mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-26 03:03:22 -03:00
2796 lines
90 KiB
C++
2796 lines
90 KiB
C++
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
|
// Copyright (c) 2009-2020 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#if defined(HAVE_CONFIG_H)
|
|
#include <config/bitcoin-config.h>
|
|
#endif
|
|
|
|
#include <net.h>
|
|
|
|
#include <banman.h>
|
|
#include <chainparams.h>
|
|
#include <clientversion.h>
|
|
#include <consensus/consensus.h>
|
|
#include <crypto/sha256.h>
|
|
#include <netbase.h>
|
|
#include <net_permissions.h>
|
|
#include <random.h>
|
|
#include <scheduler.h>
|
|
#include <ui_interface.h>
|
|
#include <util/strencodings.h>
|
|
#include <util/translation.h>
|
|
|
|
#ifdef WIN32
|
|
#include <string.h>
|
|
#else
|
|
#include <fcntl.h>
|
|
#endif
|
|
|
|
#ifdef USE_POLL
|
|
#include <poll.h>
|
|
#endif
|
|
|
|
#ifdef USE_UPNP
|
|
#include <miniupnpc/miniupnpc.h>
|
|
#include <miniupnpc/upnpcommands.h>
|
|
#include <miniupnpc/upnperrors.h>
|
|
// The minimum supported miniUPnPc API version is set to 10. This keeps compatibility
|
|
// with Ubuntu 16.04 LTS and Debian 8 libminiupnpc-dev packages.
|
|
static_assert(MINIUPNPC_API_VERSION >= 10, "miniUPnPc API version >= 10 assumed");
|
|
#endif
|
|
|
|
#include <unordered_map>
|
|
|
|
#include <math.h>
|
|
|
|
// Dump addresses to peers.dat every 15 minutes (900s)
|
|
static constexpr int DUMP_PEERS_INTERVAL = 15 * 60;
|
|
|
|
/** Number of DNS seeds to query when the number of connections is low. */
|
|
static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
|
|
|
|
// We add a random period time (0 to 1 seconds) to feeler connections to prevent synchronization.
|
|
#define FEELER_SLEEP_WINDOW 1
|
|
|
|
// MSG_NOSIGNAL is not available on some platforms, if it doesn't exist define it as 0
|
|
#if !defined(MSG_NOSIGNAL)
|
|
#define MSG_NOSIGNAL 0
|
|
#endif
|
|
|
|
// MSG_DONTWAIT is not available on some platforms, if it doesn't exist define it as 0
|
|
#if !defined(MSG_DONTWAIT)
|
|
#define MSG_DONTWAIT 0
|
|
#endif
|
|
|
|
/** Used to pass flags to the Bind() function */
|
|
enum BindFlags {
|
|
BF_NONE = 0,
|
|
BF_EXPLICIT = (1U << 0),
|
|
BF_REPORT_ERROR = (1U << 1),
|
|
};
|
|
|
|
// The set of sockets cannot be modified while waiting
|
|
// The sleep time needs to be small to avoid new sockets stalling
|
|
static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
|
|
|
|
const std::string NET_MESSAGE_COMMAND_OTHER = "*other*";
|
|
|
|
static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
|
|
static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
|
|
//
|
|
// Global state variables
|
|
//
|
|
bool fDiscover = true;
|
|
bool fListen = true;
|
|
bool g_relay_txes = !DEFAULT_BLOCKSONLY;
|
|
RecursiveMutex cs_mapLocalHost;
|
|
std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(cs_mapLocalHost);
|
|
static bool vfLimited[NET_MAX] GUARDED_BY(cs_mapLocalHost) = {};
|
|
std::string strSubVersion;
|
|
|
|
void CConnman::AddOneShot(const std::string& strDest)
|
|
{
|
|
LOCK(cs_vOneShots);
|
|
vOneShots.push_back(strDest);
|
|
}
|
|
|
|
unsigned short GetListenPort()
|
|
{
|
|
return (unsigned short)(gArgs.GetArg("-port", Params().GetDefaultPort()));
|
|
}
|
|
|
|
// find 'best' local address for a particular peer
|
|
bool GetLocal(CService& addr, const CNetAddr *paddrPeer)
|
|
{
|
|
if (!fListen)
|
|
return false;
|
|
|
|
int nBestScore = -1;
|
|
int nBestReachability = -1;
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
for (const auto& entry : mapLocalHost)
|
|
{
|
|
int nScore = entry.second.nScore;
|
|
int nReachability = entry.first.GetReachabilityFrom(paddrPeer);
|
|
if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore))
|
|
{
|
|
addr = CService(entry.first, entry.second.nPort);
|
|
nBestReachability = nReachability;
|
|
nBestScore = nScore;
|
|
}
|
|
}
|
|
}
|
|
return nBestScore >= 0;
|
|
}
|
|
|
|
//! Convert the pnSeed6 array into usable address objects.
|
|
static std::vector<CAddress> convertSeed6(const std::vector<SeedSpec6> &vSeedsIn)
|
|
{
|
|
// It'll only connect to one or two seed nodes because once it connects,
|
|
// it'll get a pile of addresses with newer timestamps.
|
|
// Seed nodes are given a random 'last seen time' of between one and two
|
|
// weeks ago.
|
|
const int64_t nOneWeek = 7*24*60*60;
|
|
std::vector<CAddress> vSeedsOut;
|
|
vSeedsOut.reserve(vSeedsIn.size());
|
|
FastRandomContext rng;
|
|
for (const auto& seed_in : vSeedsIn) {
|
|
struct in6_addr ip;
|
|
memcpy(&ip, seed_in.addr, sizeof(ip));
|
|
CAddress addr(CService(ip, seed_in.port), GetDesirableServiceFlags(NODE_NONE));
|
|
addr.nTime = GetTime() - rng.randrange(nOneWeek) - nOneWeek;
|
|
vSeedsOut.push_back(addr);
|
|
}
|
|
return vSeedsOut;
|
|
}
|
|
|
|
// get best local address for a particular peer as a CAddress
|
|
// Otherwise, return the unroutable 0.0.0.0 but filled in with
|
|
// the normal parameters, since the IP may be changed to a useful
|
|
// one by discovery.
|
|
CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices)
|
|
{
|
|
CAddress ret(CService(CNetAddr(),GetListenPort()), nLocalServices);
|
|
CService addr;
|
|
if (GetLocal(addr, paddrPeer))
|
|
{
|
|
ret = CAddress(addr, nLocalServices);
|
|
}
|
|
ret.nTime = GetAdjustedTime();
|
|
return ret;
|
|
}
|
|
|
|
static int GetnScore(const CService& addr)
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
if (mapLocalHost.count(addr) == 0) return 0;
|
|
return mapLocalHost[addr].nScore;
|
|
}
|
|
|
|
// Is our peer's addrLocal potentially useful as an external IP source?
|
|
bool IsPeerAddrLocalGood(CNode *pnode)
|
|
{
|
|
CService addrLocal = pnode->GetAddrLocal();
|
|
return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
|
|
IsReachable(addrLocal.GetNetwork());
|
|
}
|
|
|
|
// pushes our own address to a peer
|
|
void AdvertiseLocal(CNode *pnode)
|
|
{
|
|
if (fListen && pnode->fSuccessfullyConnected)
|
|
{
|
|
CAddress addrLocal = GetLocalAddress(&pnode->addr, pnode->GetLocalServices());
|
|
if (gArgs.GetBoolArg("-addrmantest", false)) {
|
|
// use IPv4 loopback during addrmantest
|
|
addrLocal = CAddress(CService(LookupNumeric("127.0.0.1", GetListenPort())), pnode->GetLocalServices());
|
|
}
|
|
// If discovery is enabled, sometimes give our peer the address it
|
|
// tells us that it sees us as in case it has a better idea of our
|
|
// address than we do.
|
|
FastRandomContext rng;
|
|
if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() ||
|
|
rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
|
|
{
|
|
addrLocal.SetIP(pnode->GetAddrLocal());
|
|
}
|
|
if (addrLocal.IsRoutable() || gArgs.GetBoolArg("-addrmantest", false))
|
|
{
|
|
LogPrint(BCLog::NET, "AdvertiseLocal: advertising address %s\n", addrLocal.ToString());
|
|
pnode->PushAddress(addrLocal, rng);
|
|
}
|
|
}
|
|
}
|
|
|
|
// learn a new local address
|
|
bool AddLocal(const CService& addr, int nScore)
|
|
{
|
|
if (!addr.IsRoutable())
|
|
return false;
|
|
|
|
if (!fDiscover && nScore < LOCAL_MANUAL)
|
|
return false;
|
|
|
|
if (!IsReachable(addr))
|
|
return false;
|
|
|
|
LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore);
|
|
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
bool fAlready = mapLocalHost.count(addr) > 0;
|
|
LocalServiceInfo &info = mapLocalHost[addr];
|
|
if (!fAlready || nScore >= info.nScore) {
|
|
info.nScore = nScore + (fAlready ? 1 : 0);
|
|
info.nPort = addr.GetPort();
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AddLocal(const CNetAddr &addr, int nScore)
|
|
{
|
|
return AddLocal(CService(addr, GetListenPort()), nScore);
|
|
}
|
|
|
|
void RemoveLocal(const CService& addr)
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
LogPrintf("RemoveLocal(%s)\n", addr.ToString());
|
|
mapLocalHost.erase(addr);
|
|
}
|
|
|
|
void SetReachable(enum Network net, bool reachable)
|
|
{
|
|
if (net == NET_UNROUTABLE || net == NET_INTERNAL)
|
|
return;
|
|
LOCK(cs_mapLocalHost);
|
|
vfLimited[net] = !reachable;
|
|
}
|
|
|
|
bool IsReachable(enum Network net)
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
return !vfLimited[net];
|
|
}
|
|
|
|
bool IsReachable(const CNetAddr &addr)
|
|
{
|
|
return IsReachable(addr.GetNetwork());
|
|
}
|
|
|
|
/** vote for a local address */
|
|
bool SeenLocal(const CService& addr)
|
|
{
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
if (mapLocalHost.count(addr) == 0)
|
|
return false;
|
|
mapLocalHost[addr].nScore++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/** check whether a given address is potentially local */
|
|
bool IsLocal(const CService& addr)
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
return mapLocalHost.count(addr) > 0;
|
|
}
|
|
|
|
CNode* CConnman::FindNode(const CNetAddr& ip)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (CNode* pnode : vNodes) {
|
|
if (static_cast<CNetAddr>(pnode->addr) == ip) {
|
|
return pnode;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
CNode* CConnman::FindNode(const CSubNet& subNet)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (CNode* pnode : vNodes) {
|
|
if (subNet.Match(static_cast<CNetAddr>(pnode->addr))) {
|
|
return pnode;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
CNode* CConnman::FindNode(const std::string& addrName)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (CNode* pnode : vNodes) {
|
|
if (pnode->GetAddrName() == addrName) {
|
|
return pnode;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
CNode* CConnman::FindNode(const CService& addr)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (CNode* pnode : vNodes) {
|
|
if (static_cast<CService>(pnode->addr) == addr) {
|
|
return pnode;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool CConnman::CheckIncomingNonce(uint64_t nonce)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (const CNode* pnode : vNodes) {
|
|
if (!pnode->fSuccessfullyConnected && !pnode->fInbound && pnode->GetLocalNonce() == nonce)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/** Get the bind address for a socket as CAddress */
|
|
static CAddress GetBindAddress(SOCKET sock)
|
|
{
|
|
CAddress addr_bind;
|
|
struct sockaddr_storage sockaddr_bind;
|
|
socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
|
|
if (sock != INVALID_SOCKET) {
|
|
if (!getsockname(sock, (struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
|
|
addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind);
|
|
} else {
|
|
LogPrint(BCLog::NET, "Warning: getsockname failed\n");
|
|
}
|
|
}
|
|
return addr_bind;
|
|
}
|
|
|
|
CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, bool manual_connection, bool block_relay_only)
|
|
{
|
|
if (pszDest == nullptr) {
|
|
if (IsLocal(addrConnect))
|
|
return nullptr;
|
|
|
|
// Look for an existing connection
|
|
CNode* pnode = FindNode(static_cast<CService>(addrConnect));
|
|
if (pnode)
|
|
{
|
|
LogPrintf("Failed to open new connection, already connected\n");
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
/// debug print
|
|
LogPrint(BCLog::NET, "trying connection %s lastseen=%.1fhrs\n",
|
|
pszDest ? pszDest : addrConnect.ToString(),
|
|
pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime)/3600.0);
|
|
|
|
// Resolve
|
|
const int default_port = Params().GetDefaultPort();
|
|
if (pszDest) {
|
|
std::vector<CService> resolved;
|
|
if (Lookup(pszDest, resolved, default_port, fNameLookup && !HaveNameProxy(), 256) && !resolved.empty()) {
|
|
addrConnect = CAddress(resolved[GetRand(resolved.size())], NODE_NONE);
|
|
if (!addrConnect.IsValid()) {
|
|
LogPrint(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToString(), pszDest);
|
|
return nullptr;
|
|
}
|
|
// It is possible that we already have a connection to the IP/port pszDest resolved to.
