bitcoin/test/functional/test_framework/secp256k1.py
Sebastian Falbesoner d4fb58ae8a test: EC: optimize scalar multiplication of G by using lookup table
On my machine, this speeds up the functional test feature_taproot.py by
a factor of >1.66x (runtime decrease from 1m16.587s to 45.334s).

Co-authored-by: Pieter Wuille <pieter@wuille.net>
2023-06-27 09:34:52 -04:00

346 lines
12 KiB
Python

# Copyright (c) 2022-2023 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test-only implementation of low-level secp256k1 field and group arithmetic
It is designed for ease of understanding, not performance.
WARNING: This code is slow and trivially vulnerable to side channel attacks. Do not use for
anything but tests.
Exports:
* FE: class for secp256k1 field elements
* GE: class for secp256k1 group elements
* G: the secp256k1 generator point
"""
class FE:
"""Objects of this class represent elements of the field GF(2**256 - 2**32 - 977).
They are represented internally in numerator / denominator form, in order to delay inversions.
"""
# The size of the field (also its modulus and characteristic).
SIZE = 2**256 - 2**32 - 977
def __init__(self, a=0, b=1):
"""Initialize a field element a/b; both a and b can be ints or field elements."""
if isinstance(a, FE):
num = a._num
den = a._den
else:
num = a % FE.SIZE
den = 1
if isinstance(b, FE):
den = (den * b._num) % FE.SIZE
num = (num * b._den) % FE.SIZE
else:
den = (den * b) % FE.SIZE
assert den != 0
if num == 0:
den = 1
self._num = num
self._den = den
def __add__(self, a):
"""Compute the sum of two field elements (second may be int)."""
if isinstance(a, FE):
return FE(self._num * a._den + self._den * a._num, self._den * a._den)
return FE(self._num + self._den * a, self._den)
def __radd__(self, a):
"""Compute the sum of an integer and a field element."""
return FE(a) + self
def __sub__(self, a):
"""Compute the difference of two field elements (second may be int)."""
if isinstance(a, FE):
return FE(self._num * a._den - self._den * a._num, self._den * a._den)
return FE(self._num - self._den * a, self._den)
def __rsub__(self, a):
"""Compute the difference of an integer and a field element."""
return FE(a) - self
def __mul__(self, a):
"""Compute the product of two field elements (second may be int)."""
if isinstance(a, FE):
return FE(self._num * a._num, self._den * a._den)
return FE(self._num * a, self._den)
def __rmul__(self, a):
"""Compute the product of an integer with a field element."""
return FE(a) * self
def __truediv__(self, a):
"""Compute the ratio of two field elements (second may be int)."""
return FE(self, a)
def __pow__(self, a):
"""Raise a field element to an integer power."""
return FE(pow(self._num, a, FE.SIZE), pow(self._den, a, FE.SIZE))
def __neg__(self):
"""Negate a field element."""
return FE(-self._num, self._den)
def __int__(self):
"""Convert a field element to an integer in range 0..p-1. The result is cached."""
if self._den != 1:
self._num = (self._num * pow(self._den, -1, FE.SIZE)) % FE.SIZE
self._den = 1
return self._num
def sqrt(self):
"""Compute the square root of a field element if it exists (None otherwise).
Due to the fact that our modulus is of the form (p % 4) == 3, the Tonelli-Shanks
algorithm (https://en.wikipedia.org/wiki/Tonelli-Shanks_algorithm) is simply
raising the argument to the power (p + 1) / 4.
To see why: (p-1) % 2 = 0, so 2 divides the order of the multiplicative group,
and thus only half of the non-zero field elements are squares. An element a is
a (nonzero) square when Euler's criterion, a^((p-1)/2) = 1 (mod p), holds. We're
looking for x such that x^2 = a (mod p). Given a^((p-1)/2) = 1, that is equivalent
to x^2 = a^(1 + (p-1)/2) mod p. As (1 + (p-1)/2) is even, this is equivalent to
x = a^((1 + (p-1)/2)/2) mod p, or x = a^((p+1)/4) mod p."""
v = int(self)
s = pow(v, (FE.SIZE + 1) // 4, FE.SIZE)
if s**2 % FE.SIZE == v:
return FE(s)
return None
def is_square(self):
"""Determine if this field element has a square root."""
# A more efficient algorithm is possible here (Jacobi symbol).
return self.sqrt() is not None
def is_even(self):
"""Determine whether this field element, represented as integer in 0..p-1, is even."""
return int(self) & 1 == 0
def __eq__(self, a):
"""Check whether two field elements are equal (second may be an int)."""
if isinstance(a, FE):
return (self._num * a._den - self._den * a._num) % FE.SIZE == 0
return (self._num - self._den * a) % FE.SIZE == 0
def to_bytes(self):
"""Convert a field element to a 32-byte array (BE byte order)."""
return int(self).to_bytes(32, 'big')
@staticmethod
def from_bytes(b):
"""Convert a 32-byte array to a field element (BE byte order, no overflow allowed)."""
v = int.from_bytes(b, 'big')
if v >= FE.SIZE:
return None
return FE(v)
def __str__(self):
"""Convert this field element to a 64 character hex string."""
return f"{int(self):064x}"
def __repr__(self):
"""Get a string representation of this field element."""
return f"FE(0x{int(self):x})"
class GE:
"""Objects of this class represent secp256k1 group elements (curve points or infinity)
