bitcoin/src/txgraph.cpp
Pieter Wuille ee57e93099 txgraph: Add internal sanity check function (tests)
To make testing more powerful, expose a function to perform an internal sanity
check on the state of a TxGraph. This is especially important as TxGraphImpl
contains many redundantly represented pieces of information:

* graph contains clusters, which refer to entries, but the entries refer back
* graph maintains pointers to Ref objects, which point back to the graph.

This lets us make sure they are always in sync.
2025-03-24 09:49:49 -04:00

1261 lines
54 KiB
C++

// Copyright (c) The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <txgraph.h>
#include <cluster_linearize.h>
#include <random.h>
#include <util/bitset.h>
#include <util/check.h>
#include <util/feefrac.h>
#include <compare>
#include <memory>
#include <set>
#include <span>
#include <utility>
namespace {
using namespace cluster_linearize;
// Forward declare the TxGraph implementation class.
class TxGraphImpl;
/** Position of a DepGraphIndex within a Cluster::m_linearization. */
using LinearizationIndex = uint32_t;
/** Position of a Cluster within Graph::m_clusters. */
using ClusterSetIndex = uint32_t;
/** Quality levels for cached cluster linearizations. */
enum class QualityLevel
{
/** This cluster may have multiple disconnected components, which are all NEEDS_RELINEARIZE. */
NEEDS_SPLIT,
/** This cluster has undergone changes that warrant re-linearization. */
NEEDS_RELINEARIZE,
/** The minimal level of linearization has been performed, but it is not known to be optimal. */
ACCEPTABLE,
/** The linearization is known to be optimal. */
OPTIMAL,
/** This cluster is not registered in any m_clusters.
* This must be the last entry in QualityLevel as m_clusters is sized using it. */
NONE,
};
/** A grouping of connected transactions inside a TxGraphImpl. */
class Cluster
{
friend class TxGraphImpl;
using GraphIndex = TxGraph::GraphIndex;
using SetType = BitSet<CLUSTER_COUNT_LIMIT>;
/** The DepGraph for this cluster, holding all feerates, and ancestors/descendants. */
DepGraph<SetType> m_depgraph;
/** m_mapping[i] gives the GraphIndex for the position i transaction in m_depgraph. Values for
* positions i that do not exist in m_depgraph shouldn't ever be accessed and thus don't
* matter. m_mapping.size() equals m_depgraph.PositionRange(). */
std::vector<GraphIndex> m_mapping;
/** The current linearization of the cluster. m_linearization.size() equals
* m_depgraph.TxCount(). This is always kept topological. */
std::vector<DepGraphIndex> m_linearization;
/** The quality level of m_linearization. */
QualityLevel m_quality{QualityLevel::NONE};
/** Which position this Cluster has in Graph::m_clusters[m_quality]. */
ClusterSetIndex m_setindex{ClusterSetIndex(-1)};
public:
/** Construct an empty Cluster. */
Cluster() noexcept = default;
/** Construct a singleton Cluster. */
explicit Cluster(TxGraphImpl& graph, const FeePerWeight& feerate, GraphIndex graph_index) noexcept;
// Cannot move or copy (would invalidate Cluster* in Locator and TxGraphImpl). */
Cluster(const Cluster&) = delete;
Cluster& operator=(const Cluster&) = delete;
Cluster(Cluster&&) = delete;
Cluster& operator=(Cluster&&) = delete;
// Generic helper functions.
/** Whether the linearization of this Cluster can be exposed. */
bool IsAcceptable() const noexcept
{
return m_quality == QualityLevel::ACCEPTABLE || m_quality == QualityLevel::OPTIMAL;
}
/** Whether the linearization of this Cluster is optimal. */
bool IsOptimal() const noexcept
{
return m_quality == QualityLevel::OPTIMAL;
}
/** Whether this cluster requires splitting. */
bool NeedsSplitting() const noexcept
{
return m_quality == QualityLevel::NEEDS_SPLIT;
}
/** Get the number of transactions in this Cluster. */
LinearizationIndex GetTxCount() const noexcept { return m_linearization.size(); }
/** Given a DepGraphIndex into this Cluster, find the corresponding GraphIndex. */
GraphIndex GetClusterEntry(DepGraphIndex index) const noexcept { return m_mapping[index]; }
/** Only called by Graph::SwapIndexes. */
void UpdateMapping(DepGraphIndex cluster_idx, GraphIndex graph_idx) noexcept { m_mapping[cluster_idx] = graph_idx; }
/** Push changes to Cluster and its linearization to the TxGraphImpl Entry objects. */
void Updated(TxGraphImpl& graph) noexcept;
// Functions that implement the Cluster-specific side of internal TxGraphImpl mutations.
/** Apply all removals from the front of to_remove that apply to this Cluster, popping them
* off. These must be at least one such entry. */
void ApplyRemovals(TxGraphImpl& graph, std::span<GraphIndex>& to_remove) noexcept;
/** Split this cluster (must have a NEEDS_SPLIT* quality). Returns whether to delete this
* Cluster afterwards. */
[[nodiscard]] bool Split(TxGraphImpl& graph) noexcept;
/** Move all transactions from cluster to *this (as separate components). */
void Merge(TxGraphImpl& graph, Cluster& cluster) noexcept;
/** Given a span of (parent, child) pairs that all belong to this Cluster, apply them. */
void ApplyDependencies(TxGraphImpl& graph, std::span<std::pair<GraphIndex, GraphIndex>> to_apply) noexcept;
/** Improve the linearization of this Cluster. */
void Relinearize(TxGraphImpl& graph, uint64_t max_iters) noexcept;
// Functions that implement the Cluster-specific side of public TxGraph functions.
/** Get a vector of Refs for the ancestors of a given Cluster element. */
std::vector<TxGraph::Ref*> GetAncestorRefs(const TxGraphImpl& graph, DepGraphIndex idx) noexcept;
/** Get a vector of Refs for the descendants of a given Cluster element. */
std::vector<TxGraph::Ref*> GetDescendantRefs(const TxGraphImpl& graph, DepGraphIndex idx) noexcept;
/** Get a vector of Refs for all elements of this Cluster, in linearization order. */
std::vector<TxGraph::Ref*> GetClusterRefs(const TxGraphImpl& graph) noexcept;
/** Get the individual transaction feerate of a Cluster element. */
FeePerWeight GetIndividualFeerate(DepGraphIndex idx) noexcept;
/** Modify the fee of a Cluster element. */
void SetFee(TxGraphImpl& graph, DepGraphIndex idx, int64_t fee) noexcept;
// Debugging functions.
void SanityCheck(const TxGraphImpl& graph) const;
};
/** The transaction graph.
*
* The overall design of the data structure consists of 3 interlinked representations:
* - The transactions (held as a vector of TxGraphImpl::Entry inside TxGraphImpl).
