INTER_RANGE_END)
return end.ConnectsToNextSegment();
return instructionIndex >= start.GetInstructionIndexEx() && instructionIndex <= end.GetInstructionIndexEx();
}
bool ContainsEdge(const raInstructionEdge& edge) const
{
return edge >= start && edge <= end;
}
bool ContainsWholeInterval(const raInterval& other) const
{
return other.start >= start && other.end <= end;
}
bool IsOverlapping(const raInterval& other) const
{
return start <= other.end && end >= other.start;
}
sint32 GetPreciseDistance()
{
cemu_assert_debug(!start.ConnectsToNextSegment()); // how to handle this?
if(start == end)
return 1;
cemu_assert_debug(!end.ConnectsToPreviousSegment() && !end.ConnectsToNextSegment());
if(start.ConnectsToPreviousSegment())
return end.GetRaw() + 1;
return end.GetRaw() - start.GetRaw() + 1; // +1 because end is inclusive
}
//private: not making these directly accessible only forces us to create loads of verbose getters and setters
raInstructionEdge start;
raInstructionEdge end;
};
struct raFixedRegRequirement
{
raInstructionEdge pos;
IMLPhysRegisterSet allowedReg;
};
struct raLivenessRange
{
IMLSegment* imlSegment;
raInterval interval;
// dirty state tracking
bool _noLoad;
bool hasStore;
bool hasStoreDelayed;
// next
raLivenessRange* subrangeBranchTaken;
raLivenessRange* subrangeBranchNotTaken;
// reverse counterpart of BranchTaken/BranchNotTaken
boost::container::small_vector<raLivenessRange*, 4> previousRanges;
// processing
uint32 lastIterationIndex;
// instruction read/write locations
std::vector<raAccessLocation> list_accessLocations;
// ordered list of all raInstructionEdge indices which require a fixed register
std::vector<raFixedRegRequirement> list_fixedRegRequirements;
// linked list (subranges with same GPR virtual register)
raLivenessSubrangeLink link_sameVirtualRegister;
// linked list (all subranges for this segment)
raLivenessSubrangeLink link_allSegmentRanges;
// register info
IMLRegID virtualRegister;
IMLName name;
// register allocator result
IMLPhysReg physicalRegister;
boost::container::small_vector<raLivenessRange*, 128> GetAllSubrangesInCluster();
bool GetAllowedRegistersEx(IMLPhysRegisterSet& allowedRegisters); // if the cluster has fixed register requirements in any instruction this returns the combined register mask. Otherwise returns false in which case allowedRegisters is left undefined
IMLPhysRegisterSet GetAllowedRegisters(IMLPhysRegisterSet regPool); // return regPool with fixed register requirements filtered out
IMLRegID GetVirtualRegister() const;
sint32 GetPhysicalRegister() const;
bool HasPhysicalRegister() const { return physicalRegister >= 0; }
IMLName GetName() const;
void SetPhysicalRegister(IMLPhysReg physicalRegister);
void SetPhysicalRegisterForCluster(IMLPhysReg physicalRegister);
void UnsetPhysicalRegister() { physicalRegister = -1; }
private:
void GetAllowedRegistersExRecursive(raLivenessRange* range, uint32 iterationIndex, IMLPhysRegisterSet& allowedRegs);
};
raLivenessRange* IMLRA_CreateRange(ppcImlGenContext_t* ppcImlGenContext, IMLSegment* imlSegment, IMLRegID virtualRegister, IMLName name, raInstructionEdge startPosition, raInstructionEdge endPosition);
void IMLRA_DeleteRange(ppcImlGenContext_t* ppcImlGenContext, raLivenessRange* subrange);
void IMLRA_DeleteAllRanges(ppcImlGenContext_t* ppcImlGenContext);
void IMLRA_ExplodeRangeCluster(ppcImlGenContext_t* ppcImlGenContext, raLivenessRange* originRange);
void IMLRA_MergeSubranges(ppcImlGenContext_t* ppcImlGenContext, raLivenessRange* subrange, raLivenessRange* absorbedSubrange);
raLivenessRange* IMLRA_SplitRange(ppcImlGenContext_t* ppcImlGenContext, raLivenessRange*& subrange, raInstructionEdge splitPosition, bool trimToUsage = false);
void PPCRecRA_debugValidateSubrange(raLivenessRange* subrange);
// cost estimation
sint32 IMLRA_GetSegmentReadWriteCost(IMLSegment* imlSegment);
sint32 IMLRA_CalculateAdditionalCostOfRangeExplode(raLivenessRange* subrange);
//sint32 PPCRecRARange_estimateAdditionalCostAfterSplit(raLivenessRange* subrange, sint32 splitIndex);
sint32 IMLRA_CalculateAdditionalCostAfterSplit(raLivenessRange* subrange, raInstructionEdge splitPosition);

View file

@ -0,0 +1,133 @@
#include "IMLInstruction.h"
#include "IMLSegment.h"
void IMLSegment::SetEnterable(uint32 enterAddress)
{
cemu_assert_debug(!isEnterable || enterPPCAddress == enterAddress);
isEnterable = true;
enterPPCAddress = enterAddress;
}
bool IMLSegment::HasSuffixInstruction() const
{
if (imlList.empty())
return false;
const IMLInstruction& imlInstruction = imlList.back();
return imlInstruction.IsSuffixInstruction();
}
sint32 IMLSegment::GetSuffixInstructionIndex() const
{
cemu_assert_debug(HasSuffixInstruction());
return (sint32)(imlList.size() - 1);
}
IMLInstruction* IMLSegment::GetLastInstruction()
{
if (imlList.empty())
return nullptr;
return &imlList.back();
}
void IMLSegment::SetLinkBranchNotTaken(IMLSegment* imlSegmentDst)
{
if (nextSegmentBranchNotTaken)
nextSegmentBranchNotTaken->list_prevSegments.erase(std::find(nextSegmentBranchNotTaken->list_prevSegments.begin(), nextSegmentBranchNotTaken->list_prevSegments.end(), this));
nextSegmentBranchNotTaken = imlSegmentDst;
if(imlSegmentDst)
imlSegmentDst->list_prevSegments.push_back(this);
}
void IMLSegment::SetLinkBranchTaken(IMLSegment* imlSegmentDst)
{
if (nextSegmentBranchTaken)
nextSegmentBranchTaken->list_prevSegments.erase(std::find(nextSegmentBranchTaken->list_prevSegments.begin(), nextSegmentBranchTaken->list_prevSegments.end(), this));
nextSegmentBranchTaken = imlSegmentDst;
if (imlSegmentDst)
imlSegmentDst->list_prevSegments.push_back(this);
}
IMLInstruction* IMLSegment::AppendInstruction()
{
IMLInstruction& inst = imlList.emplace_back();
memset(&inst, 0, sizeof(IMLInstruction));
return &inst;
}
void IMLSegment_SetLinkBranchNotTaken(IMLSegment* imlSegmentSrc, IMLSegment* imlSegmentDst)
{
// make sure segments aren't already linked
if (imlSegmentSrc->nextSegmentBranchNotTaken == imlSegmentDst)
return;
// add as next segment for source
if (imlSegmentSrc->nextSegmentBranchNotTaken != nullptr)
assert_dbg();
imlSegmentSrc->nextSegmentBranchNotTaken = imlSegmentDst;
// add as previous segment for destination
imlSegmentDst->list_prevSegments.push_back(imlSegmentSrc);
}
void IMLSegment_SetLinkBranchTaken(IMLSegment* imlSegmentSrc, IMLSegment* imlSegmentDst)
{
// make sure segments aren't already linked
if (imlSegmentSrc->nextSegmentBranchTaken == imlSegmentDst)
return;
// add as next segment for source
if (imlSegmentSrc->nextSegmentBranchTaken != nullptr)
assert_dbg();
imlSegmentSrc->nextSegmentBranchTaken = imlSegmentDst;
// add as previous segment for destination
imlSegmentDst->list_prevSegments.push_back(imlSegmentSrc);
}
void IMLSegment_RemoveLink(IMLSegment* imlSegmentSrc, IMLSegment* imlSegmentDst)
{
if (imlSegmentSrc->nextSegmentBranchNotTaken == imlSegmentDst)
{
imlSegmentSrc->nextSegmentBranchNotTaken = nullptr;
}
else if (imlSegmentSrc->nextSegmentBranchTaken == imlSegmentDst)
{
imlSegmentSrc->nextSegmentBranchTaken = nullptr;
}
else
assert_dbg();
bool matchFound = false;
for (sint32 i = 0; i < imlSegmentDst->list_prevSegments.size(); i++)
{
if (imlSegmentDst->list_prevSegments[i] == imlSegmentSrc)
{
imlSegmentDst->list_prevSegments.erase(imlSegmentDst->list_prevSegments.begin() + i);
matchFound = true;
break;
}
}
if (matchFound == false)
assert_dbg();
}
/*
* Replaces all links to segment orig with linkts to segment new
*/
void IMLSegment_RelinkInputSegment(IMLSegment* imlSegmentOrig, IMLSegment* imlSegmentNew)
{
while (imlSegmentOrig->list_prevSegments.size() != 0)
{
IMLSegment* prevSegment = imlSegmentOrig->list_prevSegments[0];
if (prevSegment->nextSegmentBranchNotTaken == imlSegmentOrig)
{
IMLSegment_RemoveLink(prevSegment, imlSegmentOrig);
IMLSegment_SetLinkBranchNotTaken(prevSegment, imlSegmentNew);
}
else if (prevSegment->nextSegmentBranchTaken == imlSegmentOrig)
{
IMLSegment_RemoveLink(prevSegment, imlSegmentOrig);
IMLSegment_SetLinkBranchTaken(prevSegment, imlSegmentNew);
}
else
{
assert_dbg();
}
}
}

View file

@ -0,0 +1,193 @@
#pragma once
#include "IMLInstruction.h"
#include <boost/container/small_vector.hpp>
// special values to mark the index of ranges that reach across the segment border
#define RA_INTER_RANGE_START (-1)
#define RA_INTER_RANGE_END (0x70000000)
struct IMLSegmentPoint
{
friend struct IMLSegmentInterval;
sint32 index;
struct IMLSegment* imlSegment; // do we really need to track this? SegmentPoints are always accessed via the segment that they are part of
IMLSegmentPoint* next;
IMLSegmentPoint* prev;
// the index is the instruction index times two.
// this gives us the ability to cover half an instruction with RA ranges
// covering only the first half of an instruction (0-0) means that the register is read, but not preserved
// covering first and the second half means the register is read and preserved
// covering only the second half means the register is written but not read
sint32 GetInstructionIndex() const
{
return index;
}
void SetInstructionIndex(sint32 index)
{
this->index = index;
}
void ShiftIfAfter(sint32 instructionIndex, sint32 shiftCount)
{
if (!IsPreviousSegment() && !IsNextSegment())
{
if (GetInstructionIndex() >= instructionIndex)
index += shiftCount;
}
}
void DecrementByOneInstruction()
{
index--;
}
// the segment point can point beyond the first and last instruction which indicates that it is an infinite range reaching up to the previous or next segment
bool IsPreviousSegment() const { return index == RA_INTER_RANGE_START; }
bool IsNextSegment() const { return index == RA_INTER_RANGE_END; }
// overload operand > and <
bool operator>(const IMLSegmentPoint& other) const { return index > other.index; }
bool operator<(const IMLSegmentPoint& other) const { return index < other.index; }
bool operator==(const IMLSegmentPoint& other) const { return index == other.index; }
bool operator!=(const IMLSegmentPoint& other) const { return index != other.index; }
// overload comparison operands for sint32
bool operator>(const sint32 other) const { return index > other; }
bool operator<(const sint32 other) const { return index < other; }
bool operator<=(const sint32 other) const { return index <= other; }
bool operator>=(const sint32 other) const { return index >= other; }
};
struct IMLSegmentInterval
{
IMLSegmentPoint start;
IMLSegmentPoint end;
bool ContainsInstructionIndex(sint32 offset) const { return start <= offset && end > offset; }
bool IsRangeOverlapping(const IMLSegmentInterval& other)
{
// todo - compare the raw index
sint32 r1start = this->start.GetInstructionIndex();
sint32 r1end = this->end.GetInstructionIndex();
sint32 r2start = other.start.GetInstructionIndex();
sint32 r2end = other.end.GetInstructionIndex();
if (r1start < r2end && r1end > r2start)
return true;
if (this->start.IsPreviousSegment() && r1start == r2start)
return true;
if (this->end.IsNextSegment() && r1end == r2end)
return true;
return false;
}
bool ExtendsIntoPreviousSegment() const
{
return start.IsPreviousSegment();
}
bool ExtendsIntoNextSegment() const
{
return end.IsNextSegment();
}
bool IsNextSegmentOnly() const
{
if(!start.IsNextSegment())
return false;
cemu_assert_debug(end.IsNextSegment());
return true;
}
bool IsPreviousSegmentOnly() const
{
if (!end.IsPreviousSegment())
return false;
cemu_assert_debug(start.IsPreviousSegment());
return true;
}
sint32 GetDistance() const
{
// todo - assert if either start or end is outside the segment
// we may also want to switch this to raw indices?
return end.GetInstructionIndex() - start.GetInstructionIndex();
}
};
struct PPCSegmentRegisterAllocatorInfo_t
{
// used during loop detection
bool isPartOfProcessedLoop{};
sint32 lastIterationIndex{};
// linked lists
struct raLivenessRange* linkedList_allSubranges{};
std::unordered_map<IMLRegID, struct raLivenessRange*> linkedList_perVirtualRegister;
};
struct IMLSegment
{
sint32 momentaryIndex{}; // index in segment list, generally not kept up to date except if needed (necessary for loop detection)
sint32 loopDepth{};
uint32 ppcAddress{}; // ppc address (0xFFFFFFFF if not associated with an address)
uint32 x64Offset{}; // x64 code offset of segment start
// list of intermediate instructions in this segment
std::vector<IMLInstruction> imlList;
// segment link
IMLSegment* nextSegmentBranchNotTaken{}; // this is also the default for segments where there is no branch
IMLSegment* nextSegmentBranchTaken{};
bool nextSegmentIsUncertain{};
std::vector<IMLSegment*> list_prevSegments{};
// source for overwrite analysis (if nextSegmentIsUncertain is true)
// sometimes a segment is marked as an exit point, but for the purposes of dead code elimination we know the next segment
IMLSegment* deadCodeEliminationHintSeg{};
std::vector<IMLSegment*> list_deadCodeHintBy{};
// enterable segments
bool isEnterable{}; // this segment can be entered from outside the recompiler (no preloaded registers necessary)
uint32 enterPPCAddress{}; // used if isEnterable is true
// register allocator info
PPCSegmentRegisterAllocatorInfo_t raInfo{};
// segment state API
void SetEnterable(uint32 enterAddress);
void SetLinkBranchNotTaken(IMLSegment* imlSegmentDst);
void SetLinkBranchTaken(IMLSegment* imlSegmentDst);
IMLSegment* GetBranchTaken()
{
return nextSegmentBranchTaken;
}
IMLSegment* GetBranchNotTaken()
{
return nextSegmentBranchNotTaken;
}
void SetNextSegmentForOverwriteHints(IMLSegment* seg)
{
cemu_assert_debug(!deadCodeEliminationHintSeg);
deadCodeEliminationHintSeg = seg;
if (seg)
seg->list_deadCodeHintBy.push_back(this);
}
// instruction API
IMLInstruction* AppendInstruction();
bool HasSuffixInstruction() const;
sint32 GetSuffixInstructionIndex() const;
IMLInstruction* GetLastInstruction();
// segment points
IMLSegmentPoint* segmentPointList{};
};
void IMLSegment_SetLinkBranchNotTaken(IMLSegment* imlSegmentSrc, IMLSegment* imlSegmentDst);
void IMLSegment_SetLinkBranchTaken(IMLSegment* imlSegmentSrc, IMLSegment* imlSegmentDst);
void IMLSegment_RelinkInputSegment(IMLSegment* imlSegmentOrig, IMLSegment* imlSegmentNew);
void IMLSegment_RemoveLink(IMLSegment* imlSegmentSrc, IMLSegment* imlSegmentDst);

View file

@ -21,6 +21,16 @@ public:
};
public:
~PPCFunctionBoundaryTracker()
{
while (!map_ranges.empty())
{
PPCRange_t* range = *map_ranges.begin();
delete range;
map_ranges.erase(map_ranges.begin());
}
}
void trackStartPoint(MPTR startAddress)
{
processRange(startAddress, nullptr, nullptr);
@ -40,10 +50,34 @@ public:
return false;
}
std::vector<PPCRange_t> GetRanges()
{
std::vector<PPCRange_t> r;
for (auto& it : map_ranges)
r.emplace_back(*it);
return r;
}
bool ContainsAddress(uint32 addr) const
{
for (auto& it : map_ranges)
{
if (addr >= it->startAddress && addr < it->getEndAddress())
return true;
}
return false;
}
const std::set<uint32>& GetBranchTargets() const
{
return map_branchTargetsAll;
}
private:
void addBranchDestination(PPCRange_t* sourceRange, MPTR address)
{
map_branchTargets.emplace(address);
map_queuedBranchTargets.emplace(address);
map_branchTargetsAll.emplace(address);
}
// process flow of instruction
@ -114,7 +148,7 @@ private:
Espresso::BOField BO;
uint32 BI;
bool LK;
Espresso::decodeOp_BCLR(opcode, BO, BI, LK);
Espresso::decodeOp_BCSPR(opcode, BO, BI, LK);
if (BO.branchAlways() && !LK)
{
// unconditional BLR
@ -218,7 +252,7 @@ private:
auto rangeItr = map_ranges.begin();
PPCRange_t* previousRange = nullptr;
for (std::set<uint32_t>::const_iterator targetItr = map_branchTargets.begin() ; targetItr != map_branchTargets.end(); )
for (std::set<uint32_t>::const_iterator targetItr = map_queuedBranchTargets.begin() ; targetItr != map_queuedBranchTargets.end(); )
{
while (rangeItr != map_ranges.end() && ((*rangeItr)->startAddress + (*rangeItr)->length) <= (*targetItr))
{
@ -239,7 +273,7 @@ private:
(*targetItr) < ((*rangeItr)->startAddress + (*rangeItr)->length))
{
// delete visited targets
targetItr = map_branchTargets.erase(targetItr);
targetItr = map_queuedBranchTargets.erase(targetItr);
continue;
}
@ -289,5 +323,6 @@ private:
};
std::set<PPCRange_t*, RangePtrCmp> map_ranges;
std::set<uint32> map_branchTargets;
std::set<uint32> map_queuedBranchTargets;
std::set<uint32> map_branchTargetsAll;
};

