ntag: Implement NTAGWrite

This commit is contained in:
GaryOderNichts 2024-05-10 00:33:31 +02:00
parent 1c6b209692
commit 8e8431113a
4 changed files with 293 additions and 43 deletions

View file

@ -6,6 +6,7 @@ namespace ndef
{ {
Record::Record() Record::Record()
: mFlags(0), mTNF(NDEF_TNF_EMPTY)
{ {
} }

View file

@ -39,6 +39,7 @@ namespace nfc
bool hasTag; bool hasTag;
uint32 nfcStatus; uint32 nfcStatus;
std::chrono::time_point<std::chrono::system_clock> touchTime;
std::chrono::time_point<std::chrono::system_clock> discoveryTimeout; std::chrono::time_point<std::chrono::system_clock> discoveryTimeout;
MPTR tagDetectCallback; MPTR tagDetectCallback;
@ -146,7 +147,8 @@ namespace nfc
// Look for the unknown TNF which contains the data we care about // Look for the unknown TNF which contains the data we care about
for (const auto& rec : *ndefMsg) for (const auto& rec : *ndefMsg)
{ {
if (rec.GetTNF() == ndef::Record::NDEF_TNF_UNKNOWN) { if (rec.GetTNF() == ndef::Record::NDEF_TNF_UNKNOWN)
{
dataSize = rec.GetPayload().size(); dataSize = rec.GetPayload().size();
cemu_assert(dataSize < 0x200); cemu_assert(dataSize < 0x200);
memcpy(data.GetPointer(), rec.GetPayload().data(), dataSize); memcpy(data.GetPointer(), rec.GetPayload().data(), dataSize);
@ -174,11 +176,6 @@ namespace nfc
{ {
result = -0xBFE; result = -0xBFE;
} }
// Clear tag status after read
// TODO this is not really nice here
ctx->nfcStatus &= ~NFC_STATUS_HAS_TAG;
ctx->tag = {};
} }
else else
{ {
@ -194,9 +191,42 @@ namespace nfc
ctx->state = NFC_STATE_IDLE; ctx->state = NFC_STATE_IDLE;
// TODO write to file sint32 result;
PPCCoreCallback(ctx->writeCallback, chan, 0, ctx->writeContext); if (ctx->tag)
{
// Update tag NDEF data
ctx->tag->SetNDEFData(ctx->writeMessage.ToBytes());
// TODO remove this once writing is confirmed working
fs::path newPath = ctx->tagPath;
if (newPath.extension() != ".bak")
{
newPath += ".bak";
}
cemuLog_log(LogType::Force, "Saving tag as {}...", newPath.string());
// open file for writing
FileStream* fs = FileStream::createFile2(newPath);
if (!fs)
{
result = -0x2DE;
}
else
{
auto tagBytes = ctx->tag->ToBytes();
fs->writeData(tagBytes.data(), tagBytes.size());
delete fs;
result = 0;
}
}
else
{
result = -0x2DD;
}
PPCCoreCallback(ctx->writeCallback, chan, result, ctx->writeContext);
} }
void __NFCHandleAbort(uint32 chan) void __NFCHandleAbort(uint32 chan)
@ -231,6 +261,29 @@ namespace nfc
