bitcoin/src/hash.h
2023-11-16 11:36:22 +10:00

229 lines
5.8 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_HASH_H
#define BITCOIN_HASH_H
#include <attributes.h>
#include <crypto/common.h>
#include <crypto/ripemd160.h>
#include <crypto/sha256.h>
#include <prevector.h>
#include <serialize.h>
#include <span.h>
#include <uint256.h>
#include <string>
#include <vector>
typedef uint256 ChainCode;
/** A hasher class for Bitcoin's 256-bit hash (double SHA-256). */
class CHash256 {
private:
CSHA256 sha;
public:
static const size_t OUTPUT_SIZE = CSHA256::OUTPUT_SIZE;
void Finalize(Span<unsigned char> output) {
assert(output.size() == OUTPUT_SIZE);
unsigned char buf[CSHA256::OUTPUT_SIZE];
sha.Finalize(buf);
sha.Reset().Write(buf, CSHA256::OUTPUT_SIZE).Finalize(output.data());
}
CHash256& Write(Span<const unsigned char> input) {
sha.Write(input.data(), input.size());
return *this;
}
CHash256& Reset() {
sha.Reset();
return *this;
}
};
/** A hasher class for Bitcoin's 160-bit hash (SHA-256 + RIPEMD-160). */
class CHash160 {
private:
CSHA256 sha;
public:
static const size_t OUTPUT_SIZE = CRIPEMD160::OUTPUT_SIZE;
void Finalize(Span<unsigned char> output) {
assert(output.size() == OUTPUT_SIZE);
unsigned char buf[CSHA256::OUTPUT_SIZE];
sha.Finalize(buf);
CRIPEMD160().Write(buf, CSHA256::OUTPUT_SIZE).Finalize(output.data());
}
CHash160& Write(Span<const unsigned char> input) {
sha.Write(input.data(), input.size());
return *this;
}
CHash160& Reset() {
sha.Reset();
return *this;
}
};
/** Compute the 256-bit hash of an object. */
template<typename T>
inline uint256 Hash(const T& in1)
{
uint256 result;
CHash256().Write(MakeUCharSpan(in1)).Finalize(result);
return result;
}
/** Compute the 256-bit hash of the concatenation of two objects. */
template<typename T1, typename T2>
inline uint256 Hash(const T1& in1, const T2& in2) {
uint256 result;
CHash256().Write(MakeUCharSpan(in1)).Write(MakeUCharSpan(in2)).Finalize(result);
return result;
}
/** Compute the 160-bit hash an object. */
template<typename T1>
inline uint160 Hash160(const T1& in1)
{
uint160 result;
CHash160().Write(MakeUCharSpan(in1)).Finalize(result);
return result;
}
/** A writer stream (for serialization) that computes a 256-bit hash. */
class HashWriter
{
private:
CSHA256 ctx;
public:
void write(Span<const std::byte> src)
{
ctx.Write(UCharCast(src.data()), src.size());
}
/** Compute the double-SHA256 hash of all data written to this object.
*
* Invalidates this object.
*/
uint256 GetHash() {
uint256 result;
ctx.Finalize(result.begin());
ctx.Reset().Write(result.begin(), CSHA256::OUTPUT_SIZE).Finalize(result.begin());
return result;
}
/** Compute the SHA256 hash of all data written to this object.
*
* Invalidates this object.
*/
uint256 GetSHA256() {
uint256 result;
ctx.Finalize(result.begin());
return result;
}
/**
* Returns the first 64 bits from the resulting hash.
*/
inline uint64_t GetCheapHash() {
uint256 result = GetHash();
return ReadLE64(result.begin());
}
template <typename T>
HashWriter& operator<<(const T& obj)
{
::Serialize(*this, obj);
return *this;
}
};
/** Reads data from an underlying stream, while hashing the read data. */
template <typename Source>
class HashVerifier : public HashWriter
{
private:
Source& m_source;
public:
explicit HashVerifier(Source& source LIFETIMEBOUND) : m_source{source} {}
void read(Span<std::byte> dst)
{
m_source.read(dst);
this->write(dst);
}
void ignore(size_t num_bytes)
{
std::byte data[1024];
while (num_bytes > 0) {
size_t now = std::min<size_t>(num_bytes, 1024);
read({data, now});
num_bytes -= now;
}
}
template <typename T>
HashVerifier<Source>& operator>>(T&& obj)
{
::Unserialize(*this, obj);
return *this;
}
};
/** Writes data to an underlying source stream, while hashing the written data. */
template <typename Source>
class HashedSourceWriter : public HashWriter
{
private:
Source& m_source;
public:
explicit HashedSourceWriter(Source& source LIFETIMEBOUND) : HashWriter{}, m_source{source} {}
void write(Span<const std::byte> src)
{
m_source.write(src);
HashWriter::write(src);
}
template <typename T>
HashedSourceWriter& operator<<(const T& obj)
{
::Serialize(*this, obj);
return *this;
}
};
/** Single-SHA256 a 32-byte input (represented as uint256). */
[[nodiscard]] uint256 SHA256Uint256(const uint256& input);
unsigned int MurmurHash3(unsigned int nHashSeed, Span<const unsigned char> vDataToHash);
void BIP32Hash(const ChainCode &chainCode, unsigned int nChild, unsigned char header, const unsigned char data[32], unsigned char output[64]);
/** Return a HashWriter primed for tagged hashes (as specified in BIP 340).
*
* The returned object will have SHA256(tag) written to it twice (= 64 bytes).
* A tagged hash can be computed by feeding the message into this object, and
* then calling HashWriter::GetSHA256().
*/
HashWriter TaggedHash(const std::string& tag);
/** Compute the 160-bit RIPEMD-160 hash of an array. */
inline uint160 RIPEMD160(Span<const unsigned char> data)
{
uint160 result;
CRIPEMD160().Write(data.data(), data.size()).Finalize(result.begin());
return result;
}
#endif // BITCOIN_HASH_H