* - The clusters (Cluster objects in per-quality vectors inside TxGraphImpl).
* - The Refs (TxGraph::Ref objects, held externally by users of the TxGraph class)
*
* Clusters and Refs contain the index of the Entry objects they refer to, and the Entry objects
* refer back to the Clusters and Refs the corresponding transaction is contained in.
*
* While redundant, this permits moving all of them independently, without invalidating things
* or costly iteration to fix up everything:
* - Entry objects can be moved to fill holes left by removed transactions in the Entry vector
* (see TxGraphImpl::Compact).
* - Clusters can be rewritten continuously (removals can cause them to split, new dependencies
* can cause them to be merged).
* - Ref objects can be held outside the class, while permitting them to be moved around, and
* inherited from.
*/
class TxGraphImpl final : public TxGraph
{
friend class Cluster;
private:
/** Internal RNG. */
FastRandomContext m_rng;
/** Information about one group of Clusters to be merged. */
struct GroupEntry
{
/** Which clusters are to be merged. */
std::vector<Cluster*> m_clusters;
/** Which dependencies are to be applied to those merged clusters, as (parent, child)
* pairs. */
std::vector<std::pair<GraphIndex, GraphIndex>> m_deps;
};
/** The vectors of clusters, one vector per quality level. ClusterSetIndex indexes into each. */
std::array<std::vector<std::unique_ptr<Cluster>>, int(QualityLevel::NONE)> m_clusters;
/** Which removals have yet to be applied. */
std::vector<GraphIndex> m_to_remove;
/** Which dependencies are to be added ((parent,child) pairs). GroupData::m_deps_offset indexes
* into this. */
std::vector<std::pair<GraphIndex, GraphIndex>> m_deps_to_add;
/** Information about the merges to be performed, if known. */
std::optional<std::vector<GroupEntry>> m_group_data = std::vector<GroupEntry>{};
/** Total number of transactions in this graph (sum of all transaction counts in all Clusters).
* */
GraphIndex m_txcount{0};
/** A Locator that describes whether, where, and in which Cluster an Entry appears. */
struct Locator
{
/** Which Cluster the Entry appears in (nullptr = missing). */
Cluster* cluster{nullptr};
/** Where in the Cluster it appears (only if cluster != nullptr). */
DepGraphIndex index{0};
/** Mark this Locator as missing. */
void SetMissing() noexcept { cluster = nullptr; index = 0; }
/** Mark this Locator as present, in the specified Cluster. */
void SetPresent(Cluster* c, DepGraphIndex i) noexcept { cluster = c; index = i; }
/** Check if this Locator is missing. */
bool IsMissing() const noexcept { return cluster == nullptr && index == 0; }
/** Check if this Locator is present (in some Cluster). */
bool IsPresent() const noexcept { return cluster != nullptr; }
};
/** Internal information about each transaction in a TxGraphImpl. */
struct Entry
{
/** Pointer to the corresponding Ref object if any, or nullptr if unlinked. */
Ref* m_ref{nullptr};
/** Which Cluster and position therein this Entry appears in. */
Locator m_locator;
};
/** The set of all transactions. GraphIndex values index into this. */
std::vector<Entry> m_entries;
/** Set of Entries which have no linked Ref anymore. */
std::vector<GraphIndex> m_unlinked;
public:
/** Construct a new TxGraphImpl. */
explicit TxGraphImpl() noexcept {}
// Cannot move or copy (would invalidate TxGraphImpl* in Ref, MiningOrder, EvictionOrder).
TxGraphImpl(const TxGraphImpl&) = delete;
TxGraphImpl& operator=(const TxGraphImpl&) = delete;
TxGraphImpl(TxGraphImpl&&) = delete;
TxGraphImpl& operator=(TxGraphImpl&&) = delete;
// Simple helper functions.
/** Swap the Entrys referred to by a and b. */
void SwapIndexes(GraphIndex a, GraphIndex b) noexcept;
/** Extract a Cluster. */
std::unique_ptr<Cluster> ExtractCluster(QualityLevel quality, ClusterSetIndex setindex) noexcept;
/** Delete a Cluster. */
void DeleteCluster(Cluster& cluster) noexcept;
/** Insert a Cluster. */
ClusterSetIndex InsertCluster(std::unique_ptr<Cluster>&& cluster, QualityLevel quality) noexcept;
/** Change the QualityLevel of a Cluster (identified by old_quality and old_index). */
void SetClusterQuality(QualityLevel old_quality, ClusterSetIndex old_index, QualityLevel new_quality) noexcept;
// Functions for handling Refs.
/** Only called by Ref's move constructor/assignment to update Ref locations. */
void UpdateRef(GraphIndex idx, Ref& new_location) noexcept final
{
auto& entry = m_entries[idx];
Assume(entry.m_ref != nullptr);
entry.m_ref = &new_location;
}
/** Only called by Ref::~Ref to unlink Refs, and Ref's move assignment. */
void UnlinkRef(GraphIndex idx) noexcept final
{
auto& entry = m_entries[idx];
Assume(entry.m_ref != nullptr);
entry.m_ref = nullptr;
m_unlinked.push_back(idx);
Compact();
}
// Functions related to various normalization/application steps.
/** Get rid of unlinked Entry objects in m_entries, if possible (this changes the GraphIndex
* values for remaining Entrys, so this only does something when no to-be-applied operations
* referring to GraphIndexes remain). */
void Compact() noexcept;
/** Apply all removals queued up in m_to_remove to the relevant Clusters (which get a
* NEEDS_SPLIT* QualityLevel). */
void ApplyRemovals() noexcept;
/** Split an individual cluster. */
void Split(Cluster& cluster) noexcept;
/** Split all clusters that need splitting. */
void SplitAll() noexcept;
/** Populate m_group_data based on m_deps_to_add. */
void GroupClusters() noexcept;
/** Merge the specified clusters. */
void Merge(std::span<Cluster*> to_merge) noexcept;
/** Apply all m_deps_to_add to the relevant Clusters. */
void ApplyDependencies() noexcept;
/** Make a specified Cluster have quality ACCEPTABLE or OPTIMAL. */
void MakeAcceptable(Cluster& cluster) noexcept;
// Implementations for the public TxGraph interface.
