bitcoin/src/test/fuzz/package_eval.cpp

541 lines
25 KiB
C++

// Copyright (c) 2023 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <consensus/validation.h>
#include <node/context.h>
#include <node/mempool_args.h>
#include <node/miner.h>
#include <policy/truc_policy.h>
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/fuzz.h>
#include <test/fuzz/util.h>
#include <test/fuzz/util/mempool.h>
#include <test/util/mining.h>
#include <test/util/script.h>
#include <test/util/setup_common.h>
#include <test/util/txmempool.h>
#include <util/check.h>
#include <util/rbf.h>
#include <util/translation.h>
#include <validation.h>
#include <validationinterface.h>
using node::BlockAssembler;
using node::NodeContext;
namespace {
const TestingSetup* g_setup;
std::vector<COutPoint> g_outpoints_coinbase_init_mature;
struct MockedTxPool : public CTxMemPool {
void RollingFeeUpdate() EXCLUSIVE_LOCKS_REQUIRED(!cs)
{
LOCK(cs);
lastRollingFeeUpdate = GetTime();
blockSinceLastRollingFeeBump = true;
}
};
void initialize_tx_pool()
{
static const auto testing_setup = MakeNoLogFileContext<const TestingSetup>();
g_setup = testing_setup.get();
BlockAssembler::Options options;
options.coinbase_output_script = P2WSH_EMPTY;
for (int i = 0; i < 2 * COINBASE_MATURITY; ++i) {
COutPoint prevout{MineBlock(g_setup->m_node, options)};
if (i < COINBASE_MATURITY) {
// Remember the txids to avoid expensive disk access later on
g_outpoints_coinbase_init_mature.push_back(prevout);
}
}
g_setup->m_node.validation_signals->SyncWithValidationInterfaceQueue();
}
struct OutpointsUpdater final : public CValidationInterface {
std::set<COutPoint>& m_mempool_outpoints;
explicit OutpointsUpdater(std::set<COutPoint>& r)
: m_mempool_outpoints{r} {}
void TransactionAddedToMempool(const NewMempoolTransactionInfo& tx, uint64_t /* mempool_sequence */) override
{
// for coins spent we always want to be able to rbf so they're not removed
// outputs from this tx can now be spent
for (uint32_t index{0}; index < tx.info.m_tx->vout.size(); ++index) {
m_mempool_outpoints.insert(COutPoint{tx.info.m_tx->GetHash(), index});
}
}
void TransactionRemovedFromMempool(const CTransactionRef& tx, MemPoolRemovalReason reason, uint64_t /* mempool_sequence */) override
{
// outpoints spent by this tx are now available
for (const auto& input : tx->vin) {
// Could already exist if this was a replacement
m_mempool_outpoints.insert(input.prevout);
}
// outpoints created by this tx no longer exist
for (uint32_t index{0}; index < tx->vout.size(); ++index) {
m_mempool_outpoints.erase(COutPoint{tx->GetHash(), index});
}
}
};
struct TransactionsDelta final : public CValidationInterface {
std::set<CTransactionRef>& m_added;
explicit TransactionsDelta(std::set<CTransactionRef>& a)
: m_added{a} {}
void TransactionAddedToMempool(const NewMempoolTransactionInfo& tx, uint64_t /* mempool_sequence */) override
{
// Transactions may be entered and booted any number of times
m_added.insert(tx.info.m_tx);
}
void TransactionRemovedFromMempool(const CTransactionRef& tx, MemPoolRemovalReason reason, uint64_t /* mempool_sequence */) override
{
// Transactions may be entered and booted any number of times
m_added.erase(tx);
}
};
void MockTime(FuzzedDataProvider& fuzzed_data_provider, const Chainstate& chainstate)
{
const auto time = ConsumeTime(fuzzed_data_provider,
chainstate.m_chain.Tip()->GetMedianTimePast() + 1,
std::numeric_limits<decltype(chainstate.m_chain.Tip()->nTime)>::max());
SetMockTime(time);
}
std::unique_ptr<CTxMemPool> MakeMempool(FuzzedDataProvider& fuzzed_data_provider, const NodeContext& node)
{
// Take the default options for tests...
