bitcoin/src/policy/rbf.cpp
Hennadii Stepanov f47dda2c58
scripted-diff: Bump copyright headers
-BEGIN VERIFY SCRIPT-
./contrib/devtools/copyright_header.py update ./
-END VERIFY SCRIPT-

Commits of previous years:
* 2020: fa0074e2d8
* 2019: aaaaad6ac9
2021-12-30 19:36:57 +02:00

176 lines
8.1 KiB
C++

// Copyright (c) 2016-2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <policy/rbf.h>
#include <policy/settings.h>
#include <tinyformat.h>
#include <util/moneystr.h>
#include <util/rbf.h>
RBFTransactionState IsRBFOptIn(const CTransaction& tx, const CTxMemPool& pool)
{
AssertLockHeld(pool.cs);
CTxMemPool::setEntries ancestors;
// First check the transaction itself.
if (SignalsOptInRBF(tx)) {
return RBFTransactionState::REPLACEABLE_BIP125;
}
// If this transaction is not in our mempool, then we can't be sure
// we will know about all its inputs.
if (!pool.exists(GenTxid::Txid(tx.GetHash()))) {
return RBFTransactionState::UNKNOWN;
}
// If all the inputs have nSequence >= maxint-1, it still might be
// signaled for RBF if any unconfirmed parents have signaled.
uint64_t noLimit = std::numeric_limits<uint64_t>::max();
std::string dummy;
CTxMemPoolEntry entry = *pool.mapTx.find(tx.GetHash());
pool.CalculateMemPoolAncestors(entry, ancestors, noLimit, noLimit, noLimit, noLimit, dummy, false);
for (CTxMemPool::txiter it : ancestors) {
if (SignalsOptInRBF(it->GetTx())) {
return RBFTransactionState::REPLACEABLE_BIP125;
}
}
return RBFTransactionState::FINAL;
}
RBFTransactionState IsRBFOptInEmptyMempool(const CTransaction& tx)
{
// If we don't have a local mempool we can only check the transaction itself.
return SignalsOptInRBF(tx) ? RBFTransactionState::REPLACEABLE_BIP125 : RBFTransactionState::UNKNOWN;
}
std::optional<std::string> GetEntriesForConflicts(const CTransaction& tx,
CTxMemPool& pool,
const CTxMemPool::setEntries& iters_conflicting,
CTxMemPool::setEntries& all_conflicts)
{
AssertLockHeld(pool.cs);
const uint256 txid = tx.GetHash();
uint64_t nConflictingCount = 0;
for (const auto& mi : iters_conflicting) {
nConflictingCount += mi->GetCountWithDescendants();
// BIP125 Rule #5: don't consider replacing more than MAX_BIP125_REPLACEMENT_CANDIDATES
// entries from the mempool. This potentially overestimates the number of actual
// descendants (i.e. if multiple conflicts share a descendant, it will be counted multiple
// times), but we just want to be conservative to avoid doing too much work.
if (nConflictingCount > MAX_BIP125_REPLACEMENT_CANDIDATES) {
return strprintf("rejecting replacement %s; too many potential replacements (%d > %d)\n",
txid.ToString(),
nConflictingCount,
MAX_BIP125_REPLACEMENT_CANDIDATES);
}
}
// Calculate the set of all transactions that would have to be evicted.
for (CTxMemPool::txiter it : iters_conflicting) {
pool.CalculateDescendants(it, all_conflicts);
}
return std::nullopt;
}
std::optional<std::string> HasNoNewUnconfirmed(const CTransaction& tx,
const CTxMemPool& pool,
const CTxMemPool::setEntries& iters_conflicting)
{
AssertLockHeld(pool.cs);
std::set<uint256> parents_of_conflicts;
for (const auto& mi : iters_conflicting) {
for (const CTxIn& txin : mi->GetTx().vin) {
parents_of_conflicts.insert(txin.prevout.hash);
}
}
for (unsigned int j = 0; j < tx.vin.size(); j++) {
// BIP125 Rule #2: We don't want to accept replacements that require low feerate junk to be
// mined first. Ideally we'd keep track of the ancestor feerates and make the decision
// based on that, but for now requiring all new inputs to be confirmed works.
//
// Note that if you relax this to make RBF a little more useful, this may break the
// CalculateMempoolAncestors RBF relaxation which subtracts the conflict count/size from the
// descendant limit.
if (!parents_of_conflicts.count(tx.vin[j].prevout.hash)) {
// Rather than check the UTXO set - potentially expensive - it's cheaper to just check
// if the new input refers to a tx that's in the mempool.
if (pool.exists(GenTxid::Txid(tx.vin[j].prevout.hash))) {
return strprintf("replacement %s adds unconfirmed input, idx %d",
tx.GetHash().ToString(), j);
}
}
}
return std::nullopt;
}
std::optional<std::string> EntriesAndTxidsDisjoint(const CTxMemPool::setEntries& ancestors,
const std::set<uint256>& direct_conflicts,
const uint256& txid)
{
for (CTxMemPool::txiter ancestorIt : ancestors) {
const uint256& hashAncestor = ancestorIt->GetTx().GetHash();
if (direct_conflicts.count(hashAncestor)) {
return strprintf("%s spends conflicting transaction %s",
txid.ToString(),
hashAncestor.ToString());
}
}
return std::nullopt;
}
std::optional<std::string> PaysMoreThanConflicts(const CTxMemPool::setEntries& iters_conflicting,
CFeeRate replacement_feerate,
const uint256& txid)
{
for (const auto& mi : iters_conflicting) {
// Don't allow the replacement to reduce the feerate of the mempool.
//
// We usually don't want to accept replacements with lower feerates than what they replaced
// as that would lower the feerate of the next block. Requiring that the feerate always be
// increased is also an easy-to-reason about way to prevent DoS attacks via replacements.
//
// We only consider the feerates of transactions being directly replaced, not their indirect
// descendants. While that does mean high feerate children are ignored when deciding whether
// or not to replace, we do require the replacement to pay more overall fees too, mitigating
// most cases.
CFeeRate original_feerate(mi->GetModifiedFee(), mi->GetTxSize());
if (replacement_feerate <= original_feerate) {
return strprintf("rejecting replacement %s; new feerate %s <= old feerate %s",
txid.ToString(),
replacement_feerate.ToString(),
original_feerate.ToString());
}
}
return std::nullopt;
}
std::optional<std::string> PaysForRBF(CAmount original_fees,
CAmount replacement_fees,
size_t replacement_vsize,
CFeeRate relay_fee,
const uint256& txid)
{
// BIP125 Rule #3: The replacement fees must be greater than or equal to fees of the
// transactions it replaces, otherwise the bandwidth used by those conflicting transactions
// would not be paid for.
if (replacement_fees < original_fees) {
return strprintf("rejecting replacement %s, less fees than conflicting txs; %s < %s",
txid.ToString(), FormatMoney(replacement_fees), FormatMoney(original_fees));
}
// BIP125 Rule #4: The new transaction must pay for its own bandwidth. Otherwise, we have a DoS
// vector where attackers can cause a transaction to be replaced (and relayed) repeatedly by
// increasing the fee by tiny amounts.
CAmount additional_fees = replacement_fees - original_fees;
if (additional_fees < relay_fee.GetFee(replacement_vsize)) {
return strprintf("rejecting replacement %s, not enough additional fees to relay; %s < %s",
txid.ToString(),
FormatMoney(additional_fees),
FormatMoney(relay_fee.GetFee(replacement_vsize)));
}
return std::nullopt;
}