mirror of
https://codeberg.org/anoncontributorxmr/monero.git
synced 2025-01-14 21:52:34 -03:00
e745c1e38d
The basic approach it to delegate all sensitive data (master key, secret ephemeral key, key derivation, ....) and related operations to the device. As device has low memory, it does not keep itself the values (except for view/spend keys) but once computed there are encrypted (with AES are equivalent) and return back to monero-wallet-cli. When they need to be manipulated by the device, they are decrypted on receive. Moreover, using the client for storing the value in encrypted form limits the modification in the client code. Those values are transfered from one C-structure to another one as previously. The code modification has been done with the wishes to be open to any other hardware wallet. To achieve that a C++ class hw::Device has been introduced. Two initial implementations are provided: the "default", which remaps all calls to initial Monero code, and the "Ledger", which delegates all calls to Ledger device.
523 lines
22 KiB
C++
523 lines
22 KiB
C++
// Copyright (c) 2017-2018, The Monero Project
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification, are
|
|
// permitted provided that the following conditions are met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
// conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
// of conditions and the following disclaimer in the documentation and/or other
|
|
// materials provided with the distribution.
|
|
//
|
|
// 3. Neither the name of the copyright holder nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without specific
|
|
// prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
|
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
|
|
|
|
#include "ringct/rctSigs.h"
|
|
#include "cryptonote_basic/cryptonote_basic.h"
|
|
#include "multisig/multisig.h"
|
|
#include "common/apply_permutation.h"
|
|
#include "chaingen.h"
|
|
#include "multisig.h"
|
|
#include "device/device.hpp"
|
|
using namespace epee;
|
|
using namespace crypto;
|
|
using namespace cryptonote;
|
|
|
|
//#define NO_MULTISIG
|
|
|
|
//----------------------------------------------------------------------------------------------------------------------
|
|
// Tests
|
|
|
|
bool gen_multisig_tx_validation_base::generate_with(std::vector<test_event_entry>& events,
|
|
size_t inputs, size_t mixin, uint64_t amount_paid, bool valid,
|
|
size_t threshold, size_t total, size_t creator, std::vector<size_t> signers,
|
|
const std::function<void(std::vector<tx_source_entry> &sources, std::vector<tx_destination_entry> &destinations)> &pre_tx,
|
|
const std::function<void(transaction &tx)> &post_tx) const
|
|
{
|
|
uint64_t ts_start = 1338224400;
|
|
bool r;
|
|
|
|
CHECK_AND_ASSERT_MES(total >= 2, false, "Bad scheme");
|
|
CHECK_AND_ASSERT_MES(threshold <= total, false, "Bad scheme");
|
|
CHECK_AND_ASSERT_MES(threshold >= total - 1, false, "Unsupported scheme");
|
|
#ifdef NO_MULTISIG
|
|
CHECK_AND_ASSERT_MES(total <= 5, false, "Unsupported scheme");
|
|
#endif
|
|
CHECK_AND_ASSERT_MES(inputs >= 1 && inputs <= 8, false, "Inputs should between 1 and 8");
|
|
|
|
// given as 1 based for clarity
|
|
--creator;
|
|
for (size_t &signer: signers)
|
|
--signer;
|
|
|
|
CHECK_AND_ASSERT_MES(creator < total, false, "invalid creator");
|
|
for (size_t signer: signers)
|
|
CHECK_AND_ASSERT_MES(signer < total, false, "invalid signer");
|
|
|
|
#ifdef NO_MULTISIG
|
|
GENERATE_ACCOUNT(acc0);
|
|
GENERATE_ACCOUNT(acc1);
|
|
GENERATE_ACCOUNT(acc2);
|
|
GENERATE_ACCOUNT(acc3);
|
|
GENERATE_ACCOUNT(acc4);