PPCCoreCallback(ctx->rawCallback, chan, result, responseSize, responseData, ctx->rawContext); PPCCoreCallback(ctx->rawCallback, chan, result, responseSize, responseData, ctx->rawContext);
} }
bool __NFCShouldHandleState(NFCContext* ctx)
{
// Always handle abort
if (ctx->state == NFC_STATE_ABORT)
{
return true;
}
// Do we have a tag?
if (ctx->nfcStatus & NFC_STATUS_HAS_TAG)
{
return true;
}
// Did the timeout expire?
if (ctx->discoveryTimeout < std::chrono::system_clock::now())
{
return true;
}
return false;
}
void NFCProc(uint32 chan) void NFCProc(uint32 chan)
{ {
cemu_assert(chan < 2); cemu_assert(chan < 2);
@ -242,6 +295,11 @@ namespace nfc
return; return;
} }
if (ctx->state == NFC_STATE_INITIALIZED)
{
ctx->state = NFC_STATE_IDLE;
}
// Check if the detect callback should be called // Check if the detect callback should be called
if (ctx->nfcStatus & NFC_STATUS_HAS_TAG) if (ctx->nfcStatus & NFC_STATUS_HAS_TAG)
{ {
@ -254,6 +312,14 @@ namespace nfc
ctx->hasTag = true; ctx->hasTag = true;
} }
// Check if the tag should be removed again
if (ctx->touchTime + std::chrono::seconds(2) < std::chrono::system_clock::now())
{
ctx->nfcStatus &= ~NFC_STATUS_HAS_TAG;
ctx->tag = {};
ctx->tagPath = "";
}
} }
else else
{ {
@ -268,33 +334,25 @@ namespace nfc
} }
} }
switch (ctx->state) if (__NFCShouldHandleState(ctx))
{ {
case NFC_STATE_INITIALIZED: switch (ctx->state)
ctx->state = NFC_STATE_IDLE;
break;
case NFC_STATE_IDLE:
break;
case NFC_STATE_READ:
// Do we have a tag or did the timeout expire?
if ((ctx->nfcStatus & NFC_STATUS_HAS_TAG) || ctx->discoveryTimeout < std::chrono::system_clock::now())
{ {
case NFC_STATE_READ:
__NFCHandleRead(chan); __NFCHandleRead(chan);
} break;
break; case NFC_STATE_WRITE:
case NFC_STATE_WRITE: __NFCHandleWrite(chan);
__NFCHandleWrite(chan); break;
break; case NFC_STATE_ABORT:
case NFC_STATE_ABORT: __NFCHandleAbort(chan);
__NFCHandleAbort(chan); break;
break; case NFC_STATE_RAW:
case NFC_STATE_RAW:
// Do we have a tag or did the timeout expire?
if ((ctx->nfcStatus & NFC_STATUS_HAS_TAG) || ctx->discoveryTimeout < std::chrono::system_clock::now())
{
__NFCHandleRaw(chan); __NFCHandleRaw(chan);
break;
default:
break;
} }
break;
} }
} }
@ -589,6 +647,7 @@ namespace nfc
ctx->nfcStatus |= NFC_STATUS_HAS_TAG; ctx->nfcStatus |= NFC_STATUS_HAS_TAG;
ctx->tagPath = filePath; ctx->tagPath = filePath;
ctx->touchTime = std::chrono::system_clock::now();
*nfcError = NFC_ERROR_NONE; *nfcError = NFC_ERROR_NONE;
return true; return true;