Ref AddTransaction(const FeePerWeight& feerate) noexcept final;
void RemoveTransaction(const Ref& arg) noexcept final;
void AddDependency(const Ref& parent, const Ref& child) noexcept final;
void SetTransactionFee(const Ref&, int64_t fee) noexcept final;
bool Exists(const Ref& arg) noexcept final;
FeePerWeight GetIndividualFeerate(const Ref& arg) noexcept final;
std::vector<Ref*> GetCluster(const Ref& arg) noexcept final;
std::vector<Ref*> GetAncestors(const Ref& arg) noexcept final;
std::vector<Ref*> GetDescendants(const Ref& arg) noexcept final;
GraphIndex GetTransactionCount() noexcept final;
void SanityCheck() const final;
};
void Cluster::Updated(TxGraphImpl& graph) noexcept
{
// Update all the Locators for this Cluster's Entrys.
for (DepGraphIndex idx : m_linearization) {
auto& entry = graph.m_entries[m_mapping[idx]];
entry.m_locator.SetPresent(this, idx);
}
}
void Cluster::ApplyRemovals(TxGraphImpl& graph, std::span<GraphIndex>& to_remove) noexcept
{
// Iterate over the prefix of to_remove that applies to this cluster.
Assume(!to_remove.empty());
SetType todo;
do {
GraphIndex idx = to_remove.front();
Assume(idx < graph.m_entries.size());
auto& entry = graph.m_entries[idx];
auto& locator = entry.m_locator;
// Stop once we hit an entry that applies to another Cluster.
if (locator.cluster != this) break;
// - Remember it in a set of to-remove DepGraphIndexes.
todo.Set(locator.index);
// - Remove from m_mapping. This isn't strictly necessary as unused positions in m_mapping
// are just never accessed, but set it to -1 here to increase the ability to detect a bug
// that causes it to be accessed regardless.
m_mapping[locator.index] = GraphIndex(-1);
// - Mark it as removed in the Entry's locator.
locator.SetMissing();
to_remove = to_remove.subspan(1);
--graph.m_txcount;
} while(!to_remove.empty());
Assume(todo.Any());
// Wipe from the Cluster's DepGraph (this is O(n) regardless of the number of entries
// removed, so we benefit from batching all the removals).
m_depgraph.RemoveTransactions(todo);
m_mapping.resize(m_depgraph.PositionRange());
// Filter removals out of m_linearization.
m_linearization.erase(std::remove_if(
m_linearization.begin(),
m_linearization.end(),
[&](auto pos) { return todo[pos]; }), m_linearization.end());
graph.SetClusterQuality(m_quality, m_setindex, QualityLevel::NEEDS_SPLIT);
Updated(graph);
}
bool Cluster::Split(TxGraphImpl& graph) noexcept
{
// This function can only be called when the Cluster needs splitting.
Assume(NeedsSplitting());
/** Which positions are still left in this Cluster. */
auto todo = m_depgraph.Positions();
/** Mapping from transaction positions in this Cluster to the Cluster where it ends up, and
* its position therein. */
std::vector<std::pair<Cluster*, DepGraphIndex>> remap(m_depgraph.PositionRange());
std::vector<Cluster*> new_clusters;
bool first{true};
// Iterate over the connected components of this Cluster's m_depgraph.
while (todo.Any()) {
auto component = m_depgraph.FindConnectedComponent(todo);
if (first && component == todo) {
// The existing Cluster is an entire component. Leave it be, but update its quality.
Assume(todo == m_depgraph.Positions());
graph.SetClusterQuality(m_quality, m_setindex, QualityLevel::NEEDS_RELINEARIZE);
// We need to recompute and cache its chunking.
Updated(graph);
return false;
}
first = false;
// Construct a new Cluster to hold the found component.
auto new_cluster = std::make_unique<Cluster>();
new_clusters.push_back(new_cluster.get());
// Remember that all the component's transactions go to this new Cluster. The positions
// will be determined below, so use -1 for now.
for (auto i : component) {
remap[i] = {new_cluster.get(), DepGraphIndex(-1)};
}
graph.InsertCluster(std::move(new_cluster), QualityLevel::NEEDS_RELINEARIZE);
todo -= component;
}
// Redistribute the transactions.
for (auto i : m_linearization) {
/** The cluster which transaction originally in position i is moved to. */
Cluster* new_cluster = remap[i].first;
// Copy the transaction to the new cluster's depgraph, and remember the position.
remap[i].second = new_cluster->m_depgraph.AddTransaction(m_depgraph.FeeRate(i));
// Create new mapping entry.
new_cluster->m_mapping.push_back(m_mapping[i]);
// Create a new linearization entry. As we're only appending transactions, they equal the
// DepGraphIndex.
new_cluster->m_linearization.push_back(remap[i].second);
}
// Redistribute the dependencies.
for (auto i : m_linearization) {
/** The cluster transaction in position i is moved to. */
Cluster* new_cluster = remap[i].first;
// Copy its parents, translating positions.
SetType new_parents;
for (auto par : m_depgraph.GetReducedParents(i)) new_parents.Set(remap[par].second);
new_cluster->m_depgraph.AddDependencies(new_parents, remap[i].second);
}
// Update all the Locators of moved transactions.
for (Cluster* new_cluster : new_clusters) {
new_cluster->Updated(graph);
}
// Wipe this Cluster, and return that it needs to be deleted.
m_depgraph = DepGraph<SetType>{};
m_mapping.clear();
m_linearization.clear();
return true;
}
void Cluster::Merge(TxGraphImpl& graph, Cluster& other) noexcept
{
/** Vector to store the positions in this Cluster for each position in other. */
std::vector<DepGraphIndex> remap(other.m_depgraph.PositionRange());
// Iterate over all transactions in the other Cluster (the one being absorbed).
for (auto pos : other.m_linearization) {
auto idx = other.m_mapping[pos];
// Copy the transaction into this Cluster, and remember its position.
auto new_pos = m_depgraph.AddTransaction(other.m_depgraph.FeeRate(pos));
remap[pos] = new_pos;
if (new_pos == m_mapping.size()) {
m_mapping.push_back(idx);
} else {
m_mapping[new_pos] = idx;
}
m_linearization.push_back(new_pos);
// Copy the transaction's dependencies, translating them using remap. Note that since
// pos iterates over other.m_linearization, which is in topological order, all parents
// of pos should already be in remap.
SetType parents;
for (auto par : other.m_depgraph.GetReducedParents(pos)) {
parents.Set(remap[par]);
}
m_depgraph.AddDependencies(parents, remap[pos]);
// Update the transaction's Locator. There is no need to call Updated() to update chunk
// feerates, as Updated() will be invoked by Cluster::ApplyDependencies on the resulting
// merged Cluster later anyway).
graph.m_entries[idx].m_locator.SetPresent(this, new_pos);
}
// Purge the other Cluster, now that everything has been moved.
other.m_depgraph = DepGraph<SetType>{};
other.m_linearization.clear();
other.m_mapping.clear();
}
void Cluster::ApplyDependencies(TxGraphImpl& graph, std::span<std::pair<GraphIndex, GraphIndex>> to_apply) noexcept
{
// This function is invoked by TxGraphImpl::ApplyDependencies after merging groups of Clusters
// between which dependencies are added, which simply concatenates their linearizations. Invoke
// PostLinearize, which has the effect that the linearization becomes a merge-sort of the
// constituent linearizations. Do this here rather than in Cluster::Merge, because this
// function is only invoked once per merged Cluster, rather than once per constituent one.