View file

@ -2,7 +2,6 @@
#include "PPCFunctionBoundaryTracker.h"
#include "PPCRecompiler.h"
#include "PPCRecompilerIml.h"
#include "PPCRecompilerX64.h"
#include "Cafe/OS/RPL/rpl.h"
#include "util/containers/RangeStore.h"
#include "Cafe/OS/libs/coreinit/coreinit_CodeGen.h"
@ -14,6 +13,14 @@
#include "util/helpers/helpers.h"
#include "util/MemMapper/MemMapper.h"
#include "IML/IML.h"
#include "IML/IMLRegisterAllocator.h"
#include "BackendX64/BackendX64.h"
#include "util/highresolutiontimer/HighResolutionTimer.h"
#define PPCREC_FORCE_SYNCHRONOUS_COMPILATION 0 // if 1, then function recompilation will block and execute on the thread that called PPCRecompiler_visitAddressNoBlock
#define PPCREC_LOG_RECOMPILATION_RESULTS 0
struct PPCInvalidationRange
{
MPTR startAddress;
@ -37,11 +44,36 @@ void ATTR_MS_ABI (*PPCRecompiler_leaveRecompilerCode_unvisited)();
PPCRecompilerInstanceData_t* ppcRecompilerInstanceData;
#if PPCREC_FORCE_SYNCHRONOUS_COMPILATION
static std::mutex s_singleRecompilationMutex;
#endif
bool ppcRecompilerEnabled = false;
void PPCRecompiler_recompileAtAddress(uint32 address);
// this function does never block and can fail if the recompiler lock cannot be acquired immediately
void PPCRecompiler_visitAddressNoBlock(uint32 enterAddress)
{
#if PPCREC_FORCE_SYNCHRONOUS_COMPILATION
if (ppcRecompilerInstanceData->ppcRecompilerDirectJumpTable[enterAddress / 4] != PPCRecompiler_leaveRecompilerCode_unvisited)
return;
PPCRecompilerState.recompilerSpinlock.lock();
if (ppcRecompilerInstanceData->ppcRecompilerDirectJumpTable[enterAddress / 4] != PPCRecompiler_leaveRecompilerCode_unvisited)
{
PPCRecompilerState.recompilerSpinlock.unlock();
return;
}
ppcRecompilerInstanceData->ppcRecompilerDirectJumpTable[enterAddress / 4] = PPCRecompiler_leaveRecompilerCode_visited;
PPCRecompilerState.recompilerSpinlock.unlock();
s_singleRecompilationMutex.lock();
if (ppcRecompilerInstanceData->ppcRecompilerDirectJumpTable[enterAddress / 4] == PPCRecompiler_leaveRecompilerCode_visited)
{
PPCRecompiler_recompileAtAddress(enterAddress);
}
s_singleRecompilationMutex.unlock();
return;
#endif
// quick read-only check without lock
if (ppcRecompilerInstanceData->ppcRecompilerDirectJumpTable[enterAddress / 4] != PPCRecompiler_leaveRecompilerCode_unvisited)
return;
@ -127,15 +159,15 @@ void PPCRecompiler_attemptEnter(PPCInterpreter_t* hCPU, uint32 enterAddress)
PPCRecompiler_enter(hCPU, funcPtr);
}
}
bool PPCRecompiler_ApplyIMLPasses(ppcImlGenContext_t& ppcImlGenContext);
PPCRecFunction_t* PPCRecompiler_recompileFunction(PPCFunctionBoundaryTracker::PPCRange_t range, std::set<uint32>& entryAddresses, std::vector<std::pair<MPTR, uint32>>& entryPointsOut)
PPCRecFunction_t* PPCRecompiler_recompileFunction(PPCFunctionBoundaryTracker::PPCRange_t range, std::set<uint32>& entryAddresses, std::vector<std::pair<MPTR, uint32>>& entryPointsOut, PPCFunctionBoundaryTracker& boundaryTracker)
{
if (range.startAddress >= PPC_REC_CODE_AREA_END)
{
cemuLog_log(LogType::Force, "Attempting to recompile function outside of allowed code area");
return nullptr;
}
uint32 codeGenRangeStart;
uint32 codeGenRangeSize = 0;
coreinit::OSGetCodegenVirtAddrRangeInternal(codeGenRangeStart, codeGenRangeSize);
@ -153,29 +185,61 @@ PPCRecFunction_t* PPCRecompiler_recompileFunction(PPCFunctionBoundaryTracker::PP
PPCRecFunction_t* ppcRecFunc = new PPCRecFunction_t();
ppcRecFunc->ppcAddress = range.startAddress;
ppcRecFunc->ppcSize = range.length;
#if PPCREC_LOG_RECOMPILATION_RESULTS
BenchmarkTimer bt;
bt.Start();
#endif
// generate intermediate code
ppcImlGenContext_t ppcImlGenContext = { 0 };
bool compiledSuccessfully = PPCRecompiler_generateIntermediateCode(ppcImlGenContext, ppcRecFunc, entryAddresses);
ppcImlGenContext.debug_entryPPCAddress = range.startAddress;
bool compiledSuccessfully = PPCRecompiler_generateIntermediateCode(ppcImlGenContext, ppcRecFunc, entryAddresses, boundaryTracker);
if (compiledSuccessfully == false)
{
// todo: Free everything
PPCRecompiler_freeContext(&ppcImlGenContext);
delete ppcRecFunc;
return NULL;
return nullptr;
}
uint32 ppcRecLowerAddr = LaunchSettings::GetPPCRecLowerAddr();
uint32 ppcRecUpperAddr = LaunchSettings::GetPPCRecUpperAddr();
if (ppcRecLowerAddr != 0 && ppcRecUpperAddr != 0)
{
if (ppcRecFunc->ppcAddress < ppcRecLowerAddr || ppcRecFunc->ppcAddress > ppcRecUpperAddr)
{
delete ppcRecFunc;
return nullptr;
}
}
// apply passes
if (!PPCRecompiler_ApplyIMLPasses(ppcImlGenContext))
{
delete ppcRecFunc;
return nullptr;
}
// emit x64 code
bool x64GenerationSuccess = PPCRecompiler_generateX64Code(ppcRecFunc, &ppcImlGenContext);
if (x64GenerationSuccess == false)
{
PPCRecompiler_freeContext(&ppcImlGenContext);
return nullptr;
}
if (ActiveSettings::DumpRecompilerFunctionsEnabled())
{
FileStream* fs = FileStream::createFile2(ActiveSettings::GetUserDataPath(fmt::format("dump/recompiler/ppc_{:08x}.bin", ppcRecFunc->ppcAddress)));
if (fs)
{
fs->writeData(ppcRecFunc->x86Code, ppcRecFunc->x86Size);
delete fs;
}
}
// collect list of PPC-->x64 entry points
entryPointsOut.clear();
for (sint32 s = 0; s < ppcImlGenContext.segmentListCount; s++)
for(IMLSegment* imlSegment : ppcImlGenContext.segmentList2)
{
PPCRecImlSegment_t* imlSegment = ppcImlGenContext.segmentList[s];
if (imlSegment->isEnterable == false)
continue;
@ -185,10 +249,83 @@ PPCRecFunction_t* PPCRecompiler_recompileFunction(PPCFunctionBoundaryTracker::PP
entryPointsOut.emplace_back(ppcEnterOffset, x64Offset);
}
PPCRecompiler_freeContext(&ppcImlGenContext);
#if PPCREC_LOG_RECOMPILATION_RESULTS
bt.Stop();
uint32 codeHash = 0;
for (uint32 i = 0; i < ppcRecFunc->x86Size; i++)
{
codeHash = _rotr(codeHash, 3);
codeHash += ((uint8*)ppcRecFunc->x86Code)[i];
}
cemuLog_log(LogType::Force, "[Recompiler] PPC 0x{:08x} -> x64: 0x{:x} Took {:.4}ms | Size {:04x} CodeHash {:08x}", (uint32)ppcRecFunc->ppcAddress, (uint64)(uintptr_t)ppcRecFunc->x86Code, bt.GetElapsedMilliseconds(), ppcRecFunc->x86Size, codeHash);
#endif
return ppcRecFunc;
}
void PPCRecompiler_NativeRegisterAllocatorPass(ppcImlGenContext_t& ppcImlGenContext)
{
IMLRegisterAllocatorParameters raParam;
for (auto& it : ppcImlGenContext.mappedRegs)
raParam.regIdToName.try_emplace(it.second.GetRegID(), it.first);
auto& gprPhysPool = raParam.GetPhysRegPool(IMLRegFormat::I64);
gprPhysPool.SetAvailable(IMLArchX86::PHYSREG_GPR_BASE + X86_REG_RAX);
gprPhysPool.SetAvailable(IMLArchX86::PHYSREG_GPR_BASE + X86_REG_RDX);
gprPhysPool.SetAvailable(IMLArchX86::PHYSREG_GPR_BASE + X86_REG_RBX);
gprPhysPool.SetAvailable(IMLArchX86::PHYSREG_GPR_BASE + X86_REG_RBP);
gprPhysPool.SetAvailable(IMLArchX86::PHYSREG_GPR_BASE + X86_REG_RSI);
gprPhysPool.SetAvailable(IMLArchX86::PHYSREG_GPR_BASE + X86_REG_RDI);
gprPhysPool.SetAvailable(IMLArchX86::PHYSREG_GPR_BASE + X86_REG_R8);
gprPhysPool.SetAvailable(IMLArchX86::PHYSREG_GPR_BASE + X86_REG_R9);
gprPhysPool.SetAvailable(IMLArchX86::PHYSREG_GPR_BASE + X86_REG_R10);
gprPhysPool.SetAvailable(IMLArchX86::PHYSREG_GPR_BASE + X86_REG_R11);
gprPhysPool.SetAvailable(IMLArchX86::PHYSREG_GPR_BASE + X86_REG_R12);
gprPhysPool.SetAvailable(IMLArchX86::PHYSREG_GPR_BASE + X86_REG_RCX);
// add XMM registers, except XMM15 which is the temporary register
auto& fprPhysPool = raParam.GetPhysRegPool(IMLRegFormat::F64);
fprPhysPool.SetAvailable(IMLArchX86::PHYSREG_FPR_BASE + 0);
fprPhysPool.SetAvailable(IMLArchX86::PHYSREG_FPR_BASE + 1);
fprPhysPool.SetAvailable(IMLArchX86::PHYSREG_FPR_BASE + 2);
fprPhysPool.SetAvailable(IMLArchX86::PHYSREG_FPR_BASE + 3);
fprPhysPool.SetAvailable(IMLArchX86::PHYSREG_FPR_BASE + 4);
fprPhysPool.SetAvailable(IMLArchX86::PHYSREG_FPR_BASE + 5);
fprPhysPool.SetAvailable(IMLArchX86::PHYSREG_FPR_BASE + 6);
fprPhysPool.SetAvailable(IMLArchX86::PHYSREG_FPR_BASE + 7);
fprPhysPool.SetAvailable(IMLArchX86::PHYSREG_FPR_BASE + 8);
fprPhysPool.SetAvailable(IMLArchX86::PHYSREG_FPR_BASE + 9);
fprPhysPool.SetAvailable(IMLArchX86::PHYSREG_FPR_BASE + 10);
fprPhysPool.SetAvailable(IMLArchX86::PHYSREG_FPR_BASE + 11);
fprPhysPool.SetAvailable(IMLArchX86::PHYSREG_FPR_BASE + 12);
fprPhysPool.SetAvailable(IMLArchX86::PHYSREG_FPR_BASE + 13);
fprPhysPool.SetAvailable(IMLArchX86::PHYSREG_FPR_BASE + 14);
IMLRegisterAllocator_AllocateRegisters(&ppcImlGenContext, raParam);
}
bool PPCRecompiler_ApplyIMLPasses(ppcImlGenContext_t& ppcImlGenContext)
{
// isolate entry points from function flow (enterable segments must not be the target of any other segment)
// this simplifies logic during register allocation
PPCRecompilerIML_isolateEnterableSegments(&ppcImlGenContext);
// if GQRs can be predicted, optimize PSQ load/stores
PPCRecompiler_optimizePSQLoadAndStore(&ppcImlGenContext);
// merge certain float load+store patterns (must happen before FPR register remapping)
IMLOptimizer_OptimizeDirectFloatCopies(&ppcImlGenContext);
// delay byte swapping for certain load+store patterns
IMLOptimizer_OptimizeDirectIntegerCopies(&ppcImlGenContext);
IMLOptimizer_StandardOptimizationPass(ppcImlGenContext);
PPCRecompiler_NativeRegisterAllocatorPass(ppcImlGenContext);
return true;
}
bool PPCRecompiler_makeRecompiledFunctionActive(uint32 initialEntryPoint, PPCFunctionBoundaryTracker::PPCRange_t& range, PPCRecFunction_t* ppcRecFunc, std::vector<std::pair<MPTR, uint32>>& entryPoints)
{
// update jump table
@ -202,7 +339,7 @@ bool PPCRecompiler_makeRecompiledFunctionActive(uint32 initialEntryPoint, PPCFun
return false;
}
// check if the current range got invalidated in the time it took to recompile it
// check if the current range got invalidated during the time it took to recompile it
bool isInvalidated = false;
for (auto& invRange : PPCRecompilerState.invalidationRanges)
{
@ -280,7 +417,7 @@ void PPCRecompiler_recompileAtAddress(uint32 address)
PPCRecompilerState.recompilerSpinlock.unlock();
std::vector<std::pair<MPTR, uint32>> functionEntryPoints;
auto func = PPCRecompiler_recompileFunction(range, entryAddresses, functionEntryPoints);
auto func = PPCRecompiler_recompileFunction(range, entryAddresses, functionEntryPoints, funcBoundaries);
if (!func)
{
@ -295,6 +432,10 @@ std::atomic_bool s_recompilerThreadStopSignal{false};
void PPCRecompiler_thread()
{
SetThreadName("PPCRecompiler");
#if PPCREC_FORCE_SYNCHRONOUS_COMPILATION
return;
#endif
while (true)
{
if(s_recompilerThreadStopSignal)
@ -475,6 +616,41 @@ void PPCRecompiler_invalidateRange(uint32 startAddr, uint32 endAddr)
#if defined(ARCH_X86_64)
void PPCRecompiler_initPlatform()
{
ppcRecompilerInstanceData->_x64XMM_xorNegateMaskBottom[0] = 1ULL << 63ULL;
ppcRecompilerInstanceData->_x64XMM_xorNegateMaskBottom[1] = 0ULL;
ppcRecompilerInstanceData->_x64XMM_xorNegateMaskPair[0] = 1ULL << 63ULL;
ppcRecompilerInstanceData->_x64XMM_xorNegateMaskPair[1] = 1ULL << 63ULL;
ppcRecompilerInstanceData->_x64XMM_xorNOTMask[0] = 0xFFFFFFFFFFFFFFFFULL;
ppcRecompilerInstanceData->_x64XMM_xorNOTMask[1] = 0xFFFFFFFFFFFFFFFFULL;
ppcRecompilerInstanceData->_x64XMM_andAbsMaskBottom[0] = ~(1ULL << 63ULL);
ppcRecompilerInstanceData->_x64XMM_andAbsMaskBottom[1] = ~0ULL;
ppcRecompilerInstanceData->_x64XMM_andAbsMaskPair[0] = ~(1ULL << 63ULL);
ppcRecompilerInstanceData->_x64XMM_andAbsMaskPair[1] = ~(1ULL << 63ULL);
ppcRecompilerInstanceData->_x64XMM_andFloatAbsMaskBottom[0] = ~(1 << 31);
ppcRecompilerInstanceData->_x64XMM_andFloatAbsMaskBottom[1] = 0xFFFFFFFF;
ppcRecompilerInstanceData->_x64XMM_andFloatAbsMaskBottom[2] = 0xFFFFFFFF;
ppcRecompilerInstanceData->_x64XMM_andFloatAbsMaskBottom[3] = 0xFFFFFFFF;
ppcRecompilerInstanceData->_x64XMM_singleWordMask[0] = 0xFFFFFFFFULL;
ppcRecompilerInstanceData->_x64XMM_singleWordMask[1] = 0ULL;
ppcRecompilerInstanceData->_x64XMM_constDouble1_1[0] = 1.0;
ppcRecompilerInstanceData->_x64XMM_constDouble1_1[1] = 1.0;
ppcRecompilerInstanceData->_x64XMM_constDouble0_0[0] = 0.0;
ppcRecompilerInstanceData->_x64XMM_constDouble0_0[1] = 0.0;
ppcRecompilerInstanceData->_x64XMM_constFloat0_0[0] = 0.0f;
ppcRecompilerInstanceData->_x64XMM_constFloat0_0[1] = 0.0f;
ppcRecompilerInstanceData->_x64XMM_constFloat1_1[0] = 1.0f;
ppcRecompilerInstanceData->_x64XMM_constFloat1_1[1] = 1.0f;
*(uint32*)&ppcRecompilerInstanceData->_x64XMM_constFloatMin[0] = 0x00800000;
*(uint32*)&ppcRecompilerInstanceData->_x64XMM_constFloatMin[1] = 0x00800000;
ppcRecompilerInstanceData->_x64XMM_flushDenormalMask1[0] = 0x7F800000;
ppcRecompilerInstanceData->_x64XMM_flushDenormalMask1[1] = 0x7F800000;
ppcRecompilerInstanceData->_x64XMM_flushDenormalMask1[2] = 0x7F800000;
ppcRecompilerInstanceData->_x64XMM_flushDenormalMask1[3] = 0x7F800000;
ppcRecompilerInstanceData->_x64XMM_flushDenormalMaskResetSignBits[0] = ~0x80000000;
ppcRecompilerInstanceData->_x64XMM_flushDenormalMaskResetSignBits[1] = ~0x80000000;
ppcRecompilerInstanceData->_x64XMM_flushDenormalMaskResetSignBits[2] = ~0x80000000;
ppcRecompilerInstanceData->_x64XMM_flushDenormalMaskResetSignBits[3] = ~0x80000000;
// mxcsr
ppcRecompilerInstanceData->_x64XMM_mxCsr_ftzOn = 0x1F80 | 0x8000;
ppcRecompilerInstanceData->_x64XMM_mxCsr_ftzOff = 0x1F80;
@ -512,42 +688,6 @@ void PPCRecompiler_init()
PPCRecompiler_allocateRange(mmuRange_TRAMPOLINE_AREA.getBase(), mmuRange_TRAMPOLINE_AREA.getSize());
PPCRecompiler_allocateRange(mmuRange_CODECAVE.getBase(), mmuRange_CODECAVE.getSize());
// init x64 recompiler instance data
ppcRecompilerInstanceData->_x64XMM_xorNegateMaskBottom[0] = 1ULL << 63ULL;
ppcRecompilerInstanceData->_x64XMM_xorNegateMaskBottom[1] = 0ULL;
ppcRecompilerInstanceData->_x64XMM_xorNegateMaskPair[0] = 1ULL << 63ULL;
ppcRecompilerInstanceData->_x64XMM_xorNegateMaskPair[1] = 1ULL << 63ULL;
ppcRecompilerInstanceData->_x64XMM_xorNOTMask[0] = 0xFFFFFFFFFFFFFFFFULL;
ppcRecompilerInstanceData->_x64XMM_xorNOTMask[1] = 0xFFFFFFFFFFFFFFFFULL;
ppcRecompilerInstanceData->_x64XMM_andAbsMaskBottom[0] = ~(1ULL << 63ULL);
ppcRecompilerInstanceData->_x64XMM_andAbsMaskBottom[1] = ~0ULL;
ppcRecompilerInstanceData->_x64XMM_andAbsMaskPair[0] = ~(1ULL << 63ULL);
ppcRecompilerInstanceData->_x64XMM_andAbsMaskPair[1] = ~(1ULL << 63ULL);
ppcRecompilerInstanceData->_x64XMM_andFloatAbsMaskBottom[0] = ~(1 << 31);
ppcRecompilerInstanceData->_x64XMM_andFloatAbsMaskBottom[1] = 0xFFFFFFFF;
ppcRecompilerInstanceData->_x64XMM_andFloatAbsMaskBottom[2] = 0xFFFFFFFF;
ppcRecompilerInstanceData->_x64XMM_andFloatAbsMaskBottom[3] = 0xFFFFFFFF;
ppcRecompilerInstanceData->_x64XMM_singleWordMask[0] = 0xFFFFFFFFULL;
ppcRecompilerInstanceData->_x64XMM_singleWordMask[1] = 0ULL;
ppcRecompilerInstanceData->_x64XMM_constDouble1_1[0] = 1.0;
ppcRecompilerInstanceData->_x64XMM_constDouble1_1[1] = 1.0;
ppcRecompilerInstanceData->_x64XMM_constDouble0_0[0] = 0.0;
ppcRecompilerInstanceData->_x64XMM_constDouble0_0[1] = 0.0;
ppcRecompilerInstanceData->_x64XMM_constFloat0_0[0] = 0.0f;
ppcRecompilerInstanceData->_x64XMM_constFloat0_0[1] = 0.0f;
ppcRecompilerInstanceData->_x64XMM_constFloat1_1[0] = 1.0f;
ppcRecompilerInstanceData->_x64XMM_constFloat1_1[1] = 1.0f;
*(uint32*)&ppcRecompilerInstanceData->_x64XMM_constFloatMin[0] = 0x00800000;
*(uint32*)&ppcRecompilerInstanceData->_x64XMM_constFloatMin[1] = 0x00800000;
ppcRecompilerInstanceData->_x64XMM_flushDenormalMask1[0] = 0x7F800000;
ppcRecompilerInstanceData->_x64XMM_flushDenormalMask1[1] = 0x7F800000;
ppcRecompilerInstanceData->_x64XMM_flushDenormalMask1[2] = 0x7F800000;
ppcRecompilerInstanceData->_x64XMM_flushDenormalMask1[3] = 0x7F800000;
ppcRecompilerInstanceData->_x64XMM_flushDenormalMaskResetSignBits[0] = ~0x80000000;
ppcRecompilerInstanceData->_x64XMM_flushDenormalMaskResetSignBits[1] = ~0x80000000;
ppcRecompilerInstanceData->_x64XMM_flushDenormalMaskResetSignBits[2] = ~0x80000000;
ppcRecompilerInstanceData->_x64XMM_flushDenormalMaskResetSignBits[3] = ~0x80000000;
// setup GQR scale tables
for (uint32 i = 0; i < 32; i++)
@ -623,4 +763,4 @@ void PPCRecompiler_Shutdown()
// mark as unmapped
ppcRecompiler_reservedBlockMask[i] = false;
}
}
}