View file

@ -9,7 +9,10 @@ namespace ntag
{ {
struct NTAGWriteData struct NTAGWriteData
{ {
uint16 size;
uint8 data[0x1C8];
nfc::NFCUid uid;
nfc::NFCUid uidMask;
}; };
NTAGWriteData gWriteData[2]; NTAGWriteData gWriteData[2];
@ -72,7 +75,7 @@ namespace ntag
{ {
gFormatSettings.version = formatSettings->version; gFormatSettings.version = formatSettings->version;
gFormatSettings.makerCode = _swapEndianU32(formatSettings->makerCode); gFormatSettings.makerCode = _swapEndianU32(formatSettings->makerCode);
gFormatSettings.indentifyCode = _swapEndianU32(formatSettings->indentifyCode); gFormatSettings.identifyCode = _swapEndianU32(formatSettings->identifyCode);
} }
void __NTAGDetectCallback(PPCInterpreter_t* hCPU) void __NTAGDetectCallback(PPCInterpreter_t* hCPU)
@ -220,7 +223,7 @@ namespace ntag
return true; return true;
} }
sint32 __NTAGDecryptData(void* decryptedData, void* rawData) sint32 __NTAGDecryptData(void* decryptedData, const void* rawData)
{ {
StackAllocator<iosu::ccr_nfc::CCRNFCCryptData> nfcRawData, nfcInData, nfcOutData; StackAllocator<iosu::ccr_nfc::CCRNFCCryptData> nfcRawData, nfcInData, nfcOutData;
@ -256,7 +259,41 @@ namespace ntag
sint32 __NTAGValidateHeaders(NTAGNoftHeader* noftHeader, NTAGInfoHeader* infoHeader, NTAGAreaHeader* rwHeader, NTAGAreaHeader* roHeader) sint32 __NTAGValidateHeaders(NTAGNoftHeader* noftHeader, NTAGInfoHeader* infoHeader, NTAGAreaHeader* rwHeader, NTAGAreaHeader* roHeader)
{ {
// TODO if (infoHeader->formatVersion != gFormatSettings.version || noftHeader->version != 0x1)
{
cemuLog_log(LogType::Force, "Invalid format version");
return -0x2710;
}
if (_swapEndianU32(noftHeader->magic) != 0x4E4F4654 /* 'NOFT' */ ||
_swapEndianU16(rwHeader->magic) != 0x5257 /* 'RW' */ ||
_swapEndianU16(roHeader->magic) != 0x524F /* 'RO' */)
{
cemuLog_log(LogType::Force, "Invalid header magic");
return -0x270F;
}
if (_swapEndianU32(rwHeader->makerCode) != gFormatSettings.makerCode ||
_swapEndianU32(roHeader->makerCode) != gFormatSettings.makerCode)
{
cemuLog_log(LogType::Force, "Invalid maker code");
return -0x270E;
}
if (infoHeader->formatVersion != 0 &&
(_swapEndianU32(rwHeader->identifyCode) != gFormatSettings.identifyCode ||
_swapEndianU32(roHeader->identifyCode) != gFormatSettings.identifyCode))
{
cemuLog_log(LogType::Force, "Invalid identify code");
return -0x2709;
}
if (_swapEndianU16(rwHeader->size) + _swapEndianU16(roHeader->size) != 0x130)
{
cemuLog_log(LogType::Force, "Invalid data size");
return -0x270D;
}
return 0; return 0;
} }
@ -264,8 +301,13 @@ namespace ntag
{ {
memcpy(noftHeader, data + 0x20, sizeof(NTAGNoftHeader)); memcpy(noftHeader, data + 0x20, sizeof(NTAGNoftHeader));
memcpy(infoHeader, data + 0x198, sizeof(NTAGInfoHeader)); memcpy(infoHeader, data + 0x198, sizeof(NTAGInfoHeader));
cemu_assert(_swapEndianU16(infoHeader->rwHeaderOffset) + sizeof(NTAGAreaHeader) < 0x200);
cemu_assert(_swapEndianU16(infoHeader->roHeaderOffset) + sizeof(NTAGAreaHeader) < 0x200);
memcpy(rwHeader, data + _swapEndianU16(infoHeader->rwHeaderOffset), sizeof(NTAGAreaHeader)); memcpy(rwHeader, data + _swapEndianU16(infoHeader->rwHeaderOffset), sizeof(NTAGAreaHeader));
memcpy(roHeader, data + _swapEndianU16(infoHeader->roHeaderOffset), sizeof(NTAGAreaHeader)); memcpy(roHeader, data + _swapEndianU16(infoHeader->roHeaderOffset), sizeof(NTAGAreaHeader));
return __NTAGValidateHeaders(noftHeader, infoHeader, rwHeader, roHeader); return __NTAGValidateHeaders(noftHeader, infoHeader, rwHeader, roHeader);
} }
@ -317,7 +359,7 @@ namespace ntag
ppcDefineParamPtr(lockedData, void, 7); ppcDefineParamPtr(lockedData, void, 7);