// This concatenation + post-linearization could be replaced with an explicit merge-sort.
PostLinearize(m_depgraph, m_linearization);
// Sort the list of dependencies to apply by child, so those can be applied in batch.
std::sort(to_apply.begin(), to_apply.end(), [](auto& a, auto& b) { return a.second < b.second; });
// Iterate over groups of to-be-added dependencies with the same child.
auto it = to_apply.begin();
while (it != to_apply.end()) {
auto& first_child = graph.m_entries[it->second].m_locator;
const auto child_idx = first_child.index;
// Iterate over all to-be-added dependencies within that same child, gather the relevant
// parents.
SetType parents;
while (it != to_apply.end()) {
auto& child = graph.m_entries[it->second].m_locator;
auto& parent = graph.m_entries[it->first].m_locator;
Assume(child.cluster == this && parent.cluster == this);
if (child.index != child_idx) break;
parents.Set(parent.index);
++it;
}
// Push all dependencies to the underlying DepGraph. Note that this is O(N) in the size of
// the cluster, regardless of the number of parents being added, so batching them together
// has a performance benefit.
m_depgraph.AddDependencies(parents, child_idx);
}
// Finally fix the linearization, as the new dependencies may have invalidated the
// linearization, and post-linearize it to fix up the worst problems with it.
FixLinearization(m_depgraph, m_linearization);
PostLinearize(m_depgraph, m_linearization);
// Finally push the changes to graph.m_entries.
Updated(graph);
}
std::unique_ptr<Cluster> TxGraphImpl::ExtractCluster(QualityLevel quality, ClusterSetIndex setindex) noexcept
{
Assume(quality != QualityLevel::NONE);
auto& quality_clusters = m_clusters[int(quality)];
Assume(setindex < quality_clusters.size());
// Extract the Cluster-owning unique_ptr.
std::unique_ptr<Cluster> ret = std::move(quality_clusters[setindex]);
ret->m_quality = QualityLevel::NONE;
ret->m_setindex = ClusterSetIndex(-1);
// Clean up space in quality_cluster.
auto max_setindex = quality_clusters.size() - 1;
if (setindex != max_setindex) {
// If the cluster was not the last element of quality_clusters, move that to take its place.
quality_clusters.back()->m_setindex = setindex;
quality_clusters[setindex] = std::move(quality_clusters.back());
}
// The last element of quality_clusters is now unused; drop it.
quality_clusters.pop_back();
return ret;
}
ClusterSetIndex TxGraphImpl::InsertCluster(std::unique_ptr<Cluster>&& cluster, QualityLevel quality) noexcept
{
// Cannot insert with quality level NONE (as that would mean not inserted).
Assume(quality != QualityLevel::NONE);
// The passed-in Cluster must not currently be in the TxGraphImpl.
Assume(cluster->m_quality == QualityLevel::NONE);
// Append it at the end of the relevant TxGraphImpl::m_cluster.
auto& quality_clusters = m_clusters[int(quality)];
ClusterSetIndex ret = quality_clusters.size();
cluster->m_quality = quality;
cluster->m_setindex = ret;
quality_clusters.push_back(std::move(cluster));
return ret;
}
void TxGraphImpl::SetClusterQuality(QualityLevel old_quality, ClusterSetIndex old_index, QualityLevel new_quality) noexcept
{
Assume(new_quality != QualityLevel::NONE);
// Don't do anything if the quality did not change.
if (old_quality == new_quality) return;
// Extract the cluster from where it currently resides.
auto cluster_ptr = ExtractCluster(old_quality, old_index);
// And re-insert it where it belongs.
InsertCluster(std::move(cluster_ptr), new_quality);
}
void TxGraphImpl::DeleteCluster(Cluster& cluster) noexcept
{
// Extract the cluster from where it currently resides.
auto cluster_ptr = ExtractCluster(cluster.m_quality, cluster.m_setindex);
// And throw it away.
cluster_ptr.reset();
}
void TxGraphImpl::ApplyRemovals() noexcept
{
auto& to_remove = m_to_remove;
// Skip if there is nothing to remove.
if (to_remove.empty()) return;
// Group the set of to-be-removed entries by Cluster*.
std::sort(m_to_remove.begin(), m_to_remove.end(), [&](GraphIndex a, GraphIndex b) noexcept {
return std::less{}(m_entries[a].m_locator.cluster, m_entries[b].m_locator.cluster);
});
// Process per Cluster.
std::span to_remove_span{m_to_remove};
while (!to_remove_span.empty()) {
Cluster* cluster = m_entries[to_remove_span.front()].m_locator.cluster;
if (cluster != nullptr) {
// If the first to_remove_span entry's Cluster exists, hand to_remove_span to it, so it
// can pop off whatever applies to it.
cluster->ApplyRemovals(*this, to_remove_span);
} else {
// Otherwise, skip this already-removed entry. This may happen when RemoveTransaction
// was called twice on the same Ref.
to_remove_span = to_remove_span.subspan(1);
}
}
m_to_remove.clear();
Compact();
}
void TxGraphImpl::SwapIndexes(GraphIndex a, GraphIndex b) noexcept
{
Assume(a < m_entries.size());
Assume(b < m_entries.size());
// Swap the Entry objects.
std::swap(m_entries[a], m_entries[b]);
// Iterate over both objects.
for (int i = 0; i < 2; ++i) {
GraphIndex idx = i ? b : a;
Entry& entry = m_entries[idx];
// Update linked Ref.
if (entry.m_ref) GetRefIndex(*entry.m_ref) = idx;
// Update the locator. The rest of the Entry information will not change, so no need to
// invoke Cluster::Updated().
Locator& locator = entry.m_locator;
if (locator.IsPresent()) {
locator.cluster->UpdateMapping(locator.index, idx);
}
}
}
void TxGraphImpl::Compact() noexcept
{
// We cannot compact while any to-be-applied operations remain, as we'd need to rewrite them.
// It is easier to delay the compaction until they have been applied.
if (!m_deps_to_add.empty()) return;
if (!m_to_remove.empty()) return;
// Sort the GraphIndexes that need to be cleaned up. They are sorted in reverse, so the last
// ones get processed first. This means earlier-processed GraphIndexes will not cause moving of
// later-processed ones during the "swap with end of m_entries" step below (which might
// invalidate them).
std::sort(m_unlinked.begin(), m_unlinked.end(), std::greater{});
auto last = GraphIndex(-1);
for (GraphIndex idx : m_unlinked) {
// m_unlinked should never contain the same GraphIndex twice (the code below would fail
// if so, because GraphIndexes get invalidated by removing them).
