bitcoin/src/test/scheduler_tests.cpp
Wladimir J. van der Laan 5eaaa83ac1 Kill insecure_random and associated global state
There are only a few uses of `insecure_random` outside the tests.
This PR replaces uses of insecure_random (and its accompanying global
state) in the core code with an FastRandomContext that is automatically
seeded on creation.

This is meant to be used for inner loops. The FastRandomContext
can be in the outer scope, or the class itself, then rand32() is used
inside the loop. Useful e.g. for pushing addresses in CNode or the fee
rounding, or randomization for coin selection.

As a context is created per purpose, thus it gets rid of
cross-thread unprotected shared usage of a single set of globals, this
should also get rid of the potential race conditions.

- I'd say TxMempool::check is not called enough to warrant using a special
  fast random context, this is switched to GetRand() (open for
  discussion...)

- The use of `insecure_rand` in ConnectThroughProxy has been replaced by
  an atomic integer counter. The only goal here is to have a different
  credentials pair for each connection to go on a different Tor circuit,
  it does not need to be random nor unpredictable.

- To avoid having a FastRandomContext on every CNode, the context is
  passed into PushAddress as appropriate.

There remains an insecure_random for test usage in `test_random.h`.
2016-10-17 13:08:35 +02:00

117 lines
4.7 KiB
C++

// Copyright (c) 2012-2015 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "random.h"
#include "scheduler.h"
#include "test/test_bitcoin.h"
#include <boost/bind.hpp>
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/uniform_int_distribution.hpp>
#include <boost/thread.hpp>
#include <boost/test/unit_test.hpp>
BOOST_AUTO_TEST_SUITE(scheduler_tests)
static void microTask(CScheduler& s, boost::mutex& mutex, int& counter, int delta, boost::chrono::system_clock::time_point rescheduleTime)
{
{
boost::unique_lock<boost::mutex> lock(mutex);
counter += delta;
}
boost::chrono::system_clock::time_point noTime = boost::chrono::system_clock::time_point::min();
if (rescheduleTime != noTime) {
CScheduler::Function f = boost::bind(&microTask, boost::ref(s), boost::ref(mutex), boost::ref(counter), -delta + 1, noTime);
s.schedule(f, rescheduleTime);
}
}
static void MicroSleep(uint64_t n)
{
#if defined(HAVE_WORKING_BOOST_SLEEP_FOR)
boost::this_thread::sleep_for(boost::chrono::microseconds(n));
#elif defined(HAVE_WORKING_BOOST_SLEEP)
boost::this_thread::sleep(boost::posix_time::microseconds(n));
#else
//should never get here
#error missing boost sleep implementation
#endif
}
BOOST_AUTO_TEST_CASE(manythreads)
{
// Stress test: hundreds of microsecond-scheduled tasks,
// serviced by 10 threads.
//
// So... ten shared counters, which if all the tasks execute
// properly will sum to the number of tasks done.
// Each task adds or subtracts from one of the counters a
// random amount, and then schedules another task 0-1000
// microseconds in the future to subtract or add from
// the counter -random_amount+1, so in the end the shared
// counters should sum to the number of initial tasks performed.
CScheduler microTasks;
boost::mutex counterMutex[10];
int counter[10] = { 0 };
boost::random::mt19937 rng(42);
boost::random::uniform_int_distribution<> zeroToNine(0, 9);
boost::random::uniform_int_distribution<> randomMsec(-11, 1000);
boost::random::uniform_int_distribution<> randomDelta(-1000, 1000);
boost::chrono::system_clock::time_point start = boost::chrono::system_clock::now();
boost::chrono::system_clock::time_point now = start;
boost::chrono::system_clock::time_point first, last;
size_t nTasks = microTasks.getQueueInfo(first, last);
BOOST_CHECK(nTasks == 0);
for (int i = 0; i < 100; i++) {
boost::chrono::system_clock::time_point t = now + boost::chrono::microseconds(randomMsec(rng));
boost::chrono::system_clock::time_point tReschedule = now + boost::chrono::microseconds(500 + randomMsec(rng));
int whichCounter = zeroToNine(rng);
CScheduler::Function f = boost::bind(&microTask, boost::ref(microTasks),
boost::ref(counterMutex[whichCounter]), boost::ref(counter[whichCounter]),
randomDelta(rng), tReschedule);
microTasks.schedule(f, t);
}
nTasks = microTasks.getQueueInfo(first, last);
BOOST_CHECK(nTasks == 100);
BOOST_CHECK(first < last);
BOOST_CHECK(last > now);
// As soon as these are created they will start running and servicing the queue
boost::thread_group microThreads;
for (int i = 0; i < 5; i++)
microThreads.create_thread(boost::bind(&CScheduler::serviceQueue, &microTasks));
MicroSleep(600);
now = boost::chrono::system_clock::now();
// More threads and more tasks:
for (int i = 0; i < 5; i++)
microThreads.create_thread(boost::bind(&CScheduler::serviceQueue, &microTasks));
for (int i = 0; i < 100; i++) {
boost::chrono::system_clock::time_point t = now + boost::chrono::microseconds(randomMsec(rng));
boost::chrono::system_clock::time_point tReschedule = now + boost::chrono::microseconds(500 + randomMsec(rng));
int whichCounter = zeroToNine(rng);
CScheduler::Function f = boost::bind(&microTask, boost::ref(microTasks),
boost::ref(counterMutex[whichCounter]), boost::ref(counter[whichCounter]),
randomDelta(rng), tReschedule);
microTasks.schedule(f, t);
}
// Drain the task queue then exit threads
microTasks.stop(true);
microThreads.join_all(); // ... wait until all the threads are done
int counterSum = 0;
for (int i = 0; i < 10; i++) {
BOOST_CHECK(counter[i] != 0);
counterSum += counter[i];
}
BOOST_CHECK_EQUAL(counterSum, 200);
}
BOOST_AUTO_TEST_SUITE_END()