View file

@ -1,4 +1,4 @@
#include <vector>
#pragma once
#define PPC_REC_CODE_AREA_START (0x00000000) // lower bound of executable memory area. Recompiler expects this address to be 0
#define PPC_REC_CODE_AREA_END (0x10000000) // upper bound of executable memory area
@ -6,336 +6,113 @@
#define PPC_REC_ALIGN_TO_4MB(__v) (((__v)+4*1024*1024-1)&~(4*1024*1024-1))
#define PPC_REC_MAX_VIRTUAL_GPR (40) // enough to store 32 GPRs + a few SPRs + temp registers (usually only 1-2)
#define PPC_REC_MAX_VIRTUAL_GPR (40 + 32) // enough to store 32 GPRs + a few SPRs + temp registers (usually only 1-2)
typedef struct
struct ppcRecRange_t
{
uint32 ppcAddress;
uint32 ppcSize;
//void* x86Start;
//size_t x86Size;
void* storedRange;
}ppcRecRange_t;
};
typedef struct
struct PPCRecFunction_t
{
uint32 ppcAddress;
uint32 ppcSize; // ppc code size of function
void* x86Code; // pointer to x86 code
size_t x86Size;
std::vector<ppcRecRange_t> list_ranges;
}PPCRecFunction_t;
#define PPCREC_IML_OP_FLAG_SIGNEXTEND (1<<0)
#define PPCREC_IML_OP_FLAG_SWITCHENDIAN (1<<1)
#define PPCREC_IML_OP_FLAG_NOT_EXPANDED (1<<2) // set single-precision load instructions to indicate that the value should not be rounded to double-precision
#define PPCREC_IML_OP_FLAG_UNUSED (1<<7) // used to mark instructions that are not used
typedef struct
{
uint8 type;
uint8 operation;
uint8 crRegister; // set to 0xFF if not set, not all IML instruction types support cr.
uint8 crMode; // only used when crRegister is valid, used to differentiate between various forms of condition flag set/clear behavior
uint32 crIgnoreMask; // bit set for every respective CR bit that doesn't need to be updated
uint32 associatedPPCAddress; // ppc address that is associated with this instruction
union
{
struct
{
uint8 _padding[7];
}padding;
struct
{
// R (op) A [update cr* in mode *]
uint8 registerResult;
uint8 registerA;
}op_r_r;
struct
{
// R = A (op) B [update cr* in mode *]
uint8 registerResult;
uint8 registerA;
uint8 registerB;
}op_r_r_r;
struct
{
// R = A (op) immS32 [update cr* in mode *]
uint8 registerResult;
uint8 registerA;
sint32 immS32;
}op_r_r_s32;
struct
{
// R/F = NAME or NAME = R/F
uint8 registerIndex;
uint8 copyWidth;
uint32 name;
uint8 flags;
}op_r_name;
struct
{
// R (op) s32 [update cr* in mode *]
uint8 registerIndex;
sint32 immS32;
}op_r_immS32;
struct
{
uint32 address;
uint8 flags;
}op_jumpmark;
struct
{
uint32 param;
uint32 param2;
uint16 paramU16;
}op_macro;
struct
{
uint32 jumpmarkAddress;
bool jumpAccordingToSegment; //PPCRecImlSegment_t* destinationSegment; // if set, this replaces jumpmarkAddress
uint8 condition; // only used when crRegisterIndex is 8 or above (update: Apparently only used to mark jumps without a condition? -> Cleanup)
uint8 crRegisterIndex;
uint8 crBitIndex;
bool bitMustBeSet;
}op_conditionalJump;
struct
{
uint8 registerData;
uint8 registerMem;
uint8 registerMem2;
uint8 registerGQR;
uint8 copyWidth;
//uint8 flags;
struct
{
bool swapEndian : 1;
bool signExtend : 1;
bool notExpanded : 1; // for floats
}flags2;
uint8 mode; // transfer mode (copy width, ps0/ps1 behavior)
sint32 immS32;
}op_storeLoad;
struct
{
struct
{
uint8 registerMem;
sint32 immS32;
}src;
struct
{
uint8 registerMem;
sint32 immS32;
}dst;
uint8 copyWidth;
}op_mem2mem;
struct
{
uint8 registerResult;
uint8 registerOperand;
uint8 flags;
}op_fpr_r_r;
struct
{
uint8 registerResult;
uint8 registerOperandA;
uint8 registerOperandB;
uint8 flags;
}op_fpr_r_r_r;
struct
{
uint8 registerResult;
uint8 registerOperandA;
uint8 registerOperandB;
uint8 registerOperandC;
uint8 flags;
}op_fpr_r_r_r_r;
struct
{
uint8 registerResult;
//uint8 flags;
}op_fpr_r;
struct
{
uint32 ppcAddress;
uint32 x64Offset;
}op_ppcEnter;
struct
{
uint8 crD; // crBitIndex (result)
uint8 crA; // crBitIndex
uint8 crB; // crBitIndex
}op_cr;
// conditional operations (emitted if supported by target platform)
struct
{
// r_s32
uint8 registerIndex;
sint32 immS32;
// condition
uint8 crRegisterIndex;
uint8 crBitIndex;
bool bitMustBeSet;
}op_conditional_r_s32;
};
}PPCRecImlInstruction_t;
typedef struct _PPCRecImlSegment_t PPCRecImlSegment_t;
typedef struct _ppcRecompilerSegmentPoint_t
{
sint32 index;
PPCRecImlSegment_t* imlSegment;
_ppcRecompilerSegmentPoint_t* next;
_ppcRecompilerSegmentPoint_t* prev;
}ppcRecompilerSegmentPoint_t;
struct raLivenessLocation_t
{
sint32 index;
bool isRead;
bool isWrite;
raLivenessLocation_t() = default;
raLivenessLocation_t(sint32 index, bool isRead, bool isWrite)
: index(index), isRead(isRead), isWrite(isWrite) {};
};
struct raLivenessSubrangeLink_t
{
struct raLivenessSubrange_t* prev;
struct raLivenessSubrange_t* next;
};
#include "Cafe/HW/Espresso/Recompiler/IML/IMLInstruction.h"
#include "Cafe/HW/Espresso/Recompiler/IML/IMLSegment.h"
struct raLivenessSubrange_t
{
struct raLivenessRange_t* range;
PPCRecImlSegment_t* imlSegment;
ppcRecompilerSegmentPoint_t start;
ppcRecompilerSegmentPoint_t end;
// dirty state tracking
bool _noLoad;
bool hasStore;
bool hasStoreDelayed;
// next
raLivenessSubrange_t* subrangeBranchTaken;
raLivenessSubrange_t* subrangeBranchNotTaken;
// processing
uint32 lastIterationIndex;
// instruction locations
std::vector<raLivenessLocation_t> list_locations;
// linked list (subranges with same GPR virtual register)
raLivenessSubrangeLink_t link_sameVirtualRegisterGPR;
// linked list (all subranges for this segment)
raLivenessSubrangeLink_t link_segmentSubrangesGPR;
};
struct raLivenessRange_t
{
sint32 virtualRegister;
sint32 physicalRegister;
sint32 name;
std::vector<raLivenessSubrange_t*> list_subranges;
};
struct PPCSegmentRegisterAllocatorInfo_t
{
// analyzer stage
bool isPartOfProcessedLoop{}; // used during loop detection
sint32 lastIterationIndex{};
// linked lists
raLivenessSubrange_t* linkedList_allSubranges{};
raLivenessSubrange_t* linkedList_perVirtualGPR[PPC_REC_MAX_VIRTUAL_GPR]{};
};
struct PPCRecVGPRDistances_t
{
struct _RegArrayEntry
{
sint32 usageStart{};
sint32 usageEnd{};
}reg[PPC_REC_MAX_VIRTUAL_GPR];
bool isProcessed[PPC_REC_MAX_VIRTUAL_GPR]{};
};
typedef struct _PPCRecImlSegment_t
{
sint32 momentaryIndex{}; // index in segment list, generally not kept up to date except if needed (necessary for loop detection)
sint32 startOffset{}; // offset to first instruction in iml instruction list
sint32 count{}; // number of instructions in segment
uint32 ppcAddress{}; // ppc address (0xFFFFFFFF if not associated with an address)
uint32 x64Offset{}; // x64 code offset of segment start
uint32 cycleCount{}; // number of PPC cycles required to execute this segment (roughly)
// list of intermediate instructions in this segment
PPCRecImlInstruction_t* imlList{};
sint32 imlListSize{};
sint32 imlListCount{};
// segment link
_PPCRecImlSegment_t* nextSegmentBranchNotTaken{}; // this is also the default for segments where there is no branch
_PPCRecImlSegment_t* nextSegmentBranchTaken{};
bool nextSegmentIsUncertain{};
sint32 loopDepth{};
//sList_t* list_prevSegments;
std::vector<_PPCRecImlSegment_t*> list_prevSegments{};
// PPC range of segment
uint32 ppcAddrMin{};
uint32 ppcAddrMax{};
// enterable segments
bool isEnterable{}; // this segment can be entered from outside the recompiler (no preloaded registers necessary)
uint32 enterPPCAddress{}; // used if isEnterable is true
// jump destination segments
bool isJumpDestination{}; // segment is a destination for one or more (conditional) jumps
uint32 jumpDestinationPPCAddress{};
// PPC FPR use mask
bool ppcFPRUsed[32]{}; // same as ppcGPRUsed, but for FPR
// CR use mask
uint32 crBitsInput{}; // bits that are expected to be set from the previous segment (read in this segment but not overwritten)
uint32 crBitsRead{}; // all bits that are read in this segment
uint32 crBitsWritten{}; // bits that are written in this segment
// register allocator info
PPCSegmentRegisterAllocatorInfo_t raInfo{};
PPCRecVGPRDistances_t raDistances{};
bool raRangeExtendProcessed{};
// segment points
ppcRecompilerSegmentPoint_t* segmentPointList{};
}PPCRecImlSegment_t;
struct IMLInstruction* PPCRecompilerImlGen_generateNewEmptyInstruction(struct ppcImlGenContext_t* ppcImlGenContext);
struct ppcImlGenContext_t
{
PPCRecFunction_t* functionRef;
class PPCFunctionBoundaryTracker* boundaryTracker;
uint32* currentInstruction;
uint32 ppcAddressOfCurrentInstruction;
IMLSegment* currentOutputSegment;
struct PPCBasicBlockInfo* currentBasicBlock{};
// fpr mode
bool LSQE{ true };
bool PSE{ true };
// cycle counter
uint32 cyclesSinceLastBranch; // used to track ppc cycles
// temporary general purpose registers
uint32 mappedRegister[PPC_REC_MAX_VIRTUAL_GPR];
// temporary floating point registers (single and double precision)
uint32 mappedFPRRegister[256];
// list of intermediate instructions
PPCRecImlInstruction_t* imlList;
sint32 imlListSize;
sint32 imlListCount;
std::unordered_map<IMLName, IMLReg> mappedRegs;
uint32 GetMaxRegId() const
{
if (mappedRegs.empty())
return 0;
return mappedRegs.size()-1;
}
// list of segments
PPCRecImlSegment_t** segmentList;
sint32 segmentListSize;
sint32 segmentListCount;
std::vector<IMLSegment*> segmentList2;
// code generation control
bool hasFPUInstruction; // if true, PPCEnter macro will create FP_UNAVAIL checks -> Not needed in user mode
// register allocator info
struct
{
std::vector<raLivenessRange_t*> list_ranges;
}raInfo;
// analysis info
struct
{
bool modifiesGQR[8];
}tracking;
// debug helpers
uint32 debug_entryPPCAddress{0};
~ppcImlGenContext_t()
{
for (IMLSegment* imlSegment : segmentList2)
delete imlSegment;
segmentList2.clear();
}
// append raw instruction
IMLInstruction& emitInst()
{
return *PPCRecompilerImlGen_generateNewEmptyInstruction(this);
}
IMLSegment* NewSegment()
{
IMLSegment* seg = new IMLSegment();
segmentList2.emplace_back(seg);
return seg;
}
size_t GetSegmentIndex(IMLSegment* seg)
{
for (size_t i = 0; i < segmentList2.size(); i++)
{
if (segmentList2[i] == seg)
return i;
}
cemu_assert_error();
return 0;
}
IMLSegment* InsertSegment(size_t index)
{
IMLSegment* newSeg = new IMLSegment();
segmentList2.insert(segmentList2.begin() + index, 1, newSeg);
return newSeg;
}
std::span<IMLSegment*> InsertSegments(size_t index, size_t count)
{
segmentList2.insert(segmentList2.begin() + index, count, {});
for (size_t i = index; i < (index + count); i++)
segmentList2[i] = new IMLSegment();
return { segmentList2.data() + index, count};
}
void UpdateSegmentIndices()
{
for (size_t i = 0; i < segmentList2.size(); i++)
segmentList2[i]->momentaryIndex = (sint32)i;
}
};
typedef void ATTR_MS_ABI (*PPCREC_JUMP_ENTRY)();
@ -385,8 +162,6 @@ extern void ATTR_MS_ABI (*PPCRecompiler_leaveRecompilerCode_unvisited)();
#define PPC_REC_INVALID_FUNCTION ((PPCRecFunction_t*)-1)
// todo - move some of the stuff above into PPCRecompilerInternal.h
// recompiler interface
void PPCRecompiler_recompileIfUnvisited(uint32 enterAddress);

