bitcoin/src/psbt.h
Andrew Chow 0577d423ad psbt: Change m_tap_tree to store just the tuples
Instead of having an entire TaprootBuilder which may or may not be
complete, and could potentially have future changes that interact oddly
with taproot tree tuples, have m_tap_tree be just the tuples.

When needed in other a TaprootBuilder for actual use, the tuples will be
added to a a TaprootBuilder that, in the future, can take in whatever
other data is needed as well.
2022-10-06 15:32:51 -04:00

1271 lines
53 KiB
C++

// Copyright (c) 2009-2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_PSBT_H
#define BITCOIN_PSBT_H
#include <node/transaction.h>
#include <policy/feerate.h>
#include <primitives/transaction.h>
#include <pubkey.h>
#include <script/keyorigin.h>
#include <script/sign.h>
#include <script/signingprovider.h>
#include <span.h>
#include <streams.h>
#include <optional>
// Magic bytes
static constexpr uint8_t PSBT_MAGIC_BYTES[5] = {'p', 's', 'b', 't', 0xff};
// Global types
static constexpr uint8_t PSBT_GLOBAL_UNSIGNED_TX = 0x00;
static constexpr uint8_t PSBT_GLOBAL_XPUB = 0x01;
static constexpr uint8_t PSBT_GLOBAL_VERSION = 0xFB;
static constexpr uint8_t PSBT_GLOBAL_PROPRIETARY = 0xFC;
// Input types
static constexpr uint8_t PSBT_IN_NON_WITNESS_UTXO = 0x00;
static constexpr uint8_t PSBT_IN_WITNESS_UTXO = 0x01;
static constexpr uint8_t PSBT_IN_PARTIAL_SIG = 0x02;
static constexpr uint8_t PSBT_IN_SIGHASH = 0x03;
static constexpr uint8_t PSBT_IN_REDEEMSCRIPT = 0x04;
static constexpr uint8_t PSBT_IN_WITNESSSCRIPT = 0x05;
static constexpr uint8_t PSBT_IN_BIP32_DERIVATION = 0x06;
static constexpr uint8_t PSBT_IN_SCRIPTSIG = 0x07;
static constexpr uint8_t PSBT_IN_SCRIPTWITNESS = 0x08;
static constexpr uint8_t PSBT_IN_RIPEMD160 = 0x0A;
static constexpr uint8_t PSBT_IN_SHA256 = 0x0B;
static constexpr uint8_t PSBT_IN_HASH160 = 0x0C;
static constexpr uint8_t PSBT_IN_HASH256 = 0x0D;
static constexpr uint8_t PSBT_IN_TAP_KEY_SIG = 0x13;
static constexpr uint8_t PSBT_IN_TAP_SCRIPT_SIG = 0x14;
static constexpr uint8_t PSBT_IN_TAP_LEAF_SCRIPT = 0x15;
static constexpr uint8_t PSBT_IN_TAP_BIP32_DERIVATION = 0x16;
static constexpr uint8_t PSBT_IN_TAP_INTERNAL_KEY = 0x17;
static constexpr uint8_t PSBT_IN_TAP_MERKLE_ROOT = 0x18;
static constexpr uint8_t PSBT_IN_PROPRIETARY = 0xFC;
// Output types
static constexpr uint8_t PSBT_OUT_REDEEMSCRIPT = 0x00;
static constexpr uint8_t PSBT_OUT_WITNESSSCRIPT = 0x01;
static constexpr uint8_t PSBT_OUT_BIP32_DERIVATION = 0x02;
static constexpr uint8_t PSBT_OUT_TAP_INTERNAL_KEY = 0x05;
static constexpr uint8_t PSBT_OUT_TAP_TREE = 0x06;
static constexpr uint8_t PSBT_OUT_TAP_BIP32_DERIVATION = 0x07;
static constexpr uint8_t PSBT_OUT_PROPRIETARY = 0xFC;
// The separator is 0x00. Reading this in means that the unserializer can interpret it
// as a 0 length key which indicates that this is the separator. The separator has no value.
static constexpr uint8_t PSBT_SEPARATOR = 0x00;
// BIP 174 does not specify a maximum file size, but we set a limit anyway
// to prevent reading a stream indefinitely and running out of memory.
const std::streamsize MAX_FILE_SIZE_PSBT = 100000000; // 100 MB
// PSBT version number
static constexpr uint32_t PSBT_HIGHEST_VERSION = 0;
/** A structure for PSBT proprietary types */
struct PSBTProprietary
{
uint64_t subtype;
std::vector<unsigned char> identifier;
std::vector<unsigned char> key;
std::vector<unsigned char> value;
bool operator<(const PSBTProprietary &b) const {
return key < b.key;
}
bool operator==(const PSBTProprietary &b) const {
return key == b.key;
}
};
// Takes a stream and multiple arguments and serializes them as if first serialized into a vector and then into the stream
// The resulting output into the stream has the total serialized length of all of the objects followed by all objects concatenated with each other.