|
|
account_base miner_account[5] = {acc0, acc1, acc2, acc3, acc4};
|
|
#else
|
|
GENERATE_MULTISIG_ACCOUNT(miner_account, threshold, total);
|
|
#endif
|
|
|
|
MAKE_GENESIS_BLOCK(events, blk_0, miner_account[creator], ts_start);
|
|
|
|
// create 8 miner accounts, and have them mine the next 8 blocks
|
|
// they will have a coinbase with a single out that's pseudo rct
|
|
constexpr size_t n_coinbases = 8;
|
|
cryptonote::account_base miner_accounts[n_coinbases];
|
|
const cryptonote::block *prev_block = &blk_0;
|
|
cryptonote::block blocks[n_coinbases];
|
|
for (size_t n = 0; n < n_coinbases; ++n) {
|
|
// the first block goes to the multisig account
|
|
miner_accounts[n].generate();
|
|
account_base &account = n < inputs ? miner_account[creator] : miner_accounts[n];
|
|
CHECK_AND_ASSERT_MES(generator.construct_block_manually(blocks[n], *prev_block, account,
|
|
test_generator::bf_major_ver | test_generator::bf_minor_ver | test_generator::bf_timestamp | test_generator::bf_hf_version | test_generator::bf_max_outs,
|
|
4, 4, prev_block->timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN * 2, // v2 has blocks twice as long
|
|
crypto::hash(), 0, transaction(), std::vector<crypto::hash>(), 0, 1, 4),
|
|
false, "Failed to generate block");
|
|
events.push_back(blocks[n]);
|
|
prev_block = blocks + n;
|
|
LOG_PRINT_L0("Initial miner tx " << n << ": " << obj_to_json_str(blocks[n].miner_tx));
|
|
LOG_PRINT_L0("in block: " << obj_to_json_str(blocks[n]));
|
|
}
|
|
|
|
// rewind
|
|
cryptonote::block blk_r, blk_last;
|
|
{
|
|
blk_last = blocks[n_coinbases - 1];
|
|
for (size_t i = 0; i < CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW; ++i)
|
|
{
|
|
cryptonote::block blk;
|
|
CHECK_AND_ASSERT_MES(generator.construct_block_manually(blk, blk_last, miner_accounts[0],
|
|
test_generator::bf_major_ver | test_generator::bf_minor_ver | test_generator::bf_timestamp | test_generator::bf_hf_version | test_generator::bf_max_outs,
|
|
4, 4, blk_last.timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN * 2, // v2 has blocks twice as long
|
|
crypto::hash(), 0, transaction(), std::vector<crypto::hash>(), 0, 1, 4),
|
|
false, "Failed to generate block");
|
|
events.push_back(blk);
|
|
blk_last = blk;
|
|
}
|
|
blk_r = blk_last;
|
|
}
|
|
|
|
cryptonote::keypair in_ephemeral;
|
|
crypto::public_key tx_pub_key[n_coinbases];
|
|
crypto::public_key output_pub_key[n_coinbases];
|
|
for (size_t n = 0; n < n_coinbases; ++n)
|
|
{
|
|
tx_pub_key[n] = get_tx_pub_key_from_extra(blocks[n].miner_tx);
|
|
MDEBUG("tx_pub_key: " << tx_pub_key);
|
|
output_pub_key[n] = boost::get<txout_to_key>(blocks[n].miner_tx.vout[0].target).key;
|
|
MDEBUG("output_pub_key: " << output_pub_key);
|
|
}
|
|
|
|
std::unordered_map<crypto::public_key, cryptonote::subaddress_index> subaddresses;
|
|
subaddresses[miner_account[0].get_keys().m_account_address.m_spend_public_key] = {0,0};
|
|
|
|
#ifndef NO_MULTISIG
|
|
// create k/L/R/ki for that output we're going to spend
|
|
std::vector<std::vector<std::vector<crypto::secret_key>>> account_k(total);
|
|
std::vector<std::vector<std::vector<crypto::public_key>>> account_L(total);
|
|
std::vector<std::vector<std::vector<crypto::public_key>>> account_R(total);
|
|
std::vector<std::vector<std::vector<crypto::key_image>>> account_ki(total);
|
|
std::vector<crypto::public_key> additional_tx_keys;
|
|
for (size_t msidx = 0; msidx < total; ++msidx)
|
|
{
|
|
CHECK_AND_ASSERT_MES(miner_account[msidx].get_keys().m_account_address.m_spend_public_key == miner_account[0].get_keys().m_account_address.m_spend_public_key,