|
|
// In that case, drop the connection that was just created, and return the existing CNode instead.
|
|
// Also store the name we used to connect in that CNode, so that future FindNode() calls to that
|
|
// name catch this early.
|
|
LOCK(cs_vNodes);
|
|
CNode* pnode = FindNode(static_cast<CService>(addrConnect));
|
|
if (pnode)
|
|
{
|
|
pnode->MaybeSetAddrName(std::string(pszDest));
|
|
LogPrintf("Failed to open new connection, already connected\n");
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Connect
|
|
bool connected = false;
|
|
SOCKET hSocket = INVALID_SOCKET;
|
|
proxyType proxy;
|
|
if (addrConnect.IsValid()) {
|
|
bool proxyConnectionFailed = false;
|
|
|
|
if (GetProxy(addrConnect.GetNetwork(), proxy)) {
|
|
hSocket = CreateSocket(proxy.proxy);
|
|
if (hSocket == INVALID_SOCKET) {
|
|
return nullptr;
|
|
}
|
|
connected = ConnectThroughProxy(proxy, addrConnect.ToStringIP(), addrConnect.GetPort(), hSocket, nConnectTimeout, proxyConnectionFailed);
|
|
} else {
|
|
// no proxy needed (none set for target network)
|
|
hSocket = CreateSocket(addrConnect);
|
|
if (hSocket == INVALID_SOCKET) {
|
|
return nullptr;
|
|
}
|
|
connected = ConnectSocketDirectly(addrConnect, hSocket, nConnectTimeout, manual_connection);
|
|
}
|
|
if (!proxyConnectionFailed) {
|
|
// If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
|
|
// the proxy, mark this as an attempt.
|
|
addrman.Attempt(addrConnect, fCountFailure);
|
|
}
|
|
} else if (pszDest && GetNameProxy(proxy)) {
|
|
hSocket = CreateSocket(proxy.proxy);
|
|
if (hSocket == INVALID_SOCKET) {
|
|
return nullptr;
|
|
}
|
|
std::string host;
|
|
int port = default_port;
|
|
SplitHostPort(std::string(pszDest), port, host);
|
|
bool proxyConnectionFailed;
|
|
connected = ConnectThroughProxy(proxy, host, port, hSocket, nConnectTimeout, proxyConnectionFailed);
|
|
}
|
|
if (!connected) {
|
|
CloseSocket(hSocket);
|
|
return nullptr;
|
|
}
|
|
|
|
// Add node
|
|
NodeId id = GetNewNodeId();
|
|
uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
|
|
CAddress addr_bind = GetBindAddress(hSocket);
|
|
CNode* pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket, addrConnect, CalculateKeyedNetGroup(addrConnect), nonce, addr_bind, pszDest ? pszDest : "", false, block_relay_only);
|
|
pnode->AddRef();
|
|
|
|
// We're making a new connection, harvest entropy from the time (and our peer count)
|
|
RandAddEvent((uint32_t)id);
|
|
|
|
return pnode;
|
|
}
|
|
|
|
void CNode::CloseSocketDisconnect()
|
|
{
|
|
fDisconnect = true;
|
|
LOCK(cs_hSocket);
|
|
if (hSocket != INVALID_SOCKET)
|
|
{
|
|
LogPrint(BCLog::NET, "disconnecting peer=%d\n", id);
|
|
CloseSocket(hSocket);
|
|
}
|
|
}
|
|
|
|
void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr) const {
|
|
for (const auto& subnet : vWhitelistedRange) {
|
|
if (subnet.m_subnet.Match(addr)) NetPermissions::AddFlag(flags, subnet.m_flags);
|
|
}
|
|
}
|
|
|
|
std::string CNode::GetAddrName() const {
|
|
LOCK(cs_addrName);
|
|
return addrName;
|
|
}
|
|
|
|
void CNode::MaybeSetAddrName(const std::string& addrNameIn) {
|
|
LOCK(cs_addrName);
|
|
if (addrName.empty()) {
|
|
addrName = addrNameIn;
|
|
}
|
|
}
|
|
|
|
CService CNode::GetAddrLocal() const {
|
|
LOCK(cs_addrLocal);
|
|
return addrLocal;
|
|
}
|
|
|
|
void CNode::SetAddrLocal(const CService& addrLocalIn) {
|
|
LOCK(cs_addrLocal);
|
|
if (addrLocal.IsValid()) {
|
|
error("Addr local already set for node: %i. Refusing to change from %s to %s", id, addrLocal.ToString(), addrLocalIn.ToString());
|
|
} else {
|
|
addrLocal = addrLocalIn;
|
|
}
|
|
}
|
|
|
|
#undef X
|
|
#define X(name) stats.name = name
|
|
void CNode::copyStats(CNodeStats &stats, const std::vector<bool> &m_asmap)
|
|
{
|
|
stats.nodeid = this->GetId();
|
|
X(nServices);
|
|
X(addr);
|
|
X(addrBind);
|
|
stats.m_mapped_as = addr.GetMappedAS(m_asmap);
|
|
if (m_tx_relay != nullptr) {
|
|
LOCK(m_tx_relay->cs_filter);
|
|
stats.fRelayTxes = m_tx_relay->fRelayTxes;
|
|
} else {
|
|
stats.fRelayTxes = false;
|
|
}
|
|
X(nLastSend);
|
|
X(nLastRecv);
|
|
X(nTimeConnected);
|
|
X(nTimeOffset);
|
|
stats.addrName = GetAddrName();
|
|
X(nVersion);
|
|
{
|
|
LOCK(cs_SubVer);
|
|
X(cleanSubVer);
|
|
}
|
|
X(fInbound);
|
|
X(m_manual_connection);
|
|
X(nStartingHeight);
|
|
{
|
|
LOCK(cs_vSend);
|
|
X(mapSendBytesPerMsgCmd);
|
|
X(nSendBytes);
|
|
}
|
|
{
|
|
LOCK(cs_vRecv);
|
|
X(mapRecvBytesPerMsgCmd);
|
|
X(nRecvBytes);
|
|
}
|
|
X(m_legacyWhitelisted);
|
|
X(m_permissionFlags);
|
|
if (m_tx_relay != nullptr) {
|
|
LOCK(m_tx_relay->cs_feeFilter);
|
|
stats.minFeeFilter = m_tx_relay->minFeeFilter;
|
|
} else {
|
|
stats.minFeeFilter = 0;
|
|
}
|
|
|
|
// It is common for nodes with good ping times to suddenly become lagged,
|
|
// due to a new block arriving or other large transfer.
|
|
// Merely reporting pingtime might fool the caller into thinking the node was still responsive,
|
|
// since pingtime does not update until the ping is complete, which might take a while.
|
|
// So, if a ping is taking an unusually long time in flight,
|
|
// the caller can immediately detect that this is happening.
|
|
int64_t nPingUsecWait = 0;
|
|
if ((0 != nPingNonceSent) && (0 != nPingUsecStart)) {
|
|
nPingUsecWait = GetTimeMicros() - nPingUsecStart;
|
|
}
|
|
|
|
// Raw ping time is in microseconds, but show it to user as whole seconds (Bitcoin users should be well used to small numbers with many decimal places by now :)
|
|
stats.dPingTime = (((double)nPingUsecTime) / 1e6);
|
|
stats.dMinPing = (((double)nMinPingUsecTime) / 1e6);
|
|
stats.dPingWait = (((double)nPingUsecWait) / 1e6);
|
|
|
|
// Leave string empty if addrLocal invalid (not filled in yet)
|
|
CService addrLocalUnlocked = GetAddrLocal();
|
|
stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToString() : "";
|
|
}
|
|
#undef X
|
|
|
|
bool CNode::ReceiveMsgBytes(const char *pch, unsigned int nBytes, bool& complete)
|
|
{
|
|
complete = false;
|
|
int64_t nTimeMicros = GetTimeMicros();
|
|
LOCK(cs_vRecv);
|
|
nLastRecv = nTimeMicros / 1000000;
|
|
nRecvBytes += nBytes;
|
|
while (nBytes > 0) {
|
|
// absorb network data
|
|
int handled = m_deserializer->Read(pch, nBytes);
|
|
if (handled < 0) return false;
|
|
|
|
pch += handled;
|
|
nBytes -= handled;
|
|
|
|
if (m_deserializer->Complete()) {
|
|
// decompose a transport agnostic CNetMessage from the deserializer
|
|
CNetMessage msg = m_deserializer->GetMessage(Params().MessageStart(), nTimeMicros);
|
|
|
|
//store received bytes per message command
|
|
//to prevent a memory DOS, only allow valid commands
|
|
mapMsgCmdSize::iterator i = mapRecvBytesPerMsgCmd.find(msg.m_command);
|
|
if (i == mapRecvBytesPerMsgCmd.end())
|
|
i = mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER);
|
|
assert(i != mapRecvBytesPerMsgCmd.end());
|
|
i->second += msg.m_raw_message_size;
|
|
|
|
// push the message to the process queue,
|
|
vRecvMsg.push_back(std::move(msg));
|
|
|
|
complete = true;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void CNode::SetSendVersion(int nVersionIn)
|
|
{
|
|
// Send version may only be changed in the version message, and
|
|
// only one version message is allowed per session. We can therefore
|
|
// treat this value as const and even atomic as long as it's only used
|
|
// once a version message has been successfully processed. Any attempt to
|
|
// set this twice is an error.
|
|
if (nSendVersion != 0) {
|
|
error("Send version already set for node: %i. Refusing to change from %i to %i", id, nSendVersion, nVersionIn);
|
|
} else {
|
|
nSendVersion = nVersionIn;
|
|
}
|
|
}
|
|
|
|
int CNode::GetSendVersion() const
|
|
{
|
|
// The send version should always be explicitly set to
|
|
// INIT_PROTO_VERSION rather than using this value until SetSendVersion
|
|
// has been called.
|
|
if (nSendVersion == 0) {
|
|
error("Requesting unset send version for node: %i. Using %i", id, INIT_PROTO_VERSION);
|
|
return INIT_PROTO_VERSION;
|
|
}
|
|
return nSendVersion;
|
|
}
|
|
|
|
int V1TransportDeserializer::readHeader(const char *pch, unsigned int nBytes)
|
|
{
|
|
// copy data to temporary parsing buffer
|
|
unsigned int nRemaining = 24 - nHdrPos;
|
|
unsigned int nCopy = std::min(nRemaining, nBytes);
|
|
|
|
memcpy(&hdrbuf[nHdrPos], pch, nCopy);
|
|
nHdrPos += nCopy;
|
|
|
|
// if header incomplete, exit
|
|
if (nHdrPos < 24)
|
|
return nCopy;
|
|
|
|
// deserialize to CMessageHeader
|
|
try {
|
|
hdrbuf >> hdr;
|
|
}
|
|
catch (const std::exception&) {
|
|
return -1;
|
|
}
|
|
|
|
// reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
|
|
if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
|
|
return -1;
|
|
}
|
|
|
|
// switch state to reading message data
|
|
in_data = true;
|
|
|
|
return nCopy;
|
|
}
|
|
|
|
int V1TransportDeserializer::readData(const char *pch, unsigned int nBytes)
|
|
{
|
|
unsigned int nRemaining = hdr.nMessageSize - nDataPos;
|
|
unsigned int nCopy = std::min(nRemaining, nBytes);
|
|
|
|
if (vRecv.size() < nDataPos + nCopy) {
|
|
// Allocate up to 256 KiB ahead, but never more than the total message size.