View file

@ -1,275 +1,29 @@
bool PPCRecompiler_generateIntermediateCode(ppcImlGenContext_t& ppcImlGenContext, PPCRecFunction_t* PPCRecFunction, std::set<uint32>& entryAddresses, class PPCFunctionBoundaryTracker& boundaryTracker);
#define PPCREC_CR_REG_TEMP 8 // there are only 8 cr registers (0-7) we use the 8th as temporary cr register that is never stored (BDNZ instruction for example)
IMLSegment* PPCIMLGen_CreateSplitSegmentAtEnd(ppcImlGenContext_t& ppcImlGenContext, PPCBasicBlockInfo& basicBlockInfo);
IMLSegment* PPCIMLGen_CreateNewSegmentAsBranchTarget(ppcImlGenContext_t& ppcImlGenContext, PPCBasicBlockInfo& basicBlockInfo);
enum
{
PPCREC_IML_OP_ASSIGN, // '=' operator
PPCREC_IML_OP_ENDIAN_SWAP, // '=' operator with 32bit endian swap
PPCREC_IML_OP_ADD, // '+' operator
PPCREC_IML_OP_SUB, // '-' operator
PPCREC_IML_OP_SUB_CARRY_UPDATE_CARRY, // complex operation, result = operand + ~operand2 + carry bit, updates carry bit
PPCREC_IML_OP_COMPARE_SIGNED, // arithmetic/signed comparison operator (updates cr)
PPCREC_IML_OP_COMPARE_UNSIGNED, // logical/unsigned comparison operator (updates cr)
PPCREC_IML_OP_MULTIPLY_SIGNED, // '*' operator (signed multiply)
PPCREC_IML_OP_MULTIPLY_HIGH_UNSIGNED, // unsigned 64bit multiply, store only high 32bit-word of result
PPCREC_IML_OP_MULTIPLY_HIGH_SIGNED, // signed 64bit multiply, store only high 32bit-word of result
PPCREC_IML_OP_DIVIDE_SIGNED, // '/' operator (signed divide)
PPCREC_IML_OP_DIVIDE_UNSIGNED, // '/' operator (unsigned divide)
PPCREC_IML_OP_ADD_CARRY, // complex operation, result = operand + carry bit, updates carry bit
PPCREC_IML_OP_ADD_CARRY_ME, // complex operation, result = operand + carry bit + (-1), updates carry bit
PPCREC_IML_OP_ADD_UPDATE_CARRY, // '+' operator but also updates carry flag
PPCREC_IML_OP_ADD_CARRY_UPDATE_CARRY, // '+' operator and also adds carry, updates carry flag
// assign operators with cast
PPCREC_IML_OP_ASSIGN_S16_TO_S32, // copy 16bit and sign extend
PPCREC_IML_OP_ASSIGN_S8_TO_S32, // copy 8bit and sign extend
// binary operation
PPCREC_IML_OP_OR, // '|' operator
PPCREC_IML_OP_ORC, // '|' operator, second operand is complemented first
PPCREC_IML_OP_AND, // '&' operator
PPCREC_IML_OP_XOR, // '^' operator
PPCREC_IML_OP_LEFT_ROTATE, // left rotate operator
PPCREC_IML_OP_LEFT_SHIFT, // shift left operator
PPCREC_IML_OP_RIGHT_SHIFT, // right shift operator (unsigned)
PPCREC_IML_OP_NOT, // complement each bit
PPCREC_IML_OP_NEG, // negate
// ppc
PPCREC_IML_OP_RLWIMI, // RLWIMI instruction (rotate, merge based on mask)
PPCREC_IML_OP_SRAW, // SRAWI/SRAW instruction (algebraic shift right, sets ca flag)
PPCREC_IML_OP_SLW, // SLW (shift based on register by up to 63 bits)
PPCREC_IML_OP_SRW, // SRW (shift based on register by up to 63 bits)
PPCREC_IML_OP_CNTLZW,
PPCREC_IML_OP_SUBFC, // SUBFC and SUBFIC (subtract from and set carry)
PPCREC_IML_OP_DCBZ, // clear 32 bytes aligned to 0x20
PPCREC_IML_OP_MFCR, // copy cr to gpr
PPCREC_IML_OP_MTCRF, // copy gpr to cr (with mask)
// condition register
PPCREC_IML_OP_CR_CLEAR, // clear cr bit
PPCREC_IML_OP_CR_SET, // set cr bit
PPCREC_IML_OP_CR_OR, // OR cr bits
PPCREC_IML_OP_CR_ORC, // OR cr bits, complement second input operand bit first
PPCREC_IML_OP_CR_AND, // AND cr bits
PPCREC_IML_OP_CR_ANDC, // AND cr bits, complement second input operand bit first
// FPU
PPCREC_IML_OP_FPR_ADD_BOTTOM,
PPCREC_IML_OP_FPR_ADD_PAIR,
PPCREC_IML_OP_FPR_SUB_PAIR,
PPCREC_IML_OP_FPR_SUB_BOTTOM,
PPCREC_IML_OP_FPR_MULTIPLY_BOTTOM,
PPCREC_IML_OP_FPR_MULTIPLY_PAIR,
PPCREC_IML_OP_FPR_DIVIDE_BOTTOM,
PPCREC_IML_OP_FPR_DIVIDE_PAIR,
PPCREC_IML_OP_FPR_COPY_BOTTOM_TO_BOTTOM_AND_TOP,
PPCREC_IML_OP_FPR_COPY_TOP_TO_BOTTOM_AND_TOP,
PPCREC_IML_OP_FPR_COPY_BOTTOM_TO_BOTTOM,
PPCREC_IML_OP_FPR_COPY_BOTTOM_TO_TOP, // leave bottom of destination untouched
PPCREC_IML_OP_FPR_COPY_TOP_TO_TOP, // leave bottom of destination untouched
PPCREC_IML_OP_FPR_COPY_TOP_TO_BOTTOM, // leave top of destination untouched
PPCREC_IML_OP_FPR_COPY_BOTTOM_AND_TOP_SWAPPED,
PPCREC_IML_OP_FPR_EXPAND_BOTTOM32_TO_BOTTOM64_AND_TOP64, // expand bottom f32 to f64 in bottom and top half
PPCREC_IML_OP_FPR_BOTTOM_FRES_TO_BOTTOM_AND_TOP, // calculate reciprocal with Espresso accuracy of source bottom half and write result to destination bottom and top half
PPCREC_IML_OP_FPR_FCMPO_BOTTOM,
PPCREC_IML_OP_FPR_FCMPU_BOTTOM,
PPCREC_IML_OP_FPR_FCMPU_TOP,
PPCREC_IML_OP_FPR_NEGATE_BOTTOM,
PPCREC_IML_OP_FPR_NEGATE_PAIR,
PPCREC_IML_OP_FPR_ABS_BOTTOM, // abs(fp0)
PPCREC_IML_OP_FPR_ABS_PAIR,
PPCREC_IML_OP_FPR_FRES_PAIR, // 1.0/fp approx (Espresso accuracy)
PPCREC_IML_OP_FPR_FRSQRTE_PAIR, // 1.0/sqrt(fp) approx (Espresso accuracy)
PPCREC_IML_OP_FPR_NEGATIVE_ABS_BOTTOM, // -abs(fp0)
PPCREC_IML_OP_FPR_ROUND_TO_SINGLE_PRECISION_BOTTOM, // round 64bit double to 64bit double with 32bit float precision (in bottom half of xmm register)
PPCREC_IML_OP_FPR_ROUND_TO_SINGLE_PRECISION_PAIR, // round two 64bit doubles to 64bit double with 32bit float precision
PPCREC_IML_OP_FPR_BOTTOM_RECIPROCAL_SQRT,
PPCREC_IML_OP_FPR_BOTTOM_FCTIWZ,
PPCREC_IML_OP_FPR_SELECT_BOTTOM, // selectively copy bottom value from operand B or C based on value in operand A
PPCREC_IML_OP_FPR_SELECT_PAIR, // selectively copy top/bottom from operand B or C based on value in top/bottom of operand A
// PS
PPCREC_IML_OP_FPR_SUM0,
PPCREC_IML_OP_FPR_SUM1,
};
void PPCIMLGen_AssertIfNotLastSegmentInstruction(ppcImlGenContext_t& ppcImlGenContext);
#define PPCREC_IML_OP_FPR_COPY_PAIR (PPCREC_IML_OP_ASSIGN)
enum
{
PPCREC_IML_MACRO_BLR, // macro for BLR instruction code
PPCREC_IML_MACRO_BLRL, // macro for BLRL instruction code
PPCREC_IML_MACRO_BCTR, // macro for BCTR instruction code
PPCREC_IML_MACRO_BCTRL, // macro for BCTRL instruction code
PPCREC_IML_MACRO_BL, // call to different function (can be within same function)
PPCREC_IML_MACRO_B_FAR, // branch to different function
PPCREC_IML_MACRO_COUNT_CYCLES, // decrease current remaining thread cycles by a certain amount
PPCREC_IML_MACRO_HLE, // HLE function call
PPCREC_IML_MACRO_MFTB, // get TB register value (low or high)
PPCREC_IML_MACRO_LEAVE, // leaves recompiler and switches to interpeter
// debugging
PPCREC_IML_MACRO_DEBUGBREAK, // throws a debugbreak
};
enum
{
PPCREC_JUMP_CONDITION_NONE,
PPCREC_JUMP_CONDITION_E, // equal / zero
PPCREC_JUMP_CONDITION_NE, // not equal / not zero
PPCREC_JUMP_CONDITION_LE, // less or equal
PPCREC_JUMP_CONDITION_L, // less
PPCREC_JUMP_CONDITION_GE, // greater or equal
PPCREC_JUMP_CONDITION_G, // greater
// special case:
PPCREC_JUMP_CONDITION_SUMMARYOVERFLOW, // needs special handling
PPCREC_JUMP_CONDITION_NSUMMARYOVERFLOW, // not summaryoverflow
};
enum
{
PPCREC_CR_MODE_COMPARE_SIGNED,
PPCREC_CR_MODE_COMPARE_UNSIGNED, // alias logic compare
// others: PPCREC_CR_MODE_ARITHMETIC,
PPCREC_CR_MODE_ARITHMETIC, // arithmetic use (for use with add/sub instructions without generating extra code)
PPCREC_CR_MODE_LOGICAL,
};
enum
{
PPCREC_IML_TYPE_NONE,
PPCREC_IML_TYPE_NO_OP, // no-op instruction
PPCREC_IML_TYPE_JUMPMARK, // possible jump destination (generated before each ppc instruction)
PPCREC_IML_TYPE_R_R, // r* (op) *r
PPCREC_IML_TYPE_R_R_R, // r* = r* (op) r*
PPCREC_IML_TYPE_R_R_S32, // r* = r* (op) s32*
PPCREC_IML_TYPE_LOAD, // r* = [r*+s32*]
PPCREC_IML_TYPE_LOAD_INDEXED, // r* = [r*+r*]
PPCREC_IML_TYPE_STORE, // [r*+s32*] = r*
PPCREC_IML_TYPE_STORE_INDEXED, // [r*+r*] = r*
PPCREC_IML_TYPE_R_NAME, // r* = name
PPCREC_IML_TYPE_NAME_R, // name* = r*
PPCREC_IML_TYPE_R_S32, // r* (op) imm
PPCREC_IML_TYPE_MACRO,
PPCREC_IML_TYPE_CJUMP, // conditional jump
PPCREC_IML_TYPE_CJUMP_CYCLE_CHECK, // jumps only if remaining thread cycles >= 0
PPCREC_IML_TYPE_PPC_ENTER, // used to mark locations that should be written to recompilerCallTable
PPCREC_IML_TYPE_CR, // condition register specific operations (one or more operands)
// conditional
PPCREC_IML_TYPE_CONDITIONAL_R_S32,
// FPR
PPCREC_IML_TYPE_FPR_R_NAME, // name = f*
PPCREC_IML_TYPE_FPR_NAME_R, // f* = name
PPCREC_IML_TYPE_FPR_LOAD, // r* = (bitdepth) [r*+s32*] (single or paired single mode)
PPCREC_IML_TYPE_FPR_LOAD_INDEXED, // r* = (bitdepth) [r*+r*] (single or paired single mode)
PPCREC_IML_TYPE_FPR_STORE, // (bitdepth) [r*+s32*] = r* (single or paired single mode)
PPCREC_IML_TYPE_FPR_STORE_INDEXED, // (bitdepth) [r*+r*] = r* (single or paired single mode)
PPCREC_IML_TYPE_FPR_R_R,
PPCREC_IML_TYPE_FPR_R_R_R,
PPCREC_IML_TYPE_FPR_R_R_R_R,
PPCREC_IML_TYPE_FPR_R,
// special
PPCREC_IML_TYPE_MEM2MEM, // memory to memory copy (deprecated)
};
enum
{
PPCREC_NAME_NONE,
PPCREC_NAME_TEMPORARY,
PPCREC_NAME_R0 = 1000,
PPCREC_NAME_SPR0 = 2000,
PPCREC_NAME_FPR0 = 3000,
PPCREC_NAME_TEMPORARY_FPR0 = 4000, // 0 to 7
//PPCREC_NAME_CR0 = 3000, // value mapped condition register (usually it isn't needed and can be optimized away)
};
// special cases for LOAD/STORE
#define PPC_REC_LOAD_LWARX_MARKER (100) // lwarx instruction (similar to LWZX but sets reserved address/value)
#define PPC_REC_STORE_STWCX_MARKER (100) // stwcx instruction (similar to STWX but writes only if reservation from LWARX is valid)
#define PPC_REC_STORE_STSWI_1 (200) // stswi nb = 1
#define PPC_REC_STORE_STSWI_2 (201) // stswi nb = 2
#define PPC_REC_STORE_STSWI_3 (202) // stswi nb = 3
#define PPC_REC_STORE_LSWI_1 (200) // lswi nb = 1
#define PPC_REC_STORE_LSWI_2 (201) // lswi nb = 2
#define PPC_REC_STORE_LSWI_3 (202) // lswi nb = 3
#define PPC_REC_INVALID_REGISTER 0xFF
#define PPCREC_CR_BIT_LT 0
#define PPCREC_CR_BIT_GT 1
#define PPCREC_CR_BIT_EQ 2
#define PPCREC_CR_BIT_SO 3
enum
{
// fpr load
PPCREC_FPR_LD_MODE_SINGLE_INTO_PS0,
PPCREC_FPR_LD_MODE_SINGLE_INTO_PS0_PS1,
PPCREC_FPR_LD_MODE_DOUBLE_INTO_PS0,
PPCREC_FPR_LD_MODE_PSQ_GENERIC_PS0,
PPCREC_FPR_LD_MODE_PSQ_GENERIC_PS0_PS1,
PPCREC_FPR_LD_MODE_PSQ_FLOAT_PS0,
PPCREC_FPR_LD_MODE_PSQ_FLOAT_PS0_PS1,
PPCREC_FPR_LD_MODE_PSQ_S16_PS0,
PPCREC_FPR_LD_MODE_PSQ_S16_PS0_PS1,
PPCREC_FPR_LD_MODE_PSQ_U16_PS0,
PPCREC_FPR_LD_MODE_PSQ_U16_PS0_PS1,
PPCREC_FPR_LD_MODE_PSQ_S8_PS0,
PPCREC_FPR_LD_MODE_PSQ_S8_PS0_PS1,
PPCREC_FPR_LD_MODE_PSQ_U8_PS0,
PPCREC_FPR_LD_MODE_PSQ_U8_PS0_PS1,
// fpr store
PPCREC_FPR_ST_MODE_SINGLE_FROM_PS0, // store 1 single precision float from ps0
PPCREC_FPR_ST_MODE_DOUBLE_FROM_PS0, // store 1 double precision float from ps0
PPCREC_FPR_ST_MODE_UI32_FROM_PS0, // store raw low-32bit of PS0
PPCREC_FPR_ST_MODE_PSQ_GENERIC_PS0_PS1,
PPCREC_FPR_ST_MODE_PSQ_GENERIC_PS0,
PPCREC_FPR_ST_MODE_PSQ_FLOAT_PS0_PS1,
PPCREC_FPR_ST_MODE_PSQ_FLOAT_PS0,
PPCREC_FPR_ST_MODE_PSQ_S8_PS0,
PPCREC_FPR_ST_MODE_PSQ_S8_PS0_PS1,
PPCREC_FPR_ST_MODE_PSQ_U8_PS0,
PPCREC_FPR_ST_MODE_PSQ_U8_PS0_PS1,
PPCREC_FPR_ST_MODE_PSQ_U16_PS0,
PPCREC_FPR_ST_MODE_PSQ_U16_PS0_PS1,
PPCREC_FPR_ST_MODE_PSQ_S16_PS0,
PPCREC_FPR_ST_MODE_PSQ_S16_PS0_PS1,
};
bool PPCRecompiler_generateIntermediateCode(ppcImlGenContext_t& ppcImlGenContext, PPCRecFunction_t* PPCRecFunction, std::set<uint32>& entryAddresses);
void PPCRecompiler_freeContext(ppcImlGenContext_t* ppcImlGenContext); // todo - move to destructor
PPCRecImlInstruction_t* PPCRecompilerImlGen_generateNewEmptyInstruction(ppcImlGenContext_t* ppcImlGenContext);
void PPCRecompiler_pushBackIMLInstructions(PPCRecImlSegment_t* imlSegment, sint32 index, sint32 shiftBackCount);
PPCRecImlInstruction_t* PPCRecompiler_insertInstruction(PPCRecImlSegment_t* imlSegment, sint32 index);
IMLInstruction* PPCRecompilerImlGen_generateNewEmptyInstruction(ppcImlGenContext_t* ppcImlGenContext);
void PPCRecompiler_pushBackIMLInstructions(IMLSegment* imlSegment, sint32 index, sint32 shiftBackCount);
IMLInstruction* PPCRecompiler_insertInstruction(IMLSegment* imlSegment, sint32 index);
void PPCRecompilerIml_insertSegments(ppcImlGenContext_t* ppcImlGenContext, sint32 index, sint32 count);
void PPCRecompilerIml_setSegmentPoint(ppcRecompilerSegmentPoint_t* segmentPoint, PPCRecImlSegment_t* imlSegment, sint32 index);
void PPCRecompilerIml_removeSegmentPoint(ppcRecompilerSegmentPoint_t* segmentPoint);
void PPCRecompilerIml_setSegmentPoint(IMLSegmentPoint* segmentPoint, IMLSegment* imlSegment, sint32 index);
void PPCRecompilerIml_removeSegmentPoint(IMLSegmentPoint* segmentPoint);
// GPR register management
uint32 PPCRecompilerImlGen_loadRegister(ppcImlGenContext_t* ppcImlGenContext, uint32 mappedName, bool loadNew = false);
uint32 PPCRecompilerImlGen_loadOverwriteRegister(ppcImlGenContext_t* ppcImlGenContext, uint32 mappedName);
IMLReg PPCRecompilerImlGen_loadRegister(ppcImlGenContext_t* ppcImlGenContext, uint32 mappedName);
// FPR register management
uint32 PPCRecompilerImlGen_loadFPRRegister(ppcImlGenContext_t* ppcImlGenContext, uint32 mappedName, bool loadNew = false);
uint32 PPCRecompilerImlGen_loadOverwriteFPRRegister(ppcImlGenContext_t* ppcImlGenContext, uint32 mappedName);
IMLReg PPCRecompilerImlGen_loadFPRRegister(ppcImlGenContext_t* ppcImlGenContext, uint32 mappedName, bool loadNew = false);
IMLReg PPCRecompilerImlGen_loadOverwriteFPRRegister(ppcImlGenContext_t* ppcImlGenContext, uint32 mappedName);
// IML instruction generation
void PPCRecompilerImlGen_generateNewInstruction_jump(ppcImlGenContext_t* ppcImlGenContext, PPCRecImlInstruction_t* imlInstruction, uint32 jumpmarkAddress);
void PPCRecompilerImlGen_generateNewInstruction_jumpSegment(ppcImlGenContext_t* ppcImlGenContext, PPCRecImlInstruction_t* imlInstruction);
void PPCRecompilerImlGen_generateNewInstruction_r_s32(ppcImlGenContext_t* ppcImlGenContext, uint32 operation, uint8 registerIndex, sint32 immS32, uint32 copyWidth, bool signExtend, bool bigEndian, uint8 crRegister, uint32 crMode);
void PPCRecompilerImlGen_generateNewInstruction_conditional_r_s32(ppcImlGenContext_t* ppcImlGenContext, PPCRecImlInstruction_t* imlInstruction, uint32 operation, uint8 registerIndex, sint32 immS32, uint32 crRegisterIndex, uint32 crBitIndex, bool bitMustBeSet);
void PPCRecompilerImlGen_generateNewInstruction_r_r(ppcImlGenContext_t* ppcImlGenContext, PPCRecImlInstruction_t* imlInstruction, uint32 operation, uint8 registerResult, uint8 registerA, uint8 crRegister = PPC_REC_INVALID_REGISTER, uint8 crMode = 0);
// IML instruction generation (new style, can generate new instructions but also overwrite existing ones)
void PPCRecompilerImlGen_generateNewInstruction_noOp(ppcImlGenContext_t* ppcImlGenContext, PPCRecImlInstruction_t* imlInstruction);
void PPCRecompilerImlGen_generateNewInstruction_memory_memory(ppcImlGenContext_t* ppcImlGenContext, PPCRecImlInstruction_t* imlInstruction, uint8 srcMemReg, sint32 srcImmS32, uint8 dstMemReg, sint32 dstImmS32, uint8 copyWidth);
void PPCRecompilerImlGen_generateNewInstruction_fpr_r(ppcImlGenContext_t* ppcImlGenContext, PPCRecImlInstruction_t* imlInstruction, sint32 operation, uint8 registerResult, sint32 crRegister = PPC_REC_INVALID_REGISTER);
void PPCRecompilerImlGen_generateNewInstruction_conditional_r_s32(ppcImlGenContext_t* ppcImlGenContext, IMLInstruction* imlInstruction, uint32 operation, IMLReg registerIndex, sint32 immS32, uint32 crRegisterIndex, uint32 crBitIndex, bool bitMustBeSet);
void PPCRecompilerImlGen_generateNewInstruction_fpr_r(ppcImlGenContext_t* ppcImlGenContext, IMLInstruction* imlInstruction, sint32 operation, IMLReg registerResult);
// IML generation - FPU
bool PPCRecompilerImlGen_LFS(ppcImlGenContext_t* ppcImlGenContext, uint32 opcode);
@ -347,76 +101,4 @@ bool PPCRecompilerImlGen_PS_CMPU1(ppcImlGenContext_t* ppcImlGenContext, uint32 o
// IML general
bool PPCRecompiler_isSuffixInstruction(PPCRecImlInstruction_t* iml);
void PPCRecompilerIML_linkSegments(ppcImlGenContext_t* ppcImlGenContext);
void PPCRecompilerIml_setLinkBranchNotTaken(PPCRecImlSegment_t* imlSegmentSrc, PPCRecImlSegment_t* imlSegmentDst);
void PPCRecompilerIml_setLinkBranchTaken(PPCRecImlSegment_t* imlSegmentSrc, PPCRecImlSegment_t* imlSegmentDst);
void PPCRecompilerIML_relinkInputSegment(PPCRecImlSegment_t* imlSegmentOrig, PPCRecImlSegment_t* imlSegmentNew);
void PPCRecompilerIML_removeLink(PPCRecImlSegment_t* imlSegmentSrc, PPCRecImlSegment_t* imlSegmentDst);
void PPCRecompilerIML_isolateEnterableSegments(ppcImlGenContext_t* ppcImlGenContext);
PPCRecImlInstruction_t* PPCRecompilerIML_getLastInstruction(PPCRecImlSegment_t* imlSegment);
// IML analyzer
typedef struct
{
uint32 readCRBits;
uint32 writtenCRBits;
}PPCRecCRTracking_t;
bool PPCRecompilerImlAnalyzer_isTightFiniteLoop(PPCRecImlSegment_t* imlSegment);
bool PPCRecompilerImlAnalyzer_canTypeWriteCR(PPCRecImlInstruction_t* imlInstruction);
void PPCRecompilerImlAnalyzer_getCRTracking(PPCRecImlInstruction_t* imlInstruction, PPCRecCRTracking_t* crTracking);
// IML optimizer
bool PPCRecompiler_reduceNumberOfFPRRegisters(ppcImlGenContext_t* ppcImlGenContext);
bool PPCRecompiler_manageFPRRegisters(ppcImlGenContext_t* ppcImlGenContext);
void PPCRecompiler_removeRedundantCRUpdates(ppcImlGenContext_t* ppcImlGenContext);
void PPCRecompiler_optimizeDirectFloatCopies(ppcImlGenContext_t* ppcImlGenContext);
void PPCRecompiler_optimizeDirectIntegerCopies(ppcImlGenContext_t* ppcImlGenContext);
void PPCRecompiler_optimizePSQLoadAndStore(ppcImlGenContext_t* ppcImlGenContext);
// IML register allocator
void PPCRecompilerImm_allocateRegisters(ppcImlGenContext_t* ppcImlGenContext);
// late optimizations
void PPCRecompiler_reorderConditionModifyInstructions(ppcImlGenContext_t* ppcImlGenContext);
// debug
void PPCRecompiler_dumpIMLSegment(PPCRecImlSegment_t* imlSegment, sint32 segmentIndex, bool printLivenessRangeInfo = false);
typedef struct
{
union
{
struct
{
sint16 readNamedReg1;
sint16 readNamedReg2;
sint16 readNamedReg3;
sint16 writtenNamedReg1;
};
sint16 gpr[4]; // 3 read + 1 write
};
// FPR
union
{
struct
{
// note: If destination operand is not fully written, it will be added as a read FPR as well
sint16 readFPR1;
sint16 readFPR2;
sint16 readFPR3;
sint16 readFPR4; // usually this is set to the result FPR if only partially overwritten
sint16 writtenFPR1;
};
sint16 fpr[4];
};
}PPCImlOptimizerUsedRegisters_t;
void PPCRecompiler_checkRegisterUsage(ppcImlGenContext_t* ppcImlGenContext, PPCRecImlInstruction_t* imlInstruction, PPCImlOptimizerUsedRegisters_t* registersUsed);