template<typename Stream, typename... X>
void SerializeToVector(Stream& s, const X&... args)
{
WriteCompactSize(s, GetSerializeSizeMany(s.GetVersion(), args...));
SerializeMany(s, args...);
}
// Takes a stream and multiple arguments and unserializes them first as a vector then each object individually in the order provided in the arguments
template<typename Stream, typename... X>
void UnserializeFromVector(Stream& s, X&... args)
{
size_t expected_size = ReadCompactSize(s);
size_t remaining_before = s.size();
UnserializeMany(s, args...);
size_t remaining_after = s.size();
if (remaining_after + expected_size != remaining_before) {
throw std::ios_base::failure("Size of value was not the stated size");
}
}
// Deserialize bytes of given length from the stream as a KeyOriginInfo
template<typename Stream>
KeyOriginInfo DeserializeKeyOrigin(Stream& s, uint64_t length)
{
// Read in key path
if (length % 4 || length == 0) {
throw std::ios_base::failure("Invalid length for HD key path");
}
KeyOriginInfo hd_keypath;
s >> hd_keypath.fingerprint;
for (unsigned int i = 4; i < length; i += sizeof(uint32_t)) {
uint32_t index;
s >> index;
hd_keypath.path.push_back(index);
}
return hd_keypath;
}
// Deserialize a length prefixed KeyOriginInfo from a stream
template<typename Stream>
void DeserializeHDKeypath(Stream& s, KeyOriginInfo& hd_keypath)
{
hd_keypath = DeserializeKeyOrigin(s, ReadCompactSize(s));
}
// Deserialize HD keypaths into a map
template<typename Stream>
void DeserializeHDKeypaths(Stream& s, const std::vector<unsigned char>& key, std::map<CPubKey, KeyOriginInfo>& hd_keypaths)
{
// Make sure that the key is the size of pubkey + 1
if (key.size() != CPubKey::SIZE + 1 && key.size() != CPubKey::COMPRESSED_SIZE + 1) {
throw std::ios_base::failure("Size of key was not the expected size for the type BIP32 keypath");
}
// Read in the pubkey from key
CPubKey pubkey(key.begin() + 1, key.end());
if (!pubkey.IsFullyValid()) {
throw std::ios_base::failure("Invalid pubkey");
}
if (hd_keypaths.count(pubkey) > 0) {
throw std::ios_base::failure("Duplicate Key, pubkey derivation path already provided");
}
KeyOriginInfo keypath;
DeserializeHDKeypath(s, keypath);
// Add to map
hd_keypaths.emplace(pubkey, std::move(keypath));
}
// Serialize a KeyOriginInfo to a stream
template<typename Stream>
void SerializeKeyOrigin(Stream& s, KeyOriginInfo hd_keypath)
{
s << hd_keypath.fingerprint;
for (const auto& path : hd_keypath.path) {
s << path;
}
}
// Serialize a length prefixed KeyOriginInfo to a stream
template<typename Stream>
void SerializeHDKeypath(Stream& s, KeyOriginInfo hd_keypath)
{
WriteCompactSize(s, (hd_keypath.path.size() + 1) * sizeof(uint32_t));
SerializeKeyOrigin(s, hd_keypath);
}
// Serialize HD keypaths to a stream from a map
template<typename Stream>
void SerializeHDKeypaths(Stream& s, const std::map<CPubKey, KeyOriginInfo>& hd_keypaths, CompactSizeWriter type)
{
for (auto keypath_pair : hd_keypaths) {
if (!keypath_pair.first.IsValid()) {
throw std::ios_base::failure("Invalid CPubKey being serialized");
}
SerializeToVector(s, type, Span{keypath_pair.first});
SerializeHDKeypath(s, keypath_pair.second);
}
}
/** A structure for PSBTs which contain per-input information */
struct PSBTInput
{
CTransactionRef non_witness_utxo;
CTxOut witness_utxo;
CScript redeem_script;
CScript witness_script;
CScript final_script_sig;
CScriptWitness final_script_witness;
std::map<CPubKey, KeyOriginInfo> hd_keypaths;
std::map<CKeyID, SigPair> partial_sigs;
std::map<uint160, std::vector<unsigned char>> ripemd160_preimages;
std::map<uint256, std::vector<unsigned char>> sha256_preimages;
std::map<uint160, std::vector<unsigned char>> hash160_preimages;
std::map<uint256, std::vector<unsigned char>> hash256_preimages;
// Taproot fields
std::vector<unsigned char> m_tap_key_sig;
std::map<std::pair<XOnlyPubKey, uint256>, std::vector<unsigned char>> m_tap_script_sigs;
std::map<std::pair<CScript, int>, std::set<std::vector<unsigned char>, ShortestVectorFirstComparator>> m_tap_scripts;
std::map<XOnlyPubKey, std::pair<std::set<uint256>, KeyOriginInfo>> m_tap_bip32_paths;
XOnlyPubKey m_tap_internal_key;
uint256 m_tap_merkle_root;
std::map<std::vector<unsigned char>, std::vector<unsigned char>> unknown;
std::set<PSBTProprietary> m_proprietary;
std::optional<int> sighash_type;
bool IsNull() const;
void FillSignatureData(SignatureData& sigdata) const;
void FromSignatureData(const SignatureData& sigdata);
void Merge(const PSBTInput& input);
PSBTInput() {}
template <typename Stream>
inline void Serialize(Stream& s) const {
// Write the utxo
if (non_witness_utxo) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_NON_WITNESS_UTXO));
OverrideStream<Stream> os(&s, s.GetType(), s.GetVersion() | SERIALIZE_TRANSACTION_NO_WITNESS);
SerializeToVector(os, non_witness_utxo);
}
if (!witness_utxo.IsNull()) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_WITNESS_UTXO));
SerializeToVector(s, witness_utxo);
}
if (final_script_sig.empty() && final_script_witness.IsNull()) {
// Write any partial signatures