|
|
vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
|
|
}
|
|
|
|
hasher.Write((const unsigned char*)pch, nCopy);
|
|
memcpy(&vRecv[nDataPos], pch, nCopy);
|
|
nDataPos += nCopy;
|
|
|
|
return nCopy;
|
|
}
|
|
|
|
const uint256& V1TransportDeserializer::GetMessageHash() const
|
|
{
|
|
assert(Complete());
|
|
if (data_hash.IsNull())
|
|
hasher.Finalize(data_hash.begin());
|
|
return data_hash;
|
|
}
|
|
|
|
CNetMessage V1TransportDeserializer::GetMessage(const CMessageHeader::MessageStartChars& message_start, int64_t time) {
|
|
// decompose a single CNetMessage from the TransportDeserializer
|
|
CNetMessage msg(std::move(vRecv));
|
|
|
|
// store state about valid header, netmagic and checksum
|
|
msg.m_valid_header = hdr.IsValid(message_start);
|
|
msg.m_valid_netmagic = (memcmp(hdr.pchMessageStart, message_start, CMessageHeader::MESSAGE_START_SIZE) == 0);
|
|
uint256 hash = GetMessageHash();
|
|
|
|
// store command string, payload size
|
|
msg.m_command = hdr.GetCommand();
|
|
msg.m_message_size = hdr.nMessageSize;
|
|
msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
|
|
|
|
// We just received a message off the wire, harvest entropy from the time (and the message checksum)
|
|
RandAddEvent(ReadLE32(hash.begin()));
|
|
|
|
msg.m_valid_checksum = (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) == 0);
|
|
if (!msg.m_valid_checksum) {
|
|
LogPrint(BCLog::NET, "CHECKSUM ERROR (%s, %u bytes), expected %s was %s\n",
|
|
SanitizeString(msg.m_command), msg.m_message_size,
|
|
HexStr(hash.begin(), hash.begin()+CMessageHeader::CHECKSUM_SIZE),
|
|
HexStr(hdr.pchChecksum, hdr.pchChecksum+CMessageHeader::CHECKSUM_SIZE));
|
|
}
|
|
|
|
// store receive time
|
|
msg.m_time = time;
|
|
|
|
// reset the network deserializer (prepare for the next message)
|
|
Reset();
|
|
return msg;
|
|
}
|
|
|
|
size_t CConnman::SocketSendData(CNode *pnode) const EXCLUSIVE_LOCKS_REQUIRED(pnode->cs_vSend)
|
|
{
|
|
auto it = pnode->vSendMsg.begin();
|
|
size_t nSentSize = 0;
|
|
|
|
while (it != pnode->vSendMsg.end()) {
|
|
const auto &data = *it;
|
|
assert(data.size() > pnode->nSendOffset);
|
|
int nBytes = 0;
|
|
{
|
|
LOCK(pnode->cs_hSocket);
|
|
if (pnode->hSocket == INVALID_SOCKET)
|
|
break;
|
|
nBytes = send(pnode->hSocket, reinterpret_cast<const char*>(data.data()) + pnode->nSendOffset, data.size() - pnode->nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT);
|
|
}
|
|
if (nBytes > 0) {
|
|
pnode->nLastSend = GetSystemTimeInSeconds();
|
|
pnode->nSendBytes += nBytes;
|
|
pnode->nSendOffset += nBytes;
|
|
nSentSize += nBytes;
|
|
if (pnode->nSendOffset == data.size()) {
|
|
pnode->nSendOffset = 0;
|
|
pnode->nSendSize -= data.size();
|
|
pnode->fPauseSend = pnode->nSendSize > nSendBufferMaxSize;
|
|
it++;
|
|
} else {
|
|
// could not send full message; stop sending more
|
|
break;
|
|
}
|
|
} else {
|
|
if (nBytes < 0) {
|
|
// error
|
|
int nErr = WSAGetLastError();
|
|
if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
|
|
{
|
|
LogPrintf("socket send error %s\n", NetworkErrorString(nErr));
|
|
pnode->CloseSocketDisconnect();
|
|
}
|
|
}
|
|
// couldn't send anything at all
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (it == pnode->vSendMsg.end()) {
|
|
assert(pnode->nSendOffset == 0);
|
|
assert(pnode->nSendSize == 0);
|
|
}
|
|
pnode->vSendMsg.erase(pnode->vSendMsg.begin(), it);
|
|
return nSentSize;
|
|
}
|
|
|
|
struct NodeEvictionCandidate
|
|
{
|
|
NodeId id;
|
|
int64_t nTimeConnected;
|
|
int64_t nMinPingUsecTime;
|
|
int64_t nLastBlockTime;
|
|
int64_t nLastTXTime;
|
|
bool fRelevantServices;
|
|
bool fRelayTxes;
|
|
bool fBloomFilter;
|
|
CAddress addr;
|
|
uint64_t nKeyedNetGroup;
|
|
bool prefer_evict;
|
|
};
|
|
|
|
static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
|
|
{
|
|
return a.nMinPingUsecTime > b.nMinPingUsecTime;
|
|
}
|
|
|
|
static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
|
|
{
|
|
return a.nTimeConnected > b.nTimeConnected;
|
|
}
|
|
|
|
static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) {
|
|
return a.nKeyedNetGroup < b.nKeyedNetGroup;
|
|
}
|
|
|
|
static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
|
|
{
|
|
// There is a fall-through here because it is common for a node to have many peers which have not yet relayed a block.
|
|
if (a.nLastBlockTime != b.nLastBlockTime) return a.nLastBlockTime < b.nLastBlockTime;
|
|
if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices;
|
|
return a.nTimeConnected > b.nTimeConnected;
|
|
}
|
|
|
|
static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
|
|
{
|
|
// There is a fall-through here because it is common for a node to have more than a few peers that have not yet relayed txn.
|
|
if (a.nLastTXTime != b.nLastTXTime) return a.nLastTXTime < b.nLastTXTime;
|
|
if (a.fRelayTxes != b.fRelayTxes) return b.fRelayTxes;
|
|
if (a.fBloomFilter != b.fBloomFilter) return a.fBloomFilter;
|
|
return a.nTimeConnected > b.nTimeConnected;
|
|
}
|
|
|
|
|
|
//! Sort an array by the specified comparator, then erase the last K elements.
|
|
template<typename T, typename Comparator>
|
|
static void EraseLastKElements(std::vector<T> &elements, Comparator comparator, size_t k)
|
|
{
|
|
std::sort(elements.begin(), elements.end(), comparator);
|
|
size_t eraseSize = std::min(k, elements.size());
|
|
elements.erase(elements.end() - eraseSize, elements.end());
|
|
}
|
|
|
|
/** Try to find a connection to evict when the node is full.
|
|
* Extreme care must be taken to avoid opening the node to attacker
|
|
* triggered network partitioning.
|
|
* The strategy used here is to protect a small number of peers
|
|
* for each of several distinct characteristics which are difficult
|
|
* to forge. In order to partition a node the attacker must be
|
|
* simultaneously better at all of them than honest peers.
|
|
*/
|
|
bool CConnman::AttemptToEvictConnection()
|
|
{
|
|
std::vector<NodeEvictionCandidate> vEvictionCandidates;
|
|
{
|
|
LOCK(cs_vNodes);
|
|
|
|
for (const CNode* node : vNodes) {
|
|
if (node->HasPermission(PF_NOBAN))
|
|
continue;
|
|
if (!node->fInbound)
|
|
continue;
|
|
if (node->fDisconnect)
|
|
continue;
|
|
bool peer_relay_txes = false;
|
|
bool peer_filter_not_null = false;
|
|
if (node->m_tx_relay != nullptr) {
|
|
LOCK(node->m_tx_relay->cs_filter);
|
|
peer_relay_txes = node->m_tx_relay->fRelayTxes;
|
|
peer_filter_not_null = node->m_tx_relay->pfilter != nullptr;
|
|
}
|
|
NodeEvictionCandidate candidate = {node->GetId(), node->nTimeConnected, node->nMinPingUsecTime,
|
|
node->nLastBlockTime, node->nLastTXTime,
|
|
HasAllDesirableServiceFlags(node->nServices),
|
|
peer_relay_txes, peer_filter_not_null, node->addr, node->nKeyedNetGroup,
|
|
node->m_prefer_evict};
|
|
vEvictionCandidates.push_back(candidate);
|
|
}
|
|
}
|
|
|
|
// Protect connections with certain characteristics
|
|
|
|
// Deterministically select 4 peers to protect by netgroup.
|
|
// An attacker cannot predict which netgroups will be protected
|
|
EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4);
|
|
// Protect the 8 nodes with the lowest minimum ping time.
|
|
// An attacker cannot manipulate this metric without physically moving nodes closer to the target.
|
|
EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8);
|
|
// Protect 4 nodes that most recently sent us transactions.
|
|
// An attacker cannot manipulate this metric without performing useful work.
|
|
EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4);
|
|
// Protect 4 nodes that most recently sent us blocks.
|
|
// An attacker cannot manipulate this metric without performing useful work.
|
|
EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4);
|
|
// Protect the half of the remaining nodes which have been connected the longest.
|
|
// This replicates the non-eviction implicit behavior, and precludes attacks that start later.
|
|
EraseLastKElements(vEvictionCandidates, ReverseCompareNodeTimeConnected, vEvictionCandidates.size() / 2);
|
|
|
|
if (vEvictionCandidates.empty()) return false;
|
|
|
|
// If any remaining peers are preferred for eviction consider only them.
|
|
// This happens after the other preferences since if a peer is really the best by other criteria (esp relaying blocks)
|
|
// then we probably don't want to evict it no matter what.
|
|
if (std::any_of(vEvictionCandidates.begin(),vEvictionCandidates.end(),[](NodeEvictionCandidate const &n){return n.prefer_evict;})) {
|
|
vEvictionCandidates.erase(std::remove_if(vEvictionCandidates.begin(),vEvictionCandidates.end(),
|
|
[](NodeEvictionCandidate const &n){return !n.prefer_evict;}),vEvictionCandidates.end());
|
|
}
|
|
|
|
// Identify the network group with the most connections and youngest member.
|
|
// (vEvictionCandidates is already sorted by reverse connect time)
|
|
uint64_t naMostConnections;
|
|
unsigned int nMostConnections = 0;
|
|
int64_t nMostConnectionsTime = 0;
|
|
std::map<uint64_t, std::vector<NodeEvictionCandidate> > mapNetGroupNodes;
|
|
for (const NodeEvictionCandidate &node : vEvictionCandidates) {
|
|
std::vector<NodeEvictionCandidate> &group = mapNetGroupNodes[node.nKeyedNetGroup];
|
|
group.push_back(node);
|
|
int64_t grouptime = group[0].nTimeConnected;
|
|
|
|
if (group.size() > nMostConnections || (group.size() == nMostConnections && grouptime > nMostConnectionsTime)) {
|
|
nMostConnections = group.size();
|
|
nMostConnectionsTime = grouptime;
|
|
naMostConnections = node.nKeyedNetGroup;
|
|
}
|
|
}
|
|
|
|
// Reduce to the network group with the most connections
|
|
vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]);
|
|
|
|
// Disconnect from the network group with the most connections
|
|
NodeId evicted = vEvictionCandidates.front().id;
|
|
LOCK(cs_vNodes);
|
|
for (CNode* pnode : vNodes) {
|
|
if (pnode->GetId() == evicted) {
|
|
pnode->fDisconnect = true;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
|
|
struct sockaddr_storage sockaddr;
|
|
socklen_t len = sizeof(sockaddr);
|
|
SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr*)&sockaddr, &len);
|
|
CAddress addr;
|
|
int nInbound = 0;
|
|
int nMaxInbound = nMaxConnections - m_max_outbound;
|
|
|
|
if (hSocket != INVALID_SOCKET) {
|
|
if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) {
|
|
LogPrintf("Warning: Unknown socket family\n");
|
|
}
|
|
}
|
|
|
|
NetPermissionFlags permissionFlags = NetPermissionFlags::PF_NONE;
|
|
hListenSocket.AddSocketPermissionFlags(permissionFlags);
|
|
AddWhitelistPermissionFlags(permissionFlags, addr);
|
|
bool legacyWhitelisted = false;
|
|
if (NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::PF_ISIMPLICIT)) {
|
|
NetPermissions::ClearFlag(permissionFlags, PF_ISIMPLICIT);
|
|
if (gArgs.GetBoolArg("-whitelistforcerelay", DEFAULT_WHITELISTFORCERELAY)) NetPermissions::AddFlag(permissionFlags, PF_FORCERELAY);
|
|
if (gArgs.GetBoolArg("-whitelistrelay", DEFAULT_WHITELISTRELAY)) NetPermissions::AddFlag(permissionFlags, PF_RELAY);
|
|
NetPermissions::AddFlag(permissionFlags, PF_MEMPOOL);
|
|
NetPermissions::AddFlag(permissionFlags, PF_NOBAN);
|
|
legacyWhitelisted = true;
|
|
}
|
|
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (const CNode* pnode : vNodes) {
|
|
if (pnode->fInbound) nInbound++;
|
|
}
|
|
}
|
|
|
|
if (hSocket == INVALID_SOCKET)
|
|
{
|
|
int nErr = WSAGetLastError();
|
|
if (nErr != WSAEWOULDBLOCK)
|
|
LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
|
|
return;
|
|
}
|
|
|
|
if (!fNetworkActive) {
|
|
LogPrintf("connection from %s dropped: not accepting new connections\n", addr.ToString());
|
|
CloseSocket(hSocket);
|
|
return;
|
|
}
|
|
|
|
if (!IsSelectableSocket(hSocket))
|
|
{
|
|
LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToString());
|
|
CloseSocket(hSocket);
|
|
return;
|
|
}
|
|
|
|
// According to the internet TCP_NODELAY is not carried into accepted sockets
|
|
// on all platforms. Set it again here just to be sure.
