mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-04-29 14:59:39 -04:00
After replacing all instances of `SetHexDeprecated` in the GUI, remove it entirely and reimplement the behavior in `FromHex`.
208 lines
7.4 KiB
C++
208 lines
7.4 KiB
C++
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
|
// Copyright (c) 2009-present The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#ifndef BITCOIN_UINT256_H
|
|
#define BITCOIN_UINT256_H
|
|
|
|
#include <crypto/common.h>
|
|
#include <span.h>
|
|
#include <util/strencodings.h>
|
|
#include <util/string.h>
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <optional>
|
|
#include <string>
|
|
#include <string_view>
|
|
|
|
/** Template base class for fixed-sized opaque blobs. */
|
|
template<unsigned int BITS>
|
|
class base_blob
|
|
{
|
|
protected:
|
|
static constexpr int WIDTH = BITS / 8;
|
|
static_assert(BITS % 8 == 0, "base_blob currently only supports whole bytes.");
|
|
std::array<uint8_t, WIDTH> m_data;
|
|
static_assert(WIDTH == sizeof(m_data), "Sanity check");
|
|
|
|
public:
|
|
/* construct 0 value by default */
|
|
constexpr base_blob() : m_data() {}
|
|
|
|
/* constructor for constants between 1 and 255 */
|
|
constexpr explicit base_blob(uint8_t v) : m_data{v} {}
|
|
|
|
constexpr explicit base_blob(std::span<const unsigned char> vch)
|
|
{
|
|
assert(vch.size() == WIDTH);
|
|
std::copy(vch.begin(), vch.end(), m_data.begin());
|
|
}
|
|
|
|
consteval explicit base_blob(std::string_view hex_str);
|
|
|
|
constexpr bool IsNull() const
|
|
{
|
|
return std::all_of(m_data.begin(), m_data.end(), [](uint8_t val) {
|
|
return val == 0;
|
|
});
|
|
}
|
|
|
|
constexpr void SetNull()
|
|
{
|
|
std::fill(m_data.begin(), m_data.end(), 0);
|
|
}
|
|
|
|
/** Lexicographic ordering
|
|
* @note Does NOT match the ordering on the corresponding \ref
|
|
* base_uint::CompareTo, which starts comparing from the end.
|
|
*/
|
|
constexpr int Compare(const base_blob& other) const { return std::memcmp(m_data.data(), other.m_data.data(), WIDTH); }
|
|
|
|
friend constexpr bool operator==(const base_blob& a, const base_blob& b) { return a.Compare(b) == 0; }
|
|
friend constexpr bool operator!=(const base_blob& a, const base_blob& b) { return a.Compare(b) != 0; }
|
|
friend constexpr bool operator<(const base_blob& a, const base_blob& b) { return a.Compare(b) < 0; }
|
|
|
|
/** @name Hex representation
|
|
*
|
|
* The hex representation used by GetHex(), ToString(), and FromHex()
|
|
* is unusual, since it shows bytes of the base_blob in reverse order.
|
|
* For example, a 4-byte blob {0x12, 0x34, 0x56, 0x78} is represented
|
|
* as "78563412" instead of the more typical "12345678" representation
|
|
* that would be shown in a hex editor or used by typical
|
|
* byte-array / hex conversion functions like python's bytes.hex() and
|
|
* bytes.fromhex().
|
|
*
|
|
* The nice thing about the reverse-byte representation, even though it is
|
|
* unusual, is that if a blob contains an arithmetic number in little endian
|
|
* format (with least significant bytes first, and most significant bytes
|
|
* last), the GetHex() output will match the way the number would normally
|
|
* be written in base-16 (with most significant digits first and least
|
|
* significant digits last).
|
|
*
|
|
* This means, for example, that ArithToUint256(num).GetHex() can be used to
|
|
* display an arith_uint256 num value as a number, because
|
|
* ArithToUint256() converts the number to a blob in little-endian format,
|
|
* so the arith_uint256 class doesn't need to have its own number parsing
|
|
* and formatting functions.