for (auto sig_pair : partial_sigs) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_PARTIAL_SIG), Span{sig_pair.second.first});
s << sig_pair.second.second;
}
// Write the sighash type
if (sighash_type != std::nullopt) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_SIGHASH));
SerializeToVector(s, *sighash_type);
}
// Write the redeem script
if (!redeem_script.empty()) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_REDEEMSCRIPT));
s << redeem_script;
}
// Write the witness script
if (!witness_script.empty()) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_WITNESSSCRIPT));
s << witness_script;
}
// Write any hd keypaths
SerializeHDKeypaths(s, hd_keypaths, CompactSizeWriter(PSBT_IN_BIP32_DERIVATION));
// Write any ripemd160 preimage
for (const auto& [hash, preimage] : ripemd160_preimages) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_RIPEMD160), Span{hash});
s << preimage;
}
// Write any sha256 preimage
for (const auto& [hash, preimage] : sha256_preimages) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_SHA256), Span{hash});
s << preimage;
}
// Write any hash160 preimage
for (const auto& [hash, preimage] : hash160_preimages) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_HASH160), Span{hash});
s << preimage;
}
// Write any hash256 preimage
for (const auto& [hash, preimage] : hash256_preimages) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_HASH256), Span{hash});
s << preimage;
}
// Write taproot key sig
if (!m_tap_key_sig.empty()) {
SerializeToVector(s, PSBT_IN_TAP_KEY_SIG);
s << m_tap_key_sig;
}
// Write taproot script sigs
for (const auto& [pubkey_leaf, sig] : m_tap_script_sigs) {
const auto& [xonly, leaf_hash] = pubkey_leaf;
SerializeToVector(s, PSBT_IN_TAP_SCRIPT_SIG, xonly, leaf_hash);
s << sig;
}
// Write taproot leaf scripts
for (const auto& [leaf, control_blocks] : m_tap_scripts) {
const auto& [script, leaf_ver] = leaf;
for (const auto& control_block : control_blocks) {
SerializeToVector(s, PSBT_IN_TAP_LEAF_SCRIPT, Span{control_block});
std::vector<unsigned char> value_v(script.begin(), script.end());
value_v.push_back((uint8_t)leaf_ver);
s << value_v;
}
}
// Write taproot bip32 keypaths
for (const auto& [xonly, leaf_origin] : m_tap_bip32_paths) {
const auto& [leaf_hashes, origin] = leaf_origin;
SerializeToVector(s, PSBT_IN_TAP_BIP32_DERIVATION, xonly);
std::vector<unsigned char> value;
CVectorWriter s_value(s.GetType(), s.GetVersion(), value, 0);
s_value << leaf_hashes;
SerializeKeyOrigin(s_value, origin);
s << value;
}
// Write taproot internal key
if (!m_tap_internal_key.IsNull()) {
SerializeToVector(s, PSBT_IN_TAP_INTERNAL_KEY);
s << ToByteVector(m_tap_internal_key);
}
// Write taproot merkle root
if (!m_tap_merkle_root.IsNull()) {
SerializeToVector(s, PSBT_IN_TAP_MERKLE_ROOT);
SerializeToVector(s, m_tap_merkle_root);
}
}
// Write script sig
if (!final_script_sig.empty()) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_SCRIPTSIG));
s << final_script_sig;
}
// write script witness
if (!final_script_witness.IsNull()) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_SCRIPTWITNESS));
SerializeToVector(s, final_script_witness.stack);
}
// Write proprietary things
for (const auto& entry : m_proprietary) {
s << entry.key;
s << entry.value;
}
// Write unknown things
for (auto& entry : unknown) {
s << entry.first;
s << entry.second;
}
s << PSBT_SEPARATOR;
}
template <typename Stream>
inline void Unserialize(Stream& s) {
// Used for duplicate key detection
std::set<std::vector<unsigned char>> key_lookup;
// Read loop
bool found_sep = false;
while(!s.empty()) {
// Read
std::vector<unsigned char> key;
s >> key;
// the key is empty if that was actually a separator byte
// This is a special case for key lengths 0 as those are not allowed (except for separator)
if (key.empty()) {
found_sep = true;
break;
}
// Type is compact size uint at beginning of key
SpanReader skey(s.GetType(), s.GetVersion(), key);
uint64_t type = ReadCompactSize(skey);
// Do stuff based on type
switch(type) {
case PSBT_IN_NON_WITNESS_UTXO:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input non-witness utxo already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Non-witness utxo key is more than one byte type");
}
// Set the stream to unserialize with witness since this is always a valid network transaction
OverrideStream<Stream> os(&s, s.GetType(), s.GetVersion() & ~SERIALIZE_TRANSACTION_NO_WITNESS);
UnserializeFromVector(os, non_witness_utxo);
break;
}
case PSBT_IN_WITNESS_UTXO:
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input witness utxo already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Witness utxo key is more than one byte type");
}
UnserializeFromVector(s, witness_utxo);
break;
case PSBT_IN_PARTIAL_SIG:
{
// Make sure that the key is the size of pubkey + 1
if (key.size() != CPubKey::SIZE + 1 && key.size() != CPubKey::COMPRESSED_SIZE + 1) {
throw std::ios_base::failure("Size of key was not the expected size for the type partial signature pubkey");
}
// Read in the pubkey from key