|
|
SetSocketNoDelay(hSocket);
|
|
|
|
int bannedlevel = m_banman ? m_banman->IsBannedLevel(addr) : 0;
|
|
|
|
// Don't accept connections from banned peers, but if our inbound slots aren't almost full, accept
|
|
// if the only banning reason was an automatic misbehavior ban.
|
|
if (!NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::PF_NOBAN) && bannedlevel > ((nInbound + 1 < nMaxInbound) ? 1 : 0))
|
|
{
|
|
LogPrint(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToString());
|
|
CloseSocket(hSocket);
|
|
return;
|
|
}
|
|
|
|
if (nInbound >= nMaxInbound)
|
|
{
|
|
if (!AttemptToEvictConnection()) {
|
|
// No connection to evict, disconnect the new connection
|
|
LogPrint(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
|
|
CloseSocket(hSocket);
|
|
return;
|
|
}
|
|
}
|
|
|
|
NodeId id = GetNewNodeId();
|
|
uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
|
|
CAddress addr_bind = GetBindAddress(hSocket);
|
|
|
|
ServiceFlags nodeServices = nLocalServices;
|
|
if (NetPermissions::HasFlag(permissionFlags, PF_BLOOMFILTER)) {
|
|
nodeServices = static_cast<ServiceFlags>(nodeServices | NODE_BLOOM);
|
|
}
|
|
CNode* pnode = new CNode(id, nodeServices, GetBestHeight(), hSocket, addr, CalculateKeyedNetGroup(addr), nonce, addr_bind, "", true);
|
|
pnode->AddRef();
|
|
pnode->m_permissionFlags = permissionFlags;
|
|
// If this flag is present, the user probably expect that RPC and QT report it as whitelisted (backward compatibility)
|
|
pnode->m_legacyWhitelisted = legacyWhitelisted;
|
|
pnode->m_prefer_evict = bannedlevel > 0;
|
|
m_msgproc->InitializeNode(pnode);
|
|
|
|
LogPrint(BCLog::NET, "connection from %s accepted\n", addr.ToString());
|
|
|
|
{
|
|
LOCK(cs_vNodes);
|
|
vNodes.push_back(pnode);
|
|
}
|
|
|
|
// We received a new connection, harvest entropy from the time (and our peer count)
|
|
RandAddEvent((uint32_t)id);
|
|
}
|
|
|
|
void CConnman::DisconnectNodes()
|
|
{
|
|
{
|
|
LOCK(cs_vNodes);
|
|
|
|
if (!fNetworkActive) {
|
|
// Disconnect any connected nodes
|
|
for (CNode* pnode : vNodes) {
|
|
if (!pnode->fDisconnect) {
|
|
LogPrint(BCLog::NET, "Network not active, dropping peer=%d\n", pnode->GetId());
|
|
pnode->fDisconnect = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Disconnect unused nodes
|
|
std::vector<CNode*> vNodesCopy = vNodes;
|
|
for (CNode* pnode : vNodesCopy)
|
|
{
|
|
if (pnode->fDisconnect)
|
|
{
|
|
// remove from vNodes
|
|
vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode), vNodes.end());
|
|
|
|
// release outbound grant (if any)
|
|
pnode->grantOutbound.Release();
|
|
|
|
// close socket and cleanup
|
|
pnode->CloseSocketDisconnect();
|
|
|
|
// hold in disconnected pool until all refs are released
|
|
pnode->Release();
|
|
vNodesDisconnected.push_back(pnode);
|
|
}
|
|
}
|
|
}
|
|
{
|
|
// Delete disconnected nodes
|
|
std::list<CNode*> vNodesDisconnectedCopy = vNodesDisconnected;
|
|
for (CNode* pnode : vNodesDisconnectedCopy)
|
|
{
|
|
// wait until threads are done using it
|
|
if (pnode->GetRefCount() <= 0) {
|
|
bool fDelete = false;
|
|
{
|
|
TRY_LOCK(pnode->cs_inventory, lockInv);
|
|
if (lockInv) {
|
|
TRY_LOCK(pnode->cs_vSend, lockSend);
|
|
if (lockSend) {
|
|
fDelete = true;
|
|
}
|
|
}
|
|
}
|
|
if (fDelete) {
|
|
vNodesDisconnected.remove(pnode);
|
|
DeleteNode(pnode);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CConnman::NotifyNumConnectionsChanged()
|
|
{
|
|
size_t vNodesSize;
|
|
{
|
|
LOCK(cs_vNodes);
|
|
vNodesSize = vNodes.size();
|
|
}
|
|
if(vNodesSize != nPrevNodeCount) {
|
|
nPrevNodeCount = vNodesSize;
|
|
if(clientInterface)
|
|
clientInterface->NotifyNumConnectionsChanged(vNodesSize);
|
|
}
|
|
}
|
|
|
|
void CConnman::InactivityCheck(CNode *pnode)
|
|
{
|
|
int64_t nTime = GetSystemTimeInSeconds();
|
|
if (nTime - pnode->nTimeConnected > m_peer_connect_timeout)
|
|
{
|
|
if (pnode->nLastRecv == 0 || pnode->nLastSend == 0)
|
|
{
|
|
LogPrint(BCLog::NET, "socket no message in first %i seconds, %d %d from %d\n", m_peer_connect_timeout, pnode->nLastRecv != 0, pnode->nLastSend != 0, pnode->GetId());
|
|
pnode->fDisconnect = true;
|
|
}
|
|
else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL)
|
|
{
|
|
LogPrintf("socket sending timeout: %is\n", nTime - pnode->nLastSend);
|
|
pnode->fDisconnect = true;
|
|
}
|
|
else if (nTime - pnode->nLastRecv > (pnode->nVersion > BIP0031_VERSION ? TIMEOUT_INTERVAL : 90*60))
|
|
{
|
|
LogPrintf("socket receive timeout: %is\n", nTime - pnode->nLastRecv);
|
|
pnode->fDisconnect = true;
|
|
}
|
|
else if (pnode->nPingNonceSent && pnode->nPingUsecStart + TIMEOUT_INTERVAL * 1000000 < GetTimeMicros())
|
|
{
|
|
LogPrintf("ping timeout: %fs\n", 0.000001 * (GetTimeMicros() - pnode->nPingUsecStart));
|
|
pnode->fDisconnect = true;
|
|
}
|
|
else if (!pnode->fSuccessfullyConnected)
|
|
{
|
|
LogPrint(BCLog::NET, "version handshake timeout from %d\n", pnode->GetId());
|
|
pnode->fDisconnect = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool CConnman::GenerateSelectSet(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set)
|
|
{
|
|
for (const ListenSocket& hListenSocket : vhListenSocket) {
|
|
recv_set.insert(hListenSocket.socket);
|
|
}
|
|
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (CNode* pnode : vNodes)
|
|
{
|
|
// Implement the following logic:
|
|
// * If there is data to send, select() for sending data. As this only
|
|
// happens when optimistic write failed, we choose to first drain the
|
|
// write buffer in this case before receiving more. This avoids
|
|
// needlessly queueing received data, if the remote peer is not themselves
|
|
// receiving data. This means properly utilizing TCP flow control signalling.
|
|
// * Otherwise, if there is space left in the receive buffer, select() for
|
|
// receiving data.
|
|
// * Hand off all complete messages to the processor, to be handled without
|
|
// blocking here.
|
|
|
|
bool select_recv = !pnode->fPauseRecv;
|
|
bool select_send;
|
|
{
|
|
LOCK(pnode->cs_vSend);
|
|
select_send = !pnode->vSendMsg.empty();
|
|
}
|
|
|
|
LOCK(pnode->cs_hSocket);
|
|
if (pnode->hSocket == INVALID_SOCKET)
|
|
continue;
|
|
|
|
error_set.insert(pnode->hSocket);
|
|
if (select_send) {
|
|
send_set.insert(pnode->hSocket);
|
|
continue;
|
|
}
|
|
if (select_recv) {
|
|
recv_set.insert(pnode->hSocket);
|
|
}
|
|
}
|
|
}
|
|
|
|
return !recv_set.empty() || !send_set.empty() || !error_set.empty();
|
|
}
|
|
|
|
#ifdef USE_POLL
|
|
void CConnman::SocketEvents(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set)
|
|
{
|
|
std::set<SOCKET> recv_select_set, send_select_set, error_select_set;
|
|
if (!GenerateSelectSet(recv_select_set, send_select_set, error_select_set)) {
|
|
interruptNet.sleep_for(std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS));
|
|
return;
|
|
}
|
|
|
|
std::unordered_map<SOCKET, struct pollfd> pollfds;
|
|
for (SOCKET socket_id : recv_select_set) {
|
|
pollfds[socket_id].fd = socket_id;
|
|
pollfds[socket_id].events |= POLLIN;
|
|
}
|
|
|
|
for (SOCKET socket_id : send_select_set) {
|
|
pollfds[socket_id].fd = socket_id;
|
|
pollfds[socket_id].events |= POLLOUT;
|
|
}
|
|
|
|
for (SOCKET socket_id : error_select_set) {
|
|
pollfds[socket_id].fd = socket_id;
|
|
// These flags are ignored, but we set them for clarity
|
|
pollfds[socket_id].events |= POLLERR|POLLHUP;
|
|
}
|
|
|
|
std::vector<struct pollfd> vpollfds;
|
|
vpollfds.reserve(pollfds.size());
|
|
for (auto it : pollfds) {
|
|
vpollfds.push_back(std::move(it.second));
|
|
}
|
|
|
|
if (poll(vpollfds.data(), vpollfds.size(), SELECT_TIMEOUT_MILLISECONDS) < 0) return;
|
|
|
|
if (interruptNet) return;
|
|
|
|
for (struct pollfd pollfd_entry : vpollfds) {
|
|
if (pollfd_entry.revents & POLLIN) recv_set.insert(pollfd_entry.fd);
|
|
if (pollfd_entry.revents & POLLOUT) send_set.insert(pollfd_entry.fd);
|
|
if (pollfd_entry.revents & (POLLERR|POLLHUP)) error_set.insert(pollfd_entry.fd);
|
|
}
|
|
}
|
|
#else
|
|
void CConnman::SocketEvents(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set)
|
|
{
|
|
std::set<SOCKET> recv_select_set, send_select_set, error_select_set;
|
|
if (!GenerateSelectSet(recv_select_set, send_select_set, error_select_set)) {
|
|
interruptNet.sleep_for(std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS));
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Find which sockets have data to receive
|
|
//
|
|
struct timeval timeout;
|
|
timeout.tv_sec = 0;
|
|
timeout.tv_usec = SELECT_TIMEOUT_MILLISECONDS * 1000; // frequency to poll pnode->vSend
|
|
|
|
fd_set fdsetRecv;
|
|
fd_set fdsetSend;
|
|
fd_set fdsetError;
|
|
FD_ZERO(&fdsetRecv);
|
|
FD_ZERO(&fdsetSend);
|
|
FD_ZERO(&fdsetError);
|
|
SOCKET hSocketMax = 0;
|
|
|
|
for (SOCKET hSocket : recv_select_set) {
|
|
FD_SET(hSocket, &fdsetRecv);
|
|
hSocketMax = std::max(hSocketMax, hSocket);
|
|
}
|
|
|
|
for (SOCKET hSocket : send_select_set) {
|
|
FD_SET(hSocket, &fdsetSend);
|
|
hSocketMax = std::max(hSocketMax, hSocket);
|
|
}
|
|
|
|
for (SOCKET hSocket : error_select_set) {
|
|
FD_SET(hSocket, &fdsetError);
|
|
hSocketMax = std::max(hSocketMax, hSocket);
|
|
}
|
|
|
|
int nSelect = select(hSocketMax + 1, &fdsetRecv, &fdsetSend, &fdsetError, &timeout);
|
|
|
|
if (interruptNet)
|
|
return;
|
|
|
|
if (nSelect == SOCKET_ERROR)
|
|
{
|
|
int nErr = WSAGetLastError();
|
|
LogPrintf("socket select error %s\n", NetworkErrorString(nErr));
|
|