Assume(idx != last);
last = idx;
// Make sure the entry is unlinked.
Entry& entry = m_entries[idx];
Assume(entry.m_ref == nullptr);
// Make sure the entry does not occur in the graph.
Assume(!entry.m_locator.IsPresent());
// Move the entry to the end.
if (idx != m_entries.size() - 1) SwapIndexes(idx, m_entries.size() - 1);
// Drop the entry for idx, now that it is at the end.
m_entries.pop_back();
}
m_unlinked.clear();
}
void TxGraphImpl::Split(Cluster& cluster) noexcept
{
// To split a Cluster, first make sure all removals are applied (as we might need to split
// again afterwards otherwise).
ApplyRemovals();
bool del = cluster.Split(*this);
if (del) {
// Cluster::Split reports whether the Cluster is to be deleted.
DeleteCluster(cluster);
}
}
void TxGraphImpl::SplitAll() noexcept
{
// Before splitting all Cluster, first make sure all removals are applied.
ApplyRemovals();
auto& queue = m_clusters[int(QualityLevel::NEEDS_SPLIT)];
while (!queue.empty()) {
Split(*queue.back().get());
}
}
void TxGraphImpl::GroupClusters() noexcept
{
// If the groupings have been computed already, nothing is left to be done.
if (m_group_data.has_value()) return;
// Before computing which Clusters need to be merged together, first apply all removals and
// split the Clusters into connected components. If we would group first, we might end up
// with inefficient Clusters which just end up being split again anyway.
SplitAll();
/** Annotated clusters: an entry for each Cluster, together with the representative for the
* partition it is in if known, or with nullptr if not yet known. */
std::vector<std::pair<Cluster*, Cluster*>> an_clusters;
/** Annotated dependencies: an entry for each m_deps_to_add entry (excluding ones that apply
* to removed transactions), together with the representative root of the partition of
* Clusters it applies to. */
std::vector<std::pair<std::pair<GraphIndex, GraphIndex>, Cluster*>> an_deps;
// Construct a an_clusters entry for every parent and child in the to-be-applied dependencies.
for (const auto& [par, chl] : m_deps_to_add) {
auto par_cluster = m_entries[par].m_locator.cluster;
auto chl_cluster = m_entries[chl].m_locator.cluster;
// Skip dependencies for which the parent or child transaction is removed.
if (par_cluster == nullptr || chl_cluster == nullptr) continue;
an_clusters.emplace_back(par_cluster, nullptr);
// Do not include a duplicate when parent and child are identical, as it'll be removed
// below anyway.
if (chl_cluster != par_cluster) an_clusters.emplace_back(chl_cluster, nullptr);
}
// Sort and deduplicate an_clusters, so we end up with a sorted list of all involved Clusters
// to which dependencies apply.
std::sort(an_clusters.begin(), an_clusters.end());
an_clusters.erase(std::unique(an_clusters.begin(), an_clusters.end()), an_clusters.end());
// Run the union-find algorithm to to find partitions of the input Clusters which need to be
// grouped together. See https://en.wikipedia.org/wiki/Disjoint-set_data_structure.
{
/** Each PartitionData entry contains information about a single input Cluster. */
struct PartitionData
{
/** The cluster this holds information for. */
Cluster* cluster;
/** All PartitionData entries belonging to the same partition are organized in a tree.
* Each element points to its parent, or to itself if it is the root. The root is then
* a representative for the entire tree, and can be found by walking upwards from any
* element. */
PartitionData* parent;
/** (only if this is a root, so when parent == this) An upper bound on the height of
* tree for this partition. */
unsigned rank;
};
/** Information about each input Cluster. Sorted by Cluster* pointer. */
std::vector<PartitionData> partition_data;
/** Given a Cluster, find its corresponding PartitionData. */
auto locate_fn = [&](Cluster* arg) noexcept -> PartitionData* {
auto it = std::lower_bound(partition_data.begin(), partition_data.end(), arg,
[](auto& a, Cluster* ptr) noexcept { return a.cluster < ptr; });
Assume(it != partition_data.end());
Assume(it->cluster == arg);
return &*it;
};
/** Given a PartitionData, find the root of the tree it is in (its representative). */
static constexpr auto find_root_fn = [](PartitionData* data) noexcept -> PartitionData* {
while (data->parent != data) {
// Replace pointers to parents with pointers to grandparents.
// See https://en.wikipedia.org/wiki/Disjoint-set_data_structure#Finding_set_representatives.
auto par = data->parent;
data->parent = par->parent;
data = par;
}
return data;
};
/** Given two PartitionDatas, union the partitions they are in. */
static constexpr auto union_fn = [](PartitionData* arg1, PartitionData* arg2) noexcept {
// Find the roots of the trees, and bail out if they are already equal (which would
// mean they are in the same partition already).
auto rep1 = find_root_fn(arg1);
auto rep2 = find_root_fn(arg2);
if (rep1 == rep2) return;
// Pick the lower-rank root to become a child of the higher-rank one.
// See https://en.wikipedia.org/wiki/Disjoint-set_data_structure#Union_by_rank.
if (rep1->rank < rep2->rank) std::swap(rep1, rep2);
rep2->parent = rep1;
rep1->rank += (rep1->rank == rep2->rank);
};
// Start by initializing every Cluster as its own singleton partition.
partition_data.resize(an_clusters.size());
for (size_t i = 0; i < an_clusters.size(); ++i) {
partition_data[i].cluster = an_clusters[i].first;
partition_data[i].parent = &partition_data[i];
partition_data[i].rank = 0;
}
// Run through all parent/child pairs in m_deps_to_add, and union the
// the partitions their Clusters are in.
for (const auto& [par, chl] : m_deps_to_add) {
auto par_cluster = m_entries[par].m_locator.cluster;
auto chl_cluster = m_entries[chl].m_locator.cluster;
// Nothing to do if parent and child are in the same Cluster.
if (par_cluster == chl_cluster) continue;
// Nothing to do if either parent or child transaction is removed already.
if (par_cluster == nullptr || chl_cluster == nullptr) continue;
Assume(par != chl);
union_fn(locate_fn(par_cluster), locate_fn(chl_cluster));
}
// Populate the an_clusters and an_deps data structures with the list of input Clusters,
// and the input dependencies, annotated with the representative of the Cluster partition
// it applies to.
for (size_t i = 0; i < partition_data.size(); ++i) {
auto& data = partition_data[i];
// Find the representative of the partition Cluster i is in, and store it with the
// Cluster.
auto rep = find_root_fn(&data)->cluster;
Assume(an_clusters[i].second == nullptr);
an_clusters[i].second = rep;
}
an_deps.reserve(m_deps_to_add.size());
for (auto [par, chl] : m_deps_to_add) {
auto chl_cluster = m_entries[chl].m_locator.cluster;
auto par_cluster = m_entries[par].m_locator.cluster;
// Nothing to do if either parent or child transaction is removed already.
