mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-26 11:13:23 -03:00
186 lines
7.3 KiB
C++
186 lines
7.3 KiB
C++
// Copyright (c) 2012-2019 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include <random.h>
|
|
#include <scheduler.h>
|
|
#include <util/time.h>
|
|
|
|
#include <boost/thread.hpp>
|
|
#include <boost/test/unit_test.hpp>
|
|
|
|
BOOST_AUTO_TEST_SUITE(scheduler_tests)
|
|
|
|
static void microTask(CScheduler& s, boost::mutex& mutex, int& counter, int delta, boost::chrono::system_clock::time_point rescheduleTime)
|
|
{
|
|
{
|
|
boost::unique_lock<boost::mutex> lock(mutex);
|
|
counter += delta;
|
|
}
|
|
boost::chrono::system_clock::time_point noTime = boost::chrono::system_clock::time_point::min();
|
|
if (rescheduleTime != noTime) {
|
|
CScheduler::Function f = std::bind(µTask, std::ref(s), std::ref(mutex), std::ref(counter), -delta + 1, noTime);
|
|
s.schedule(f, rescheduleTime);
|
|
}
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(manythreads)
|
|
{
|
|
// Stress test: hundreds of microsecond-scheduled tasks,
|
|
// serviced by 10 threads.
|
|
//
|
|
// So... ten shared counters, which if all the tasks execute
|
|
// properly will sum to the number of tasks done.
|
|
// Each task adds or subtracts a random amount from one of the
|
|
// counters, and then schedules another task 0-1000
|
|
// microseconds in the future to subtract or add from
|
|
// the counter -random_amount+1, so in the end the shared
|
|
// counters should sum to the number of initial tasks performed.
|
|
CScheduler microTasks;
|
|
|
|
boost::mutex counterMutex[10];
|
|
int counter[10] = { 0 };
|
|
FastRandomContext rng{/* fDeterministic */ true};
|
|
auto zeroToNine = [](FastRandomContext& rc) -> int { return rc.randrange(10); }; // [0, 9]
|
|
auto randomMsec = [](FastRandomContext& rc) -> int { return -11 + (int)rc.randrange(1012); }; // [-11, 1000]
|
|
auto randomDelta = [](FastRandomContext& rc) -> int { return -1000 + (int)rc.randrange(2001); }; // [-1000, 1000]
|
|
|
|
boost::chrono::system_clock::time_point start = boost::chrono::system_clock::now();
|
|
boost::chrono::system_clock::time_point now = start;
|
|
boost::chrono::system_clock::time_point first, last;
|
|
size_t nTasks = microTasks.getQueueInfo(first, last);
|
|
BOOST_CHECK(nTasks == 0);
|
|
|
|
for (int i = 0; i < 100; ++i) {
|
|
boost::chrono::system_clock::time_point t = now + boost::chrono::microseconds(randomMsec(rng));
|
|
boost::chrono::system_clock::time_point tReschedule = now + boost::chrono::microseconds(500 + randomMsec(rng));
|
|
int whichCounter = zeroToNine(rng);
|
|
CScheduler::Function f = std::bind(µTask, std::ref(microTasks),
|
|
std::ref(counterMutex[whichCounter]), std::ref(counter[whichCounter]),
|
|
randomDelta(rng), tReschedule);
|
|
microTasks.schedule(f, t);
|
|
}
|
|
nTasks = microTasks.getQueueInfo(first, last);
|
|
BOOST_CHECK(nTasks == 100);
|
|
BOOST_CHECK(first < last);
|
|
BOOST_CHECK(last > now);
|
|
|
|
// As soon as these are created they will start running and servicing the queue
|
|
boost::thread_group microThreads;
|
|
for (int i = 0; i < 5; i++)
|
|
microThreads.create_thread(std::bind(&CScheduler::serviceQueue, µTasks));
|
|
|
|
UninterruptibleSleep(std::chrono::microseconds{600});
|
|
now = boost::chrono::system_clock::now();
|
|
|
|
// More threads and more tasks:
|
|
for (int i = 0; i < 5; i++)
|
|
microThreads.create_thread(std::bind(&CScheduler::serviceQueue, µTasks));
|
|
for (int i = 0; i < 100; i++) {
|
|
boost::chrono::system_clock::time_point t = now + boost::chrono::microseconds(randomMsec(rng));
|
|
boost::chrono::system_clock::time_point tReschedule = now + boost::chrono::microseconds(500 + randomMsec(rng));
|
|