for (unsigned int i = 0; i <= hSocketMax; i++)
|
|
FD_SET(i, &fdsetRecv);
|
|
FD_ZERO(&fdsetSend);
|
|
FD_ZERO(&fdsetError);
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS)))
|
|
return;
|
|
}
|
|
|
|
for (SOCKET hSocket : recv_select_set) {
|
|
if (FD_ISSET(hSocket, &fdsetRecv)) {
|
|
recv_set.insert(hSocket);
|
|
}
|
|
}
|
|
|
|
for (SOCKET hSocket : send_select_set) {
|
|
if (FD_ISSET(hSocket, &fdsetSend)) {
|
|
send_set.insert(hSocket);
|
|
}
|
|
}
|
|
|
|
for (SOCKET hSocket : error_select_set) {
|
|
if (FD_ISSET(hSocket, &fdsetError)) {
|
|
error_set.insert(hSocket);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void CConnman::SocketHandler()
|
|
{
|
|
std::set<SOCKET> recv_set, send_set, error_set;
|
|
SocketEvents(recv_set, send_set, error_set);
|
|
|
|
if (interruptNet) return;
|
|
|
|
//
|
|
// Accept new connections
|
|
//
|
|
for (const ListenSocket& hListenSocket : vhListenSocket)
|
|
{
|
|
if (hListenSocket.socket != INVALID_SOCKET && recv_set.count(hListenSocket.socket) > 0)
|
|
{
|
|
AcceptConnection(hListenSocket);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Service each socket
|
|
//
|
|
std::vector<CNode*> vNodesCopy;
|
|
{
|
|
LOCK(cs_vNodes);
|
|
vNodesCopy = vNodes;
|
|
for (CNode* pnode : vNodesCopy)
|
|
pnode->AddRef();
|
|
}
|
|
for (CNode* pnode : vNodesCopy)
|
|
{
|
|
if (interruptNet)
|
|
return;
|
|
|
|
//
|
|
// Receive
|
|
//
|
|
bool recvSet = false;
|
|
bool sendSet = false;
|
|
bool errorSet = false;
|
|
{
|
|
LOCK(pnode->cs_hSocket);
|
|
if (pnode->hSocket == INVALID_SOCKET)
|
|
continue;
|
|
recvSet = recv_set.count(pnode->hSocket) > 0;
|
|
sendSet = send_set.count(pnode->hSocket) > 0;
|
|
errorSet = error_set.count(pnode->hSocket) > 0;
|
|
}
|
|
if (recvSet || errorSet)
|
|
{
|
|
// typical socket buffer is 8K-64K
|
|
char pchBuf[0x10000];
|
|
int nBytes = 0;
|
|
{
|
|
LOCK(pnode->cs_hSocket);
|
|
if (pnode->hSocket == INVALID_SOCKET)
|
|
continue;
|
|
nBytes = recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
|
|
}
|
|
if (nBytes > 0)
|
|
{
|
|
bool notify = false;
|
|
if (!pnode->ReceiveMsgBytes(pchBuf, nBytes, notify))
|
|
pnode->CloseSocketDisconnect();
|
|
RecordBytesRecv(nBytes);
|
|
if (notify) {
|
|
size_t nSizeAdded = 0;
|
|
auto it(pnode->vRecvMsg.begin());
|
|
for (; it != pnode->vRecvMsg.end(); ++it) {
|
|
// vRecvMsg contains only completed CNetMessage
|
|
// the single possible partially deserialized message are held by TransportDeserializer
|
|
nSizeAdded += it->m_raw_message_size;
|
|
}
|
|
{
|
|
LOCK(pnode->cs_vProcessMsg);
|
|
pnode->vProcessMsg.splice(pnode->vProcessMsg.end(), pnode->vRecvMsg, pnode->vRecvMsg.begin(), it);
|
|
pnode->nProcessQueueSize += nSizeAdded;
|
|
pnode->fPauseRecv = pnode->nProcessQueueSize > nReceiveFloodSize;
|
|
}
|
|
WakeMessageHandler();
|
|
}
|
|
}
|
|
else if (nBytes == 0)
|
|
{
|
|
// socket closed gracefully
|
|
if (!pnode->fDisconnect) {
|
|
LogPrint(BCLog::NET, "socket closed for peer=%d\n", pnode->GetId());
|
|
}
|
|
pnode->CloseSocketDisconnect();
|
|
}
|
|
else if (nBytes < 0)
|
|
{
|
|
// error
|
|
int nErr = WSAGetLastError();
|
|
if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
|
|
{
|
|
if (!pnode->fDisconnect) {
|
|
LogPrint(BCLog::NET, "socket recv error for peer=%d: %s\n", pnode->GetId(), NetworkErrorString(nErr));
|
|
}
|
|
pnode->CloseSocketDisconnect();
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Send
|
|
//
|
|
if (sendSet)
|
|
{
|
|
LOCK(pnode->cs_vSend);
|
|
size_t nBytes = SocketSendData(pnode);
|
|
if (nBytes) {
|
|
RecordBytesSent(nBytes);
|
|
}
|
|
}
|
|
|
|
InactivityCheck(pnode);
|
|
}
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (CNode* pnode : vNodesCopy)
|
|
pnode->Release();
|
|
}
|
|
}
|
|
|
|
void CConnman::ThreadSocketHandler()
|
|
{
|
|
while (!interruptNet)
|
|
{
|
|
DisconnectNodes();
|
|
NotifyNumConnectionsChanged();
|
|
SocketHandler();
|
|
}
|
|
}
|
|
|
|
void CConnman::WakeMessageHandler()
|
|
{
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutexMsgProc);
|
|
fMsgProcWake = true;
|
|
}
|
|
condMsgProc.notify_one();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef USE_UPNP
|
|
static CThreadInterrupt g_upnp_interrupt;
|
|
static std::thread g_upnp_thread;
|
|
static void ThreadMapPort()
|
|
{
|
|
std::string port = strprintf("%u", GetListenPort());
|
|
const char * multicastif = nullptr;
|
|
const char * minissdpdpath = nullptr;
|
|
struct UPNPDev * devlist = nullptr;
|
|
char lanaddr[64];
|
|
|
|
int error = 0;
|
|
#if MINIUPNPC_API_VERSION < 14
|
|
devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, &error);
|
|
#else
|
|
devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, 2, &error);
|
|
#endif
|
|
|
|
struct UPNPUrls urls;
|
|
struct IGDdatas data;
|
|
int r;
|
|
|
|
r = UPNP_GetValidIGD(devlist, &urls, &data, lanaddr, sizeof(lanaddr));
|
|
if (r == 1)
|
|
{
|
|
if (fDiscover) {
|
|
char externalIPAddress[40];
|
|
r = UPNP_GetExternalIPAddress(urls.controlURL, data.first.servicetype, externalIPAddress);
|
|
if (r != UPNPCOMMAND_SUCCESS) {
|
|
LogPrintf("UPnP: GetExternalIPAddress() returned %d\n", r);
|
|
} else {
|
|
if (externalIPAddress[0]) {
|
|
CNetAddr resolved;
|
|
if (LookupHost(externalIPAddress, resolved, false)) {
|
|
LogPrintf("UPnP: ExternalIPAddress = %s\n", resolved.ToString());
|
|
AddLocal(resolved, LOCAL_UPNP);
|
|
}
|
|
} else {
|
|
LogPrintf("UPnP: GetExternalIPAddress failed.\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
std::string strDesc = PACKAGE_NAME " " + FormatFullVersion();
|
|
|
|
do {
|
|
r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0, "0");
|
|
|
|
if (r != UPNPCOMMAND_SUCCESS) {
|
|
LogPrintf("AddPortMapping(%s, %s, %s) failed with code %d (%s)\n", port, port, lanaddr, r, strupnperror(r));
|
|
} else {
|
|
LogPrintf("UPnP Port Mapping successful.\n");
|
|
}
|
|
} while (g_upnp_interrupt.sleep_for(std::chrono::minutes(20)));
|
|
|
|
r = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype, port.c_str(), "TCP", 0);
|
|
LogPrintf("UPNP_DeletePortMapping() returned: %d\n", r);
|
|
freeUPNPDevlist(devlist); devlist = nullptr;
|
|
FreeUPNPUrls(&urls);
|
|
} else {
|
|
LogPrintf("No valid UPnP IGDs found\n");
|
|
freeUPNPDevlist(devlist); devlist = nullptr;
|
|
if (r != 0)
|
|
FreeUPNPUrls(&urls);
|
|
}
|
|
}
|
|
|
|
void StartMapPort()
|
|
{
|
|
if (!g_upnp_thread.joinable()) {
|
|
assert(!g_upnp_interrupt);
|
|
g_upnp_thread = std::thread((std::bind(&TraceThread<void (*)()>, "upnp", &ThreadMapPort)));
|
|
}
|
|
}
|
|
|
|
void InterruptMapPort()
|
|
{
|
|
if(g_upnp_thread.joinable()) {
|
|
g_upnp_interrupt();
|
|
}
|
|
}
|
|
|
|
void StopMapPort()
|
|
{
|
|
if(g_upnp_thread.joinable()) {
|
|
g_upnp_thread.join();
|
|
g_upnp_interrupt.reset();
|
|
}
|
|
}
|
|
|
|
#else
|
|
void StartMapPort()
|
|
{
|
|
// Intentionally left blank.
|
|
}
|
|
void InterruptMapPort()
|
|
{
|
|
// Intentionally left blank.
|
|
}
|
|
void StopMapPort()
|
|
{
|
|
// Intentionally left blank.
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void CConnman::ThreadDNSAddressSeed()
|
|
{
|
|
FastRandomContext rng;
|
|
std::vector<std::string> seeds = Params().DNSSeeds();
|
|
Shuffle(seeds.begin(), seeds.end(), rng);
|
|
int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
|
|
int found = 0;
|
|
|
|
if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
|
|
// When -forcednsseed is provided, query all.
|
|
seeds_right_now = seeds.size();
|
|
}
|
|
|
|
for (const std::string& seed : seeds) {
|
|
// goal: only query DNS seed if address need is acute
|
|
// Avoiding DNS seeds when we don't need them improves user privacy by
|
|
// creating fewer identifying DNS requests, reduces trust by giving seeds
|
|
// less influence on the network topology, and reduces traffic to the seeds.
|
|
if (addrman.size() > 0 && seeds_right_now == 0) {
|
|
if (!interruptNet.sleep_for(std::chrono::seconds(11))) return;
|
|
|
|
LOCK(cs_vNodes);
|
|
int nRelevant = 0;
|
|
for (const CNode* pnode : vNodes) {
|
|
nRelevant += pnode->fSuccessfullyConnected && !pnode->fFeeler && !pnode->fOneShot && !pnode->m_manual_connection && !pnode->fInbound;
|
|
}
|
|
if (nRelevant >= 2) {
|
|
LogPrintf("P2P peers available. Skipped DNS seeding.\n");
|
|
return;
|
|
}
|
|
seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
|
|
}
|
|
|
|
if (interruptNet) {
|
|
return;
|
|
}
|
|
LogPrintf("Loading addresses from DNS seed %s\n", seed);
|
|
if (HaveNameProxy()) {
|
|
AddOneShot(seed);
|
|
} else {
|
|
std::vector<CNetAddr> vIPs;
|
|
std::vector<CAddress> vAdd;
|
|
ServiceFlags requiredServiceBits = GetDesirableServiceFlags(NODE_NONE);
|
|
std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
|
|
CNetAddr resolveSource;
|
|
if (!resolveSource.SetInternal(host)) {
|
|
continue;
|
|
}
|
|
unsigned int nMaxIPs = 256; // Limits number of IPs learned from a DNS seed
|
|
if (LookupHost(host, vIPs, nMaxIPs, true)) {
|
|
for (const CNetAddr& ip : vIPs) {
|
|
int nOneDay = 24*3600;
|
|
CAddress addr = CAddress(CService(ip, Params().GetDefaultPort()), requiredServiceBits);
|
|
addr.nTime = GetTime() - 3*nOneDay - rng.randrange(4*nOneDay); // use a random age between 3 and 7 days old
|
|
vAdd.push_back(addr);
|
|
found++;
|
|
}
|
|
addrman.Add(vAdd, resolveSource);
|
|
} else {
|
|
// We now avoid directly using results from DNS Seeds which do not support service bit filtering,
|
|
// instead using them as a oneshot to get nodes with our desired service bits.