ppcDefineParamPtr(context, void, 8); ppcDefineParamPtr(context, void, 8);
uint8 rawData[0x1C8]; uint8 rawData[0x1C8]{};
StackAllocator<NTAGData> readResult; StackAllocator<NTAGData> readResult;
StackAllocator<uint8, 0x1C8> rwData; StackAllocator<uint8, 0x1C8> rwData;
StackAllocator<uint8, 0x1C8> roData; StackAllocator<uint8, 0x1C8> roData;
@ -331,6 +373,9 @@ namespace ntag
error = __NTAGConvertNFCError(error); error = __NTAGConvertNFCError(error);
if (error == 0) if (error == 0)
{ {
memset(rwData.GetPointer(), 0, 0x1C8);
memset(roData.GetPointer(), 0, 0x1C8);
// Copy raw and locked data into a contigous buffer // Copy raw and locked data into a contigous buffer
memcpy(rawData, data, dataSize); memcpy(rawData, data, dataSize);
memcpy(rawData + dataSize, lockedData, lockedDataSize); memcpy(rawData + dataSize, lockedData, lockedDataSize);
@ -388,28 +433,173 @@ namespace ntag
return __NTAGConvertNFCError(result); return __NTAGConvertNFCError(result);
} }
sint32 __NTAGEncryptData(void* encryptedData, const void* rawData)
{
StackAllocator<iosu::ccr_nfc::CCRNFCCryptData> nfcRawData, nfcInData, nfcOutData;
if (!ccrNfcOpened)
{
gCcrNfcHandle = coreinit::IOS_Open("/dev/ccr_nfc", 0);
}
// Prepare nfc buffer
nfcRawData->version = 0;
memcpy(nfcRawData->data, rawData, 0x1C8);
__NTAGRawDataToNfcData(nfcRawData.GetPointer(), nfcInData.GetPointer());
// Encrypt
sint32 result = coreinit::IOS_Ioctl(gCcrNfcHandle, 1, nfcInData.GetPointer(), sizeof(iosu::ccr_nfc::CCRNFCCryptData), nfcOutData.GetPointer(), sizeof(iosu::ccr_nfc::CCRNFCCryptData));
// Unpack nfc buffer
__NTAGNfcDataToRawData(nfcOutData.GetPointer(), nfcRawData.GetPointer());
memcpy(encryptedData, nfcRawData->data, 0x1C8);
return result;
}
sint32 __NTAGPrepareWriteData(void* outBuffer, uint32 dataSize, const void* data, const void* tagData, NTAGNoftHeader* noftHeader, NTAGAreaHeader* rwHeader)
{
uint8 decryptedBuffer[0x1C8];
uint8 encryptedBuffer[0x1C8];
memcpy(decryptedBuffer, tagData, 0x1C8);
// Fill the rest of the rw area with random data
if (dataSize < _swapEndianU16(rwHeader->size))
{
uint8 randomBuffer[0x1C8];
for (int i = 0; i < sizeof(randomBuffer); i++)
{
randomBuffer[i] = rand() & 0xFF;
}
memcpy(decryptedBuffer + _swapEndianU16(rwHeader->offset) + dataSize, randomBuffer, _swapEndianU16(rwHeader->size) - dataSize);
}
// Make sure the data fits into the rw area
if (_swapEndianU16(rwHeader->size) < dataSize)
{
return -0x270D;
}
// Update write count (check for overflow)
if ((_swapEndianU16(noftHeader->writeCount) & 0x7fff) == 0x7fff)
{
noftHeader->writeCount = _swapEndianU16(_swapEndianU16(noftHeader->writeCount) & 0x8000);
}
else
{
noftHeader->writeCount = _swapEndianU16(_swapEndianU16(noftHeader->writeCount) + 1);
}
memcpy(decryptedBuffer + 0x20, noftHeader, sizeof(noftHeader));
memcpy(decryptedBuffer + _swapEndianU16(rwHeader->offset), data, dataSize);
// Encrypt
sint32 result = __NTAGEncryptData(encryptedBuffer, decryptedBuffer);
if (result < 0)
{
return result;
}
memcpy(outBuffer, encryptedBuffer, _swapEndianU16(rwHeader->size) + 0x28);
return 0;
}
void __NTAGWriteCallback(PPCInterpreter_t* hCPU)
{
ppcDefineParamU32(chan, 0);
ppcDefineParamS32(error, 1);
ppcDefineParamPtr(context, void, 2);
PPCCoreCallback(gWriteCallbacks[chan], chan, __NTAGConvertNFCError(error), context);
osLib_returnFromFunction(hCPU, 0);
}
void __NTAGReadBeforeWriteCallback(PPCInterpreter_t* hCPU) void __NTAGReadBeforeWriteCallback(PPCInterpreter_t* hCPU)
{ {
ppcDefineParamU32(chan, 0);
ppcDefineParamS32(error, 1);
ppcDefineParamPtr(uid, nfc::NFCUid, 2);
ppcDefineParamU32(readOnly, 3);
ppcDefineParamU32(dataSize, 4);
ppcDefineParamPtr(data, void, 5);
