bitcoin/src/coins.cpp
Lőrinc 204ca67bba Reduce cache lookups in CCoinsViewCache::FetchCoin
Enhanced efficiency and readability of CCoinsViewCache::FetchCoin by replacing separate find() and emplace() calls with a single try_emplace(), reducing map lookups and potential insertions.
2024-08-08 22:51:24 +02:00

390 lines
16 KiB
C++

// Copyright (c) 2012-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <coins.h>
#include <consensus/consensus.h>
#include <logging.h>
#include <random.h>
#include <util/trace.h>
bool CCoinsView::GetCoin(const COutPoint &outpoint, Coin &coin) const { return false; }
uint256 CCoinsView::GetBestBlock() const { return uint256(); }
std::vector<uint256> CCoinsView::GetHeadBlocks() const { return std::vector<uint256>(); }
bool CCoinsView::BatchWrite(CoinsViewCacheCursor& cursor, const uint256 &hashBlock) { return false; }
std::unique_ptr<CCoinsViewCursor> CCoinsView::Cursor() const { return nullptr; }
bool CCoinsView::HaveCoin(const COutPoint &outpoint) const
{
Coin coin;
return GetCoin(outpoint, coin);
}
CCoinsViewBacked::CCoinsViewBacked(CCoinsView *viewIn) : base(viewIn) { }
bool CCoinsViewBacked::GetCoin(const COutPoint &outpoint, Coin &coin) const { return base->GetCoin(outpoint, coin); }
bool CCoinsViewBacked::HaveCoin(const COutPoint &outpoint) const { return base->HaveCoin(outpoint); }
uint256 CCoinsViewBacked::GetBestBlock() const { return base->GetBestBlock(); }
std::vector<uint256> CCoinsViewBacked::GetHeadBlocks() const { return base->GetHeadBlocks(); }
void CCoinsViewBacked::SetBackend(CCoinsView &viewIn) { base = &viewIn; }
bool CCoinsViewBacked::BatchWrite(CoinsViewCacheCursor& cursor, const uint256 &hashBlock) { return base->BatchWrite(cursor, hashBlock); }
std::unique_ptr<CCoinsViewCursor> CCoinsViewBacked::Cursor() const { return base->Cursor(); }
size_t CCoinsViewBacked::EstimateSize() const { return base->EstimateSize(); }
CCoinsViewCache::CCoinsViewCache(CCoinsView* baseIn, bool deterministic) :
CCoinsViewBacked(baseIn), m_deterministic(deterministic),
cacheCoins(0, SaltedOutpointHasher(/*deterministic=*/deterministic), CCoinsMap::key_equal{}, &m_cache_coins_memory_resource)
{
m_sentinel.second.SelfRef(m_sentinel);
}
size_t CCoinsViewCache::DynamicMemoryUsage() const {
return memusage::DynamicUsage(cacheCoins) + cachedCoinsUsage;
}
CCoinsMap::iterator CCoinsViewCache::FetchCoin(const COutPoint &outpoint) const {
const auto [ret, inserted] = cacheCoins.try_emplace(outpoint);
if (inserted) {
if (!base->GetCoin(outpoint, ret->second.coin)) {
cacheCoins.erase(ret);
return cacheCoins.end();
}
if (ret->second.coin.IsSpent()) {
// The parent only has an empty entry for this outpoint; we can consider our version as fresh.
ret->second.AddFlags(CCoinsCacheEntry::FRESH, *ret, m_sentinel);
}
cachedCoinsUsage += ret->second.coin.DynamicMemoryUsage();
}
return ret;
}
bool CCoinsViewCache::GetCoin(const COutPoint &outpoint, Coin &coin) const {
CCoinsMap::const_iterator it = FetchCoin(outpoint);
if (it != cacheCoins.end()) {
coin = it->second.coin;
return !coin.IsSpent();
}
return false;
}
void CCoinsViewCache::AddCoin(const COutPoint &outpoint, Coin&& coin, bool possible_overwrite) {
assert(!coin.IsSpent());
if (coin.out.scriptPubKey.IsUnspendable()) return;
CCoinsMap::iterator it;
bool inserted;
std::tie(it, inserted) = cacheCoins.emplace(std::piecewise_construct, std::forward_as_tuple(outpoint), std::tuple<>());
bool fresh = false;
if (!inserted) {
cachedCoinsUsage -= it->second.coin.DynamicMemoryUsage();
}
if (!possible_overwrite) {
if (!it->second.coin.IsSpent()) {
throw std::logic_error("Attempted to overwrite an unspent coin (when possible_overwrite is false)");
}
// If the coin exists in this cache as a spent coin and is DIRTY, then
// its spentness hasn't been flushed to the parent cache. We're
// re-adding the coin to this cache now but we can't mark it as FRESH.