CPubKey pubkey(key.begin() + 1, key.end());
if (!pubkey.IsFullyValid()) {
throw std::ios_base::failure("Invalid pubkey");
}
if (partial_sigs.count(pubkey.GetID()) > 0) {
throw std::ios_base::failure("Duplicate Key, input partial signature for pubkey already provided");
}
// Read in the signature from value
std::vector<unsigned char> sig;
s >> sig;
// Add to list
partial_sigs.emplace(pubkey.GetID(), SigPair(pubkey, std::move(sig)));
break;
}
case PSBT_IN_SIGHASH:
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input sighash type already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Sighash type key is more than one byte type");
}
int sighash;
UnserializeFromVector(s, sighash);
sighash_type = sighash;
break;
case PSBT_IN_REDEEMSCRIPT:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input redeemScript already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Input redeemScript key is more than one byte type");
}
s >> redeem_script;
break;
}
case PSBT_IN_WITNESSSCRIPT:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input witnessScript already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Input witnessScript key is more than one byte type");
}
s >> witness_script;
break;
}
case PSBT_IN_BIP32_DERIVATION:
{
DeserializeHDKeypaths(s, key, hd_keypaths);
break;
}
case PSBT_IN_SCRIPTSIG:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input final scriptSig already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Final scriptSig key is more than one byte type");
}
s >> final_script_sig;
break;
}
case PSBT_IN_SCRIPTWITNESS:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input final scriptWitness already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Final scriptWitness key is more than one byte type");
}
UnserializeFromVector(s, final_script_witness.stack);
break;
}
case PSBT_IN_RIPEMD160:
{
// Make sure that the key is the size of a ripemd160 hash + 1
if (key.size() != CRIPEMD160::OUTPUT_SIZE + 1) {
throw std::ios_base::failure("Size of key was not the expected size for the type ripemd160 preimage");
}
// Read in the hash from key
std::vector<unsigned char> hash_vec(key.begin() + 1, key.end());
uint160 hash(hash_vec);
if (ripemd160_preimages.count(hash) > 0) {
throw std::ios_base::failure("Duplicate Key, input ripemd160 preimage already provided");
}
// Read in the preimage from value
std::vector<unsigned char> preimage;
s >> preimage;
// Add to preimages list
ripemd160_preimages.emplace(hash, std::move(preimage));
break;
}
case PSBT_IN_SHA256:
{
// Make sure that the key is the size of a sha256 hash + 1
if (key.size() != CSHA256::OUTPUT_SIZE + 1) {
throw std::ios_base::failure("Size of key was not the expected size for the type sha256 preimage");
}
// Read in the hash from key
std::vector<unsigned char> hash_vec(key.begin() + 1, key.end());
uint256 hash(hash_vec);
if (sha256_preimages.count(hash) > 0) {
throw std::ios_base::failure("Duplicate Key, input sha256 preimage already provided");
}
// Read in the preimage from value
std::vector<unsigned char> preimage;
s >> preimage;
// Add to preimages list
sha256_preimages.emplace(hash, std::move(preimage));
break;
}
case PSBT_IN_HASH160:
{
// Make sure that the key is the size of a hash160 hash + 1
if (key.size() != CHash160::OUTPUT_SIZE + 1) {
throw std::ios_base::failure("Size of key was not the expected size for the type hash160 preimage");
}
// Read in the hash from key
std::vector<unsigned char> hash_vec(key.begin() + 1, key.end());
uint160 hash(hash_vec);
if (hash160_preimages.count(hash) > 0) {
throw std::ios_base::failure("Duplicate Key, input hash160 preimage already provided");
}
// Read in the preimage from value
std::vector<unsigned char> preimage;
s >> preimage;
// Add to preimages list
hash160_preimages.emplace(hash, std::move(preimage));
break;
}
case PSBT_IN_HASH256:
{
// Make sure that the key is the size of a hash256 hash + 1
if (key.size() != CHash256::OUTPUT_SIZE + 1) {
throw std::ios_base::failure("Size of key was not the expected size for the type hash256 preimage");
}
// Read in the hash from key
std::vector<unsigned char> hash_vec(key.begin() + 1, key.end());
uint256 hash(hash_vec);
if (hash256_preimages.count(hash) > 0) {
throw std::ios_base::failure("Duplicate Key, input hash256 preimage already provided");
}
// Read in the preimage from value
std::vector<unsigned char> preimage;
s >> preimage;
// Add to preimages list
hash256_preimages.emplace(hash, std::move(preimage));
break;
}
case PSBT_IN_TAP_KEY_SIG:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input Taproot key signature already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Input Taproot key signature key is more than one byte type");
}
s >> m_tap_key_sig;
if (m_tap_key_sig.size() < 64) {
throw std::ios_base::failure("Input Taproot key path signature is shorter than 64 bytes");
} else if (m_tap_key_sig.size() > 65) {
throw std::ios_base::failure("Input Taproot key path signature is longer than 65 bytes");
}
break;
}
