mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-12 04:42:36 -03:00
d4fb58ae8a
On my machine, this speeds up the functional test feature_taproot.py by a factor of >1.66x (runtime decrease from 1m16.587s to 45.334s). Co-authored-by: Pieter Wuille <pieter@wuille.net>
346 lines
12 KiB
Python
346 lines
12 KiB
Python
# Copyright (c) 2022-2023 The Bitcoin Core developers
|
|
# Distributed under the MIT software license, see the accompanying
|
|
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
"""Test-only implementation of low-level secp256k1 field and group arithmetic
|
|
|
|
It is designed for ease of understanding, not performance.
|
|
|
|
WARNING: This code is slow and trivially vulnerable to side channel attacks. Do not use for
|
|
anything but tests.
|
|
|
|
Exports:
|
|
* FE: class for secp256k1 field elements
|
|
* GE: class for secp256k1 group elements
|
|
* G: the secp256k1 generator point
|
|
"""
|
|
|
|
|
|
class FE:
|
|
"""Objects of this class represent elements of the field GF(2**256 - 2**32 - 977).
|
|
|
|
They are represented internally in numerator / denominator form, in order to delay inversions.
|
|
"""
|
|
|
|
# The size of the field (also its modulus and characteristic).
|
|
SIZE = 2**256 - 2**32 - 977
|
|
|
|
def __init__(self, a=0, b=1):
|
|
"""Initialize a field element a/b; both a and b can be ints or field elements."""
|
|
if isinstance(a, FE):
|
|
num = a._num
|
|
den = a._den
|
|
else:
|
|
num = a % FE.SIZE
|
|
den = 1
|
|
if isinstance(b, FE):
|
|
den = (den * b._num) % FE.SIZE
|
|
num = (num * b._den) % FE.SIZE
|
|
else:
|
|
den = (den * b) % FE.SIZE
|
|
assert den != 0
|
|
if num == 0:
|
|
den = 1
|
|
self._num = num
|
|
self._den = den
|
|
|
|
def __add__(self, a):
|
|
"""Compute the sum of two field elements (second may be int)."""
|
|
if isinstance(a, FE):
|
|
return FE(self._num * a._den + self._den * a._num, self._den * a._den)
|
|
return FE(self._num + self._den * a, self._den)
|
|
|
|
def __radd__(self, a):
|
|
"""Compute the sum of an integer and a field element."""
|
|
return FE(a) + self
|
|
|
|
def __sub__(self, a):
|
|
"""Compute the difference of two field elements (second may be int)."""
|
|
if isinstance(a, FE):
|
|
return FE(self._num * a._den - self._den * a._num, self._den * a._den)
|
|
return FE(self._num - self._den * a, self._den)
|
|
|
|
def __rsub__(self, a):
|
|
"""Compute the difference of an integer and a field element."""
|
|
return FE(a) - self
|
|
|
|
def __mul__(self, a):
|
|
"""Compute the product of two field elements (second may be int)."""
|
|
if isinstance(a, FE):
|
|
return FE(self._num * a._num, self._den * a._den)
|
|
return FE(self._num * a, self._den)
|
|
|
|
def __rmul__(self, a):
|
|
"""Compute the product of an integer with a field element."""
|
|
return FE(a) * self
|
|
|
|
def __truediv__(self, a):
|
|
"""Compute the ratio of two field elements (second may be int)."""
|
|
return FE(self, a)
|
|
|
|
def __pow__(self, a):
|
|
"""Raise a field element to an integer power."""
|
|
return FE(pow(self._num, a, FE.SIZE), pow(self._den, a, FE.SIZE))
|
|
|
|
def __neg__(self):
|
|
"""Negate a field element."""
|
|
return FE(-self._num, self._den)
|
|
|
|
def __int__(self):
|
|
"""Convert a field element to an integer in range 0..p-1. The result is cached."""
|
|
if self._den != 1:
|
|
self._num = (self._num * pow(self._den, -1, FE.SIZE)) % FE.SIZE
|
|
self._den = 1
|
|
return self._num
|
|
|
|
def sqrt(self):
|
|
"""Compute the square root of a field element if it exists (None otherwise).
|
|
|
|
Due to the fact that our modulus is of the form (p % 4) == 3, the Tonelli-Shanks
|
|
algorithm (https://en.wikipedia.org/wiki/Tonelli-Shanks_algorithm) is simply
|
|
raising the argument to the power (p + 1) / 4.