CTxMemPool::Options mempool_opts{MemPoolOptionsForTest(node)};
// ...override specific options for this specific fuzz suite
mempool_opts.limits.ancestor_count = fuzzed_data_provider.ConsumeIntegralInRange<unsigned>(0, 50);
mempool_opts.limits.ancestor_size_vbytes = fuzzed_data_provider.ConsumeIntegralInRange<unsigned>(0, 202) * 1'000;
mempool_opts.limits.descendant_count = fuzzed_data_provider.ConsumeIntegralInRange<unsigned>(0, 50);
mempool_opts.limits.descendant_size_vbytes = fuzzed_data_provider.ConsumeIntegralInRange<unsigned>(0, 202) * 1'000;
mempool_opts.max_size_bytes = fuzzed_data_provider.ConsumeIntegralInRange<unsigned>(0, 200) * 1'000'000;
mempool_opts.expiry = std::chrono::hours{fuzzed_data_provider.ConsumeIntegralInRange<unsigned>(0, 999)};
// Only interested in 2 cases: sigop cost 0 or when single legacy sigop cost is >> 1KvB
nBytesPerSigOp = fuzzed_data_provider.ConsumeIntegralInRange<unsigned>(0, 1) * 10'000;
mempool_opts.check_ratio = 1;
mempool_opts.require_standard = fuzzed_data_provider.ConsumeBool();
bilingual_str error;
// ...and construct a CTxMemPool from it
auto mempool{std::make_unique<CTxMemPool>(std::move(mempool_opts), error)};
// ... ignore the error since it might be beneficial to fuzz even when the
// mempool size is unreasonably small
Assert(error.empty() || error.original.starts_with("-maxmempool must be at least "));
return mempool;
}
std::unique_ptr<CTxMemPool> MakeEphemeralMempool(const NodeContext& node)
{
// Take the default options for tests...
CTxMemPool::Options mempool_opts{MemPoolOptionsForTest(node)};
mempool_opts.check_ratio = 1;
// Require standardness rules otherwise ephemeral dust is no-op
mempool_opts.require_standard = true;
// And set minrelay to 0 to allow ephemeral parent tx even with non-TRUC
mempool_opts.min_relay_feerate = CFeeRate(0);
bilingual_str error;
// ...and construct a CTxMemPool from it
auto mempool{std::make_unique<CTxMemPool>(std::move(mempool_opts), error)};
Assert(error.empty());
return mempool;
}
// Scan mempool for a tx that has spent dust and return a
// prevout of the child that isn't the dusty parent itself.
// This is used to double-spend the child out of the mempool,
// leaving the parent childless.
// This assumes CheckMempoolEphemeralInvariants has passed for tx_pool.