case PSBT_IN_TAP_SCRIPT_SIG:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input Taproot script signature already provided");
} else if (key.size() != 65) {
throw std::ios_base::failure("Input Taproot script signature key is not 65 bytes");
}
SpanReader s_key(s.GetType(), s.GetVersion(), Span{key}.subspan(1));
XOnlyPubKey xonly;
uint256 hash;
s_key >> xonly;
s_key >> hash;
std::vector<unsigned char> sig;
s >> sig;
if (sig.size() < 64) {
throw std::ios_base::failure("Input Taproot script path signature is shorter than 64 bytes");
} else if (sig.size() > 65) {
throw std::ios_base::failure("Input Taproot script path signature is longer than 65 bytes");
}
m_tap_script_sigs.emplace(std::make_pair(xonly, hash), sig);
break;
}
case PSBT_IN_TAP_LEAF_SCRIPT:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input Taproot leaf script already provided");
} else if (key.size() < 34) {
throw std::ios_base::failure("Taproot leaf script key is not at least 34 bytes");
} else if ((key.size() - 2) % 32 != 0) {
throw std::ios_base::failure("Input Taproot leaf script key's control block size is not valid");
}
std::vector<unsigned char> script_v;
s >> script_v;
if (script_v.empty()) {
throw std::ios_base::failure("Input Taproot leaf script must be at least 1 byte");
}
uint8_t leaf_ver = script_v.back();
script_v.pop_back();
const auto leaf_script = std::make_pair(CScript(script_v.begin(), script_v.end()), (int)leaf_ver);
m_tap_scripts[leaf_script].insert(std::vector<unsigned char>(key.begin() + 1, key.end()));
break;
}
case PSBT_IN_TAP_BIP32_DERIVATION:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input Taproot BIP32 keypath already provided");
} else if (key.size() != 33) {
throw std::ios_base::failure("Input Taproot BIP32 keypath key is not at 33 bytes");
}
SpanReader s_key(s.GetType(), s.GetVersion(), Span{key}.subspan(1));
XOnlyPubKey xonly;
s_key >> xonly;
std::set<uint256> leaf_hashes;
uint64_t value_len = ReadCompactSize(s);
size_t before_hashes = s.size();
s >> leaf_hashes;
size_t after_hashes = s.size();
size_t hashes_len = before_hashes - after_hashes;
if (hashes_len > value_len) {
throw std::ios_base::failure("Input Taproot BIP32 keypath has an invalid length");
}
size_t origin_len = value_len - hashes_len;
m_tap_bip32_paths.emplace(xonly, std::make_pair(leaf_hashes, DeserializeKeyOrigin(s, origin_len)));
break;
}
case PSBT_IN_TAP_INTERNAL_KEY:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input Taproot internal key already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Input Taproot internal key key is more than one byte type");
}
UnserializeFromVector(s, m_tap_internal_key);
break;
}
case PSBT_IN_TAP_MERKLE_ROOT:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input Taproot merkle root already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Input Taproot merkle root key is more than one byte type");
}
UnserializeFromVector(s, m_tap_merkle_root);
break;
}
case PSBT_IN_PROPRIETARY:
{
PSBTProprietary this_prop;
skey >> this_prop.identifier;
this_prop.subtype = ReadCompactSize(skey);
this_prop.key = key;
if (m_proprietary.count(this_prop) > 0) {
throw std::ios_base::failure("Duplicate Key, proprietary key already found");
}
s >> this_prop.value;
m_proprietary.insert(this_prop);
break;
}
// Unknown stuff
default:
if (unknown.count(key) > 0) {
throw std::ios_base::failure("Duplicate Key, key for unknown value already provided");
}
// Read in the value
std::vector<unsigned char> val_bytes;
s >> val_bytes;
unknown.emplace(std::move(key), std::move(val_bytes));
break;
}
}
if (!found_sep) {
throw std::ios_base::failure("Separator is missing at the end of an input map");
}
}
template <typename Stream>
PSBTInput(deserialize_type, Stream& s) {
Unserialize(s);
}
};
/** A structure for PSBTs which contains per output information */
struct PSBTOutput
{
CScript redeem_script;
CScript witness_script;
std::map<CPubKey, KeyOriginInfo> hd_keypaths;
XOnlyPubKey m_tap_internal_key;
std::vector<std::tuple<uint8_t, uint8_t, CScript>> m_tap_tree;
std::map<XOnlyPubKey, std::pair<std::set<uint256>, KeyOriginInfo>> m_tap_bip32_paths;
std::map<std::vector<unsigned char>, std::vector<unsigned char>> unknown;
std::set<PSBTProprietary> m_proprietary;
bool IsNull() const;
void FillSignatureData(SignatureData& sigdata) const;
void FromSignatureData(const SignatureData& sigdata);
void Merge(const PSBTOutput& output);
PSBTOutput() {}
template <typename Stream>
inline void Serialize(Stream& s) const {
// Write the redeem script
if (!redeem_script.empty()) {
SerializeToVector(s, CompactSizeWriter(PSBT_OUT_REDEEMSCRIPT));
s << redeem_script;
}
// Write the witness script
if (!witness_script.empty()) {
SerializeToVector(s, CompactSizeWriter(PSBT_OUT_WITNESSSCRIPT));
s << witness_script;
}
// Write any hd keypaths
SerializeHDKeypaths(s, hd_keypaths, CompactSizeWriter(PSBT_OUT_BIP32_DERIVATION));
// Write proprietary things
for (const auto& entry : m_proprietary) {
s << entry.key;
s << entry.value;
}
// Write taproot internal key
if (!m_tap_internal_key.IsNull()) {