|
|
|
|
To see why: (p-1) % 2 = 0, so 2 divides the order of the multiplicative group,
|
|
and thus only half of the non-zero field elements are squares. An element a is
|
|
a (nonzero) square when Euler's criterion, a^((p-1)/2) = 1 (mod p), holds. We're
|
|
looking for x such that x^2 = a (mod p). Given a^((p-1)/2) = 1, that is equivalent
|
|
to x^2 = a^(1 + (p-1)/2) mod p. As (1 + (p-1)/2) is even, this is equivalent to
|
|
x = a^((1 + (p-1)/2)/2) mod p, or x = a^((p+1)/4) mod p."""
|
|
v = int(self)
|
|
s = pow(v, (FE.SIZE + 1) // 4, FE.SIZE)
|
|
if s**2 % FE.SIZE == v:
|
|
return FE(s)
|
|
return None
|
|
|
|
def is_square(self):
|
|
"""Determine if this field element has a square root."""
|
|
# A more efficient algorithm is possible here (Jacobi symbol).
|
|
return self.sqrt() is not None
|
|
|
|
def is_even(self):
|
|
"""Determine whether this field element, represented as integer in 0..p-1, is even."""
|
|
return int(self) & 1 == 0
|
|
|
|
def __eq__(self, a):
|
|
"""Check whether two field elements are equal (second may be an int)."""
|
|
if isinstance(a, FE):
|
|
return (self._num * a._den - self._den * a._num) % FE.SIZE == 0
|
|
return (self._num - self._den * a) % FE.SIZE == 0
|
|
|
|
def to_bytes(self):
|
|
"""Convert a field element to a 32-byte array (BE byte order)."""
|
|
return int(self).to_bytes(32, 'big')
|
|
|
|
@staticmethod
|
|
def from_bytes(b):
|
|
"""Convert a 32-byte array to a field element (BE byte order, no overflow allowed)."""
|
|
v = int.from_bytes(b, 'big')
|
|
if v >= FE.SIZE:
|
|
return None
|
|
return FE(v)
|
|
|
|
def __str__(self):
|
|
"""Convert this field element to a 64 character hex string."""
|
|
return f"{int(self):064x}"
|
|
|
|
def __repr__(self):
|
|
"""Get a string representation of this field element."""
|
|
return f"FE(0x{int(self):x})"
|
|
|
|
|
|
class GE:
|
|
"""Objects of this class represent secp256k1 group elements (curve points or infinity)
|
|
|
|
Normal points on the curve have fields:
|
|
* x: the x coordinate (a field element)
|
|
* y: the y coordinate (a field element, satisfying y^2 = x^3 + 7)
|
|
* infinity: False
|
|
|
|
The point at infinity has field:
|
|
* infinity: True
|
|
"""
|
|
|
|
# Order of the group (number of points on the curve, plus 1 for infinity)
|
|
ORDER = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
|
|
|
|
# Number of valid distinct x coordinates on the curve.
|
|
ORDER_HALF = ORDER // 2
|
|
|
|
def __init__(self, x=None, y=None):
|
|
"""Initialize a group element with specified x and y coordinates, or infinity."""
|
|
if x is None:
|
|
# Initialize as infinity.
|
|
assert y is None
|
|
self.infinity = True
|
|
else:
|
|
# Initialize as point on the curve (and check that it is).
|
|
fx = FE(x)
|
|
fy = FE(y)
|
|
assert fy**2 == fx**3 + 7
|
|
self.infinity = False
|
|
self.x = fx
|
|
self.y = fy
|
|
|
|
def __add__(self, a):
|
|
"""Add two group elements together."""
|
|
# Deal with infinity: a + infinity == infinity + a == a.
|
|
if self.infinity:
|
|
return a
|
|
if a.infinity:
|
|
return self
|
|
if self.x == a.x:
|
|
if self.y != a.y:
|
|
# A point added to its own negation is infinity.
|
|
assert self.y + a.y == 0
|
|
return GE()
|
|
else:
|
|
# For identical inputs, use the tangent (doubling formula).
|
|
lam = (3 * self.x**2) / (2 * self.y)
|
|
else:
|
|
# For distinct inputs, use the line through both points (adding formula).
|
|
lam = (self.y - a.y) / (self.x - a.x)
|
|
# Determine point opposite to the intersection of that line with the curve.
|
|
x = lam**2 - (self.x + a.x)
|
|
y = lam * (self.x - x) - self.y
|
|
return GE(x, y)
|
|
|
|
@staticmethod
|
|
def mul(*aps):
|
|
"""Compute a (batch) scalar group element multiplication.
|
|
|
|
GE.mul((a1, p1), (a2, p2), (a3, p3)) is identical to a1*p1 + a2*p2 + a3*p3,
|
|
but more efficient."""