std::optional<COutPoint> GetChildEvictingPrevout(const CTxMemPool& tx_pool)
{
LOCK(tx_pool.cs);
for (const auto& tx_info : tx_pool.infoAll()) {
const auto& entry = *Assert(tx_pool.GetEntry(tx_info.tx->GetHash()));
std::vector<uint32_t> dust_indexes{GetDust(*tx_info.tx, tx_pool.m_opts.dust_relay_feerate)};
if (!dust_indexes.empty()) {
const auto& children = entry.GetMemPoolChildrenConst();
if (!children.empty()) {
Assert(children.size() == 1);
// Find an input that doesn't spend from parent's txid
const auto& only_child = children.begin()->get().GetTx();
for (const auto& tx_input : only_child.vin) {
if (tx_input.prevout.hash != tx_info.tx->GetHash()) {
return tx_input.prevout;
}
}
}
}
}
return std::nullopt;
}
FUZZ_TARGET(ephemeral_package_eval, .init = initialize_tx_pool)
{
SeedRandomStateForTest(SeedRand::ZEROS);
FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.size());
const auto& node = g_setup->m_node;
auto& chainstate{static_cast<DummyChainState&>(node.chainman->ActiveChainstate())};
MockTime(fuzzed_data_provider, chainstate);
// All RBF-spendable outpoints outside of the unsubmitted package
std::set<COutPoint> mempool_outpoints;
std::unordered_map<COutPoint, CAmount, SaltedOutpointHasher> outpoints_value;
for (const auto& outpoint : g_outpoints_coinbase_init_mature) {
Assert(mempool_outpoints.insert(outpoint).second);
outpoints_value[outpoint] = 50 * COIN;
}
auto outpoints_updater = std::make_shared<OutpointsUpdater>(mempool_outpoints);
node.validation_signals->RegisterSharedValidationInterface(outpoints_updater);
auto tx_pool_{MakeEphemeralMempool(node)};
MockedTxPool& tx_pool = *static_cast<MockedTxPool*>(tx_pool_.get());
chainstate.SetMempool(&tx_pool);
LIMITED_WHILE(fuzzed_data_provider.remaining_bytes() > 0, 300)
{
Assert(!mempool_outpoints.empty());
std::vector<CTransactionRef> txs;
// Find something we may want to double-spend with two input single tx
std::optional<COutPoint> outpoint_to_rbf{fuzzed_data_provider.ConsumeBool() ? GetChildEvictingPrevout(tx_pool) : std::nullopt};
// Make small packages
const auto num_txs = outpoint_to_rbf ? 1 : fuzzed_data_provider.ConsumeIntegralInRange<size_t>(1, 4);
std::set<COutPoint> package_outpoints;
while (txs.size() < num_txs) {
// Create transaction to add to the mempool
txs.emplace_back([&] {
CMutableTransaction tx_mut;
tx_mut.version = CTransaction::CURRENT_VERSION;
tx_mut.nLockTime = 0;
// Last transaction in a package needs to be a child of parents to get further in validation
// so the last transaction to be generated(in a >1 package) must spend all package-made outputs
// Note that this test currently only spends package outputs in last transaction.
bool last_tx = num_txs > 1 && txs.size() == num_txs - 1;
const auto num_in = outpoint_to_rbf ? 2 :
last_tx ? fuzzed_data_provider.ConsumeIntegralInRange<int>(package_outpoints.size()/2 + 1, package_outpoints.size()) :
fuzzed_data_provider.ConsumeIntegralInRange<int>(1, 4);
const auto num_out = outpoint_to_rbf ? 1 : fuzzed_data_provider.ConsumeIntegralInRange<int>(1, 4);
auto& outpoints = last_tx ? package_outpoints : mempool_outpoints;
Assert((int)outpoints.size() >= num_in && num_in > 0);
CAmount amount_in{0};
for (int i = 0; i < num_in; ++i) {
// Pop random outpoint. We erase them to avoid double-spending
// while in this loop, but later add them back (unless last_tx).
auto pop = outpoints.begin();
std::advance(pop, fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, outpoints.size() - 1));
auto outpoint = *pop;
if (i == 0 && outpoint_to_rbf) {
outpoint = *outpoint_to_rbf;
outpoints.erase(outpoint);
} else {
outpoints.erase(pop);
}
// no need to update or erase from outpoints_value
amount_in += outpoints_value.at(outpoint);
// Create input
CTxIn in;
in.prevout = outpoint;
in.scriptWitness.stack = P2WSH_EMPTY_TRUE_STACK;
tx_mut.vin.push_back(in);
}
const auto amount_fee = fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(0, amount_in);
const auto amount_out = (amount_in - amount_fee) / num_out;
for (int i = 0; i < num_out; ++i) {
tx_mut.vout.emplace_back(amount_out, P2WSH_EMPTY);
}
// Note output amounts can naturally drop to dust on their own.