Normal points on the curve have fields:
* x: the x coordinate (a field element)
* y: the y coordinate (a field element, satisfying y^2 = x^3 + 7)
* infinity: False
The point at infinity has field:
* infinity: True
"""
# Order of the group (number of points on the curve, plus 1 for infinity)
ORDER = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
# Number of valid distinct x coordinates on the curve.
ORDER_HALF = ORDER // 2
def __init__(self, x=None, y=None):
"""Initialize a group element with specified x and y coordinates, or infinity."""
if x is None:
# Initialize as infinity.
assert y is None
self.infinity = True
else:
# Initialize as point on the curve (and check that it is).
fx = FE(x)
fy = FE(y)
assert fy**2 == fx**3 + 7
self.infinity = False
self.x = fx
self.y = fy
def __add__(self, a):
"""Add two group elements together."""
# Deal with infinity: a + infinity == infinity + a == a.
if self.infinity:
return a
if a.infinity:
return self
if self.x == a.x:
if self.y != a.y:
# A point added to its own negation is infinity.
assert self.y + a.y == 0
return GE()
else:
# For identical inputs, use the tangent (doubling formula).
lam = (3 * self.x**2) / (2 * self.y)
else:
# For distinct inputs, use the line through both points (adding formula).
lam = (self.y - a.y) / (self.x - a.x)
# Determine point opposite to the intersection of that line with the curve.
x = lam**2 - (self.x + a.x)
y = lam * (self.x - x) - self.y
return GE(x, y)
@staticmethod
def mul(*aps):
"""Compute a (batch) scalar group element multiplication.
GE.mul((a1, p1), (a2, p2), (a3, p3)) is identical to a1*p1 + a2*p2 + a3*p3,
but more efficient."""
# Reduce all the scalars modulo order first (so we can deal with negatives etc).
naps = [(a % GE.ORDER, p) for a, p in aps]
# Start with point at infinity.
r = GE()
# Iterate over all bit positions, from high to low.
for i in range(255, -1, -1):
# Double what we have so far.
r = r + r
# Add then add the points for which the corresponding scalar bit is set.
for (a, p) in naps:
if (a >> i) & 1:
r += p
return r
def __rmul__(self, a):
"""Multiply an integer with a group element."""
if self == G:
return FAST_G.mul(a)
return GE.mul((a, self))
def __neg__(self):
"""Compute the negation of a group element."""
if self.infinity:
return self
return GE(self.x, -self.y)
def to_bytes_compressed(self):
"""Convert a non-infinite group element to 33-byte compressed encoding."""
assert not self.infinity
return bytes([3 - self.y.is_even()]) + self.x.to_bytes()
def to_bytes_uncompressed(self):
"""Convert a non-infinite group element to 65-byte uncompressed encoding."""
assert not self.infinity
return b'\x04' + self.x.to_bytes() + self.y.to_bytes()
def to_bytes_xonly(self):
"""Convert (the x coordinate of) a non-infinite group element to 32-byte xonly encoding."""
assert not self.infinity
return self.x.to_bytes()
@staticmethod
def lift_x(x):
"""Return group element with specified field element as x coordinate (and even y)."""
y = (FE(x)**3 + 7).sqrt()
if y is None:
return None
if not y.is_even():
y = -y
return GE(x, y)
@staticmethod
def from_bytes(b):
"""Convert a compressed or uncompressed encoding to a group element."""
assert len(b) in (33, 65)
if len(b) == 33:
if b[0] != 2 and b[0] != 3:
return None
x = FE.from_bytes(b[1:])
if x is None:
return None
r = GE.lift_x(x)
if r is None:
return None
if b[0] == 3:
r = -r
return r
else:
if b[0] != 4:
return None
x = FE.from_bytes(b[1:33])
y = FE.from_bytes(b[33:])
if y**2 != x**3 + 7:
return None
return GE(x, y)
@staticmethod
def from_bytes_xonly(b):
"""Convert a point given in xonly encoding to a group element."""
assert len(b) == 32
x = FE.from_bytes(b)
if x is None:
return None
return GE.lift_x(x)
@staticmethod
def is_valid_x(x):
"""Determine whether the provided field element is a valid X coordinate."""
return (FE(x)**3 + 7).is_square()
def __str__(self):
"""Convert this group element to a string."""
if self.infinity:
return "(inf)"
return f"({self.x},{self.y})"
def __repr__(self):
"""Get a string representation for this group element."""
if self.infinity:
return "GE()"
return f"GE(0x{int(self.x):x},0x{int(self.y):x})"
# The secp256k1 generator point
G = GE.lift_x(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798)
class FastGEMul:
"""Table for fast multiplication with a constant group element.
Speed up scalar multiplication with a fixed point P by using a precomputed lookup table with
its powers of 2:
table = [P, 2*P, 4*P, (2^3)*P, (2^4)*P, ..., (2^255)*P]
During multiplication, the points corresponding to each bit set in the scalar are added up,
i.e. on average ~128 point additions take place.
"""
def __init__(self, p):
self.table = [p] # table[i] = (2^i) * p
for _ in range(255):
p = p + p
self.table.append(p)
def mul(self, a):
result = GE()
a = a % GE.ORDER
for bit in range(a.bit_length()):
if a & (1 << bit):
result += self.table[bit]
return result
# Precomputed table with multiples of G for fast multiplication
FAST_G = FastGEMul(G)