if (par_cluster == nullptr || chl_cluster == nullptr) continue;
// Find the representative of the partition which this dependency's child is in (which
// should be the same as the one for the parent).
auto rep = find_root_fn(locate_fn(chl_cluster))->cluster;
// Create an_deps entry.
an_deps.emplace_back(std::pair{par, chl}, rep);
}
}
// Sort both an_clusters and an_deps by representative of the partition they are in, grouping
// all those applying to the same partition together.
std::sort(an_deps.begin(), an_deps.end(), [](auto& a, auto& b) noexcept { return a.second < b.second; });
std::sort(an_clusters.begin(), an_clusters.end(), [](auto& a, auto& b) noexcept { return a.second < b.second; });
// Translate the resulting cluster groups to the m_group_data structure.
m_group_data = std::vector<GroupEntry>{};
auto an_deps_it = an_deps.begin();
auto an_clusters_it = an_clusters.begin();
while (an_clusters_it != an_clusters.end()) {
// Process all clusters/dependencies belonging to the partition with representative rep.
auto rep = an_clusters_it->second;
// Create and initialize a new GroupData entry for the partition.
auto& new_entry = m_group_data->emplace_back();
// Add all its clusters to it (copying those from an_clusters to m_clusters).
while (an_clusters_it != an_clusters.end() && an_clusters_it->second == rep) {
new_entry.m_clusters.push_back(an_clusters_it->first);
++an_clusters_it;
}
// Add all its dependencies to it (copying those back from an_deps to m_deps).
while (an_deps_it != an_deps.end() && an_deps_it->second == rep) {
new_entry.m_deps.push_back(an_deps_it->first);
++an_deps_it;
}
}
Assume(an_deps_it == an_deps.end());
Assume(an_clusters_it == an_clusters.end());
Compact();
}
void TxGraphImpl::Merge(std::span<Cluster*> to_merge) noexcept
{
Assume(!to_merge.empty());
// Nothing to do if a group consists of just a single Cluster.
if (to_merge.size() == 1) return;
// Move the largest Cluster to the front of to_merge. As all transactions in other to-be-merged
// Clusters will be moved to that one, putting the largest one first minimizes the number of
// moves.
size_t max_size_pos{0};
DepGraphIndex max_size = to_merge[max_size_pos]->GetTxCount();
for (size_t i = 1; i < to_merge.size(); ++i) {
DepGraphIndex size = to_merge[i]->GetTxCount();
if (size > max_size) {
max_size_pos = i;
max_size = size;
}
}
if (max_size_pos != 0) std::swap(to_merge[0], to_merge[max_size_pos]);
// Merge all further Clusters in the group into the first one, and delete them.
for (size_t i = 1; i < to_merge.size(); ++i) {
to_merge[0]->Merge(*this, *to_merge[i]);
DeleteCluster(*to_merge[i]);
}
}
void TxGraphImpl::ApplyDependencies() noexcept
{
// Compute the groups of to-be-merged Clusters (which also applies all removals, and splits).
GroupClusters();
Assume(m_group_data.has_value());
// Nothing to do if there are no dependencies to be added.
if (m_deps_to_add.empty()) return;
// For each group of to-be-merged Clusters.
for (auto& group_data : *m_group_data) {
// Invoke Merge() to merge them into a single Cluster.
Merge(group_data.m_clusters);
// Actually apply all to-be-added dependencies (all parents and children from this grouping
// belong to the same Cluster at this point because of the merging above).
const auto& loc = m_entries[group_data.m_deps[0].second].m_locator;
Assume(loc.IsPresent());
loc.cluster->ApplyDependencies(*this, group_data.m_deps);
}
// Wipe the list of to-be-added dependencies now that they are applied.
m_deps_to_add.clear();
Compact();
// Also no further Cluster mergings are needed (note that we clear, but don't set to
// std::nullopt, as that would imply the groupings are unknown).
m_group_data = std::vector<GroupEntry>{};
}
void Cluster::Relinearize(TxGraphImpl& graph, uint64_t max_iters) noexcept
{
// We can only relinearize Clusters that do not need splitting.
Assume(!NeedsSplitting());
// No work is required for Clusters which are already optimally linearized.
if (IsOptimal()) return;
// Invoke the actual linearization algorithm (passing in the existing one).
uint64_t rng_seed = graph.m_rng.rand64();
auto [linearization, optimal] = Linearize(m_depgraph, max_iters, rng_seed, m_linearization);
// Postlinearize if the result isn't optimal already. This guarantees (among other things)
// that the chunks of the resulting linearization are all connected.
if (!optimal) PostLinearize(m_depgraph, linearization);
// Update the linearization.
m_linearization = std::move(linearization);
// Update the Cluster's quality.
auto new_quality = optimal ? QualityLevel::OPTIMAL : QualityLevel::ACCEPTABLE;
graph.SetClusterQuality(m_quality, m_setindex, new_quality);
// Update the Entry objects.
Updated(graph);
}
void TxGraphImpl::MakeAcceptable(Cluster& cluster) noexcept
{
// Relinearize the Cluster if needed.
if (!cluster.NeedsSplitting() && !cluster.IsAcceptable()) {
cluster.Relinearize(*this, 10000);
}
}
Cluster::Cluster(TxGraphImpl& graph, const FeePerWeight& feerate, GraphIndex graph_index) noexcept
{
// Create a new transaction in the DepGraph, and remember its position in m_mapping.
auto cluster_idx = m_depgraph.AddTransaction(feerate);
m_mapping.push_back(graph_index);
m_linearization.push_back(cluster_idx);
}
TxGraph::Ref TxGraphImpl::AddTransaction(const FeePerWeight& feerate) noexcept
{
// Construct a new Ref.