SerializeToVector(s, PSBT_OUT_TAP_INTERNAL_KEY);
s << ToByteVector(m_tap_internal_key);
}
// Write taproot tree
if (!m_tap_tree.empty()) {
SerializeToVector(s, PSBT_OUT_TAP_TREE);
std::vector<unsigned char> value;
CVectorWriter s_value(s.GetType(), s.GetVersion(), value, 0);
for (const auto& [depth, leaf_ver, script] : m_tap_tree) {
s_value << depth;
s_value << leaf_ver;
s_value << script;
}
s << value;
}
// Write taproot bip32 keypaths
for (const auto& [xonly, leaf] : m_tap_bip32_paths) {
const auto& [leaf_hashes, origin] = leaf;
SerializeToVector(s, PSBT_OUT_TAP_BIP32_DERIVATION, xonly);
std::vector<unsigned char> value;
CVectorWriter s_value(s.GetType(), s.GetVersion(), value, 0);
s_value << leaf_hashes;
SerializeKeyOrigin(s_value, origin);
s << value;
}
// Write unknown things
for (auto& entry : unknown) {
s << entry.first;
s << entry.second;
}
s << PSBT_SEPARATOR;
}
template <typename Stream>
inline void Unserialize(Stream& s) {
// Used for duplicate key detection
std::set<std::vector<unsigned char>> key_lookup;
// Read loop
bool found_sep = false;
while(!s.empty()) {
// Read
std::vector<unsigned char> key;
s >> key;
// the key is empty if that was actually a separator byte
// This is a special case for key lengths 0 as those are not allowed (except for separator)
if (key.empty()) {
found_sep = true;
break;
}
// Type is compact size uint at beginning of key
SpanReader skey(s.GetType(), s.GetVersion(), key);
uint64_t type = ReadCompactSize(skey);
// Do stuff based on type
switch(type) {
case PSBT_OUT_REDEEMSCRIPT:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, output redeemScript already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Output redeemScript key is more than one byte type");
}
s >> redeem_script;
break;
}
case PSBT_OUT_WITNESSSCRIPT:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, output witnessScript already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Output witnessScript key is more than one byte type");
}
s >> witness_script;
break;
}
case PSBT_OUT_BIP32_DERIVATION:
{
DeserializeHDKeypaths(s, key, hd_keypaths);
break;
}
case PSBT_OUT_TAP_INTERNAL_KEY:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, output Taproot internal key already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Output Taproot internal key key is more than one byte type");
}
UnserializeFromVector(s, m_tap_internal_key);
break;
}
case PSBT_OUT_TAP_TREE:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, output Taproot tree already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Output Taproot tree key is more than one byte type");
}
std::vector<unsigned char> tree_v;
s >> tree_v;
SpanReader s_tree(s.GetType(), s.GetVersion(), tree_v);
if (s_tree.empty()) {
throw std::ios_base::failure("Output Taproot tree must not be empty");
}
TaprootBuilder builder;
while (!s_tree.empty()) {
uint8_t depth;
uint8_t leaf_ver;
CScript script;
s_tree >> depth;
s_tree >> leaf_ver;
s_tree >> script;
if (depth > TAPROOT_CONTROL_MAX_NODE_COUNT) {
throw std::ios_base::failure("Output Taproot tree has as leaf greater than Taproot maximum depth");
}
if ((leaf_ver & ~TAPROOT_LEAF_MASK) != 0) {
throw std::ios_base::failure("Output Taproot tree has a leaf with an invalid leaf version");
}
m_tap_tree.push_back(std::make_tuple(depth, leaf_ver, script));
builder.Add((int)depth, script, (int)leaf_ver, true /* track */);
}
if (!builder.IsComplete()) {
throw std::ios_base::failure("Output Taproot tree is malformed");
}
break;
}
case PSBT_OUT_TAP_BIP32_DERIVATION:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, output Taproot BIP32 keypath already provided");
} else if (key.size() != 33) {
throw std::ios_base::failure("Output Taproot BIP32 keypath key is not at 33 bytes");
}
XOnlyPubKey xonly(uint256({key.begin() + 1, key.begin() + 33}));
std::set<uint256> leaf_hashes;
uint64_t value_len = ReadCompactSize(s);
size_t before_hashes = s.size();
s >> leaf_hashes;
size_t after_hashes = s.size();
size_t hashes_len = before_hashes - after_hashes;
if (hashes_len > value_len) {
throw std::ios_base::failure("Output Taproot BIP32 keypath has an invalid length");
}
size_t origin_len = value_len - hashes_len;
m_tap_bip32_paths.emplace(xonly, std::make_pair(leaf_hashes, DeserializeKeyOrigin(s, origin_len)));
break;
}
case PSBT_OUT_PROPRIETARY:
{
PSBTProprietary this_prop;
skey >> this_prop.identifier;
this_prop.subtype = ReadCompactSize(skey);
this_prop.key = key;
if (m_proprietary.count(this_prop) > 0) {
throw std::ios_base::failure("Duplicate Key, proprietary key already found");
}
s >> this_prop.value;
m_proprietary.insert(this_prop);
break;
}
// Unknown stuff
default: {
if (unknown.count(key) > 0) {
throw std::ios_base::failure("Duplicate Key, key for unknown value already provided");
}
// Read in the value
std::vector<unsigned char> val_bytes;
s >> val_bytes;
unknown.emplace(std::move(key), std::move(val_bytes));
break;
}
}
}
if (!found_sep) {
throw std::ios_base::failure("Separator is missing at the end of an output map");
}
}
template <typename Stream>