|
|
false, "Mismatched spend public keys");
|
|
|
|
size_t nlr = threshold < total ? threshold - 1 : 1;
|
|
account_k[msidx].resize(inputs);
|
|
account_L[msidx].resize(inputs);
|
|
account_R[msidx].resize(inputs);
|
|
account_ki[msidx].resize(inputs);
|
|
for (size_t tdidx = 0; tdidx < inputs; ++tdidx)
|
|
{
|
|
account_L[msidx][tdidx].resize(nlr);
|
|
account_R[msidx][tdidx].resize(nlr);
|
|
for (size_t n = 0; n < nlr; ++n)
|
|
{
|
|
account_k[msidx][tdidx].push_back(rct::rct2sk(rct::skGen()));
|
|
cryptonote::generate_multisig_LR(output_pub_key[tdidx], account_k[msidx][tdidx][n], account_L[msidx][tdidx][n], account_R[msidx][tdidx][n]);
|
|
}
|
|
size_t numki = miner_account[msidx].get_multisig_keys().size();
|
|
account_ki[msidx][tdidx].resize(numki);
|
|
for (size_t kiidx = 0; kiidx < numki; ++kiidx)
|
|
{
|
|
r = cryptonote::generate_multisig_key_image(miner_account[msidx].get_keys(), kiidx, output_pub_key[tdidx], account_ki[msidx][tdidx][kiidx]);
|
|
CHECK_AND_ASSERT_MES(r, false, "Failed to generate multisig export key image");
|
|
}
|
|
MDEBUG("Party " << msidx << ":");
|
|
MDEBUG("spend: sec " << miner_account[msidx].get_keys().m_spend_secret_key << ", pub " << miner_account[msidx].get_keys().m_account_address.m_spend_public_key);
|
|
MDEBUG("view: sec " << miner_account[msidx].get_keys().m_view_secret_key << ", pub " << miner_account[msidx].get_keys().m_account_address.m_view_public_key);
|
|
for (const auto &k: miner_account[msidx].get_multisig_keys())
|
|
MDEBUG("msk: " << k);
|
|
for (size_t n = 0; n < account_k[msidx][tdidx].size(); ++n)
|
|
{
|
|
MDEBUG("k: " << account_k[msidx][tdidx][n]);
|
|
MDEBUG("L: " << account_L[msidx][tdidx][n]);
|
|
MDEBUG("R: " << account_R[msidx][tdidx][n]);
|
|
}
|
|
for (const auto &ki: account_ki[msidx][tdidx])
|
|
MDEBUG("ki: " << ki);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// create kLRki
|
|
std::vector<rct::multisig_kLRki> kLRkis;
|
|
std::unordered_set<crypto::public_key> used_L;
|
|
for (size_t tdidx = 0; tdidx < inputs; ++tdidx)
|
|
{
|
|
kLRkis.push_back(rct::multisig_kLRki());
|
|
rct::multisig_kLRki &kLRki = kLRkis.back();
|
|
#ifdef NO_MULTISIG
|
|
kLRki = {rct::zero(), rct::zero(), rct::zero(), rct::zero()};
|
|
#else
|
|
kLRki.k = rct::sk2rct(account_k[creator][tdidx][0]);
|
|
kLRki.L = rct::pk2rct(account_L[creator][tdidx][0]);
|
|
kLRki.R = rct::pk2rct(account_R[creator][tdidx][0]);
|
|
MDEBUG("Starting with k " << kLRki.k);
|
|
MDEBUG("Starting with L " << kLRki.L);
|
|
MDEBUG("Starting with R " << kLRki.R);
|
|
for (size_t msidx = 0; msidx < total; ++msidx)
|
|
{
|
|
if (msidx == creator)
|
|
continue;
|
|
if (std::find(signers.begin(), signers.end(), msidx) == signers.end())
|
|
continue;
|
|
for (size_t lr = 0; lr < account_L[msidx][tdidx].size(); ++lr)
|
|
{
|
|
if (used_L.find(account_L[msidx][tdidx][lr]) == used_L.end())
|
|
{
|
|
used_L.insert(account_L[msidx][tdidx][lr]);
|
|
MDEBUG("Adding L " << account_L[msidx][tdidx][lr] << " (for k " << account_k[msidx][tdidx][lr] << ")");
|
|
MDEBUG("Adding R " << account_R[msidx][tdidx][lr]);
|
|
rct::addKeys((rct::key&)kLRki.L, kLRki.L, rct::pk2rct(account_L[msidx][tdidx][lr]));
|
|
rct::addKeys((rct::key&)kLRki.R, kLRki.R, rct::pk2rct(account_R[msidx][tdidx][lr]));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
std::vector<crypto::key_image> pkis;
|
|
for (size_t msidx = 0; msidx < total; ++msidx)
|
|
for (size_t n = 0; n < account_ki[msidx][tdidx].size(); ++n)
|
|
pkis.push_back(account_ki[msidx][tdidx][n]);
|
|