// If we mark it FRESH and then spend it before the cache is flushed
// we would remove it from this cache and would never flush spentness
// to the parent cache.
//
// Re-adding a spent coin can happen in the case of a re-org (the coin
// is 'spent' when the block adding it is disconnected and then
// re-added when it is also added in a newly connected block).
//
// If the coin doesn't exist in the current cache, or is spent but not
// DIRTY, then it can be marked FRESH.
fresh = !it->second.IsDirty();
}
it->second.coin = std::move(coin);
it->second.AddFlags(CCoinsCacheEntry::DIRTY | (fresh ? CCoinsCacheEntry::FRESH : 0), *it, m_sentinel);
cachedCoinsUsage += it->second.coin.DynamicMemoryUsage();
TRACE5(utxocache, add,
outpoint.hash.data(),
(uint32_t)outpoint.n,
(uint32_t)it->second.coin.nHeight,
(int64_t)it->second.coin.out.nValue,
(bool)it->second.coin.IsCoinBase());
}
void CCoinsViewCache::EmplaceCoinInternalDANGER(COutPoint&& outpoint, Coin&& coin) {
cachedCoinsUsage += coin.DynamicMemoryUsage();
auto [it, inserted] = cacheCoins.emplace(
std::piecewise_construct,
std::forward_as_tuple(std::move(outpoint)),
std::forward_as_tuple(std::move(coin)));
if (inserted) {
it->second.AddFlags(CCoinsCacheEntry::DIRTY, *it, m_sentinel);
}
}
void AddCoins(CCoinsViewCache& cache, const CTransaction &tx, int nHeight, bool check_for_overwrite) {
bool fCoinbase = tx.IsCoinBase();
const Txid& txid = tx.GetHash();
for (size_t i = 0; i < tx.vout.size(); ++i) {
bool overwrite = check_for_overwrite ? cache.HaveCoin(COutPoint(txid, i)) : fCoinbase;
// Coinbase transactions can always be overwritten, in order to correctly
// deal with the pre-BIP30 occurrences of duplicate coinbase transactions.
cache.AddCoin(COutPoint(txid, i), Coin(tx.vout[i], nHeight, fCoinbase), overwrite);
}
}
bool CCoinsViewCache::SpendCoin(const COutPoint &outpoint, Coin* moveout) {
CCoinsMap::iterator it = FetchCoin(outpoint);
if (it == cacheCoins.end()) return false;
cachedCoinsUsage -= it->second.coin.DynamicMemoryUsage();
TRACE5(utxocache, spent,
outpoint.hash.data(),
(uint32_t)outpoint.n,
(uint32_t)it->second.coin.nHeight,
(int64_t)it->second.coin.out.nValue,
(bool)it->second.coin.IsCoinBase());
if (moveout) {
*moveout = std::move(it->second.coin);
}
if (it->second.IsFresh()) {
cacheCoins.erase(it);
} else {
it->second.AddFlags(CCoinsCacheEntry::DIRTY, *it, m_sentinel);
it->second.coin.Clear();
}
return true;
}
static const Coin coinEmpty;
const Coin& CCoinsViewCache::AccessCoin(const COutPoint &outpoint) const {
CCoinsMap::const_iterator it = FetchCoin(outpoint);
if (it == cacheCoins.end()) {
return coinEmpty;
} else {
return it->second.coin;
}
}
bool CCoinsViewCache::HaveCoin(const COutPoint &outpoint) const {
CCoinsMap::const_iterator it = FetchCoin(outpoint);
return (it != cacheCoins.end() && !it->second.coin.IsSpent());
}
bool CCoinsViewCache::HaveCoinInCache(const COutPoint &outpoint) const {
CCoinsMap::const_iterator it = cacheCoins.find(outpoint);
return (it != cacheCoins.end() && !it->second.coin.IsSpent());
}
uint256 CCoinsViewCache::GetBestBlock() const {
if (hashBlock.IsNull())
hashBlock = base->GetBestBlock();
return hashBlock;
}
void CCoinsViewCache::SetBestBlock(const uint256 &hashBlockIn) {
hashBlock = hashBlockIn;
}
bool CCoinsViewCache::BatchWrite(CoinsViewCacheCursor& cursor, const uint256 &hashBlockIn) {
for (auto it{cursor.Begin()}; it != cursor.End(); it = cursor.NextAndMaybeErase(*it)) {
// Ignore non-dirty entries (optimization).