if (!outpoint_to_rbf && fuzzed_data_provider.ConsumeBool()) {
uint32_t dust_index = fuzzed_data_provider.ConsumeIntegralInRange<uint32_t>(0, num_out);
tx_mut.vout.insert(tx_mut.vout.begin() + dust_index, CTxOut(0, P2WSH_EMPTY));
}
auto tx = MakeTransactionRef(tx_mut);
// Restore previously removed outpoints, except in-package outpoints (to allow RBF)
if (!last_tx) {
for (const auto& in : tx->vin) {
Assert(outpoints.insert(in.prevout).second);
}
// Cache the in-package outpoints being made
for (size_t i = 0; i < tx->vout.size(); ++i) {
package_outpoints.emplace(tx->GetHash(), i);
}
}
// We need newly-created values for the duration of this run
for (size_t i = 0; i < tx->vout.size(); ++i) {
outpoints_value[COutPoint(tx->GetHash(), i)] = tx->vout[i].nValue;
}
return tx;
}());
}
if (fuzzed_data_provider.ConsumeBool()) {
const auto& txid = fuzzed_data_provider.ConsumeBool() ?
txs.back()->GetHash() :
PickValue(fuzzed_data_provider, mempool_outpoints).hash;
const auto delta = fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(-50 * COIN, +50 * COIN);
// We only prioritise out of mempool transactions since PrioritiseTransaction doesn't
// filter for ephemeral dust
if (tx_pool.exists(GenTxid::Txid(txid))) {
const auto tx_info{tx_pool.info(GenTxid::Txid(txid))};
if (GetDust(*tx_info.tx, tx_pool.m_opts.dust_relay_feerate).empty()) {
tx_pool.PrioritiseTransaction(txid.ToUint256(), delta);
}
}
}
auto single_submit = txs.size() == 1;
const auto result_package = WITH_LOCK(::cs_main,
return ProcessNewPackage(chainstate, tx_pool, txs, /*test_accept=*/single_submit, /*client_maxfeerate=*/{}));
const auto res = WITH_LOCK(::cs_main, return AcceptToMemoryPool(chainstate, txs.back(), GetTime(),
/*bypass_limits=*/fuzzed_data_provider.ConsumeBool(), /*test_accept=*/!single_submit));
if (!single_submit && result_package.m_state.GetResult() != PackageValidationResult::PCKG_POLICY) {
// We don't know anything about the validity since transactions were randomly generated, so
// just use result_package.m_state here. This makes the expect_valid check meaningless, but
// we can still verify that the contents of m_tx_results are consistent with m_state.
const bool expect_valid{result_package.m_state.IsValid()};
Assert(!CheckPackageMempoolAcceptResult(txs, result_package, expect_valid, &tx_pool));
}
node.validation_signals->SyncWithValidationInterfaceQueue();
CheckMempoolEphemeralInvariants(tx_pool);
}
node.validation_signals->UnregisterSharedValidationInterface(outpoints_updater);
WITH_LOCK(::cs_main, tx_pool.check(chainstate.CoinsTip(), chainstate.m_chain.Height() + 1));
}
FUZZ_TARGET(tx_package_eval, .init = initialize_tx_pool)
{
SeedRandomStateForTest(SeedRand::ZEROS);
FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.size());
const auto& node = g_setup->m_node;
auto& chainstate{static_cast<DummyChainState&>(node.chainman->ActiveChainstate())};
MockTime(fuzzed_data_provider, chainstate);
// All RBF-spendable outpoints outside of the unsubmitted package
std::set<COutPoint> mempool_outpoints;
std::unordered_map<COutPoint, CAmount, SaltedOutpointHasher> outpoints_value;