|
|
AddOneShot(seed);
|
|
}
|
|
}
|
|
--seeds_right_now;
|
|
}
|
|
LogPrintf("%d addresses found from DNS seeds\n", found);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void CConnman::DumpAddresses()
|
|
{
|
|
int64_t nStart = GetTimeMillis();
|
|
|
|
CAddrDB adb;
|
|
adb.Write(addrman);
|
|
|
|
LogPrint(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
|
|
addrman.size(), GetTimeMillis() - nStart);
|
|
}
|
|
|
|
void CConnman::ProcessOneShot()
|
|
{
|
|
std::string strDest;
|
|
{
|
|
LOCK(cs_vOneShots);
|
|
if (vOneShots.empty())
|
|
return;
|
|
strDest = vOneShots.front();
|
|
vOneShots.pop_front();
|
|
}
|
|
CAddress addr;
|
|
CSemaphoreGrant grant(*semOutbound, true);
|
|
if (grant) {
|
|
OpenNetworkConnection(addr, false, &grant, strDest.c_str(), true);
|
|
}
|
|
}
|
|
|
|
bool CConnman::GetTryNewOutboundPeer()
|
|
{
|
|
return m_try_another_outbound_peer;
|
|
}
|
|
|
|
void CConnman::SetTryNewOutboundPeer(bool flag)
|
|
{
|
|
m_try_another_outbound_peer = flag;
|
|
LogPrint(BCLog::NET, "net: setting try another outbound peer=%s\n", flag ? "true" : "false");
|
|
}
|
|
|
|
// Return the number of peers we have over our outbound connection limit
|
|
// Exclude peers that are marked for disconnect, or are going to be
|
|
// disconnected soon (eg one-shots and feelers)
|
|
// Also exclude peers that haven't finished initial connection handshake yet
|
|
// (so that we don't decide we're over our desired connection limit, and then
|
|
// evict some peer that has finished the handshake)
|
|
int CConnman::GetExtraOutboundCount()
|
|
{
|
|
int nOutbound = 0;
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (const CNode* pnode : vNodes) {
|
|
if (!pnode->fInbound && !pnode->m_manual_connection && !pnode->fFeeler && !pnode->fDisconnect && !pnode->fOneShot && pnode->fSuccessfullyConnected) {
|
|
++nOutbound;
|
|
}
|
|
}
|
|
}
|
|
return std::max(nOutbound - m_max_outbound_full_relay - m_max_outbound_block_relay, 0);
|
|
}
|
|
|
|
void CConnman::ThreadOpenConnections(const std::vector<std::string> connect)
|
|
{
|
|
// Connect to specific addresses
|
|
if (!connect.empty())
|
|
{
|
|
for (int64_t nLoop = 0;; nLoop++)
|
|
{
|
|
ProcessOneShot();
|
|
for (const std::string& strAddr : connect)
|
|
{
|
|
CAddress addr(CService(), NODE_NONE);
|
|
OpenNetworkConnection(addr, false, nullptr, strAddr.c_str(), false, false, true);
|
|
for (int i = 0; i < 10 && i < nLoop; i++)
|
|
{
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
|
|
return;
|
|
}
|
|
}
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Initiate network connections
|
|
int64_t nStart = GetTime();
|
|
|
|
// Minimum time before next feeler connection (in microseconds).
|
|
int64_t nNextFeeler = PoissonNextSend(nStart*1000*1000, FEELER_INTERVAL);
|
|
while (!interruptNet)
|
|
{
|
|
ProcessOneShot();
|
|
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
|
|
return;
|
|
|
|
CSemaphoreGrant grant(*semOutbound);
|
|
if (interruptNet)
|
|
return;
|
|
|
|
// Add seed nodes if DNS seeds are all down (an infrastructure attack?).
|
|
if (addrman.size() == 0 && (GetTime() - nStart > 60)) {
|
|
static bool done = false;
|
|
if (!done) {
|
|
LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be available.\n");
|
|
CNetAddr local;
|
|
local.SetInternal("fixedseeds");
|
|
addrman.Add(convertSeed6(Params().FixedSeeds()), local);
|
|
done = true;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Choose an address to connect to based on most recently seen
|
|
//
|
|
CAddress addrConnect;
|
|
|
|
// Only connect out to one peer per network group (/16 for IPv4).
|
|
int nOutboundFullRelay = 0;
|
|
int nOutboundBlockRelay = 0;
|
|
std::set<std::vector<unsigned char> > setConnected;
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (const CNode* pnode : vNodes) {
|
|
if (!pnode->fInbound && !pnode->m_manual_connection) {
|
|
// Netgroups for inbound and addnode peers are not excluded because our goal here
|
|
// is to not use multiple of our limited outbound slots on a single netgroup
|
|
// but inbound and addnode peers do not use our outbound slots. Inbound peers
|
|
// also have the added issue that they're attacker controlled and could be used
|
|
// to prevent us from connecting to particular hosts if we used them here.
|
|
setConnected.insert(pnode->addr.GetGroup(addrman.m_asmap));
|
|
if (pnode->m_tx_relay == nullptr) {
|
|
nOutboundBlockRelay++;
|
|
} else if (!pnode->fFeeler) {
|
|
nOutboundFullRelay++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Feeler Connections
|
|
//
|
|
// Design goals:
|
|
// * Increase the number of connectable addresses in the tried table.
|
|
//
|
|
// Method:
|
|
// * Choose a random address from new and attempt to connect to it if we can connect
|
|
// successfully it is added to tried.
|
|
// * Start attempting feeler connections only after node finishes making outbound
|
|
// connections.
|
|
// * Only make a feeler connection once every few minutes.
|
|
//
|
|
bool fFeeler = false;
|
|
|
|
if (nOutboundFullRelay >= m_max_outbound_full_relay && nOutboundBlockRelay >= m_max_outbound_block_relay && !GetTryNewOutboundPeer()) {
|
|
int64_t nTime = GetTimeMicros(); // The current time right now (in microseconds).
|
|
if (nTime > nNextFeeler) {
|
|
nNextFeeler = PoissonNextSend(nTime, FEELER_INTERVAL);
|
|
fFeeler = true;
|
|
} else {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
addrman.ResolveCollisions();
|
|
|
|
int64_t nANow = GetAdjustedTime();
|
|
int nTries = 0;
|
|
while (!interruptNet)
|
|
{
|
|
CAddrInfo addr = addrman.SelectTriedCollision();
|
|
|
|
// SelectTriedCollision returns an invalid address if it is empty.
|
|
if (!fFeeler || !addr.IsValid()) {
|
|
addr = addrman.Select(fFeeler);
|
|
}
|
|
|
|
// Require outbound connections, other than feelers, to be to distinct network groups
|
|
if (!fFeeler && setConnected.count(addr.GetGroup(addrman.m_asmap))) {
|
|
break;
|
|
}
|
|
|
|
// if we selected an invalid or local address, restart
|
|
if (!addr.IsValid() || IsLocal(addr)) {
|
|
break;
|
|
}
|
|
|
|
// If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
|
|
// stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
|
|
// already-connected network ranges, ...) before trying new addrman addresses.
|
|
nTries++;
|
|
if (nTries > 100)
|
|
break;
|
|
|
|
if (!IsReachable(addr))
|
|
continue;
|
|
|
|
// only consider very recently tried nodes after 30 failed attempts
|
|
if (nANow - addr.nLastTry < 600 && nTries < 30)
|
|
continue;
|
|
|
|
// for non-feelers, require all the services we'll want,
|
|
// for feelers, only require they be a full node (only because most
|
|
// SPV clients don't have a good address DB available)
|
|
if (!fFeeler && !HasAllDesirableServiceFlags(addr.nServices)) {
|
|
continue;
|
|
} else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
|
|
continue;
|
|
}
|
|
|
|
// do not allow non-default ports, unless after 50 invalid addresses selected already
|
|
if (addr.GetPort() != Params().GetDefaultPort() && nTries < 50)
|
|
continue;
|
|
|
|
addrConnect = addr;
|
|
break;
|
|
}
|
|
|
|
if (addrConnect.IsValid()) {
|
|
|
|
if (fFeeler) {
|
|
// Add small amount of random noise before connection to avoid synchronization.
|
|
int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000);
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(randsleep)))
|
|
return;
|
|
LogPrint(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToString());
|
|
}
|
|
|
|
// Open this connection as block-relay-only if we're already at our
|
|
// full-relay capacity, but not yet at our block-relay peer limit.
|
|
// (It should not be possible for fFeeler to be set if we're not
|
|
// also at our block-relay peer limit, but check against that as
|
|
// well for sanity.)
|
|
bool block_relay_only = nOutboundBlockRelay < m_max_outbound_block_relay && !fFeeler && nOutboundFullRelay >= m_max_outbound_full_relay;
|
|
|
|
OpenNetworkConnection(addrConnect, (int)setConnected.size() >= std::min(nMaxConnections - 1, 2), &grant, nullptr, false, fFeeler, false, block_relay_only);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo()
|
|
{
|
|
std::vector<AddedNodeInfo> ret;
|
|
|
|
std::list<std::string> lAddresses(0);
|
|
{
|
|
LOCK(cs_vAddedNodes);
|
|
ret.reserve(vAddedNodes.size());
|
|
std::copy(vAddedNodes.cbegin(), vAddedNodes.cend(), std::back_inserter(lAddresses));
|
|
}
|
|
|
|
|
|
// Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
|
|
std::map<CService, bool> mapConnected;
|
|
std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (const CNode* pnode : vNodes) {
|
|
if (pnode->addr.IsValid()) {
|
|
mapConnected[pnode->addr] = pnode->fInbound;
|
|
}
|
|
std::string addrName = pnode->GetAddrName();
|
|
if (!addrName.empty()) {
|
|
mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->fInbound, static_cast<const CService&>(pnode->addr));
|
|
}
|
|
}
|
|
}
|
|
|
|
for (const std::string& strAddNode : lAddresses) {
|
|
CService service(LookupNumeric(strAddNode, Params().GetDefaultPort()));
|
|
AddedNodeInfo addedNode{strAddNode, CService(), false, false};
|
|
if (service.IsValid()) {
|
|
// strAddNode is an IP:port
|
|
auto it = mapConnected.find(service);
|
|
if (it != mapConnected.end()) {
|
|
addedNode.resolvedAddress = service;
|
|
addedNode.fConnected = true;
|
|
addedNode.fInbound = it->second;
|
|
}
|
|
} else {
|
|
// strAddNode is a name
|
|
auto it = mapConnectedByName.find(strAddNode);
|
|
if (it != mapConnectedByName.end()) {
|
|
addedNode.resolvedAddress = it->second.second;
|
|
addedNode.fConnected = true;
|
|
addedNode.fInbound = it->second.first;
|
|
}
|
|
}
|
|
ret.emplace_back(std::move(addedNode));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void CConnman::ThreadOpenAddedConnections()
|
|
{
|
|
while (true)
|
|
{
|
|
CSemaphoreGrant grant(*semAddnode);
|
|
std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo();
|
|
bool tried = false;
|
|
for (const AddedNodeInfo& info : vInfo) {
|
|
if (!info.fConnected) {
|
|
if (!grant.TryAcquire()) {
|
|
// If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
|
|
// the addednodeinfo state might change.