PSBTOutput(deserialize_type, Stream& s) {
Unserialize(s);
}
};
/** A version of CTransaction with the PSBT format*/
struct PartiallySignedTransaction
{
std::optional<CMutableTransaction> tx;
// We use a vector of CExtPubKey in the event that there happens to be the same KeyOriginInfos for different CExtPubKeys
// Note that this map swaps the key and values from the serialization
std::map<KeyOriginInfo, std::set<CExtPubKey>> m_xpubs;
std::vector<PSBTInput> inputs;
std::vector<PSBTOutput> outputs;
std::map<std::vector<unsigned char>, std::vector<unsigned char>> unknown;
std::optional<uint32_t> m_version;
std::set<PSBTProprietary> m_proprietary;
bool IsNull() const;
uint32_t GetVersion() const;
/** Merge psbt into this. The two psbts must have the same underlying CTransaction (i.e. the
* same actual Bitcoin transaction.) Returns true if the merge succeeded, false otherwise. */
[[nodiscard]] bool Merge(const PartiallySignedTransaction& psbt);
bool AddInput(const CTxIn& txin, PSBTInput& psbtin);
bool AddOutput(const CTxOut& txout, const PSBTOutput& psbtout);
PartiallySignedTransaction() {}
explicit PartiallySignedTransaction(const CMutableTransaction& tx);
/**
* Finds the UTXO for a given input index
*
* @param[out] utxo The UTXO of the input if found
* @param[in] input_index Index of the input to retrieve the UTXO of
* @return Whether the UTXO for the specified input was found
*/
bool GetInputUTXO(CTxOut& utxo, int input_index) const;
template <typename Stream>
inline void Serialize(Stream& s) const {
// magic bytes
s << PSBT_MAGIC_BYTES;
// unsigned tx flag
SerializeToVector(s, CompactSizeWriter(PSBT_GLOBAL_UNSIGNED_TX));
// Write serialized tx to a stream
OverrideStream<Stream> os(&s, s.GetType(), s.GetVersion() | SERIALIZE_TRANSACTION_NO_WITNESS);
SerializeToVector(os, *tx);
// Write xpubs
for (const auto& xpub_pair : m_xpubs) {
for (const auto& xpub : xpub_pair.second) {
unsigned char ser_xpub[BIP32_EXTKEY_WITH_VERSION_SIZE];
xpub.EncodeWithVersion(ser_xpub);
// Note that the serialization swaps the key and value
// The xpub is the key (for uniqueness) while the path is the value
SerializeToVector(s, PSBT_GLOBAL_XPUB, ser_xpub);
SerializeHDKeypath(s, xpub_pair.first);
}
}
// PSBT version
if (GetVersion() > 0) {
SerializeToVector(s, CompactSizeWriter(PSBT_GLOBAL_VERSION));
SerializeToVector(s, *m_version);
}
// Write proprietary things
for (const auto& entry : m_proprietary) {
s << entry.key;
s << entry.value;
}
// Write the unknown things
for (auto& entry : unknown) {
s << entry.first;
s << entry.second;
}
// Separator
s << PSBT_SEPARATOR;
// Write inputs
for (const PSBTInput& input : inputs) {
s << input;
}
// Write outputs
for (const PSBTOutput& output : outputs) {
s << output;
}
}
template <typename Stream>
inline void Unserialize(Stream& s) {
// Read the magic bytes
uint8_t magic[5];
s >> magic;
if (!std::equal(magic, magic + 5, PSBT_MAGIC_BYTES)) {
throw std::ios_base::failure("Invalid PSBT magic bytes");
}
// Used for duplicate key detection
std::set<std::vector<unsigned char>> key_lookup;
// Track the global xpubs we have already seen. Just for sanity checking
std::set<CExtPubKey> global_xpubs;
// Read global data
bool found_sep = false;
while(!s.empty()) {
// Read
std::vector<unsigned char> key;
s >> key;
// the key is empty if that was actually a separator byte
// This is a special case for key lengths 0 as those are not allowed (except for separator)
if (key.empty()) {
found_sep = true;
break;
}
// Type is compact size uint at beginning of key
SpanReader skey(s.GetType(), s.GetVersion(), key);
uint64_t type = ReadCompactSize(skey);
// Do stuff based on type
switch(type) {
case PSBT_GLOBAL_UNSIGNED_TX:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, unsigned tx already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Global unsigned tx key is more than one byte type");
}
CMutableTransaction mtx;
// Set the stream to serialize with non-witness since this should always be non-witness
OverrideStream<Stream> os(&s, s.GetType(), s.GetVersion() | SERIALIZE_TRANSACTION_NO_WITNESS);
UnserializeFromVector(os, mtx);
tx = std::move(mtx);
// Make sure that all scriptSigs and scriptWitnesses are empty
for (const CTxIn& txin : tx->vin) {
if (!txin.scriptSig.empty() || !txin.scriptWitness.IsNull()) {
throw std::ios_base::failure("Unsigned tx does not have empty scriptSigs and scriptWitnesses.");
}
}
break;
}
case PSBT_GLOBAL_XPUB:
{
if (key.size() != BIP32_EXTKEY_WITH_VERSION_SIZE + 1) {
throw std::ios_base::failure("Size of key was not the expected size for the type global xpub");
}
// Read in the xpub from key
CExtPubKey xpub;
xpub.DecodeWithVersion(&key.data()[1]);
if (!xpub.pubkey.IsFullyValid()) {
throw std::ios_base::failure("Invalid pubkey");
}
if (global_xpubs.count(xpub) > 0) {
throw std::ios_base::failure("Duplicate key, global xpub already provided");
}
global_xpubs.insert(xpub);
// Read in the keypath from stream
KeyOriginInfo keypath;
DeserializeHDKeypath(s, keypath);
// Note that we store these swapped to make searches faster.