for (const auto& outpoint : g_outpoints_coinbase_init_mature) {
Assert(mempool_outpoints.insert(outpoint).second);
outpoints_value[outpoint] = 50 * COIN;
}
auto outpoints_updater = std::make_shared<OutpointsUpdater>(mempool_outpoints);
node.validation_signals->RegisterSharedValidationInterface(outpoints_updater);
auto tx_pool_{MakeMempool(fuzzed_data_provider, node)};
MockedTxPool& tx_pool = *static_cast<MockedTxPool*>(tx_pool_.get());
chainstate.SetMempool(&tx_pool);
LIMITED_WHILE(fuzzed_data_provider.remaining_bytes() > 0, 300)
{
Assert(!mempool_outpoints.empty());
std::vector<CTransactionRef> txs;
// Make packages of 1-to-26 transactions
const auto num_txs = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(1, 26);
std::set<COutPoint> package_outpoints;
while (txs.size() < num_txs) {
// Create transaction to add to the mempool
txs.emplace_back([&] {
CMutableTransaction tx_mut;
tx_mut.version = fuzzed_data_provider.ConsumeBool() ? TRUC_VERSION : CTransaction::CURRENT_VERSION;
tx_mut.nLockTime = fuzzed_data_provider.ConsumeBool() ? 0 : fuzzed_data_provider.ConsumeIntegral<uint32_t>();
// Last transaction in a package needs to be a child of parents to get further in validation
// so the last transaction to be generated(in a >1 package) must spend all package-made outputs
// Note that this test currently only spends package outputs in last transaction.
bool last_tx = num_txs > 1 && txs.size() == num_txs - 1;
const auto num_in = last_tx ? package_outpoints.size() : fuzzed_data_provider.ConsumeIntegralInRange<int>(1, mempool_outpoints.size());
auto num_out = fuzzed_data_provider.ConsumeIntegralInRange<int>(1, mempool_outpoints.size() * 2);
auto& outpoints = last_tx ? package_outpoints : mempool_outpoints;
Assert(!outpoints.empty());
CAmount amount_in{0};
for (size_t i = 0; i < num_in; ++i) {
// Pop random outpoint. We erase them to avoid double-spending
// while in this loop, but later add them back (unless last_tx).
auto pop = outpoints.begin();
std::advance(pop, fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, outpoints.size() - 1));
const auto outpoint = *pop;
outpoints.erase(pop);
// no need to update or erase from outpoints_value
amount_in += outpoints_value.at(outpoint);
// Create input
const auto sequence = ConsumeSequence(fuzzed_data_provider);
const auto script_sig = CScript{};
const auto script_wit_stack = fuzzed_data_provider.ConsumeBool() ? P2WSH_EMPTY_TRUE_STACK : P2WSH_EMPTY_TWO_STACK;
CTxIn in;
in.prevout = outpoint;
in.nSequence = sequence;
in.scriptSig = script_sig;
in.scriptWitness.stack = script_wit_stack;
tx_mut.vin.push_back(in);
}
// Duplicate an input
bool dup_input = fuzzed_data_provider.ConsumeBool();
if (dup_input) {
tx_mut.vin.push_back(tx_mut.vin.back());
}
// Refer to a non-existent input
if (fuzzed_data_provider.ConsumeBool()) {
tx_mut.vin.emplace_back();
}
// Make a p2pk output to make sigops adjusted vsize to violate TRUC rules, potentially, which is never spent
if (last_tx && amount_in > 1000 && fuzzed_data_provider.ConsumeBool()) {
tx_mut.vout.emplace_back(1000, CScript() << std::vector<unsigned char>(33, 0x02) << OP_CHECKSIG);
// Don't add any other outputs.