View file

@ -1,137 +0,0 @@
#include "PPCRecompiler.h"
#include "PPCRecompilerIml.h"
#include "util/helpers/fixedSizeList.h"
#include "Cafe/HW/Espresso/Interpreter/PPCInterpreterInternal.h"
/*
* Initializes a single segment and returns true if it is a finite loop
*/
bool PPCRecompilerImlAnalyzer_isTightFiniteLoop(PPCRecImlSegment_t* imlSegment)
{
bool isTightFiniteLoop = false;
// base criteria, must jump to beginning of same segment
if (imlSegment->nextSegmentBranchTaken != imlSegment)
return false;
// loops using BDNZ are assumed to always be finite
for (sint32 t = 0; t < imlSegment->imlListCount; t++)
{
if (imlSegment->imlList[t].type == PPCREC_IML_TYPE_R_S32 && imlSegment->imlList[t].operation == PPCREC_IML_OP_SUB && imlSegment->imlList[t].crRegister == 8)
{
return true;
}
}
// for non-BDNZ loops, check for common patterns
// risky approach, look for ADD/SUB operations and assume that potential overflow means finite (does not include r_r_s32 ADD/SUB)
// this catches most loops with load-update and store-update instructions, but also those with decrementing counters
FixedSizeList<sint32, 64, true> list_modifiedRegisters;
for (sint32 t = 0; t < imlSegment->imlListCount; t++)
{
if (imlSegment->imlList[t].type == PPCREC_IML_TYPE_R_S32 && (imlSegment->imlList[t].operation == PPCREC_IML_OP_ADD || imlSegment->imlList[t].operation == PPCREC_IML_OP_SUB) )
{
list_modifiedRegisters.addUnique(imlSegment->imlList[t].op_r_immS32.registerIndex);
}
}
if (list_modifiedRegisters.count > 0)
{
// remove all registers from the list that are modified by non-ADD/SUB instructions
// todo: We should also cover the case where ADD+SUB on the same register cancel the effect out
PPCImlOptimizerUsedRegisters_t registersUsed;
for (sint32 t = 0; t < imlSegment->imlListCount; t++)
{
if (imlSegment->imlList[t].type == PPCREC_IML_TYPE_R_S32 && (imlSegment->imlList[t].operation == PPCREC_IML_OP_ADD || imlSegment->imlList[t].operation == PPCREC_IML_OP_SUB))
continue;
PPCRecompiler_checkRegisterUsage(NULL, imlSegment->imlList + t, &registersUsed);
if(registersUsed.writtenNamedReg1 < 0)
continue;
list_modifiedRegisters.remove(registersUsed.writtenNamedReg1);
}
if (list_modifiedRegisters.count > 0)
{
return true;
}
}
return false;
}
/*
* Returns true if the imlInstruction can overwrite CR (depending on value of ->crRegister)
*/
bool PPCRecompilerImlAnalyzer_canTypeWriteCR(PPCRecImlInstruction_t* imlInstruction)
{
if (imlInstruction->type == PPCREC_IML_TYPE_R_R)
return true;
if (imlInstruction->type == PPCREC_IML_TYPE_R_R_R)
return true;
if (imlInstruction->type == PPCREC_IML_TYPE_R_R_S32)
return true;
if (imlInstruction->type == PPCREC_IML_TYPE_R_S32)
return true;
if (imlInstruction->type == PPCREC_IML_TYPE_FPR_R_R)
return true;
if (imlInstruction->type == PPCREC_IML_TYPE_FPR_R_R_R)
return true;
if (imlInstruction->type == PPCREC_IML_TYPE_FPR_R_R_R_R)
return true;
if (imlInstruction->type == PPCREC_IML_TYPE_FPR_R)
return true;
return false;
}
void PPCRecompilerImlAnalyzer_getCRTracking(PPCRecImlInstruction_t* imlInstruction, PPCRecCRTracking_t* crTracking)
{
crTracking->readCRBits = 0;
crTracking->writtenCRBits = 0;
if (imlInstruction->type == PPCREC_IML_TYPE_CJUMP)
{
if (imlInstruction->op_conditionalJump.condition != PPCREC_JUMP_CONDITION_NONE)
{
uint32 crBitFlag = 1 << (imlInstruction->op_conditionalJump.crRegisterIndex * 4 + imlInstruction->op_conditionalJump.crBitIndex);
crTracking->readCRBits = (crBitFlag);
}
}
else if (imlInstruction->type == PPCREC_IML_TYPE_CONDITIONAL_R_S32)
{
uint32 crBitFlag = 1 << (imlInstruction->op_conditional_r_s32.crRegisterIndex * 4 + imlInstruction->op_conditional_r_s32.crBitIndex);
crTracking->readCRBits = crBitFlag;
}
else if (imlInstruction->type == PPCREC_IML_TYPE_R_S32 && imlInstruction->operation == PPCREC_IML_OP_MFCR)
{
crTracking->readCRBits = 0xFFFFFFFF;
}
else if (imlInstruction->type == PPCREC_IML_TYPE_R_S32 && imlInstruction->operation == PPCREC_IML_OP_MTCRF)
{
crTracking->writtenCRBits |= ppc_MTCRFMaskToCRBitMask((uint32)imlInstruction->op_r_immS32.immS32);
}
else if (imlInstruction->type == PPCREC_IML_TYPE_CR)
{
if (imlInstruction->operation == PPCREC_IML_OP_CR_CLEAR ||
imlInstruction->operation == PPCREC_IML_OP_CR_SET)
{
uint32 crBitFlag = 1 << (imlInstruction->op_cr.crD);
crTracking->writtenCRBits = crBitFlag;
}
else if (imlInstruction->operation == PPCREC_IML_OP_CR_OR ||
imlInstruction->operation == PPCREC_IML_OP_CR_ORC ||
imlInstruction->operation == PPCREC_IML_OP_CR_AND ||
imlInstruction->operation == PPCREC_IML_OP_CR_ANDC)
{
uint32 crBitFlag = 1 << (imlInstruction->op_cr.crD);
crTracking->writtenCRBits = crBitFlag;
crBitFlag = 1 << (imlInstruction->op_cr.crA);
crTracking->readCRBits = crBitFlag;
crBitFlag = 1 << (imlInstruction->op_cr.crB);
crTracking->readCRBits |= crBitFlag;
}
else
assert_dbg();
}
else if (PPCRecompilerImlAnalyzer_canTypeWriteCR(imlInstruction) && imlInstruction->crRegister >= 0 && imlInstruction->crRegister <= 7)
{
crTracking->writtenCRBits |= (0xF << (imlInstruction->crRegister * 4));
}
else if ((imlInstruction->type == PPCREC_IML_TYPE_STORE || imlInstruction->type == PPCREC_IML_TYPE_STORE_INDEXED) && imlInstruction->op_storeLoad.copyWidth == PPC_REC_STORE_STWCX_MARKER)
{
// overwrites CR0
crTracking->writtenCRBits |= (0xF << 0);
}
}