if (!it->second.IsDirty()) {
continue;
}
CCoinsMap::iterator itUs = cacheCoins.find(it->first);
if (itUs == cacheCoins.end()) {
// The parent cache does not have an entry, while the child cache does.
// We can ignore it if it's both spent and FRESH in the child
if (!(it->second.IsFresh() && it->second.coin.IsSpent())) {
// Create the coin in the parent cache, move the data up
// and mark it as dirty.
itUs = cacheCoins.try_emplace(it->first).first;
CCoinsCacheEntry& entry{itUs->second};
if (cursor.WillErase(*it)) {
// Since this entry will be erased,
// we can move the coin into us instead of copying it
entry.coin = std::move(it->second.coin);
} else {
entry.coin = it->second.coin;
}
cachedCoinsUsage += entry.coin.DynamicMemoryUsage();
entry.AddFlags(CCoinsCacheEntry::DIRTY, *itUs, m_sentinel);
// We can mark it FRESH in the parent if it was FRESH in the child
// Otherwise it might have just been flushed from the parent's cache
// and already exist in the grandparent
if (it->second.IsFresh()) {
entry.AddFlags(CCoinsCacheEntry::FRESH, *itUs, m_sentinel);
}
}
} else {
// Found the entry in the parent cache
if (it->second.IsFresh() && !itUs->second.coin.IsSpent()) {
// The coin was marked FRESH in the child cache, but the coin
// exists in the parent cache. If this ever happens, it means
// the FRESH flag was misapplied and there is a logic error in
// the calling code.
throw std::logic_error("FRESH flag misapplied to coin that exists in parent cache");
}
if (itUs->second.IsFresh() && it->second.coin.IsSpent()) {
// The grandparent cache does not have an entry, and the coin
// has been spent. We can just delete it from the parent cache.
cachedCoinsUsage -= itUs->second.coin.DynamicMemoryUsage();
cacheCoins.erase(itUs);
} else {
// A normal modification.
cachedCoinsUsage -= itUs->second.coin.DynamicMemoryUsage();
if (cursor.WillErase(*it)) {
// Since this entry will be erased,
// we can move the coin into us instead of copying it
itUs->second.coin = std::move(it->second.coin);
} else {
itUs->second.coin = it->second.coin;
}
cachedCoinsUsage += itUs->second.coin.DynamicMemoryUsage();
itUs->second.AddFlags(CCoinsCacheEntry::DIRTY, *itUs, m_sentinel);
// NOTE: It isn't safe to mark the coin as FRESH in the parent
// cache. If it already existed and was spent in the parent
// cache then marking it FRESH would prevent that spentness
// from being flushed to the grandparent.
}
}
}
hashBlock = hashBlockIn;
return true;
}
bool CCoinsViewCache::Flush() {
auto cursor{CoinsViewCacheCursor(cachedCoinsUsage, m_sentinel, cacheCoins, /*will_erase=*/true)};
bool fOk = base->BatchWrite(cursor, hashBlock);
if (fOk) {
cacheCoins.clear();
ReallocateCache();
}
cachedCoinsUsage = 0;
return fOk;
}
bool CCoinsViewCache::Sync()
{
auto cursor{CoinsViewCacheCursor(cachedCoinsUsage, m_sentinel, cacheCoins, /*will_erase=*/false)};
bool fOk = base->BatchWrite(cursor, hashBlock);
if (fOk) {
if (m_sentinel.second.Next() != &m_sentinel) {
/* BatchWrite must clear flags of all entries */
throw std::logic_error("Not all unspent flagged entries were cleared");
}
}
return fOk;
}
void CCoinsViewCache::Uncache(const COutPoint& hash)
{
CCoinsMap::iterator it = cacheCoins.find(hash);
if (it != cacheCoins.end() && !it->second.IsDirty() && !it->second.IsFresh()) {
cachedCoinsUsage -= it->second.coin.DynamicMemoryUsage();
TRACE5(utxocache, uncache,
hash.hash.data(),
(uint32_t)hash.n,
(uint32_t)it->second.coin.nHeight,
(int64_t)it->second.coin.out.nValue,
(bool)it->second.coin.IsCoinBase());
cacheCoins.erase(it);
}
}
unsigned int CCoinsViewCache::GetCacheSize() const {
return cacheCoins.size();
}
bool CCoinsViewCache::HaveInputs(const CTransaction& tx) const
{
if (!tx.IsCoinBase()) {
for (unsigned int i = 0; i < tx.vin.size(); i++) {
if (!HaveCoin(tx.vin[i].prevout)) {
return false;
}
}
}
return true;
}
void CCoinsViewCache::ReallocateCache()
{
// Cache should be empty when we're calling this.