Ref ret;
// Construct a new Entry, and link it with the Ref.
auto idx = m_entries.size();
m_entries.emplace_back();
auto& entry = m_entries.back();
entry.m_ref = &ret;
GetRefGraph(ret) = this;
GetRefIndex(ret) = idx;
// Construct a new singleton Cluster (which is necessarily optimally linearized).
auto cluster = std::make_unique<Cluster>(*this, feerate, idx);
auto cluster_ptr = cluster.get();
InsertCluster(std::move(cluster), QualityLevel::OPTIMAL);
cluster_ptr->Updated(*this);
++m_txcount;
// Return the Ref.
return ret;
}
void TxGraphImpl::RemoveTransaction(const Ref& arg) noexcept
{
// Don't do anything if the Ref is empty (which may be indicative of the transaction already
// having been removed).
if (GetRefGraph(arg) == nullptr) return;
Assume(GetRefGraph(arg) == this);
// Find the Cluster the transaction is in, and stop if it isn't in any.
auto cluster = m_entries[GetRefIndex(arg)].m_locator.cluster;
if (cluster == nullptr) return;
// Remember that the transaction is to be removed.
m_to_remove.push_back(GetRefIndex(arg));
// Wipe m_group_data (as it will need to be recomputed).
m_group_data.reset();
}
void TxGraphImpl::AddDependency(const Ref& parent, const Ref& child) noexcept
{
// Don't do anything if either Ref is empty (which may be indicative of it having already been
// removed).
if (GetRefGraph(parent) == nullptr || GetRefGraph(child) == nullptr) return;
Assume(GetRefGraph(parent) == this && GetRefGraph(child) == this);
// Don't do anything if this is a dependency on self.
if (GetRefIndex(parent) == GetRefIndex(child)) return;
// Find the Cluster the parent and child transaction are in, and stop if either appears to be
// already removed.
auto par_cluster = m_entries[GetRefIndex(parent)].m_locator.cluster;
if (par_cluster == nullptr) return;
auto chl_cluster = m_entries[GetRefIndex(child)].m_locator.cluster;
if (chl_cluster == nullptr) return;
// Remember that this dependency is to be applied.
m_deps_to_add.emplace_back(GetRefIndex(parent), GetRefIndex(child));
// Wipe m_group_data (as it will need to be recomputed).
m_group_data.reset();
}
bool TxGraphImpl::Exists(const Ref& arg) noexcept
{
if (GetRefGraph(arg) == nullptr) return false;
Assume(GetRefGraph(arg) == this);
// Make sure the transaction isn't scheduled for removal.
ApplyRemovals();
return m_entries[GetRefIndex(arg)].m_locator.IsPresent();
}
std::vector<TxGraph::Ref*> Cluster::GetAncestorRefs(const TxGraphImpl& graph, DepGraphIndex idx) noexcept
{
std::vector<TxGraph::Ref*> ret;
ret.reserve(m_depgraph.Ancestors(idx).Count());
// Translate all ancestors (in arbitrary order) to Refs (if they have any), and return them.
for (auto idx : m_depgraph.Ancestors(idx)) {
const auto& entry = graph.m_entries[m_mapping[idx]];
ret.push_back(entry.m_ref);
}
return ret;
}
std::vector<TxGraph::Ref*> Cluster::GetDescendantRefs(const TxGraphImpl& graph, DepGraphIndex idx) noexcept
{
std::vector<TxGraph::Ref*> ret;
ret.reserve(m_depgraph.Descendants(idx).Count());
// Translate all descendants (in arbitrary order) to Refs (if they have any), and return them.
for (auto idx : m_depgraph.Descendants(idx)) {
const auto& entry = graph.m_entries[m_mapping[idx]];
ret.push_back(entry.m_ref);
}
return ret;
}
std::vector<TxGraph::Ref*> Cluster::GetClusterRefs(const TxGraphImpl& graph) noexcept
{
std::vector<TxGraph::Ref*> ret;
ret.reserve(m_linearization.size());
// Translate all transactions in the Cluster (in linearization order) to Refs.
for (auto idx : m_linearization) {
const auto& entry = graph.m_entries[m_mapping[idx]];
ret.push_back(entry.m_ref);
}
return ret;
}
FeePerWeight Cluster::GetIndividualFeerate(DepGraphIndex idx) noexcept
{
return FeePerWeight::FromFeeFrac(m_depgraph.FeeRate(idx));
}
std::vector<TxGraph::Ref*> TxGraphImpl::GetAncestors(const Ref& arg) noexcept
{
// Return the empty vector if the Ref is empty.
if (GetRefGraph(arg) == nullptr) return {};
Assume(GetRefGraph(arg) == this);
// Apply all removals and dependencies, as the result might be incorrect otherwise.
ApplyDependencies();
// Find the Cluster the argument is in, and return the empty vector if it isn't in any.
auto cluster = m_entries[GetRefIndex(arg)].m_locator.cluster;
if (cluster == nullptr) return {};
// Dispatch to the Cluster.
return cluster->GetAncestorRefs(*this, m_entries[GetRefIndex(arg)].m_locator.index);
}
std::vector<TxGraph::Ref*> TxGraphImpl::GetDescendants(const Ref& arg) noexcept
{
// Return the empty vector if the Ref is empty.
if (GetRefGraph(arg) == nullptr) return {};
Assume(GetRefGraph(arg) == this);
// Apply all removals and dependencies, as the result might be incorrect otherwise.
ApplyDependencies();
// Find the Cluster the argument is in, and return the empty vector if it isn't in any.
auto cluster = m_entries[GetRefIndex(arg)].m_locator.cluster;
if (cluster == nullptr) return {};
// Dispatch to the Cluster.
return cluster->GetDescendantRefs(*this, m_entries[GetRefIndex(arg)].m_locator.index);
}
std::vector<TxGraph::Ref*> TxGraphImpl::GetCluster(const Ref& arg) noexcept
{
// Return the empty vector if the Ref is empty.
if (GetRefGraph(arg) == nullptr) return {};
Assume(GetRefGraph(arg) == this);
// Apply all removals and dependencies, as the result might be incorrect otherwise.
ApplyDependencies();
// Find the Cluster the argument is in, and return the empty vector if it isn't in any.
auto cluster = m_entries[GetRefIndex(arg)].m_locator.cluster;
if (cluster == nullptr) return {};
// Make sure the Cluster has an acceptable quality level, and then dispatch to it.
MakeAcceptable(*cluster);
return cluster->GetClusterRefs(*this);
}
TxGraph::GraphIndex TxGraphImpl::GetTransactionCount() noexcept
{
ApplyRemovals();
return m_txcount;
}
FeePerWeight TxGraphImpl::GetIndividualFeerate(const Ref& arg) noexcept
{
// Return the empty FeePerWeight if the passed Ref is empty.
if (GetRefGraph(arg) == nullptr) return {};
Assume(GetRefGraph(arg) == this);
// Apply removals, so that we can correctly report FeePerWeight{} for non-existing transaction.
ApplyRemovals();
// Find the cluster the argument is in, and return the empty FeePerWeight if it isn't in any.
auto cluster = m_entries[GetRefIndex(arg)].m_locator.cluster;
if (cluster == nullptr) return {};
// Dispatch to the Cluster.
return cluster->GetIndividualFeerate(m_entries[GetRefIndex(arg)].m_locator.index);
}
void Cluster::SetFee(TxGraphImpl& graph, DepGraphIndex idx, int64_t fee) noexcept
{
// Make sure the specified DepGraphIndex exists in this Cluster.