r = cryptonote::generate_multisig_composite_key_image(miner_account[0].get_keys(), subaddresses, output_pub_key[tdidx], tx_pub_key[tdidx], additional_tx_keys, 0, pkis, (crypto::key_image&)kLRki.ki);
|
|
CHECK_AND_ASSERT_MES(r, false, "Failed to generate composite key image");
|
|
MDEBUG("composite ki: " << kLRki.ki);
|
|
MDEBUG("L: " << kLRki.L);
|
|
MDEBUG("R: " << kLRki.R);
|
|
for (size_t n = 1; n < total; ++n)
|
|
{
|
|
rct::key ki;
|
|
r = cryptonote::generate_multisig_composite_key_image(miner_account[n].get_keys(), subaddresses, output_pub_key[tdidx], tx_pub_key[tdidx], additional_tx_keys, 0, pkis, (crypto::key_image&)ki);
|
|
CHECK_AND_ASSERT_MES(r, false, "Failed to generate composite key image");
|
|
CHECK_AND_ASSERT_MES(kLRki.ki == ki, false, "Composite key images do not match");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// create a tx: we have 8 outputs, all from coinbase, so "fake" rct - use 2
|
|
std::vector<tx_source_entry> sources;
|
|
for (size_t n = 0; n < inputs; ++n)
|
|
{
|
|
sources.resize(sources.size() + 1);
|
|
tx_source_entry& src = sources.back();
|
|
|
|
src.real_output = n;
|
|
src.amount = blocks[n].miner_tx.vout[0].amount;
|
|
src.real_out_tx_key = tx_pub_key[n];
|
|
src.real_output_in_tx_index = 0;
|
|
src.mask = rct::identity();
|
|
src.rct = true;
|
|
src.multisig_kLRki = kLRkis[n];
|
|
|
|
for (size_t m = 0; m <= mixin; ++m)
|
|
{
|
|
rct::ctkey ctkey;
|
|
ctkey.dest = rct::pk2rct(boost::get<txout_to_key>(blocks[m].miner_tx.vout[0].target).key);
|
|
MDEBUG("using " << (m == n ? "real" : "fake") << " input " << ctkey.dest);
|
|
ctkey.mask = rct::commit(blocks[m].miner_tx.vout[0].amount, rct::identity()); // since those are coinbases, the masks are known
|
|
src.outputs.push_back(std::make_pair(m, ctkey));
|
|
}
|
|
}
|
|
|
|
//fill outputs entry
|
|
tx_destination_entry td;
|
|
td.addr = miner_account[creator].get_keys().m_account_address;
|
|
td.amount = amount_paid;
|
|
std::vector<tx_destination_entry> destinations;
|
|
destinations.push_back(td);
|
|
|
|
if (pre_tx)
|
|
pre_tx(sources, destinations);
|
|
|
|
transaction tx;
|
|
crypto::secret_key tx_key;
|
|
#ifdef NO_MULTISIG
|
|
rct::multisig_out *msoutp = NULL;
|
|
#else
|
|
rct::multisig_out msout;
|
|
rct::multisig_out *msoutp = &msout;
|
|
#endif
|
|
std::vector<crypto::secret_key> additional_tx_secret_keys;
|
|
auto sources_copy = sources;
|
|
r = construct_tx_and_get_tx_key(miner_account[creator].get_keys(), subaddresses, sources, destinations, boost::none, std::vector<uint8_t>(), tx, 0, tx_key, additional_tx_secret_keys, true, false, msoutp);
|
|
CHECK_AND_ASSERT_MES(r, false, "failed to construct transaction");
|
|
|
|
#ifndef NO_MULTISIG
|
|
// work out the permutation done on sources
|
|
std::vector<size_t> ins_order;
|
|
for (size_t n = 0; n < sources.size(); ++n)
|
|
{
|
|
for (size_t idx = 0; idx < sources_copy.size(); ++idx)
|
|
{
|
|
CHECK_AND_ASSERT_MES((size_t)sources_copy[idx].real_output < sources_copy[idx].outputs.size(),
|
|
false, "Invalid real_output");
|
|
if (sources_copy[idx].outputs[sources_copy[idx].real_output].second.dest == sources[n].outputs[sources[n].real_output].second.dest)
|
|
ins_order.push_back(idx);
|
|
}
|
|
}
|
|
CHECK_AND_ASSERT_MES(ins_order.size() == sources.size(), false, "Failed to work out sources permutation");
|
|
#endif
|
|
|
|
#ifndef NO_MULTISIG
|
|
// sign
|
|
std::unordered_set<crypto::secret_key> used_keys;
|
|
const std::vector<crypto::secret_key> &msk0 = miner_account[creator].get_multisig_keys();
|
|
for (const auto &sk: msk0)
|
|
used_keys.insert(sk);
|
|
for (size_t signer: signers)
|
|
{
|
|
rct::key skey = rct::zero();