assert(cacheCoins.size() == 0);
cacheCoins.~CCoinsMap();
m_cache_coins_memory_resource.~CCoinsMapMemoryResource();
::new (&m_cache_coins_memory_resource) CCoinsMapMemoryResource{};
::new (&cacheCoins) CCoinsMap{0, SaltedOutpointHasher{/*deterministic=*/m_deterministic}, CCoinsMap::key_equal{}, &m_cache_coins_memory_resource};
}
void CCoinsViewCache::SanityCheck() const
{
size_t recomputed_usage = 0;
size_t count_flagged = 0;
for (const auto& [_, entry] : cacheCoins) {
unsigned attr = 0;
if (entry.IsDirty()) attr |= 1;
if (entry.IsFresh()) attr |= 2;
if (entry.coin.IsSpent()) attr |= 4;
// Only 5 combinations are possible.
assert(attr != 2 && attr != 4 && attr != 7);
// Recompute cachedCoinsUsage.
recomputed_usage += entry.coin.DynamicMemoryUsage();
// Count the number of entries we expect in the linked list.
if (entry.IsDirty() || entry.IsFresh()) ++count_flagged;
}
// Iterate over the linked list of flagged entries.
size_t count_linked = 0;
for (auto it = m_sentinel.second.Next(); it != &m_sentinel; it = it->second.Next()) {
// Verify linked list integrity.
assert(it->second.Next()->second.Prev() == it);
assert(it->second.Prev()->second.Next() == it);
// Verify they are actually flagged.
assert(it->second.IsDirty() || it->second.IsFresh());
// Count the number of entries actually in the list.
++count_linked;
}
assert(count_linked == count_flagged);
assert(recomputed_usage == cachedCoinsUsage);
}
static const size_t MIN_TRANSACTION_OUTPUT_WEIGHT = WITNESS_SCALE_FACTOR * ::GetSerializeSize(CTxOut());
static const size_t MAX_OUTPUTS_PER_BLOCK = MAX_BLOCK_WEIGHT / MIN_TRANSACTION_OUTPUT_WEIGHT;
const Coin& AccessByTxid(const CCoinsViewCache& view, const Txid& txid)
{
COutPoint iter(txid, 0);
while (iter.n < MAX_OUTPUTS_PER_BLOCK) {
const Coin& alternate = view.AccessCoin(iter);
if (!alternate.IsSpent()) return alternate;
++iter.n;
}
return coinEmpty;
}
template <typename Func>
static bool ExecuteBackedWrapper(Func func, const std::vector<std::function<void()>>& err_callbacks)
{
try {
return func();
} catch(const std::runtime_error& e) {
for (const auto& f : err_callbacks) {
f();
}
LogError("Error reading from database: %s\n", e.what());
// Starting the shutdown sequence and returning false to the caller would be
// interpreted as 'entry not found' (as opposed to unable to read data), and
// could lead to invalid interpretation. Just exit immediately, as we can't
// continue anyway, and all writes should be atomic.
std::abort();
}
}
bool CCoinsViewErrorCatcher::GetCoin(const COutPoint &outpoint, Coin &coin) const {
return ExecuteBackedWrapper([&]() { return CCoinsViewBacked::GetCoin(outpoint, coin); }, m_err_callbacks);
}
bool CCoinsViewErrorCatcher::HaveCoin(const COutPoint &outpoint) const {
return ExecuteBackedWrapper([&]() { return CCoinsViewBacked::HaveCoin(outpoint); }, m_err_callbacks);
}