// Serialization uses xpub -> keypath to enqure key uniqueness
if (m_xpubs.count(keypath) == 0) {
// Make a new set to put the xpub in
m_xpubs[keypath] = {xpub};
} else {
// Insert xpub into existing set
m_xpubs[keypath].insert(xpub);
}
break;
}
case PSBT_GLOBAL_VERSION:
{
if (m_version) {
throw std::ios_base::failure("Duplicate Key, version already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Global version key is more than one byte type");
}
uint32_t v;
UnserializeFromVector(s, v);
m_version = v;
if (*m_version > PSBT_HIGHEST_VERSION) {
throw std::ios_base::failure("Unsupported version number");
}
break;
}
case PSBT_GLOBAL_PROPRIETARY:
{
PSBTProprietary this_prop;
skey >> this_prop.identifier;
this_prop.subtype = ReadCompactSize(skey);
this_prop.key = key;
if (m_proprietary.count(this_prop) > 0) {
throw std::ios_base::failure("Duplicate Key, proprietary key already found");
}
s >> this_prop.value;
m_proprietary.insert(this_prop);
break;
}
// Unknown stuff
default: {
if (unknown.count(key) > 0) {
throw std::ios_base::failure("Duplicate Key, key for unknown value already provided");
}
// Read in the value
std::vector<unsigned char> val_bytes;
s >> val_bytes;
unknown.emplace(std::move(key), std::move(val_bytes));
}
}
}
if (!found_sep) {
throw std::ios_base::failure("Separator is missing at the end of the global map");
}
// Make sure that we got an unsigned tx
if (!tx) {
throw std::ios_base::failure("No unsigned transcation was provided");
}
// Read input data
unsigned int i = 0;
while (!s.empty() && i < tx->vin.size()) {
PSBTInput input;
s >> input;
inputs.push_back(input);
// Make sure the non-witness utxo matches the outpoint
if (input.non_witness_utxo && input.non_witness_utxo->GetHash() != tx->vin[i].prevout.hash) {
throw std::ios_base::failure("Non-witness UTXO does not match outpoint hash");
}
++i;
}
// Make sure that the number of inputs matches the number of inputs in the transaction
if (inputs.size() != tx->vin.size()) {
throw std::ios_base::failure("Inputs provided does not match the number of inputs in transaction.");
}
// Read output data
i = 0;
while (!s.empty() && i < tx->vout.size()) {
PSBTOutput output;
s >> output;
outputs.push_back(output);
++i;
}
// Make sure that the number of outputs matches the number of outputs in the transaction
if (outputs.size() != tx->vout.size()) {
throw std::ios_base::failure("Outputs provided does not match the number of outputs in transaction.");
}
}
template <typename Stream>
PartiallySignedTransaction(deserialize_type, Stream& s) {
Unserialize(s);
}
};
enum class PSBTRole {
CREATOR,
UPDATER,
SIGNER,
FINALIZER,
EXTRACTOR
};
std::string PSBTRoleName(PSBTRole role);
/** Compute a PrecomputedTransactionData object from a psbt. */
PrecomputedTransactionData PrecomputePSBTData(const PartiallySignedTransaction& psbt);
/** Checks whether a PSBTInput is already signed. */
bool PSBTInputSigned(const PSBTInput& input);
/** Signs a PSBTInput, verifying that all provided data matches what is being signed.
*
* txdata should be the output of PrecomputePSBTData (which can be shared across
* multiple SignPSBTInput calls). If it is nullptr, a dummy signature will be created.
**/
bool SignPSBTInput(const SigningProvider& provider, PartiallySignedTransaction& psbt, int index, const PrecomputedTransactionData* txdata, int sighash = SIGHASH_ALL, SignatureData* out_sigdata = nullptr, bool finalize = true);
/** Counts the unsigned inputs of a PSBT. */
size_t CountPSBTUnsignedInputs(const PartiallySignedTransaction& psbt);
/** Updates a PSBTOutput with information from provider.
*
* This fills in the redeem_script, witness_script, and hd_keypaths where possible.
*/
void UpdatePSBTOutput(const SigningProvider& provider, PartiallySignedTransaction& psbt, int index);
/**
* Finalizes a PSBT if possible, combining partial signatures.
*
* @param[in,out] psbtx PartiallySignedTransaction to finalize
* return True if the PSBT is now complete, false otherwise
*/
bool FinalizePSBT(PartiallySignedTransaction& psbtx);
/**
* Finalizes a PSBT if possible, and extracts it to a CMutableTransaction if it could be finalized.
*
* @param[in] psbtx PartiallySignedTransaction
* @param[out] result CMutableTransaction representing the complete transaction, if successful
* @return True if we successfully extracted the transaction, false otherwise
*/
bool FinalizeAndExtractPSBT(PartiallySignedTransaction& psbtx, CMutableTransaction& result);
/**
* Combines PSBTs with the same underlying transaction, resulting in a single PSBT with all partial signatures from each input.
*
* @param[out] out the combined PSBT, if successful
* @param[in] psbtxs the PSBTs to combine
* @return error (OK if we successfully combined the transactions, other error if they were not compatible)
*/
[[nodiscard]] TransactionError CombinePSBTs(PartiallySignedTransaction& out, const std::vector<PartiallySignedTransaction>& psbtxs);
//! Decode a base64ed PSBT into a PartiallySignedTransaction
[[nodiscard]] bool DecodeBase64PSBT(PartiallySignedTransaction& decoded_psbt, const std::string& base64_psbt, std::string& error);
//! Decode a raw (binary blob) PSBT into a PartiallySignedTransaction
[[nodiscard]] bool DecodeRawPSBT(PartiallySignedTransaction& decoded_psbt, Span<const std::byte> raw_psbt, std::string& error);
#endif // BITCOIN_PSBT_H