|
|
# Reduce all the scalars modulo order first (so we can deal with negatives etc).
|
|
naps = [(a % GE.ORDER, p) for a, p in aps]
|
|
# Start with point at infinity.
|
|
r = GE()
|
|
# Iterate over all bit positions, from high to low.
|
|
for i in range(255, -1, -1):
|
|
# Double what we have so far.
|
|
r = r + r
|
|
# Add then add the points for which the corresponding scalar bit is set.
|
|
for (a, p) in naps:
|
|
if (a >> i) & 1:
|
|
r += p
|
|
return r
|
|
|
|
def __rmul__(self, a):
|
|
"""Multiply an integer with a group element."""
|
|
if self == G:
|
|
return FAST_G.mul(a)
|
|
return GE.mul((a, self))
|
|
|
|
def __neg__(self):
|
|
"""Compute the negation of a group element."""
|
|
if self.infinity:
|
|
return self
|
|
return GE(self.x, -self.y)
|
|
|
|
def to_bytes_compressed(self):
|
|
"""Convert a non-infinite group element to 33-byte compressed encoding."""
|
|
assert not self.infinity
|
|
return bytes([3 - self.y.is_even()]) + self.x.to_bytes()
|
|
|
|
def to_bytes_uncompressed(self):
|
|
"""Convert a non-infinite group element to 65-byte uncompressed encoding."""
|
|
assert not self.infinity
|
|
return b'\x04' + self.x.to_bytes() + self.y.to_bytes()
|
|
|
|
def to_bytes_xonly(self):
|
|
"""Convert (the x coordinate of) a non-infinite group element to 32-byte xonly encoding."""
|
|
assert not self.infinity
|
|
return self.x.to_bytes()
|
|
|
|
@staticmethod
|
|
def lift_x(x):
|
|
"""Return group element with specified field element as x coordinate (and even y)."""
|
|
y = (FE(x)**3 + 7).sqrt()
|
|
if y is None:
|
|
return None
|
|
if not y.is_even():
|
|
y = -y
|
|
return GE(x, y)
|
|
|
|
@staticmethod
|
|
def from_bytes(b):
|
|
"""Convert a compressed or uncompressed encoding to a group element."""
|
|
assert len(b) in (33, 65)
|
|
if len(b) == 33:
|
|
if b[0] != 2 and b[0] != 3:
|
|
return None
|
|
x = FE.from_bytes(b[1:])
|
|
if x is None:
|
|
return None
|
|
r = GE.lift_x(x)
|
|
if r is None:
|
|
return None
|
|
if b[0] == 3:
|
|
r = -r
|
|
return r
|
|
else:
|
|
if b[0] != 4:
|
|
return None
|
|
x = FE.from_bytes(b[1:33])
|
|
y = FE.from_bytes(b[33:])
|
|
if y**2 != x**3 + 7:
|
|
return None
|
|
return GE(x, y)
|
|
|
|
@staticmethod
|
|
def from_bytes_xonly(b):
|
|
"""Convert a point given in xonly encoding to a group element."""
|
|
assert len(b) == 32
|
|
x = FE.from_bytes(b)
|
|
if x is None:
|
|
return None
|
|
return GE.lift_x(x)
|
|
|
|
@staticmethod
|
|
def is_valid_x(x):
|
|
"""Determine whether the provided field element is a valid X coordinate."""
|
|
return (FE(x)**3 + 7).is_square()
|
|
|
|
def __str__(self):
|
|
"""Convert this group element to a string."""
|
|
if self.infinity:
|
|
return "(inf)"
|
|
return f"({self.x},{self.y})"
|
|
|
|
def __repr__(self):
|
|
"""Get a string representation for this group element."""
|
|
if self.infinity:
|
|
return "GE()"
|
|
return f"GE(0x{int(self.x):x},0x{int(self.y):x})"
|
|
|
|
# The secp256k1 generator point
|
|
G = GE.lift_x(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798)
|
|
|
|
|
|
class FastGEMul:
|
|
"""Table for fast multiplication with a constant group element.
|
|
|
|
Speed up scalar multiplication with a fixed point P by using a precomputed lookup table with
|
|
its powers of 2:
|
|
|
|
table = [P, 2*P, 4*P, (2^3)*P, (2^4)*P, ..., (2^255)*P]
|
|
|
|
During multiplication, the points corresponding to each bit set in the scalar are added up,
|
|
i.e. on average ~128 point additions take place.
|
|
"""
|
|
|
|
def __init__(self, p):
|
|
self.table = [p] # table[i] = (2^i) * p
|
|
for _ in range(255):
|
|
p = p + p
|
|
self.table.append(p)
|
|
|
|
def mul(self, a):
|
|
result = GE()
|
|
a = a % GE.ORDER
|
|
for bit in range(a.bit_length()):
|
|
if a & (1 << bit):
|
|
result += self.table[bit]
|
|
return result
|
|
|
|
# Precomputed table with multiples of G for fast multiplication
|
|
FAST_G = FastGEMul(G)
|