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,399 +0,0 @@
#include "PPCRecompiler.h"
#include "PPCRecompilerIml.h"
#include "PPCRecompilerX64.h"
#include "PPCRecompilerImlRanges.h"
#include "util/helpers/MemoryPool.h"
void PPCRecRARange_addLink_perVirtualGPR(raLivenessSubrange_t** root, raLivenessSubrange_t* subrange)
{
#ifdef CEMU_DEBUG_ASSERT
if ((*root) && (*root)->range->virtualRegister != subrange->range->virtualRegister)
assert_dbg();
#endif
subrange->link_sameVirtualRegisterGPR.next = *root;
if (*root)
(*root)->link_sameVirtualRegisterGPR.prev = subrange;
subrange->link_sameVirtualRegisterGPR.prev = nullptr;
*root = subrange;
}
void PPCRecRARange_addLink_allSubrangesGPR(raLivenessSubrange_t** root, raLivenessSubrange_t* subrange)
{
subrange->link_segmentSubrangesGPR.next = *root;
if (*root)
(*root)->link_segmentSubrangesGPR.prev = subrange;
subrange->link_segmentSubrangesGPR.prev = nullptr;
*root = subrange;
}
void PPCRecRARange_removeLink_perVirtualGPR(raLivenessSubrange_t** root, raLivenessSubrange_t* subrange)
{
raLivenessSubrange_t* tempPrev = subrange->link_sameVirtualRegisterGPR.prev;
if (subrange->link_sameVirtualRegisterGPR.prev)
subrange->link_sameVirtualRegisterGPR.prev->link_sameVirtualRegisterGPR.next = subrange->link_sameVirtualRegisterGPR.next;
else
(*root) = subrange->link_sameVirtualRegisterGPR.next;
if (subrange->link_sameVirtualRegisterGPR.next)
subrange->link_sameVirtualRegisterGPR.next->link_sameVirtualRegisterGPR.prev = tempPrev;
#ifdef CEMU_DEBUG_ASSERT
subrange->link_sameVirtualRegisterGPR.prev = (raLivenessSubrange_t*)1;
subrange->link_sameVirtualRegisterGPR.next = (raLivenessSubrange_t*)1;
#endif
}
void PPCRecRARange_removeLink_allSubrangesGPR(raLivenessSubrange_t** root, raLivenessSubrange_t* subrange)
{
raLivenessSubrange_t* tempPrev = subrange->link_segmentSubrangesGPR.prev;
if (subrange->link_segmentSubrangesGPR.prev)
subrange->link_segmentSubrangesGPR.prev->link_segmentSubrangesGPR.next = subrange->link_segmentSubrangesGPR.next;
else
(*root) = subrange->link_segmentSubrangesGPR.next;
if (subrange->link_segmentSubrangesGPR.next)
subrange->link_segmentSubrangesGPR.next->link_segmentSubrangesGPR.prev = tempPrev;
#ifdef CEMU_DEBUG_ASSERT
subrange->link_segmentSubrangesGPR.prev = (raLivenessSubrange_t*)1;
subrange->link_segmentSubrangesGPR.next = (raLivenessSubrange_t*)1;
#endif
}
MemoryPoolPermanentObjects<raLivenessRange_t> memPool_livenessRange(4096);
MemoryPoolPermanentObjects<raLivenessSubrange_t> memPool_livenessSubrange(4096);
raLivenessRange_t* PPCRecRA_createRangeBase(ppcImlGenContext_t* ppcImlGenContext, uint32 virtualRegister, uint32 name)
{
raLivenessRange_t* livenessRange = memPool_livenessRange.acquireObj();
livenessRange->list_subranges.resize(0);
livenessRange->virtualRegister = virtualRegister;
livenessRange->name = name;
livenessRange->physicalRegister = -1;
ppcImlGenContext->raInfo.list_ranges.push_back(livenessRange);
return livenessRange;
}
raLivenessSubrange_t* PPCRecRA_createSubrange(ppcImlGenContext_t* ppcImlGenContext, raLivenessRange_t* range, PPCRecImlSegment_t* imlSegment, sint32 startIndex, sint32 endIndex)
{
raLivenessSubrange_t* livenessSubrange = memPool_livenessSubrange.acquireObj();
livenessSubrange->list_locations.resize(0);
livenessSubrange->range = range;
livenessSubrange->imlSegment = imlSegment;
PPCRecompilerIml_setSegmentPoint(&livenessSubrange->start, imlSegment, startIndex);
PPCRecompilerIml_setSegmentPoint(&livenessSubrange->end, imlSegment, endIndex);
// default values
livenessSubrange->hasStore = false;
livenessSubrange->hasStoreDelayed = false;
livenessSubrange->lastIterationIndex = 0;
livenessSubrange->subrangeBranchNotTaken = nullptr;
livenessSubrange->subrangeBranchTaken = nullptr;
livenessSubrange->_noLoad = false;
// add to range
range->list_subranges.push_back(livenessSubrange);
// add to segment
PPCRecRARange_addLink_perVirtualGPR(&(imlSegment->raInfo.linkedList_perVirtualGPR[range->virtualRegister]), livenessSubrange);
PPCRecRARange_addLink_allSubrangesGPR(&imlSegment->raInfo.linkedList_allSubranges, livenessSubrange);
return livenessSubrange;
}
void _unlinkSubrange(raLivenessSubrange_t* subrange)
{
PPCRecImlSegment_t* imlSegment = subrange->imlSegment;
PPCRecRARange_removeLink_perVirtualGPR(&imlSegment->raInfo.linkedList_perVirtualGPR[subrange->range->virtualRegister], subrange);
PPCRecRARange_removeLink_allSubrangesGPR(&imlSegment->raInfo.linkedList_allSubranges, subrange);
}
void PPCRecRA_deleteSubrange(ppcImlGenContext_t* ppcImlGenContext, raLivenessSubrange_t* subrange)
{
_unlinkSubrange(subrange);
subrange->range->list_subranges.erase(std::find(subrange->range->list_subranges.begin(), subrange->range->list_subranges.end(), subrange));
subrange->list_locations.clear();
PPCRecompilerIml_removeSegmentPoint(&subrange->start);
PPCRecompilerIml_removeSegmentPoint(&subrange->end);
memPool_livenessSubrange.releaseObj(subrange);
}
void _PPCRecRA_deleteSubrangeNoUnlinkFromRange(ppcImlGenContext_t* ppcImlGenContext, raLivenessSubrange_t* subrange)
{
_unlinkSubrange(subrange);
PPCRecompilerIml_removeSegmentPoint(&subrange->start);
PPCRecompilerIml_removeSegmentPoint(&subrange->end);
memPool_livenessSubrange.releaseObj(subrange);
}
void PPCRecRA_deleteRange(ppcImlGenContext_t* ppcImlGenContext, raLivenessRange_t* range)
{
for (auto& subrange : range->list_subranges)
{
_PPCRecRA_deleteSubrangeNoUnlinkFromRange(ppcImlGenContext, subrange);
}
ppcImlGenContext->raInfo.list_ranges.erase(std::find(ppcImlGenContext->raInfo.list_ranges.begin(), ppcImlGenContext->raInfo.list_ranges.end(), range));
memPool_livenessRange.releaseObj(range);
}
void PPCRecRA_deleteRangeNoUnlink(ppcImlGenContext_t* ppcImlGenContext, raLivenessRange_t* range)
{
for (auto& subrange : range->list_subranges)
{
_PPCRecRA_deleteSubrangeNoUnlinkFromRange(ppcImlGenContext, subrange);
}
memPool_livenessRange.releaseObj(range);
}
void PPCRecRA_deleteAllRanges(ppcImlGenContext_t* ppcImlGenContext)
{
for(auto& range : ppcImlGenContext->raInfo.list_ranges)
{
PPCRecRA_deleteRangeNoUnlink(ppcImlGenContext, range);
}
ppcImlGenContext->raInfo.list_ranges.clear();
}
void PPCRecRA_mergeRanges(ppcImlGenContext_t* ppcImlGenContext, raLivenessRange_t* range, raLivenessRange_t* absorbedRange)
{
cemu_assert_debug(range != absorbedRange);
cemu_assert_debug(range->virtualRegister == absorbedRange->virtualRegister);
// move all subranges from absorbedRange to range
for (auto& subrange : absorbedRange->list_subranges)
{
range->list_subranges.push_back(subrange);
subrange->range = range;
}
absorbedRange->list_subranges.clear();
PPCRecRA_deleteRange(ppcImlGenContext, absorbedRange);
}
void PPCRecRA_mergeSubranges(ppcImlGenContext_t* ppcImlGenContext, raLivenessSubrange_t* subrange, raLivenessSubrange_t* absorbedSubrange)
{
#ifdef CEMU_DEBUG_ASSERT
PPCRecRA_debugValidateSubrange(subrange);
PPCRecRA_debugValidateSubrange(absorbedSubrange);
if (subrange->imlSegment != absorbedSubrange->imlSegment)
assert_dbg();
if (subrange->end.index > absorbedSubrange->start.index)
assert_dbg();
if (subrange->subrangeBranchTaken || subrange->subrangeBranchNotTaken)
assert_dbg();
if (subrange == absorbedSubrange)
assert_dbg();
#endif
subrange->subrangeBranchTaken = absorbedSubrange->subrangeBranchTaken;
subrange->subrangeBranchNotTaken = absorbedSubrange->subrangeBranchNotTaken;
// merge usage locations
for (auto& location : absorbedSubrange->list_locations)
{
subrange->list_locations.push_back(location);
}
absorbedSubrange->list_locations.clear();
subrange->end.index = absorbedSubrange->end.index;
PPCRecRA_debugValidateSubrange(subrange);
PPCRecRA_deleteSubrange(ppcImlGenContext, absorbedSubrange);
}
// remove all inter-segment connections from the range and split it into local ranges (also removes empty ranges)
void PPCRecRA_explodeRange(ppcImlGenContext_t* ppcImlGenContext, raLivenessRange_t* range)
{
if (range->list_subranges.size() == 1)
assert_dbg();
for (auto& subrange : range->list_subranges)
{
if (subrange->list_locations.empty())
continue;
raLivenessRange_t* newRange = PPCRecRA_createRangeBase(ppcImlGenContext, range->virtualRegister, range->name);
raLivenessSubrange_t* newSubrange = PPCRecRA_createSubrange(ppcImlGenContext, newRange, subrange->imlSegment, subrange->list_locations.data()[0].index, subrange->list_locations.data()[subrange->list_locations.size() - 1].index + 1);
// copy locations
for (auto& location : subrange->list_locations)
{
newSubrange->list_locations.push_back(location);
}
}
// remove original range
PPCRecRA_deleteRange(ppcImlGenContext, range);
}
#ifdef CEMU_DEBUG_ASSERT
void PPCRecRA_debugValidateSubrange(raLivenessSubrange_t* subrange)
{
// validate subrange
if (subrange->subrangeBranchTaken && subrange->subrangeBranchTaken->imlSegment != subrange->imlSegment->nextSegmentBranchTaken)
assert_dbg();
if (subrange->subrangeBranchNotTaken && subrange->subrangeBranchNotTaken->imlSegment != subrange->imlSegment->nextSegmentBranchNotTaken)
assert_dbg();
}
#else
void PPCRecRA_debugValidateSubrange(raLivenessSubrange_t* subrange) {}
#endif
// split subrange at the given index
// After the split there will be two ranges/subranges:
// head -> subrange is shortned to end at splitIndex
// tail -> a new subrange that reaches from splitIndex to the end of the original subrange
// if head has a physical register assigned it will not carry over to tail
// The return value is the tail subrange
// If trimToHole is true, the end of the head subrange and the start of the tail subrange will be moved to fit the locations
// Ranges that begin at RA_INTER_RANGE_START are allowed and can be split
raLivenessSubrange_t* PPCRecRA_splitLocalSubrange(ppcImlGenContext_t* ppcImlGenContext, raLivenessSubrange_t* subrange, sint32 splitIndex, bool trimToHole)
{
// validation
#ifdef CEMU_DEBUG_ASSERT
if (subrange->end.index == RA_INTER_RANGE_END || subrange->end.index == RA_INTER_RANGE_START)
assert_dbg();
if (subrange->start.index >= splitIndex)
assert_dbg();
if (subrange->end.index <= splitIndex)
assert_dbg();
#endif
// create tail
raLivenessRange_t* tailRange = PPCRecRA_createRangeBase(ppcImlGenContext, subrange->range->virtualRegister, subrange->range->name);
raLivenessSubrange_t* tailSubrange = PPCRecRA_createSubrange(ppcImlGenContext, tailRange, subrange->imlSegment, splitIndex, subrange->end.index);
// copy locations
for (auto& location : subrange->list_locations)
{
if (location.index >= splitIndex)
tailSubrange->list_locations.push_back(location);
}
// remove tail locations from head
for (sint32 i = 0; i < subrange->list_locations.size(); i++)
{
raLivenessLocation_t* location = subrange->list_locations.data() + i;
if (location->index >= splitIndex)
{
subrange->list_locations.resize(i);
break;
}
}
// adjust start/end
if (trimToHole)
{
if (subrange->list_locations.empty())
{
subrange->end.index = subrange->start.index+1;
}
else
{
subrange->end.index = subrange->list_locations.back().index + 1;
}
if (tailSubrange->list_locations.empty())
{
assert_dbg(); // should not happen? (In this case we can just avoid generating a tail at all)
}
else
{
tailSubrange->start.index = tailSubrange->list_locations.front().index;
}
}
return tailSubrange;
}
void PPCRecRA_updateOrAddSubrangeLocation(raLivenessSubrange_t* subrange, sint32 index, bool isRead, bool isWrite)
{
if (subrange->list_locations.empty())
{
subrange->list_locations.emplace_back(index, isRead, isWrite);
return;
}
raLivenessLocation_t* lastLocation = subrange->list_locations.data() + (subrange->list_locations.size() - 1);
cemu_assert_debug(lastLocation->index <= index);
if (lastLocation->index == index)
{
// update
lastLocation->isRead = lastLocation->isRead || isRead;
lastLocation->isWrite = lastLocation->isWrite || isWrite;
return;
}
// add new
subrange->list_locations.emplace_back(index, isRead, isWrite);
}
sint32 PPCRecRARange_getReadWriteCost(PPCRecImlSegment_t* imlSegment)
{
sint32 v = imlSegment->loopDepth + 1;
v *= 5;
return v*v; // 25, 100, 225, 400
}
// calculate cost of entire range
// ignores data flow and does not detect avoidable reads/stores
sint32 PPCRecRARange_estimateCost(raLivenessRange_t* range)
{
sint32 cost = 0;
// todo - this algorithm isn't accurate. If we have 10 parallel branches with a load each then the actual cost is still only that of one branch (plus minimal extra cost for generating more code).
// currently we calculate the cost based on the most expensive entry/exit point
sint32 mostExpensiveRead = 0;
sint32 mostExpensiveWrite = 0;
sint32 readCount = 0;
sint32 writeCount = 0;
for (auto& subrange : range->list_subranges)
{
if (subrange->start.index != RA_INTER_RANGE_START)
{
//cost += PPCRecRARange_getReadWriteCost(subrange->imlSegment);
mostExpensiveRead = std::max(mostExpensiveRead, PPCRecRARange_getReadWriteCost(subrange->imlSegment));
readCount++;
}
if (subrange->end.index != RA_INTER_RANGE_END)
{
//cost += PPCRecRARange_getReadWriteCost(subrange->imlSegment);
mostExpensiveWrite = std::max(mostExpensiveWrite, PPCRecRARange_getReadWriteCost(subrange->imlSegment));
writeCount++;
}
}
cost = mostExpensiveRead + mostExpensiveWrite;
cost = cost + (readCount + writeCount) / 10;
return cost;
}
// calculate cost of range that it would have after calling PPCRecRA_explodeRange() on it
sint32 PPCRecRARange_estimateAdditionalCostAfterRangeExplode(raLivenessRange_t* range)
{
sint32 cost = -PPCRecRARange_estimateCost(range);
for (auto& subrange : range->list_subranges)
{
if (subrange->list_locations.empty())
continue;
cost += PPCRecRARange_getReadWriteCost(subrange->imlSegment) * 2; // we assume a read and a store
}
return cost;
}
sint32 PPCRecRARange_estimateAdditionalCostAfterSplit(raLivenessSubrange_t* subrange, sint32 splitIndex)
{
// validation
#ifdef CEMU_DEBUG_ASSERT
if (subrange->end.index == RA_INTER_RANGE_END)
assert_dbg();
#endif
sint32 cost = 0;
// find split position in location list
if (subrange->list_locations.empty())
{
assert_dbg(); // should not happen?
return 0;
}
if (splitIndex <= subrange->list_locations.front().index)
return 0;
if (splitIndex > subrange->list_locations.back().index)
return 0;
// todo - determine exact cost of split subranges
cost += PPCRecRARange_getReadWriteCost(subrange->imlSegment) * 2; // currently we assume that the additional region will require a read and a store
//for (sint32 f = 0; f < subrange->list_locations.size(); f++)
//{
// raLivenessLocation_t* location = subrange->list_locations.data() + f;
// if (location->index >= splitIndex)
// {
// ...
// return cost;
// }
//}
return cost;
}

View file

@ -1,27 +0,0 @@
#pragma once
raLivenessRange_t* PPCRecRA_createRangeBase(ppcImlGenContext_t* ppcImlGenContext, uint32 virtualRegister, uint32 name);
raLivenessSubrange_t* PPCRecRA_createSubrange(ppcImlGenContext_t* ppcImlGenContext, raLivenessRange_t* range, PPCRecImlSegment_t* imlSegment, sint32 startIndex, sint32 endIndex);
void PPCRecRA_deleteSubrange(ppcImlGenContext_t* ppcImlGenContext, raLivenessSubrange_t* subrange);
void PPCRecRA_deleteRange(ppcImlGenContext_t* ppcImlGenContext, raLivenessRange_t* range);
void PPCRecRA_deleteAllRanges(ppcImlGenContext_t* ppcImlGenContext);
void PPCRecRA_mergeRanges(ppcImlGenContext_t* ppcImlGenContext, raLivenessRange_t* range, raLivenessRange_t* absorbedRange);
void PPCRecRA_explodeRange(ppcImlGenContext_t* ppcImlGenContext, raLivenessRange_t* range);
void PPCRecRA_mergeSubranges(ppcImlGenContext_t* ppcImlGenContext, raLivenessSubrange_t* subrange, raLivenessSubrange_t* absorbedSubrange);
raLivenessSubrange_t* PPCRecRA_splitLocalSubrange(ppcImlGenContext_t* ppcImlGenContext, raLivenessSubrange_t* subrange, sint32 splitIndex, bool trimToHole = false);
void PPCRecRA_updateOrAddSubrangeLocation(raLivenessSubrange_t* subrange, sint32 index, bool isRead, bool isWrite);
void PPCRecRA_debugValidateSubrange(raLivenessSubrange_t* subrange);
// cost estimation
sint32 PPCRecRARange_getReadWriteCost(PPCRecImlSegment_t* imlSegment);
sint32 PPCRecRARange_estimateCost(raLivenessRange_t* range);
sint32 PPCRecRARange_estimateAdditionalCostAfterRangeExplode(raLivenessRange_t* range);
sint32 PPCRecRARange_estimateAdditionalCostAfterSplit(raLivenessSubrange_t* subrange, sint32 splitIndex);
// special values to mark the index of ranges that reach across the segment border
#define RA_INTER_RANGE_START (-1)
#define RA_INTER_RANGE_END (0x70000000)