|
|
*
|
|
* @{*/
|
|
std::string GetHex() const;
|
|
std::string ToString() const;
|
|
/**@}*/
|
|
|
|
constexpr const unsigned char* data() const { return m_data.data(); }
|
|
constexpr unsigned char* data() { return m_data.data(); }
|
|
|
|
constexpr unsigned char* begin() { return m_data.data(); }
|
|
constexpr unsigned char* end() { return m_data.data() + WIDTH; }
|
|
|
|
constexpr const unsigned char* begin() const { return m_data.data(); }
|
|
constexpr const unsigned char* end() const { return m_data.data() + WIDTH; }
|
|
|
|
static constexpr unsigned int size() { return WIDTH; }
|
|
|
|
constexpr uint64_t GetUint64(int pos) const { return ReadLE64(m_data.data() + pos * 8); }
|
|
|
|
template<typename Stream>
|
|
void Serialize(Stream& s) const
|
|
{
|
|
s << std::span(m_data);
|
|
}
|
|
|
|
template<typename Stream>
|
|
void Unserialize(Stream& s)
|
|
{
|
|
s.read(MakeWritableByteSpan(m_data));
|
|
}
|
|
};
|
|
|
|
template <unsigned int BITS>
|
|
consteval base_blob<BITS>::base_blob(std::string_view hex_str)
|
|
{
|
|
if (hex_str.length() != m_data.size() * 2) throw "Hex string must fit exactly";
|
|
auto str_it = hex_str.rbegin();
|
|
for (auto& elem : m_data) {
|
|
auto lo = util::ConstevalHexDigit(*(str_it++));
|
|
elem = (util::ConstevalHexDigit(*(str_it++)) << 4) | lo;
|
|
}
|
|
}
|
|
|
|
namespace detail {
|
|
/**
|
|
* Writes the hex string (in reverse byte order) into a new uintN_t object
|
|
* and only returns a value iff all of the checks pass:
|
|
* - Input length is uintN_t::size()*2
|
|
* - All characters are hex
|
|
*/
|
|
template <class uintN_t>
|
|
std::optional<uintN_t> FromHex(std::string_view str)
|
|
{
|
|
if (uintN_t::size() * 2 != str.size() || !IsHex(str)) return std::nullopt;
|
|
uintN_t rv;
|
|
unsigned char* p1 = rv.begin();
|
|
unsigned char* pend = rv.end();
|
|
size_t digits = str.size();
|
|
while (digits > 0 && p1 < pend) {
|
|
*p1 = ::HexDigit(str[--digits]);
|
|
if (digits > 0) {
|
|
*p1 |= ((unsigned char)::HexDigit(str[--digits]) << 4);
|
|
p1++;
|
|
}
|
|
}
|
|
return rv;
|
|
}
|
|
/**
|
|
* @brief Like FromHex(std::string_view str), but allows an "0x" prefix
|
|
* and pads the input with leading zeroes if it is shorter than
|
|
* the expected length of uintN_t::size()*2.
|
|
*
|
|
* Designed to be used when dealing with user input.
|
|
*/
|
|
template <class uintN_t>
|
|
std::optional<uintN_t> FromUserHex(std::string_view input)
|
|
{
|
|
input = util::RemovePrefixView(input, "0x");
|
|
constexpr auto expected_size{uintN_t::size() * 2};
|
|
if (input.size() < expected_size) {
|
|
auto padded = std::string(expected_size, '0');
|
|
std::copy(input.begin(), input.end(), padded.begin() + expected_size - input.size());
|
|
return FromHex<uintN_t>(padded);
|
|
}
|
|
return FromHex<uintN_t>(input);
|
|
}
|
|
} // namespace detail
|
|
|
|
/** 160-bit opaque blob.
|
|
* @note This type is called uint160 for historical reasons only. It is an opaque
|
|
* blob of 160 bits and has no integer operations.
|
|
*/
|
|
class uint160 : public base_blob<160> {
|
|
public:
|
|
static std::optional<uint160> FromHex(std::string_view str) { return detail::FromHex<uint160>(str); }
|
|
constexpr uint160() = default;
|
|
constexpr explicit uint160(std::span<const unsigned char> vch) : base_blob<160>(vch) {}
|
|
};
|
|
|
|
/** 256-bit opaque blob.
|
|
* @note This type is called uint256 for historical reasons only. It is an
|
|
* opaque blob of 256 bits and has no integer operations. Use arith_uint256 if
|
|
* those are required.
|
|
*/
|
|
class uint256 : public base_blob<256> {
|
|
public:
|
|
static std::optional<uint256> FromHex(std::string_view str) { return detail::FromHex<uint256>(str); }
|
|
static std::optional<uint256> FromUserHex(std::string_view str) { return detail::FromUserHex<uint256>(str); }
|
|
constexpr uint256() = default;
|
|
consteval explicit uint256(std::string_view hex_str) : base_blob<256>(hex_str) {}
|
|
constexpr explicit uint256(uint8_t v) : base_blob<256>(v) {}
|
|
constexpr explicit uint256(std::span<const unsigned char> vch) : base_blob<256>(vch) {}
|
|
static const uint256 ZERO;
|
|
static const uint256 ONE;
|
|
};
|
|
|
|
#endif // BITCOIN_UINT256_H
|