int whichCounter = zeroToNine(rng);
|
|
CScheduler::Function f = std::bind(µTask, std::ref(microTasks),
|
|
std::ref(counterMutex[whichCounter]), std::ref(counter[whichCounter]),
|
|
randomDelta(rng), tReschedule);
|
|
microTasks.schedule(f, t);
|
|
}
|
|
|
|
// Drain the task queue then exit threads
|
|
microTasks.stop(true);
|
|
microThreads.join_all(); // ... wait until all the threads are done
|
|
|
|
int counterSum = 0;
|
|
for (int i = 0; i < 10; i++) {
|
|
BOOST_CHECK(counter[i] != 0);
|
|
counterSum += counter[i];
|
|
}
|
|
BOOST_CHECK_EQUAL(counterSum, 200);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(singlethreadedscheduler_ordered)
|
|
{
|
|
CScheduler scheduler;
|
|
|
|
// each queue should be well ordered with respect to itself but not other queues
|
|
SingleThreadedSchedulerClient queue1(&scheduler);
|
|
SingleThreadedSchedulerClient queue2(&scheduler);
|
|
|
|
// create more threads than queues
|
|
// if the queues only permit execution of one task at once then
|
|
// the extra threads should effectively be doing nothing
|
|
// if they don't we'll get out of order behaviour
|
|
boost::thread_group threads;
|
|
for (int i = 0; i < 5; ++i) {
|
|
threads.create_thread(std::bind(&CScheduler::serviceQueue, &scheduler));
|
|
}
|
|
|
|
// these are not atomic, if SinglethreadedSchedulerClient prevents
|
|
// parallel execution at the queue level no synchronization should be required here
|
|
int counter1 = 0;
|
|
int counter2 = 0;
|
|
|
|
// just simply count up on each queue - if execution is properly ordered then
|
|
// the callbacks should run in exactly the order in which they were enqueued
|
|
for (int i = 0; i < 100; ++i) {
|
|
queue1.AddToProcessQueue([i, &counter1]() {
|
|
bool expectation = i == counter1++;
|
|
assert(expectation);
|
|
});
|
|
|
|
queue2.AddToProcessQueue([i, &counter2]() {
|
|
bool expectation = i == counter2++;
|
|
assert(expectation);
|
|
});
|
|
}
|
|
|
|
// finish up
|
|
scheduler.stop(true);
|
|
threads.join_all();
|
|
|
|
BOOST_CHECK_EQUAL(counter1, 100);
|
|
BOOST_CHECK_EQUAL(counter2, 100);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(mockforward)
|
|
{
|
|
CScheduler scheduler;
|
|
|
|
int counter{0};
|
|
CScheduler::Function dummy = [&counter]{counter++;};
|
|
|
|
// schedule jobs for 2, 5 & 8 minutes into the future
|
|
int64_t min_in_milli = 60*1000;
|
|
scheduler.scheduleFromNow(dummy, 2*min_in_milli);
|
|
scheduler.scheduleFromNow(dummy, 5*min_in_milli);
|
|
scheduler.scheduleFromNow(dummy, 8*min_in_milli);
|
|
|
|
// check taskQueue
|
|
boost::chrono::system_clock::time_point first, last;
|
|
size_t num_tasks = scheduler.getQueueInfo(first, last);
|
|
BOOST_CHECK_EQUAL(num_tasks, 3ul);
|
|
|
|
std::thread scheduler_thread([&]() { scheduler.serviceQueue(); });
|
|
|
|
// bump the scheduler forward 5 minutes
|
|
scheduler.MockForward(boost::chrono::seconds(5*60));
|
|
|
|
// ensure scheduler has chance to process all tasks queued for before 1 ms from now.
|
|
scheduler.scheduleFromNow([&scheduler]{ scheduler.stop(false); }, 1);
|
|
scheduler_thread.join();
|
|
|
|
// check that the queue only has one job remaining
|
|
num_tasks = scheduler.getQueueInfo(first, last);
|
|
BOOST_CHECK_EQUAL(num_tasks, 1ul);
|
|
|
|
// check that the dummy function actually ran
|
|
BOOST_CHECK_EQUAL(counter, 2);
|
|
|
|
// check that the time of the remaining job has been updated
|
|
boost::chrono::system_clock::time_point now = boost::chrono::system_clock::now();
|
|
int delta = boost::chrono::duration_cast<boost::chrono::seconds>(first - now).count();
|
|
// should be between 2 & 3 minutes from now
|
|
BOOST_CHECK(delta > 2*60 && delta < 3*60);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_SUITE_END()
|