ppcDefineParamU32(lockedDataSize, 6);
ppcDefineParamPtr(lockedData, void, 7);
ppcDefineParamPtr(context, void, 8);
uint8 rawData[0x1C8]{};
uint8 rwData[0x1C8]{};
uint8 roData[0x1C8]{};
NTAGNoftHeader noftHeader;
NTAGInfoHeader infoHeader;
NTAGAreaHeader rwHeader;
NTAGAreaHeader roHeader;
uint8 writeBuffer[0x1C8]{};
error = __NTAGConvertNFCError(error);
if (error == 0)
{
// Copy raw and locked data into a contigous buffer
memcpy(rawData, data, dataSize);
memcpy(rawData + dataSize, lockedData, lockedDataSize);
error = __NTAGParseData(rawData, rwData, roData, uid, lockedDataSize, &noftHeader, &infoHeader, &rwHeader, &roHeader);
if (error < 0)
{
cemuLog_log(LogType::Force, "Failed to parse data before write");
PPCCoreCallback(gWriteCallbacks[chan], chan, -0x3E3, context);
osLib_returnFromFunction(hCPU, 0);
return;
}
// Prepare data
memcpy(rawData + _swapEndianU16(infoHeader.rwHeaderOffset), &rwHeader, sizeof(rwHeader));
memcpy(rawData + _swapEndianU16(infoHeader.roHeaderOffset), &roHeader, sizeof(roHeader));
memcpy(rawData + _swapEndianU16(roHeader.offset), roData, _swapEndianU16(roHeader.size));
error = __NTAGPrepareWriteData(writeBuffer, gWriteData[chan].size, gWriteData[chan].data, rawData, &noftHeader, &rwHeader);
if (error < 0)
{
cemuLog_log(LogType::Force, "Failed to prepare write data");
PPCCoreCallback(gWriteCallbacks[chan], chan, -0x3E3, context);
osLib_returnFromFunction(hCPU, 0);
return;
}
// Write data to tag
error = nfc::NFCWrite(chan, 200, &gWriteData[chan].uid, &gWriteData[chan].uidMask,
_swapEndianU16(rwHeader.size) + 0x28, writeBuffer, RPLLoader_MakePPCCallable(__NTAGWriteCallback), context);
if (error >= 0)
{
osLib_returnFromFunction(hCPU, 0);
return;
}
error = __NTAGConvertNFCError(error);
}
PPCCoreCallback(gWriteCallbacks[chan], chan, error, context);
osLib_returnFromFunction(hCPU, 0); osLib_returnFromFunction(hCPU, 0);
} }
sint32 NTAGWrite(uint32 chan, uint32 timeout, nfc::NFCUid* uid, uint32 rwSize, void* rwData, MPTR callback, void* context) sint32 NTAGWrite(uint32 chan, uint32 timeout, nfc::NFCUid* uid, uint32 rwSize, void* rwData, MPTR callback, void* context)
{ {
cemu_assert(chan < 2); cemu_assert(chan < 2);
cemu_assert(rwSize < 0x1C8);
gWriteCallbacks[chan] = callback; gWriteCallbacks[chan] = callback;
nfc::NFCUid _uid{}, _uidMask{};
if (uid) if (uid)
{ {
memcpy(&_uid, uid, sizeof(*uid)); memcpy(&gWriteData[chan].uid, uid, sizeof(nfc::NFCUid));
} }
memset(_uidMask.uid, 0xff, sizeof(_uidMask.uid)); memset(&gWriteData[chan].uidMask, 0xff, sizeof(nfc::NFCUid));
// TODO save write data gWriteData[chan].size = rwSize;
memcpy(gWriteData[chan].data, rwData, rwSize);
// TODO we probably don't need to read first here sint32 result = nfc::NFCRead(chan, timeout, &gWriteData[chan].uid, &gWriteData[chan].uidMask, RPLLoader_MakePPCCallable(__NTAGReadBeforeWriteCallback), context);
sint32 result = nfc::NFCRead(chan, timeout, &_uid, &_uidMask, RPLLoader_MakePPCCallable(__NTAGReadBeforeWriteCallback), context);
return __NTAGConvertNFCError(result); return __NTAGConvertNFCError(result);
} }
@ -418,7 +608,7 @@ namespace ntag
cemu_assert(chan < 2); cemu_assert(chan < 2);
// TODO // TODO
return 0; return -1;
} }
void Initialize() void Initialize()

View file

@ -7,7 +7,7 @@ namespace ntag
{ {
/* +0x00 */ uint8 version; /* +0x00 */ uint8 version;
/* +0x04 */ uint32 makerCode; /* +0x04 */ uint32 makerCode;
/* +0x08 */ uint32 indentifyCode; /* +0x08 */ uint32 identifyCode;
/* +0x0C */ uint8 reserved[0x1C]; /* +0x0C */ uint8 reserved[0x1C];
}; };
static_assert(sizeof(NTAGFormatSettings) == 0x28); static_assert(sizeof(NTAGFormatSettings) == 0x28);