|
|
const std::vector<crypto::secret_key> &msk1 = miner_account[signer].get_multisig_keys();
|
|
for (size_t n = 0; n < msk1.size(); ++n)
|
|
{
|
|
const crypto::secret_key &sk1 = msk1[n];
|
|
if (used_keys.find(sk1) == used_keys.end())
|
|
{
|
|
used_keys.insert(sk1);
|
|
sc_add(skey.bytes, skey.bytes, rct::sk2rct(sk1).bytes);
|
|
}
|
|
}
|
|
CHECK_AND_ASSERT_MES(!(skey == rct::zero()), false, "failed to find secret multisig key to sign transaction");
|
|
std::vector<unsigned int> indices;
|
|
for (const auto &src: sources_copy)
|
|
indices.push_back(src.real_output);
|
|
rct::keyV k;
|
|
for (size_t tdidx = 0; tdidx < inputs; ++tdidx)
|
|
{
|
|
k.push_back(rct::zero());
|
|
for (size_t n = 0; n < account_k[signer][tdidx].size(); ++n)
|
|
{
|
|
crypto::public_key L;
|
|
rct::scalarmultBase((rct::key&)L, rct::sk2rct(account_k[signer][tdidx][n]));
|
|
if (used_L.find(L) != used_L.end())
|
|
{
|
|
sc_add(k.back().bytes, k.back().bytes, rct::sk2rct(account_k[signer][tdidx][n]).bytes);
|
|
}
|
|
}
|
|
CHECK_AND_ASSERT_MES(!(k.back() == rct::zero()), false, "failed to find k to sign transaction");
|
|
}
|
|
tools::apply_permutation(ins_order, indices);
|
|
tools::apply_permutation(ins_order, k);
|
|
|
|
MDEBUG("signing with k size " << k.size());
|
|
MDEBUG("signing with k " << k.back());
|
|
MDEBUG("signing with sk " << skey);
|
|
for (const auto &sk: used_keys)
|
|
MDEBUG(" created with sk " << sk);
|
|
MDEBUG("signing with c size " << msout.c.size());
|
|
MDEBUG("signing with c " << msout.c.back());
|
|
r = rct::signMultisig(tx.rct_signatures, indices, k, msout, skey);
|
|
CHECK_AND_ASSERT_MES(r, false, "failed to sign transaction");
|
|
}
|
|
#endif
|
|
|
|
// verify this tx is really to the expected address
|
|
const crypto::public_key tx_pub_key2 = get_tx_pub_key_from_extra(tx, 0);
|
|
crypto::key_derivation derivation;
|
|
r = crypto::generate_key_derivation(tx_pub_key2, miner_account[creator].get_keys().m_view_secret_key, derivation);
|
|
CHECK_AND_ASSERT_MES(r, false, "Failed to generate derivation");
|
|
uint64_t n_outs = 0, amount = 0;
|
|
std::vector<crypto::key_derivation> additional_derivations;
|
|
for (size_t n = 0; n < tx.vout.size(); ++n)
|
|
{
|
|
CHECK_AND_ASSERT_MES(typeid(txout_to_key) == tx.vout[n].target.type(), false, "Unexpected tx out type");
|
|
if (is_out_to_acc_precomp(subaddresses, boost::get<txout_to_key>(tx.vout[n].target).key, derivation, additional_derivations, n, hw::get_device(("default"))))
|
|
{
|
|
++n_outs;
|
|
CHECK_AND_ASSERT_MES(tx.vout[n].amount == 0, false, "Destination amount is not zero");
|
|
rct::key Ctmp;
|
|
crypto::secret_key scalar1;
|
|
crypto::derivation_to_scalar(derivation, n, scalar1);
|
|
rct::ecdhTuple ecdh_info = tx.rct_signatures.ecdhInfo[n];
|
|
rct::ecdhDecode(ecdh_info, rct::sk2rct(scalar1));
|
|
rct::key C = tx.rct_signatures.outPk[n].mask;
|
|
rct::addKeys2(Ctmp, ecdh_info.mask, ecdh_info.amount, rct::H);
|
|
CHECK_AND_ASSERT_MES(rct::equalKeys(C, Ctmp), false, "Failed to decode amount");
|
|
amount += rct::h2d(ecdh_info.amount);
|
|
}
|
|
}
|
|
CHECK_AND_ASSERT_MES(n_outs == 1, false, "Not exactly 1 output was received");
|
|
CHECK_AND_ASSERT_MES(amount == amount_paid, false, "Amount paid was not the expected amount");
|
|
|
|
if (post_tx)
|
|
post_tx(tx);
|
|
|
|
if (!valid)
|
|
DO_CALLBACK(events, "mark_invalid_tx");
|
|
events.push_back(tx);
|
|
LOG_PRINT_L0("Test tx: " << obj_to_json_str(tx));
|
|
|
|
return true;