|
|
break;
|
|
}
|
|
tried = true;
|
|
CAddress addr(CService(), NODE_NONE);
|
|
OpenNetworkConnection(addr, false, &grant, info.strAddedNode.c_str(), false, false, true);
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
|
|
return;
|
|
}
|
|
}
|
|
// Retry every 60 seconds if a connection was attempted, otherwise two seconds
|
|
if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
|
|
return;
|
|
}
|
|
}
|
|
|
|
// if successful, this moves the passed grant to the constructed node
|
|
void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound, const char *pszDest, bool fOneShot, bool fFeeler, bool manual_connection, bool block_relay_only)
|
|
{
|
|
//
|
|
// Initiate outbound network connection
|
|
//
|
|
if (interruptNet) {
|
|
return;
|
|
}
|
|
if (!fNetworkActive) {
|
|
return;
|
|
}
|
|
if (!pszDest) {
|
|
if (IsLocal(addrConnect) ||
|
|
FindNode(static_cast<CNetAddr>(addrConnect)) || (m_banman && m_banman->IsBanned(addrConnect)) ||
|
|
FindNode(addrConnect.ToStringIPPort()))
|
|
return;
|
|
} else if (FindNode(std::string(pszDest)))
|
|
return;
|
|
|
|
CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, manual_connection, block_relay_only);
|
|
|
|
if (!pnode)
|
|
return;
|
|
if (grantOutbound)
|
|
grantOutbound->MoveTo(pnode->grantOutbound);
|
|
if (fOneShot)
|
|
pnode->fOneShot = true;
|
|
if (fFeeler)
|
|
pnode->fFeeler = true;
|
|
if (manual_connection)
|
|
pnode->m_manual_connection = true;
|
|
|
|
m_msgproc->InitializeNode(pnode);
|
|
{
|
|
LOCK(cs_vNodes);
|
|
vNodes.push_back(pnode);
|
|
}
|
|
}
|
|
|
|
void CConnman::ThreadMessageHandler()
|
|
{
|
|
while (!flagInterruptMsgProc)
|
|
{
|
|
std::vector<CNode*> vNodesCopy;
|
|
{
|
|
LOCK(cs_vNodes);
|
|
vNodesCopy = vNodes;
|
|
for (CNode* pnode : vNodesCopy) {
|
|
pnode->AddRef();
|
|
}
|
|
}
|
|
|
|
bool fMoreWork = false;
|
|
|
|
for (CNode* pnode : vNodesCopy)
|
|
{
|
|
if (pnode->fDisconnect)
|
|
continue;
|
|
|
|
// Receive messages
|
|
bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
|
|
fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
|
|
if (flagInterruptMsgProc)
|
|
return;
|
|
// Send messages
|
|
{
|
|
LOCK(pnode->cs_sendProcessing);
|
|
m_msgproc->SendMessages(pnode);
|
|
}
|
|
|
|
if (flagInterruptMsgProc)
|
|
return;
|
|
}
|
|
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (CNode* pnode : vNodesCopy)
|
|
pnode->Release();
|
|
}
|
|
|
|
WAIT_LOCK(mutexMsgProc, lock);
|
|
if (!fMoreWork) {
|
|
condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this] { return fMsgProcWake; });
|
|
}
|
|
fMsgProcWake = false;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool CConnman::BindListenPort(const CService& addrBind, std::string& strError, NetPermissionFlags permissions)
|
|
{
|
|
strError = "";
|
|
int nOne = 1;
|
|
|
|
// Create socket for listening for incoming connections
|
|
struct sockaddr_storage sockaddr;
|
|
socklen_t len = sizeof(sockaddr);
|
|
if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
|
|
{
|
|
strError = strprintf("Error: Bind address family for %s not supported", addrBind.ToString());
|
|
LogPrintf("%s\n", strError);
|
|
return false;
|
|
}
|
|
|
|
SOCKET hListenSocket = CreateSocket(addrBind);
|
|
if (hListenSocket == INVALID_SOCKET)
|
|
{
|
|
strError = strprintf("Error: Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError()));
|
|
LogPrintf("%s\n", strError);
|
|
return false;
|
|
}
|
|
|
|
// Allow binding if the port is still in TIME_WAIT state after
|
|
// the program was closed and restarted.
|
|
setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int));
|
|
|
|
// some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
|
|
// and enable it by default or not. Try to enable it, if possible.
|
|
if (addrBind.IsIPv6()) {
|
|
#ifdef IPV6_V6ONLY
|
|
setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int));
|
|
#endif
|
|
#ifdef WIN32
|
|
int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
|
|
setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int));
|
|
#endif
|
|
}
|
|
|
|
if (::bind(hListenSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR)
|
|
{
|
|
int nErr = WSAGetLastError();
|
|
if (nErr == WSAEADDRINUSE)
|
|
strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running.").translated, addrBind.ToString(), PACKAGE_NAME);
|
|
else
|
|
strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)").translated, addrBind.ToString(), NetworkErrorString(nErr));
|
|
LogPrintf("%s\n", strError);
|
|
CloseSocket(hListenSocket);
|
|
return false;
|
|
}
|
|
LogPrintf("Bound to %s\n", addrBind.ToString());
|
|
|
|
// Listen for incoming connections
|
|
if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR)
|
|
{
|
|
strError = strprintf(_("Error: Listening for incoming connections failed (listen returned error %s)").translated, NetworkErrorString(WSAGetLastError()));
|
|
LogPrintf("%s\n", strError);
|
|
CloseSocket(hListenSocket);
|
|
return false;
|
|
}
|
|
|
|
vhListenSocket.push_back(ListenSocket(hListenSocket, permissions));
|
|
|
|
if (addrBind.IsRoutable() && fDiscover && (permissions & PF_NOBAN) == 0)
|
|
AddLocal(addrBind, LOCAL_BIND);
|
|
|
|
return true;
|
|
}
|
|
|
|
void Discover()
|
|
{
|
|
if (!fDiscover)
|
|
return;
|
|
|
|
#ifdef WIN32
|
|
// Get local host IP
|
|
char pszHostName[256] = "";
|
|
if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR)
|
|
{
|
|
std::vector<CNetAddr> vaddr;
|
|
if (LookupHost(pszHostName, vaddr, 0, true))
|
|
{
|
|
for (const CNetAddr &addr : vaddr)
|
|
{
|
|
if (AddLocal(addr, LOCAL_IF))
|
|
LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString());
|
|
}
|
|
}
|
|
}
|
|
#elif (HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS)
|
|
// Get local host ip
|
|
struct ifaddrs* myaddrs;
|
|
if (getifaddrs(&myaddrs) == 0)
|
|
{
|
|
for (struct ifaddrs* ifa = myaddrs; ifa != nullptr; ifa = ifa->ifa_next)
|
|
{
|
|
if (ifa->ifa_addr == nullptr) continue;
|
|
if ((ifa->ifa_flags & IFF_UP) == 0) continue;
|
|
if (strcmp(ifa->ifa_name, "lo") == 0) continue;
|
|
if (strcmp(ifa->ifa_name, "lo0") == 0) continue;
|
|
if (ifa->ifa_addr->sa_family == AF_INET)
|
|
{
|
|
struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr);
|
|
CNetAddr addr(s4->sin_addr);
|
|
if (AddLocal(addr, LOCAL_IF))
|
|
LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString());
|
|
}
|
|
else if (ifa->ifa_addr->sa_family == AF_INET6)
|
|
{
|
|
struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr);
|
|
CNetAddr addr(s6->sin6_addr);
|
|
if (AddLocal(addr, LOCAL_IF))
|
|
LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString());
|
|
}
|
|
}
|
|
freeifaddrs(myaddrs);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void CConnman::SetNetworkActive(bool active)
|
|
{
|
|
LogPrint(BCLog::NET, "SetNetworkActive: %s\n", active);
|
|
|
|
if (fNetworkActive == active) {
|
|
return;
|
|
}
|
|
|
|
fNetworkActive = active;
|
|
|
|
uiInterface.NotifyNetworkActiveChanged(fNetworkActive);
|
|
}
|
|
|
|
CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In) : nSeed0(nSeed0In), nSeed1(nSeed1In)
|
|
{
|
|
SetTryNewOutboundPeer(false);
|
|
|
|
Options connOptions;
|
|
Init(connOptions);
|
|
}
|
|
|
|
NodeId CConnman::GetNewNodeId()
|
|
{
|
|
return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
|
|
}
|
|
|
|
|
|
bool CConnman::Bind(const CService &addr, unsigned int flags, NetPermissionFlags permissions) {
|
|
if (!(flags & BF_EXPLICIT) && !IsReachable(addr))
|
|
return false;
|
|
std::string strError;
|
|
if (!BindListenPort(addr, strError, permissions)) {
|
|
if ((flags & BF_REPORT_ERROR) && clientInterface) {
|
|
clientInterface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool CConnman::InitBinds(const std::vector<CService>& binds, const std::vector<NetWhitebindPermissions>& whiteBinds)
|
|
{
|
|
bool fBound = false;
|
|
for (const auto& addrBind : binds) {
|
|
fBound |= Bind(addrBind, (BF_EXPLICIT | BF_REPORT_ERROR), NetPermissionFlags::PF_NONE);
|
|
}
|
|
for (const auto& addrBind : whiteBinds) {
|
|
fBound |= Bind(addrBind.m_service, (BF_EXPLICIT | BF_REPORT_ERROR), addrBind.m_flags);
|
|
}
|
|
if (binds.empty() && whiteBinds.empty()) {
|
|
struct in_addr inaddr_any;
|
|
inaddr_any.s_addr = INADDR_ANY;
|
|
struct in6_addr inaddr6_any = IN6ADDR_ANY_INIT;
|
|
fBound |= Bind(CService(inaddr6_any, GetListenPort()), BF_NONE, NetPermissionFlags::PF_NONE);
|
|
fBound |= Bind(CService(inaddr_any, GetListenPort()), !fBound ? BF_REPORT_ERROR : BF_NONE, NetPermissionFlags::PF_NONE);
|
|
}
|
|
return fBound;
|
|
}
|
|
|
|
bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
|
|
{
|
|
Init(connOptions);
|
|
|
|
{
|
|
LOCK(cs_totalBytesRecv);
|
|
nTotalBytesRecv = 0;
|
|
}
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
nTotalBytesSent = 0;
|
|
nMaxOutboundTotalBytesSentInCycle = 0;
|
|
nMaxOutboundCycleStartTime = 0;
|
|
}
|
|
|
|
if (fListen && !InitBinds(connOptions.vBinds, connOptions.vWhiteBinds)) {
|
|
if (clientInterface) {
|
|
clientInterface->ThreadSafeMessageBox(
|
|
_("Failed to listen on any port. Use -listen=0 if you want this.").translated,
|
|
"", CClientUIInterface::MSG_ERROR);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
for (const auto& strDest : connOptions.vSeedNodes) {
|
|
AddOneShot(strDest);
|
|
}
|
|
|
|
if (clientInterface) {
|
|
clientInterface->InitMessage(_("Loading P2P addresses...").translated);
|
|
}
|
|
// Load addresses from peers.dat
|
|
int64_t nStart = GetTimeMillis();
|
|
{
|
|
CAddrDB adb;
|
|
if (adb.Read(addrman))
|
|
LogPrintf("Loaded %i addresses from peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart);
|
|
else {
|
|
addrman.Clear(); // Addrman can be in an inconsistent state after failure, reset it
|
|
LogPrintf("Invalid or missing peers.dat; recreating\n");
|
|
DumpAddresses();
|
|
}
|
|
}
|
|
|
|
uiInterface.InitMessage(_("Starting network threads...").translated);
|
|
|
|
fAddressesInitialized = true;
|
|
|
|
if (semOutbound == nullptr) {
|
|
// initialize semaphore
|
|
semOutbound = MakeUnique<CSemaphore>(std::min(m_max_outbound, nMaxConnections));
|
|
}
|
|
if (semAddnode == nullptr) {
|
|
// initialize semaphore
|
|
semAddnode = MakeUnique<CSemaphore>(nMaxAddnode);
|
|
}
|
|
|
|
//
|
|
// Start threads
|
|
//
|
|
assert(m_msgproc);
|
|
InterruptSocks5(false);
|
|
interruptNet.reset();
|
|
flagInterruptMsgProc = false;
|
|
|
|
{
|
|
LOCK(mutexMsgProc);
|
|
fMsgProcWake = false;
|
|
}
|
|
|
|
// Send and receive from sockets, accept connections
|
|
threadSocketHandler = std::thread(&TraceThread<std::function<void()> >, "net", std::function<void()>(std::bind(&CConnman::ThreadSocketHandler, this)));
|
|
|
|
if (!gArgs.GetBoolArg("-dnsseed", true))
|
|
LogPrintf("DNS seeding disabled\n");