num_out = 1;
amount_in -= 1000;
}
const auto amount_fee = fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(0, amount_in);
const auto amount_out = (amount_in - amount_fee) / num_out;
for (int i = 0; i < num_out; ++i) {
tx_mut.vout.emplace_back(amount_out, P2WSH_EMPTY);
}
auto tx = MakeTransactionRef(tx_mut);
// Restore previously removed outpoints, except in-package outpoints
if (!last_tx) {
for (const auto& in : tx->vin) {
// It's a fake input, or a new input, or a duplicate
Assert(in == CTxIn() || outpoints.insert(in.prevout).second || dup_input);
}
// Cache the in-package outpoints being made
for (size_t i = 0; i < tx->vout.size(); ++i) {
package_outpoints.emplace(tx->GetHash(), i);
}
}
// We need newly-created values for the duration of this run
for (size_t i = 0; i < tx->vout.size(); ++i) {
outpoints_value[COutPoint(tx->GetHash(), i)] = tx->vout[i].nValue;
}
return tx;
}());
}
if (fuzzed_data_provider.ConsumeBool()) {
MockTime(fuzzed_data_provider, chainstate);
}
if (fuzzed_data_provider.ConsumeBool()) {
tx_pool.RollingFeeUpdate();
}
if (fuzzed_data_provider.ConsumeBool()) {
const auto& txid = fuzzed_data_provider.ConsumeBool() ?
txs.back()->GetHash() :
PickValue(fuzzed_data_provider, mempool_outpoints).hash;
const auto delta = fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(-50 * COIN, +50 * COIN);
tx_pool.PrioritiseTransaction(txid.ToUint256(), delta);
}
// Remember all added transactions
std::set<CTransactionRef> added;
auto txr = std::make_shared<TransactionsDelta>(added);
node.validation_signals->RegisterSharedValidationInterface(txr);
// When there are multiple transactions in the package, we call ProcessNewPackage(txs, test_accept=false)
// and AcceptToMemoryPool(txs.back(), test_accept=true). When there is only 1 transaction, we might flip it
// (the package is a test accept and ATMP is a submission).
auto single_submit = txs.size() == 1 && fuzzed_data_provider.ConsumeBool();
// Exercise client_maxfeerate logic
std::optional<CFeeRate> client_maxfeerate{};
if (fuzzed_data_provider.ConsumeBool()) {
client_maxfeerate = CFeeRate(fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(-1, 50 * COIN), 100);
}
const auto result_package = WITH_LOCK(::cs_main,
return ProcessNewPackage(chainstate, tx_pool, txs, /*test_accept=*/single_submit, client_maxfeerate));
// Always set bypass_limits to false because it is not supported in ProcessNewPackage and
// can be a source of divergence.
const auto res = WITH_LOCK(::cs_main, return AcceptToMemoryPool(chainstate, txs.back(), GetTime(),
/*bypass_limits=*/false, /*test_accept=*/!single_submit));
const bool passed = res.m_result_type == MempoolAcceptResult::ResultType::VALID;
node.validation_signals->SyncWithValidationInterfaceQueue();
node.validation_signals->UnregisterSharedValidationInterface(txr);
// There is only 1 transaction in the package. We did a test-package-accept and a ATMP
if (single_submit) {
Assert(passed != added.empty());
Assert(passed == res.m_state.IsValid());
if (passed) {
Assert(added.size() == 1);
Assert(txs.back() == *added.begin());
}
} else if (result_package.m_state.GetResult() != PackageValidationResult::PCKG_POLICY) {
// We don't know anything about the validity since transactions were randomly generated, so
// just use result_package.m_state here. This makes the expect_valid check meaningless, but
// we can still verify that the contents of m_tx_results are consistent with m_state.
const bool expect_valid{result_package.m_state.IsValid()};
Assert(!CheckPackageMempoolAcceptResult(txs, result_package, expect_valid, &tx_pool));
} else {
// This is empty if it fails early checks, or "full" if transactions are looked at deeper
Assert(result_package.m_tx_results.size() == txs.size() || result_package.m_tx_results.empty());
}
CheckMempoolTRUCInvariants(tx_pool);
// Dust checks only make sense when dust is enforced
if (tx_pool.m_opts.require_standard) {
CheckMempoolEphemeralInvariants(tx_pool);
}
}
node.validation_signals->UnregisterSharedValidationInterface(outpoints_updater);
WITH_LOCK(::cs_main, tx_pool.check(chainstate.CoinsTip(), chainstate.m_chain.Height() + 1));
}
} // namespace