Assume(m_depgraph.Positions()[idx]);
// Bail out if the fee isn't actually being changed.
if (m_depgraph.FeeRate(idx).fee == fee) return;
// Update the fee, remember that relinearization will be necessary, and update the Entries
// in the same Cluster.
m_depgraph.FeeRate(idx).fee = fee;
if (!NeedsSplitting()) {
graph.SetClusterQuality(m_quality, m_setindex, QualityLevel::NEEDS_RELINEARIZE);
}
Updated(graph);
}
void TxGraphImpl::SetTransactionFee(const Ref& ref, int64_t fee) noexcept
{
// Don't do anything if the passed Ref is empty.
if (GetRefGraph(ref) == nullptr) return;
Assume(GetRefGraph(ref) == this);
// Find the entry, its locator, and inform its Cluster about the new feerate, if any.
auto& entry = m_entries[GetRefIndex(ref)];
auto& locator = entry.m_locator;
if (locator.IsPresent()) {
locator.cluster->SetFee(*this, locator.index, fee);
}
}
void Cluster::SanityCheck(const TxGraphImpl& graph) const
{
// There must be an m_mapping for each m_depgraph position (including holes).
assert(m_depgraph.PositionRange() == m_mapping.size());
// The linearization for this Cluster must contain every transaction once.
assert(m_depgraph.TxCount() == m_linearization.size());
// m_quality and m_setindex are checked in TxGraphImpl::SanityCheck.
// Compute the chunking of m_linearization.
LinearizationChunking linchunking(m_depgraph, m_linearization);
// Verify m_linearization.
SetType m_done;
assert(m_depgraph.IsAcyclic());
for (auto lin_pos : m_linearization) {
assert(lin_pos < m_mapping.size());
const auto& entry = graph.m_entries[m_mapping[lin_pos]];
// Check that the linearization is topological.
m_done.Set(lin_pos);
assert(m_done.IsSupersetOf(m_depgraph.Ancestors(lin_pos)));
// Check that the Entry has a locator pointing back to this Cluster & position within it.
assert(entry.m_locator.cluster == this);
assert(entry.m_locator.index == lin_pos);
// Check linearization position.
if (!linchunking.GetChunk(0).transactions[lin_pos]) {
linchunking.MarkDone(linchunking.GetChunk(0).transactions);
}
// If this Cluster has an acceptable quality level, its chunks must be connected.
if (IsAcceptable()) {
assert(m_depgraph.IsConnected(linchunking.GetChunk(0).transactions));
}
}
// Verify that each element of m_depgraph occured in m_linearization.
assert(m_done == m_depgraph.Positions());
}
void TxGraphImpl::SanityCheck() const
{
/** Which GraphIndexes ought to occur in m_unlinked, based on m_entries. */
std::set<GraphIndex> expected_unlinked;
/** Which Clusters ought to occur in m_clusters, based on m_entries. */
std::set<const Cluster*> expected_clusters;
// Go over all Entry objects in m_entries.
for (GraphIndex idx = 0; idx < m_entries.size(); ++idx) {
const auto& entry = m_entries[idx];
if (entry.m_ref == nullptr) {
// Unlinked Entry must have indexes appear in m_unlinked.
expected_unlinked.insert(idx);
} else {
// Every non-unlinked Entry must have a Ref that points back to it.
assert(GetRefGraph(*entry.m_ref) == this);
assert(GetRefIndex(*entry.m_ref) == idx);
}
const auto& locator = entry.m_locator;
// Every Locator must be in exactly one of these 2 states.
assert(locator.IsMissing() + locator.IsPresent() == 1);
if (locator.IsPresent()) {
// Verify that the Cluster agrees with where the Locator claims the transaction is.
assert(locator.cluster->GetClusterEntry(locator.index) == idx);
// Remember that we expect said Cluster to appear in the m_clusters.
expected_clusters.insert(locator.cluster);
}
}
std::set<const Cluster*> actual_clusters;
// For all quality levels...
for (int qual = 0; qual < int(QualityLevel::NONE); ++qual) {
QualityLevel quality{qual};
const auto& quality_clusters = m_clusters[qual];
// ... for all clusters in them ...
for (ClusterSetIndex setindex = 0; setindex < quality_clusters.size(); ++setindex) {
const auto& cluster = *quality_clusters[setindex];
// Remember we saw this Cluster (only if it is non-empty; empty Clusters aren't
// expected to be referenced by the Entry vector).
if (cluster.GetTxCount() != 0) {
actual_clusters.insert(&cluster);
}
// Sanity check the cluster, according to the Cluster's internal rules.
cluster.SanityCheck(*this);
// Check that the cluster's quality and setindex matches its position in the quality list.
assert(cluster.m_quality == quality);
assert(cluster.m_setindex == setindex);
}
}
// Verify that all to-be-removed transactions have valid identifiers, and aren't removed yet.
for (GraphIndex idx : m_to_remove) {
assert(idx < m_entries.size());
assert(m_entries[idx].m_locator.IsPresent());
}
// Verify that all to-be-added dependencies have valid identifiers.
for (auto [par_idx, chl_idx] : m_deps_to_add) {
assert(par_idx != chl_idx);
assert(par_idx < m_entries.size());
assert(chl_idx < m_entries.size());
}
// Verify that the actually encountered clusters match the ones occurring in Entry vector.
assert(actual_clusters == expected_clusters);
// Verify that the contents of m_unlinked matches what was expected based on the Entry vector.
std::set<GraphIndex> actual_unlinked(m_unlinked.begin(), m_unlinked.end());
assert(actual_unlinked == expected_unlinked);
// If no to-be-removed transactions, or to-be-added dependencies remain, m_unlinked must be
// empty (to prevent memory leaks due to an ever-growing m_entries vector).
if (m_to_remove.empty() && m_deps_to_add.empty()) assert(actual_unlinked.empty());
}
} // namespace
TxGraph::Ref::~Ref()
{
if (m_graph) {
// Inform the TxGraph about the Ref being destroyed.
m_graph->UnlinkRef(m_index);
m_graph = nullptr;
}
}
TxGraph::Ref& TxGraph::Ref::operator=(Ref&& other) noexcept
{
// Unlink the current graph, if any.
if (m_graph) m_graph->UnlinkRef(m_index);
// Inform the other's graph about the move, if any.
if (other.m_graph) other.m_graph->UpdateRef(other.m_index, *this);
// Actually update the contents.
m_graph = other.m_graph;
m_index = other.m_index;
other.m_graph = nullptr;
other.m_index = GraphIndex(-1);
return *this;
}
TxGraph::Ref::Ref(Ref&& other) noexcept
{
// Inform the TxGraph of other that its Ref is being moved.
if (other.m_graph) other.m_graph->UpdateRef(other.m_index, *this);
// Actually move the contents.
std::swap(m_graph, other.m_graph);
std::swap(m_index, other.m_index);
}
std::unique_ptr<TxGraph> MakeTxGraph() noexcept
{
return std::make_unique<TxGraphImpl>();
}