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_22_1_2::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 4;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 2, 2, 1, {2}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_22_1_2_many_inputs::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 4;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 4, mixin, amount_paid, true, 2, 2, 1, {2}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_22_2_1::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 4;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 2, 2, 2, {1}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_33_1_23::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 4;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 3, 3, 1, {2, 3}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_33_3_21::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 4;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 3, 3, 3, {2, 1}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_23_1_2::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 4;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 2, 3, 1, {2}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_23_1_3::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 4;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 2, 3, 1, {3}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_23_2_1::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 4;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 2, 3, 2, {1}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_23_2_3::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 4;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 2, 3, 2, {3}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_45_1_234::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 4;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 4, 5, 1, {2, 3, 4}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_45_4_135_many_inputs::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 4;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 4, mixin, amount_paid, true, 4, 5, 4, {1, 3, 5}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_valid_89_3_1245789::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 4;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, true, 8, 9, 3, {1, 2, 4, 5, 7, 8, 9}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_invalid_22_1__no_threshold::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 4;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, false, 2, 2, 1, {}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_invalid_33_1__no_threshold::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 4;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, false, 3, 3, 1, {}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_invalid_33_1_2_no_threshold::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 4;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, false, 3, 3, 1, {2}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_invalid_33_1_3_no_threshold::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 4;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, false, 3, 3, 1, {3}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_invalid_23_1__no_threshold::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 4;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, false, 2, 3, 1, {}, NULL, NULL);
|
|
}
|
|
|
|
bool gen_multisig_tx_invalid_45_5_23_no_threshold::generate(std::vector<test_event_entry>& events) const
|
|
{
|
|
const size_t mixin = 4;
|
|
const uint64_t amount_paid = 10000;
|
|
return generate_with(events, 2, mixin, amount_paid, false, 4, 5, 5, {2, 3}, NULL, NULL);
|
|
}
|