View file

@ -1,414 +0,0 @@
#include "PPCRecompiler.h"
#include "PPCRecompilerIml.h"
#include "PPCRecompilerX64.h"
#include "PPCRecompilerImlRanges.h"
#include <queue>
bool _isRangeDefined(PPCRecImlSegment_t* imlSegment, sint32 vGPR)
{
return (imlSegment->raDistances.reg[vGPR].usageStart != INT_MAX);
}
void PPCRecRA_calculateSegmentMinMaxRanges(ppcImlGenContext_t* ppcImlGenContext, PPCRecImlSegment_t* imlSegment)
{
for (sint32 i = 0; i < PPC_REC_MAX_VIRTUAL_GPR; i++)
{
imlSegment->raDistances.reg[i].usageStart = INT_MAX;
imlSegment->raDistances.reg[i].usageEnd = INT_MIN;
}
// scan instructions for usage range
sint32 index = 0;
PPCImlOptimizerUsedRegisters_t gprTracking;
while (index < imlSegment->imlListCount)
{
// end loop at suffix instruction
if (PPCRecompiler_isSuffixInstruction(imlSegment->imlList + index))
break;
// get accessed GPRs
PPCRecompiler_checkRegisterUsage(NULL, imlSegment->imlList + index, &gprTracking);
for (sint32 t = 0; t < 4; t++)
{
sint32 virtualRegister = gprTracking.gpr[t];
if (virtualRegister < 0)
continue;
cemu_assert_debug(virtualRegister < PPC_REC_MAX_VIRTUAL_GPR);
imlSegment->raDistances.reg[virtualRegister].usageStart = std::min(imlSegment->raDistances.reg[virtualRegister].usageStart, index); // index before/at instruction
imlSegment->raDistances.reg[virtualRegister].usageEnd = std::max(imlSegment->raDistances.reg[virtualRegister].usageEnd, index+1); // index after instruction
}
// next instruction
index++;
}
}
void PPCRecRA_calculateLivenessRangesV2(ppcImlGenContext_t* ppcImlGenContext)
{
// for each register calculate min/max index of usage range within each segment
for (sint32 s = 0; s < ppcImlGenContext->segmentListCount; s++)
{
PPCRecRA_calculateSegmentMinMaxRanges(ppcImlGenContext, ppcImlGenContext->segmentList[s]);
}
}
raLivenessSubrange_t* PPCRecRA_convertToMappedRanges(ppcImlGenContext_t* ppcImlGenContext, PPCRecImlSegment_t* imlSegment, sint32 vGPR, raLivenessRange_t* range)
{
if (imlSegment->raDistances.isProcessed[vGPR])
{
// return already existing segment
return imlSegment->raInfo.linkedList_perVirtualGPR[vGPR];
}
imlSegment->raDistances.isProcessed[vGPR] = true;
if (_isRangeDefined(imlSegment, vGPR) == false)
return nullptr;
// create subrange
cemu_assert_debug(imlSegment->raInfo.linkedList_perVirtualGPR[vGPR] == nullptr);
raLivenessSubrange_t* subrange = PPCRecRA_createSubrange(ppcImlGenContext, range, imlSegment, imlSegment->raDistances.reg[vGPR].usageStart, imlSegment->raDistances.reg[vGPR].usageEnd);
// traverse forward
if (imlSegment->raDistances.reg[vGPR].usageEnd == RA_INTER_RANGE_END)
{
if (imlSegment->nextSegmentBranchTaken && imlSegment->nextSegmentBranchTaken->raDistances.reg[vGPR].usageStart == RA_INTER_RANGE_START)
{
subrange->subrangeBranchTaken = PPCRecRA_convertToMappedRanges(ppcImlGenContext, imlSegment->nextSegmentBranchTaken, vGPR, range);
cemu_assert_debug(subrange->subrangeBranchTaken->start.index == RA_INTER_RANGE_START);
}
if (imlSegment->nextSegmentBranchNotTaken && imlSegment->nextSegmentBranchNotTaken->raDistances.reg[vGPR].usageStart == RA_INTER_RANGE_START)
{
subrange->subrangeBranchNotTaken = PPCRecRA_convertToMappedRanges(ppcImlGenContext, imlSegment->nextSegmentBranchNotTaken, vGPR, range);
cemu_assert_debug(subrange->subrangeBranchNotTaken->start.index == RA_INTER_RANGE_START);
}
}
// traverse backward
if (imlSegment->raDistances.reg[vGPR].usageStart == RA_INTER_RANGE_START)
{
for (auto& it : imlSegment->list_prevSegments)
{
if (it->raDistances.reg[vGPR].usageEnd == RA_INTER_RANGE_END)
PPCRecRA_convertToMappedRanges(ppcImlGenContext, it, vGPR, range);
}
}
// return subrange
return subrange;
}
void PPCRecRA_createSegmentLivenessRanges(ppcImlGenContext_t* ppcImlGenContext, PPCRecImlSegment_t* imlSegment)
{
for (sint32 i = 0; i < PPC_REC_MAX_VIRTUAL_GPR; i++)
{
if( _isRangeDefined(imlSegment, i) == false )
continue;
if( imlSegment->raDistances.isProcessed[i])
continue;
raLivenessRange_t* range = PPCRecRA_createRangeBase(ppcImlGenContext, i, ppcImlGenContext->mappedRegister[i]);
PPCRecRA_convertToMappedRanges(ppcImlGenContext, imlSegment, i, range);
}
// create lookup table of ranges
raLivenessSubrange_t* vGPR2Subrange[PPC_REC_MAX_VIRTUAL_GPR];
for (sint32 i = 0; i < PPC_REC_MAX_VIRTUAL_GPR; i++)
{
vGPR2Subrange[i] = imlSegment->raInfo.linkedList_perVirtualGPR[i];
#ifdef CEMU_DEBUG_ASSERT
if (vGPR2Subrange[i] && vGPR2Subrange[i]->link_sameVirtualRegisterGPR.next != nullptr)
assert_dbg();
#endif
}
// parse instructions and convert to locations
sint32 index = 0;
PPCImlOptimizerUsedRegisters_t gprTracking;
while (index < imlSegment->imlListCount)
{
// end loop at suffix instruction
if (PPCRecompiler_isSuffixInstruction(imlSegment->imlList + index))
break;
// get accessed GPRs
PPCRecompiler_checkRegisterUsage(NULL, imlSegment->imlList + index, &gprTracking);
// handle accessed GPR
for (sint32 t = 0; t < 4; t++)
{
sint32 virtualRegister = gprTracking.gpr[t];
if (virtualRegister < 0)
continue;
bool isWrite = (t == 3);
// add location
PPCRecRA_updateOrAddSubrangeLocation(vGPR2Subrange[virtualRegister], index, isWrite == false, isWrite);
#ifdef CEMU_DEBUG_ASSERT
if (index < vGPR2Subrange[virtualRegister]->start.index)
assert_dbg();
if (index+1 > vGPR2Subrange[virtualRegister]->end.index)
assert_dbg();
#endif
}
// next instruction
index++;
}
}
void PPCRecRA_extendRangeToEndOfSegment(ppcImlGenContext_t* ppcImlGenContext, PPCRecImlSegment_t* imlSegment, sint32 vGPR)
{
if (_isRangeDefined(imlSegment, vGPR) == false)
{
imlSegment->raDistances.reg[vGPR].usageStart = RA_INTER_RANGE_END;
imlSegment->raDistances.reg[vGPR].usageEnd = RA_INTER_RANGE_END;
return;
}
imlSegment->raDistances.reg[vGPR].usageEnd = RA_INTER_RANGE_END;
}
void PPCRecRA_extendRangeToBeginningOfSegment(ppcImlGenContext_t* ppcImlGenContext, PPCRecImlSegment_t* imlSegment, sint32 vGPR)
{
if (_isRangeDefined(imlSegment, vGPR) == false)
{
imlSegment->raDistances.reg[vGPR].usageStart = RA_INTER_RANGE_START;
imlSegment->raDistances.reg[vGPR].usageEnd = RA_INTER_RANGE_START;
}
else
{
imlSegment->raDistances.reg[vGPR].usageStart = RA_INTER_RANGE_START;
}
// propagate backwards
for (auto& it : imlSegment->list_prevSegments)
{
PPCRecRA_extendRangeToEndOfSegment(ppcImlGenContext, it, vGPR);
}
}
void _PPCRecRA_connectRanges(ppcImlGenContext_t* ppcImlGenContext, sint32 vGPR, PPCRecImlSegment_t** route, sint32 routeDepth)
{
#ifdef CEMU_DEBUG_ASSERT
if (routeDepth < 2)
assert_dbg();
#endif
// extend starting range to end of segment
PPCRecRA_extendRangeToEndOfSegment(ppcImlGenContext, route[0], vGPR);
// extend all the connecting segments in both directions
for (sint32 i = 1; i < (routeDepth - 1); i++)
{
PPCRecRA_extendRangeToEndOfSegment(ppcImlGenContext, route[i], vGPR);
PPCRecRA_extendRangeToBeginningOfSegment(ppcImlGenContext, route[i], vGPR);
}
// extend the final segment towards the beginning
PPCRecRA_extendRangeToBeginningOfSegment(ppcImlGenContext, route[routeDepth-1], vGPR);
}
void _PPCRecRA_checkAndTryExtendRange(ppcImlGenContext_t* ppcImlGenContext, PPCRecImlSegment_t* currentSegment, sint32 vGPR, sint32 distanceLeft, PPCRecImlSegment_t** route, sint32 routeDepth)
{
if (routeDepth >= 64)
{
cemuLog_logDebug(LogType::Force, "Recompiler RA route maximum depth exceeded for function 0x{:08x}", ppcImlGenContext->functionRef->ppcAddress);
return;
}
route[routeDepth] = currentSegment;
if (currentSegment->raDistances.reg[vGPR].usageStart == INT_MAX)
{
// measure distance to end of segment
distanceLeft -= currentSegment->imlListCount;
if (distanceLeft > 0)
{
if (currentSegment->nextSegmentBranchNotTaken)
_PPCRecRA_checkAndTryExtendRange(ppcImlGenContext, currentSegment->nextSegmentBranchNotTaken, vGPR, distanceLeft, route, routeDepth + 1);
if (currentSegment->nextSegmentBranchTaken)
_PPCRecRA_checkAndTryExtendRange(ppcImlGenContext, currentSegment->nextSegmentBranchTaken, vGPR, distanceLeft, route, routeDepth + 1);
}
return;
}
else
{
// measure distance to range
if (currentSegment->raDistances.reg[vGPR].usageStart == RA_INTER_RANGE_END)
{
if (distanceLeft < currentSegment->imlListCount)
return; // range too far away
}
else if (currentSegment->raDistances.reg[vGPR].usageStart != RA_INTER_RANGE_START && currentSegment->raDistances.reg[vGPR].usageStart > distanceLeft)
return; // out of range
// found close range -> connect ranges
_PPCRecRA_connectRanges(ppcImlGenContext, vGPR, route, routeDepth + 1);
}
}
void PPCRecRA_checkAndTryExtendRange(ppcImlGenContext_t* ppcImlGenContext, PPCRecImlSegment_t* currentSegment, sint32 vGPR)
{
#ifdef CEMU_DEBUG_ASSERT
if (currentSegment->raDistances.reg[vGPR].usageEnd < 0)
assert_dbg();
#endif
// count instructions to end of initial segment
if (currentSegment->raDistances.reg[vGPR].usageEnd == RA_INTER_RANGE_START)
assert_dbg();
sint32 instructionsUntilEndOfSeg;
if (currentSegment->raDistances.reg[vGPR].usageEnd == RA_INTER_RANGE_END)
instructionsUntilEndOfSeg = 0;
else
instructionsUntilEndOfSeg = currentSegment->imlListCount - currentSegment->raDistances.reg[vGPR].usageEnd;
#ifdef CEMU_DEBUG_ASSERT
if (instructionsUntilEndOfSeg < 0)
assert_dbg();
#endif
sint32 remainingScanDist = 45 - instructionsUntilEndOfSeg;
if (remainingScanDist <= 0)
return; // can't reach end
// also dont forget: Extending is easier if we allow 'non symetric' branches. E.g. register range one enters one branch
PPCRecImlSegment_t* route[64];
route[0] = currentSegment;
if (currentSegment->nextSegmentBranchNotTaken)
{
_PPCRecRA_checkAndTryExtendRange(ppcImlGenContext, currentSegment->nextSegmentBranchNotTaken, vGPR, remainingScanDist, route, 1);
}
if (currentSegment->nextSegmentBranchTaken)
{
_PPCRecRA_checkAndTryExtendRange(ppcImlGenContext, currentSegment->nextSegmentBranchTaken, vGPR, remainingScanDist, route, 1);
}
}
void PPCRecRA_mergeCloseRangesForSegmentV2(ppcImlGenContext_t* ppcImlGenContext, PPCRecImlSegment_t* imlSegment)
{
for (sint32 i = 0; i < PPC_REC_MAX_VIRTUAL_GPR; i++) // todo: Use dynamic maximum or list of used vGPRs so we can avoid parsing empty entries
{
if(imlSegment->raDistances.reg[i].usageStart == INT_MAX)
continue; // not used
// check and extend if possible
PPCRecRA_checkAndTryExtendRange(ppcImlGenContext, imlSegment, i);
}
#ifdef CEMU_DEBUG_ASSERT
if (imlSegment->list_prevSegments.empty() == false && imlSegment->isEnterable)
assert_dbg();
if ((imlSegment->nextSegmentBranchNotTaken != nullptr || imlSegment->nextSegmentBranchTaken != nullptr) && imlSegment->nextSegmentIsUncertain)
assert_dbg();
#endif
}
void PPCRecRA_followFlowAndExtendRanges(ppcImlGenContext_t* ppcImlGenContext, PPCRecImlSegment_t* imlSegment)
{
std::vector<PPCRecImlSegment_t*> list_segments;
list_segments.reserve(1000);
sint32 index = 0;
imlSegment->raRangeExtendProcessed = true;
list_segments.push_back(imlSegment);
while (index < list_segments.size())
{
PPCRecImlSegment_t* currentSegment = list_segments[index];
PPCRecRA_mergeCloseRangesForSegmentV2(ppcImlGenContext, currentSegment);
// follow flow
if (currentSegment->nextSegmentBranchNotTaken && currentSegment->nextSegmentBranchNotTaken->raRangeExtendProcessed == false)
{
currentSegment->nextSegmentBranchNotTaken->raRangeExtendProcessed = true;
list_segments.push_back(currentSegment->nextSegmentBranchNotTaken);
}
if (currentSegment->nextSegmentBranchTaken && currentSegment->nextSegmentBranchTaken->raRangeExtendProcessed == false)
{
currentSegment->nextSegmentBranchTaken->raRangeExtendProcessed = true;
list_segments.push_back(currentSegment->nextSegmentBranchTaken);
}
index++;
}
}
void PPCRecRA_mergeCloseRangesV2(ppcImlGenContext_t* ppcImlGenContext)
{
for (sint32 s = 0; s < ppcImlGenContext->segmentListCount; s++)
{
PPCRecImlSegment_t* imlSegment = ppcImlGenContext->segmentList[s];
if (imlSegment->list_prevSegments.empty())
{
if (imlSegment->raRangeExtendProcessed)
assert_dbg(); // should not happen
PPCRecRA_followFlowAndExtendRanges(ppcImlGenContext, imlSegment);
}
}
}
void PPCRecRA_extendRangesOutOfLoopsV2(ppcImlGenContext_t* ppcImlGenContext)
{
for (sint32 s = 0; s < ppcImlGenContext->segmentListCount; s++)
{
PPCRecImlSegment_t* imlSegment = ppcImlGenContext->segmentList[s];
auto localLoopDepth = imlSegment->loopDepth;
if( localLoopDepth <= 0 )
continue; // not inside a loop
// look for loop exit
bool hasLoopExit = false;
if (imlSegment->nextSegmentBranchTaken && imlSegment->nextSegmentBranchTaken->loopDepth < localLoopDepth)
{
hasLoopExit = true;
}
if (imlSegment->nextSegmentBranchNotTaken && imlSegment->nextSegmentBranchNotTaken->loopDepth < localLoopDepth)
{
hasLoopExit = true;
}
if(hasLoopExit == false)
continue;
// extend looping ranges into all exits (this allows the data flow analyzer to move stores out of the loop)
for (sint32 i = 0; i < PPC_REC_MAX_VIRTUAL_GPR; i++) // todo: Use dynamic maximum or list of used vGPRs so we can avoid parsing empty entries
{
if (imlSegment->raDistances.reg[i].usageEnd != RA_INTER_RANGE_END)
continue; // range not set or does not reach end of segment
if(imlSegment->nextSegmentBranchTaken)
PPCRecRA_extendRangeToBeginningOfSegment(ppcImlGenContext, imlSegment->nextSegmentBranchTaken, i);
if(imlSegment->nextSegmentBranchNotTaken)
PPCRecRA_extendRangeToBeginningOfSegment(ppcImlGenContext, imlSegment->nextSegmentBranchNotTaken, i);
}
}
}
void PPCRecRA_processFlowAndCalculateLivenessRangesV2(ppcImlGenContext_t* ppcImlGenContext)
{
// merge close ranges
PPCRecRA_mergeCloseRangesV2(ppcImlGenContext);
// extra pass to move register stores out of loops
PPCRecRA_extendRangesOutOfLoopsV2(ppcImlGenContext);
// calculate liveness ranges
for (sint32 s = 0; s < ppcImlGenContext->segmentListCount; s++)
{
PPCRecImlSegment_t* imlSegment = ppcImlGenContext->segmentList[s];
PPCRecRA_createSegmentLivenessRanges(ppcImlGenContext, imlSegment);
}
}
void PPCRecRA_analyzeSubrangeDataDependencyV2(raLivenessSubrange_t* subrange)
{
bool isRead = false;
bool isWritten = false;
bool isOverwritten = false;
for (auto& location : subrange->list_locations)
{
if (location.isRead)
{
isRead = true;
}
if (location.isWrite)
{
if (isRead == false)
isOverwritten = true;
isWritten = true;
}
}
subrange->_noLoad = isOverwritten;
subrange->hasStore = isWritten;
if (subrange->start.index == RA_INTER_RANGE_START)
subrange->_noLoad = true;
}
void _analyzeRangeDataFlow(raLivenessSubrange_t* subrange);
void PPCRecRA_analyzeRangeDataFlowV2(ppcImlGenContext_t* ppcImlGenContext)
{
// this function is called after _assignRegisters(), which means that all ranges are already final and wont change anymore
// first do a per-subrange pass
for (auto& range : ppcImlGenContext->raInfo.list_ranges)
{
for (auto& subrange : range->list_subranges)
{
PPCRecRA_analyzeSubrangeDataDependencyV2(subrange);
}
}
// then do a second pass where we scan along subrange flow
for (auto& range : ppcImlGenContext->raInfo.list_ranges)
{
for (auto& subrange : range->list_subranges) // todo - traversing this backwards should be faster and yield better results due to the nature of the algorithm
{
_analyzeRangeDataFlow(subrange);
}
}
}

View file

@ -1,173 +1,26 @@
#include "PPCRecompiler.h"
#include "PPCRecompilerIml.h"
PPCRecImlSegment_t* PPCRecompiler_getSegmentByPPCJumpAddress(ppcImlGenContext_t* ppcImlGenContext, uint32 ppcOffset)
{
for(sint32 s=0; s<ppcImlGenContext->segmentListCount; s++)
{
if( ppcImlGenContext->segmentList[s]->isJumpDestination && ppcImlGenContext->segmentList[s]->jumpDestinationPPCAddress == ppcOffset )
{
return ppcImlGenContext->segmentList[s];
}
}
debug_printf("PPCRecompiler_getSegmentByPPCJumpAddress(): Unable to find segment (ppcOffset 0x%08x)\n", ppcOffset);
return NULL;
}
void PPCRecompilerIml_setLinkBranchNotTaken(PPCRecImlSegment_t* imlSegmentSrc, PPCRecImlSegment_t* imlSegmentDst)
{
// make sure segments aren't already linked
if (imlSegmentSrc->nextSegmentBranchNotTaken == imlSegmentDst)
return;
// add as next segment for source
if (imlSegmentSrc->nextSegmentBranchNotTaken != NULL)
assert_dbg();
imlSegmentSrc->nextSegmentBranchNotTaken = imlSegmentDst;
// add as previous segment for destination
imlSegmentDst->list_prevSegments.push_back(imlSegmentSrc);
}
void PPCRecompilerIml_setLinkBranchTaken(PPCRecImlSegment_t* imlSegmentSrc, PPCRecImlSegment_t* imlSegmentDst)
{
// make sure segments aren't already linked
if (imlSegmentSrc->nextSegmentBranchTaken == imlSegmentDst)
return;
// add as next segment for source
if (imlSegmentSrc->nextSegmentBranchTaken != NULL)
assert_dbg();
imlSegmentSrc->nextSegmentBranchTaken = imlSegmentDst;
// add as previous segment for destination
imlSegmentDst->list_prevSegments.push_back(imlSegmentSrc);
}
void PPCRecompilerIML_removeLink(PPCRecImlSegment_t* imlSegmentSrc, PPCRecImlSegment_t* imlSegmentDst)
{
if (imlSegmentSrc->nextSegmentBranchNotTaken == imlSegmentDst)
{
imlSegmentSrc->nextSegmentBranchNotTaken = NULL;
}
else if (imlSegmentSrc->nextSegmentBranchTaken == imlSegmentDst)
{
imlSegmentSrc->nextSegmentBranchTaken = NULL;
}
else
assert_dbg();
bool matchFound = false;
for (sint32 i = 0; i < imlSegmentDst->list_prevSegments.size(); i++)
{
if (imlSegmentDst->list_prevSegments[i] == imlSegmentSrc)
{
imlSegmentDst->list_prevSegments.erase(imlSegmentDst->list_prevSegments.begin()+i);
matchFound = true;
break;
}
}
if (matchFound == false)
assert_dbg();
}
/*
* Replaces all links to segment orig with linkts to segment new
*/
void PPCRecompilerIML_relinkInputSegment(PPCRecImlSegment_t* imlSegmentOrig, PPCRecImlSegment_t* imlSegmentNew)
{
while (imlSegmentOrig->list_prevSegments.size() != 0)
{
PPCRecImlSegment_t* prevSegment = imlSegmentOrig->list_prevSegments[0];
if (prevSegment->nextSegmentBranchNotTaken == imlSegmentOrig)
{
PPCRecompilerIML_removeLink(prevSegment, imlSegmentOrig);
PPCRecompilerIml_setLinkBranchNotTaken(prevSegment, imlSegmentNew);
}
else if (prevSegment->nextSegmentBranchTaken == imlSegmentOrig)
{
PPCRecompilerIML_removeLink(prevSegment, imlSegmentOrig);
PPCRecompilerIml_setLinkBranchTaken(prevSegment, imlSegmentNew);
}
else
{
assert_dbg();
}
}
}
void PPCRecompilerIML_linkSegments(ppcImlGenContext_t* ppcImlGenContext)
{
for(sint32 s=0; s<ppcImlGenContext->segmentListCount; s++)
{
PPCRecImlSegment_t* imlSegment = ppcImlGenContext->segmentList[s];
bool isLastSegment = (s+1)>=ppcImlGenContext->segmentListCount;
PPCRecImlSegment_t* nextSegment = isLastSegment?NULL:ppcImlGenContext->segmentList[s+1];
// handle empty segment
if( imlSegment->imlListCount == 0 )
{
if (isLastSegment == false)
PPCRecompilerIml_setLinkBranchNotTaken(imlSegment, ppcImlGenContext->segmentList[s+1]); // continue execution to next segment
else
imlSegment->nextSegmentIsUncertain = true;
continue;
}
// check last instruction of segment
PPCRecImlInstruction_t* imlInstruction = imlSegment->imlList+(imlSegment->imlListCount-1);
if( imlInstruction->type == PPCREC_IML_TYPE_CJUMP || imlInstruction->type == PPCREC_IML_TYPE_CJUMP_CYCLE_CHECK )
{
// find destination segment by ppc jump address
PPCRecImlSegment_t* jumpDestSegment = PPCRecompiler_getSegmentByPPCJumpAddress(ppcImlGenContext, imlInstruction->op_conditionalJump.jumpmarkAddress);
if( jumpDestSegment )
{
if (imlInstruction->op_conditionalJump.condition != PPCREC_JUMP_CONDITION_NONE)
PPCRecompilerIml_setLinkBranchNotTaken(imlSegment, nextSegment);
PPCRecompilerIml_setLinkBranchTaken(imlSegment, jumpDestSegment);
}
else
{
imlSegment->nextSegmentIsUncertain = true;
}
}
else if( imlInstruction->type == PPCREC_IML_TYPE_MACRO )
{
// currently we assume that the next segment is unknown for all macros
imlSegment->nextSegmentIsUncertain = true;
}
else
{
// all other instruction types do not branch
//imlSegment->nextSegment[0] = nextSegment;
PPCRecompilerIml_setLinkBranchNotTaken(imlSegment, nextSegment);
//imlSegment->nextSegmentIsUncertain = true;
}
}
}
void PPCRecompilerIML_isolateEnterableSegments(ppcImlGenContext_t* ppcImlGenContext)
{
sint32 initialSegmentCount = ppcImlGenContext->segmentListCount;
for (sint32 i = 0; i < ppcImlGenContext->segmentListCount; i++)
size_t initialSegmentCount = ppcImlGenContext->segmentList2.size();
for (size_t i = 0; i < initialSegmentCount; i++)
{
PPCRecImlSegment_t* imlSegment = ppcImlGenContext->segmentList[i];
IMLSegment* imlSegment = ppcImlGenContext->segmentList2[i];
if (imlSegment->list_prevSegments.empty() == false && imlSegment->isEnterable)
{
// spawn new segment at end
PPCRecompilerIml_insertSegments(ppcImlGenContext, ppcImlGenContext->segmentListCount, 1);
PPCRecImlSegment_t* entrySegment = ppcImlGenContext->segmentList[ppcImlGenContext->segmentListCount-1];
PPCRecompilerIml_insertSegments(ppcImlGenContext, ppcImlGenContext->segmentList2.size(), 1);
IMLSegment* entrySegment = ppcImlGenContext->segmentList2[ppcImlGenContext->segmentList2.size()-1];
entrySegment->isEnterable = true;
entrySegment->enterPPCAddress = imlSegment->enterPPCAddress;
// create jump instruction
PPCRecompiler_pushBackIMLInstructions(entrySegment, 0, 1);
PPCRecompilerImlGen_generateNewInstruction_jumpSegment(ppcImlGenContext, entrySegment->imlList + 0);
PPCRecompilerIml_setLinkBranchTaken(entrySegment, imlSegment);
entrySegment->imlList.data()[0].make_jump();
IMLSegment_SetLinkBranchTaken(entrySegment, imlSegment);
// remove enterable flag from original segment
imlSegment->isEnterable = false;
imlSegment->enterPPCAddress = 0;
}
}
}
PPCRecImlInstruction_t* PPCRecompilerIML_getLastInstruction(PPCRecImlSegment_t* imlSegment)
{
if (imlSegment->imlListCount == 0)
return nullptr;
return imlSegment->imlList + (imlSegment->imlListCount - 1);
}
}

File diff suppressed because it is too large Load diff

View file

@ -235,6 +235,8 @@ void Latte_Start()
void Latte_Stop()
{
std::unique_lock _lock(sLatteThreadStateMutex);
if (!sLatteThreadRunning)
return;
sLatteThreadRunning = false;
_lock.unlock();
sLatteThread.join();

View file

@ -39,7 +39,6 @@ enum class LogType : sint32
NN_SL = 26,
TextureReadback = 29,
ProcUi = 39,
nlibcurl = 41,
@ -47,6 +46,7 @@ enum class LogType : sint32
NFC = 41,
NTAG = 42,
Recompiler = 60,
};
template <>

View file

@ -165,6 +165,11 @@ bool ActiveSettings::DumpTexturesEnabled()
return s_dump_textures;
}
bool ActiveSettings::DumpRecompilerFunctionsEnabled()
{
return s_dump_recompiler_functions;
}
bool ActiveSettings::DumpLibcurlRequestsEnabled()
{
return s_dump_libcurl_requests;
@ -180,6 +185,11 @@ void ActiveSettings::EnableDumpTextures(bool state)
s_dump_textures = state;
}
void ActiveSettings::EnableDumpRecompilerFunctions(bool state)
{
s_dump_recompiler_functions = state;
}
void ActiveSettings::EnableDumpLibcurlRequests(bool state)
{
s_dump_libcurl_requests = state;

View file

@ -109,9 +109,11 @@ public:
// dump options
[[nodiscard]] static bool DumpShadersEnabled();
[[nodiscard]] static bool DumpTexturesEnabled();
[[nodiscard]] static bool DumpRecompilerFunctionsEnabled();
[[nodiscard]] static bool DumpLibcurlRequestsEnabled();
static void EnableDumpShaders(bool state);
static void EnableDumpTextures(bool state);
static void EnableDumpRecompilerFunctions(bool state);
static void EnableDumpLibcurlRequests(bool state);
// hacks
@ -125,6 +127,7 @@ private:
// dump options
inline static bool s_dump_shaders = false;
inline static bool s_dump_textures = false;
inline static bool s_dump_recompiler_functions = false;
inline static bool s_dump_libcurl_requests = false;
// timer speed

View file

@ -13,6 +13,7 @@
#include "util/crypto/aes128.h"
#include "Cafe/Filesystem/FST/FST.h"
#include "util/helpers/StringHelpers.h"
void requireConsole();
@ -74,7 +75,9 @@ bool LaunchSettings::HandleCommandline(const std::vector<std::wstring>& args)
po::options_description hidden{ "Hidden options" };
hidden.add_options()
("nsight", po::value<bool>()->implicit_value(true), "NSight debugging options")
("legacy", po::value<bool>()->implicit_value(true), "Intel legacy graphic mode");
("legacy", po::value<bool>()->implicit_value(true), "Intel legacy graphic mode")
("ppcrec-lower-addr", po::value<std::string>(), "For debugging: Lower address allowed for PPC recompilation")
("ppcrec-upper-addr", po::value<std::string>(), "For debugging: Upper address allowed for PPC recompilation");
po::options_description extractor{ "Extractor tool" };
extractor.add_options()
@ -186,6 +189,20 @@ bool LaunchSettings::HandleCommandline(const std::vector<std::wstring>& args)
if (vm.count("output"))
log_path = vm["output"].as<std::wstring>();
// recompiler range limit for debugging
if (vm.count("ppcrec-lower-addr"))
{
uint32 addr = (uint32)StringHelpers::ToInt64(vm["ppcrec-lower-addr"].as<std::string>());
ppcRec_limitLowerAddr = addr;
}
if (vm.count("ppcrec-upper-addr"))
{
uint32 addr = (uint32)StringHelpers::ToInt64(vm["ppcrec-upper-addr"].as<std::string>());
ppcRec_limitUpperAddr = addr;
}
if(ppcRec_limitLowerAddr != 0 && ppcRec_limitUpperAddr != 0)
cemuLog_log(LogType::Force, "PPCRec range limited to 0x{:08x}-0x{:08x}", ppcRec_limitLowerAddr, ppcRec_limitUpperAddr);
if(!extract_path.empty())
{
ExtractorTool(extract_path, output_path, log_path);

View file

@ -29,6 +29,9 @@ public:
static std::optional<uint32> GetPersistentId() { return s_persistent_id; }
static uint32 GetPPCRecLowerAddr() { return ppcRec_limitLowerAddr; };
static uint32 GetPPCRecUpperAddr() { return ppcRec_limitUpperAddr; };
private:
inline static std::optional<fs::path> s_load_game_file{};
inline static std::optional<uint64> s_load_title_id{};
@ -44,6 +47,10 @@ private:
inline static std::optional<uint32> s_persistent_id{};
// for recompiler debugging
inline static uint32 ppcRec_limitLowerAddr{};
inline static uint32 ppcRec_limitUpperAddr{};
static bool ExtractorTool(std::wstring_view wud_path, std::string_view output_path, std::wstring_view log_path);
};

View file

@ -144,6 +144,7 @@ enum
// debug->dump
MAINFRAME_MENU_ID_DEBUG_DUMP_TEXTURES = 21600,
MAINFRAME_MENU_ID_DEBUG_DUMP_SHADERS,
MAINFRAME_MENU_ID_DEBUG_DUMP_RECOMPILER_FUNCTIONS,
MAINFRAME_MENU_ID_DEBUG_DUMP_RAM,
MAINFRAME_MENU_ID_DEBUG_DUMP_FST,
MAINFRAME_MENU_ID_DEBUG_DUMP_CURL_REQUESTS,
@ -206,8 +207,9 @@ EVT_MENU_RANGE(MAINFRAME_MENU_ID_NFC_RECENT_0 + 0, MAINFRAME_MENU_ID_NFC_RECENT_
EVT_MENU_RANGE(MAINFRAME_MENU_ID_DEBUG_LOGGING0 + 0, MAINFRAME_MENU_ID_DEBUG_LOGGING0 + 98, MainWindow::OnDebugLoggingToggleFlagGeneric)
EVT_MENU(MAINFRAME_MENU_ID_DEBUG_ADVANCED_PPC_INFO, MainWindow::OnPPCInfoToggle)
// debug -> dump menu
EVT_MENU(MAINFRAME_MENU_ID_DEBUG_DUMP_TEXTURES, MainWindow::OnDebugDumpUsedTextures)
EVT_MENU(MAINFRAME_MENU_ID_DEBUG_DUMP_SHADERS, MainWindow::OnDebugDumpUsedShaders)
EVT_MENU(MAINFRAME_MENU_ID_DEBUG_DUMP_TEXTURES, MainWindow::OnDebugDumpGeneric)
EVT_MENU(MAINFRAME_MENU_ID_DEBUG_DUMP_SHADERS, MainWindow::OnDebugDumpGeneric)
EVT_MENU(MAINFRAME_MENU_ID_DEBUG_DUMP_RECOMPILER_FUNCTIONS, MainWindow::OnDebugDumpGeneric)
EVT_MENU(MAINFRAME_MENU_ID_DEBUG_DUMP_CURL_REQUESTS, MainWindow::OnDebugSetting)
// debug -> Other options
EVT_MENU(MAINFRAME_MENU_ID_DEBUG_RENDER_UPSIDE_DOWN, MainWindow::OnDebugSetting)
@ -1091,31 +1093,29 @@ void MainWindow::OnPPCInfoToggle(wxCommandEvent& event)
g_config.Save();
}
void MainWindow::OnDebugDumpUsedTextures(wxCommandEvent& event)
void MainWindow::OnDebugDumpGeneric(wxCommandEvent& event)
{
const bool value = event.IsChecked();
ActiveSettings::EnableDumpTextures(value);
if (value)
std::string dumpSubpath;
std::function<void(bool)> setDumpState;
switch(event.GetId())
{
try
{
// create directory
const fs::path path(ActiveSettings::GetUserDataPath());
fs::create_directories(path / "dump" / "textures");
}
catch (const std::exception& ex)
{
SystemException sys(ex);
cemuLog_log(LogType::Force, "can't create texture dump folder: {}", ex.what());
ActiveSettings::EnableDumpTextures(false);
}
case MAINFRAME_MENU_ID_DEBUG_DUMP_TEXTURES:
dumpSubpath = "dump/textures";
setDumpState = ActiveSettings::EnableDumpTextures;
break;
case MAINFRAME_MENU_ID_DEBUG_DUMP_SHADERS:
dumpSubpath = "dump/shaders";
setDumpState = ActiveSettings::EnableDumpShaders;
break;
case MAINFRAME_MENU_ID_DEBUG_DUMP_RECOMPILER_FUNCTIONS:
dumpSubpath = "dump/recompiler";
setDumpState = ActiveSettings::EnableDumpRecompilerFunctions;
break;
default:
UNREACHABLE;
}
}
void MainWindow::OnDebugDumpUsedShaders(wxCommandEvent& event)
{
const bool value = event.IsChecked();
ActiveSettings::EnableDumpShaders(value);
setDumpState(value);
if (value)
{
try
@ -2239,6 +2239,7 @@ void MainWindow::RecreateMenu()
wxMenu* debugDumpMenu = new wxMenu;
debugDumpMenu->AppendCheckItem(MAINFRAME_MENU_ID_DEBUG_DUMP_TEXTURES, _("&Textures"), wxEmptyString)->Check(ActiveSettings::DumpTexturesEnabled());
debugDumpMenu->AppendCheckItem(MAINFRAME_MENU_ID_DEBUG_DUMP_SHADERS, _("&Shaders"), wxEmptyString)->Check(ActiveSettings::DumpShadersEnabled());
debugDumpMenu->AppendCheckItem(MAINFRAME_MENU_ID_DEBUG_DUMP_RECOMPILER_FUNCTIONS, _("&Recompiled functions"), wxEmptyString)->Check(ActiveSettings::DumpRecompilerFunctionsEnabled());
debugDumpMenu->AppendCheckItem(MAINFRAME_MENU_ID_DEBUG_DUMP_CURL_REQUESTS, _("&nlibcurl HTTP/HTTPS requests"), wxEmptyString);
// debug submenu
wxMenu* debugMenu = new wxMenu();

View file

@ -107,8 +107,7 @@ public:
void OnDebugSetting(wxCommandEvent& event);
void OnDebugLoggingToggleFlagGeneric(wxCommandEvent& event);
void OnPPCInfoToggle(wxCommandEvent& event);
void OnDebugDumpUsedTextures(wxCommandEvent& event);
void OnDebugDumpUsedShaders(wxCommandEvent& event);
void OnDebugDumpGeneric(wxCommandEvent& event);
void OnLoggingWindow(wxCommandEvent& event);
void OnGDBStubToggle(wxCommandEvent& event);
void OnDebugViewPPCThreads(wxCommandEvent& event);

View file

@ -44,10 +44,9 @@ public:
void add(std::string_view appendedStr)
{
size_t remainingLen = this->limit - this->length;
size_t copyLen = appendedStr.size();
if (remainingLen < copyLen)
copyLen = remainingLen;
if (this->length + copyLen + 1 >= this->limit)
_reserve(std::max<uint32>(this->length + copyLen + 64, this->limit + this->limit / 2));
char* outputStart = (char*)(this->str + this->length);
std::copy(appendedStr.data(), appendedStr.data() + copyLen, outputStart);
length += copyLen;
@ -80,6 +79,13 @@ public:
}
private:
void _reserve(uint32 newLimit)
{
cemu_assert_debug(newLimit > length);
this->str = (uint8*)realloc(this->str, newLimit + 4);
this->limit = newLimit;
}
uint8* str;
uint32 length; /* in bytes */
uint32 limit; /* in bytes */