|
|
else
|
|
threadDNSAddressSeed = std::thread(&TraceThread<std::function<void()> >, "dnsseed", std::function<void()>(std::bind(&CConnman::ThreadDNSAddressSeed, this)));
|
|
|
|
// Initiate outbound connections from -addnode
|
|
threadOpenAddedConnections = std::thread(&TraceThread<std::function<void()> >, "addcon", std::function<void()>(std::bind(&CConnman::ThreadOpenAddedConnections, this)));
|
|
|
|
if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
|
|
if (clientInterface) {
|
|
clientInterface->ThreadSafeMessageBox(
|
|
_("Cannot provide specific connections and have addrman find outgoing connections at the same.").translated,
|
|
"", CClientUIInterface::MSG_ERROR);
|
|
}
|
|
return false;
|
|
}
|
|
if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty())
|
|
threadOpenConnections = std::thread(&TraceThread<std::function<void()> >, "opencon", std::function<void()>(std::bind(&CConnman::ThreadOpenConnections, this, connOptions.m_specified_outgoing)));
|
|
|
|
// Process messages
|
|
threadMessageHandler = std::thread(&TraceThread<std::function<void()> >, "msghand", std::function<void()>(std::bind(&CConnman::ThreadMessageHandler, this)));
|
|
|
|
// Dump network addresses
|
|
scheduler.scheduleEvery(std::bind(&CConnman::DumpAddresses, this), DUMP_PEERS_INTERVAL * 1000);
|
|
|
|
return true;
|
|
}
|
|
|
|
class CNetCleanup
|
|
{
|
|
public:
|
|
CNetCleanup() {}
|
|
|
|
~CNetCleanup()
|
|
{
|
|
#ifdef WIN32
|
|
// Shutdown Windows Sockets
|
|
WSACleanup();
|
|
#endif
|
|
}
|
|
};
|
|
static CNetCleanup instance_of_cnetcleanup;
|
|
|
|
void CConnman::Interrupt()
|
|
{
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutexMsgProc);
|
|
flagInterruptMsgProc = true;
|
|
}
|
|
condMsgProc.notify_all();
|
|
|
|
interruptNet();
|
|
InterruptSocks5(true);
|
|
|
|
if (semOutbound) {
|
|
for (int i=0; i<m_max_outbound; i++) {
|
|
semOutbound->post();
|
|
}
|
|
}
|
|
|
|
if (semAddnode) {
|
|
for (int i=0; i<nMaxAddnode; i++) {
|
|
semAddnode->post();
|
|
}
|
|
}
|
|
}
|
|
|
|
void CConnman::Stop()
|
|
{
|
|
if (threadMessageHandler.joinable())
|
|
threadMessageHandler.join();
|
|
if (threadOpenConnections.joinable())
|
|
threadOpenConnections.join();
|
|
if (threadOpenAddedConnections.joinable())
|
|
threadOpenAddedConnections.join();
|
|
if (threadDNSAddressSeed.joinable())
|
|
threadDNSAddressSeed.join();
|
|
if (threadSocketHandler.joinable())
|
|
threadSocketHandler.join();
|
|
|
|
if (fAddressesInitialized)
|
|
{
|
|
DumpAddresses();
|
|
fAddressesInitialized = false;
|
|
}
|
|
|
|
// Close sockets
|
|
for (CNode* pnode : vNodes)
|
|
pnode->CloseSocketDisconnect();
|
|
for (ListenSocket& hListenSocket : vhListenSocket)
|
|
if (hListenSocket.socket != INVALID_SOCKET)
|
|
if (!CloseSocket(hListenSocket.socket))
|
|
LogPrintf("CloseSocket(hListenSocket) failed with error %s\n", NetworkErrorString(WSAGetLastError()));
|
|
|
|
// clean up some globals (to help leak detection)
|
|
for (CNode *pnode : vNodes) {
|
|
DeleteNode(pnode);
|
|
}
|
|
for (CNode *pnode : vNodesDisconnected) {
|
|
DeleteNode(pnode);
|
|
}
|
|
vNodes.clear();
|
|
vNodesDisconnected.clear();
|
|
vhListenSocket.clear();
|
|
semOutbound.reset();
|
|
semAddnode.reset();
|
|
}
|
|
|
|
void CConnman::DeleteNode(CNode* pnode)
|
|
{
|
|
assert(pnode);
|
|
bool fUpdateConnectionTime = false;
|
|
m_msgproc->FinalizeNode(pnode->GetId(), fUpdateConnectionTime);
|
|
if(fUpdateConnectionTime) {
|
|
addrman.Connected(pnode->addr);
|
|
}
|
|
delete pnode;
|
|
}
|
|
|
|
CConnman::~CConnman()
|
|
{
|
|
Interrupt();
|
|
Stop();
|
|
}
|
|
|
|
size_t CConnman::GetAddressCount() const
|
|
{
|
|
return addrman.size();
|
|
}
|
|
|
|
void CConnman::SetServices(const CService &addr, ServiceFlags nServices)
|
|
{
|
|
addrman.SetServices(addr, nServices);
|
|
}
|
|
|
|
void CConnman::MarkAddressGood(const CAddress& addr)
|
|
{
|
|
addrman.Good(addr);
|
|
}
|
|
|
|
void CConnman::AddNewAddresses(const std::vector<CAddress>& vAddr, const CAddress& addrFrom, int64_t nTimePenalty)
|
|
{
|
|
addrman.Add(vAddr, addrFrom, nTimePenalty);
|
|
}
|
|
|
|
std::vector<CAddress> CConnman::GetAddresses()
|
|
{
|
|
return addrman.GetAddr();
|
|
}
|
|
|
|
bool CConnman::AddNode(const std::string& strNode)
|
|
{
|
|
LOCK(cs_vAddedNodes);
|
|
for (const std::string& it : vAddedNodes) {
|
|
if (strNode == it) return false;
|
|
}
|
|
|
|
vAddedNodes.push_back(strNode);
|
|
return true;
|
|
}
|
|
|
|
bool CConnman::RemoveAddedNode(const std::string& strNode)
|
|
{
|
|
LOCK(cs_vAddedNodes);
|
|
for(std::vector<std::string>::iterator it = vAddedNodes.begin(); it != vAddedNodes.end(); ++it) {
|
|
if (strNode == *it) {
|
|
vAddedNodes.erase(it);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
size_t CConnman::GetNodeCount(NumConnections flags)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
if (flags == CConnman::CONNECTIONS_ALL) // Shortcut if we want total
|
|
return vNodes.size();
|
|
|
|
int nNum = 0;
|
|
for (const auto& pnode : vNodes) {
|
|
if (flags & (pnode->fInbound ? CONNECTIONS_IN : CONNECTIONS_OUT)) {
|
|
nNum++;
|
|
}
|
|
}
|
|
|
|
return nNum;
|
|
}
|
|
|
|
void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats)
|
|
{
|
|
vstats.clear();
|
|
LOCK(cs_vNodes);
|
|
vstats.reserve(vNodes.size());
|
|
for (CNode* pnode : vNodes) {
|
|
vstats.emplace_back();
|
|
pnode->copyStats(vstats.back(), addrman.m_asmap);
|
|
}
|
|
}
|
|
|
|
bool CConnman::DisconnectNode(const std::string& strNode)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
if (CNode* pnode = FindNode(strNode)) {
|
|
pnode->fDisconnect = true;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CConnman::DisconnectNode(const CSubNet& subnet)
|
|
{
|
|
bool disconnected = false;
|
|
LOCK(cs_vNodes);
|
|
for (CNode* pnode : vNodes) {
|
|
if (subnet.Match(pnode->addr)) {
|
|
pnode->fDisconnect = true;
|
|
disconnected = true;
|
|
}
|
|
}
|
|
return disconnected;
|
|
}
|
|
|
|
bool CConnman::DisconnectNode(const CNetAddr& addr)
|
|
{
|
|
return DisconnectNode(CSubNet(addr));
|
|
}
|
|
|
|
bool CConnman::DisconnectNode(NodeId id)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for(CNode* pnode : vNodes) {
|
|
if (id == pnode->GetId()) {
|
|
pnode->fDisconnect = true;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void CConnman::RecordBytesRecv(uint64_t bytes)
|
|
{
|
|
LOCK(cs_totalBytesRecv);
|
|
nTotalBytesRecv += bytes;
|
|
}
|
|
|
|
void CConnman::RecordBytesSent(uint64_t bytes)
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
nTotalBytesSent += bytes;
|
|
|
|
uint64_t now = GetTime();
|
|
if (nMaxOutboundCycleStartTime + nMaxOutboundTimeframe < now)
|
|
{
|
|
// timeframe expired, reset cycle
|
|
nMaxOutboundCycleStartTime = now;
|
|
nMaxOutboundTotalBytesSentInCycle = 0;
|
|
}
|
|
|
|
// TODO, exclude whitebind peers
|
|
nMaxOutboundTotalBytesSentInCycle += bytes;
|
|
}
|
|
|
|
void CConnman::SetMaxOutboundTarget(uint64_t limit)
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
nMaxOutboundLimit = limit;
|
|
}
|
|
|
|
uint64_t CConnman::GetMaxOutboundTarget()
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
return nMaxOutboundLimit;
|
|
}
|
|
|
|
uint64_t CConnman::GetMaxOutboundTimeframe()
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
return nMaxOutboundTimeframe;
|
|
}
|
|
|
|
uint64_t CConnman::GetMaxOutboundTimeLeftInCycle()
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
if (nMaxOutboundLimit == 0)
|
|
return 0;
|
|
|
|
if (nMaxOutboundCycleStartTime == 0)
|
|
return nMaxOutboundTimeframe;
|
|
|
|
uint64_t cycleEndTime = nMaxOutboundCycleStartTime + nMaxOutboundTimeframe;
|
|
uint64_t now = GetTime();
|
|
return (cycleEndTime < now) ? 0 : cycleEndTime - GetTime();
|
|
}
|
|
|
|
void CConnman::SetMaxOutboundTimeframe(uint64_t timeframe)
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
if (nMaxOutboundTimeframe != timeframe)
|
|
{
|
|
// reset measure-cycle in case of changing
|
|
// the timeframe
|
|
nMaxOutboundCycleStartTime = GetTime();
|
|
}
|
|
nMaxOutboundTimeframe = timeframe;
|
|
}
|
|
|
|
bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit)
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
if (nMaxOutboundLimit == 0)
|
|
return false;
|
|
|
|
if (historicalBlockServingLimit)
|
|
{
|
|
// keep a large enough buffer to at least relay each block once
|
|
uint64_t timeLeftInCycle = GetMaxOutboundTimeLeftInCycle();
|
|
uint64_t buffer = timeLeftInCycle / 600 * MAX_BLOCK_SERIALIZED_SIZE;
|
|
if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
|
|
return true;
|
|
}
|
|
else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
uint64_t CConnman::GetOutboundTargetBytesLeft()
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
if (nMaxOutboundLimit == 0)
|
|
return 0;
|
|
|
|
return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
|
|
}
|
|
|
|
uint64_t CConnman::GetTotalBytesRecv()
|
|
{
|
|
LOCK(cs_totalBytesRecv);
|
|
return nTotalBytesRecv;
|
|
}
|
|
|
|
uint64_t CConnman::GetTotalBytesSent()
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
return nTotalBytesSent;
|
|
}
|
|
|
|
ServiceFlags CConnman::GetLocalServices() const
|
|
{
|
|
return nLocalServices;
|
|
}
|
|
|
|
void CConnman::SetBestHeight(int height)
|
|
{
|
|
nBestHeight.store(height, std::memory_order_release);
|
|
}
|
|
|
|
int CConnman::GetBestHeight() const
|
|
{
|
|
return nBestHeight.load(std::memory_order_acquire);
|
|
}
|
|
|
|
unsigned int CConnman::GetReceiveFloodSize() const { return nReceiveFloodSize; }
|
|
|
|
CNode::CNode(NodeId idIn, ServiceFlags nLocalServicesIn, int nMyStartingHeightIn, SOCKET hSocketIn, const CAddress& addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CAddress& addrBindIn, const std::string& addrNameIn, bool fInboundIn, bool block_relay_only)
|
|
: nTimeConnected(GetSystemTimeInSeconds()),
|
|
addr(addrIn),
|
|
addrBind(addrBindIn),
|
|
fInbound(fInboundIn),
|
|
nKeyedNetGroup(nKeyedNetGroupIn),
|
|
// Don't relay addr messages to peers that we connect to as block-relay-only
|
|
// peers (to prevent adversaries from inferring these links from addr
|
|
// traffic).
|
|
m_addr_known{block_relay_only ? nullptr : MakeUnique<CRollingBloomFilter>(5000, 0.001)},
|
|
id(idIn),
|
|
nLocalHostNonce(nLocalHostNonceIn),
|
|
nLocalServices(nLocalServicesIn),
|
|
nMyStartingHeight(nMyStartingHeightIn)
|
|
{
|
|
hSocket = hSocketIn;
|
|
addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn;
|
|
hashContinue = uint256();
|
|
if (!block_relay_only) {
|
|
m_tx_relay = MakeUnique<TxRelay>();
|
|
}
|
|
|
|
for (const std::string &msg : getAllNetMessageTypes())
|
|
mapRecvBytesPerMsgCmd[msg] = 0;
|
|
mapRecvBytesPerMsgCmd[NET_MESSAGE_COMMAND_OTHER] = 0;
|
|
|
|
if (fLogIPs) {
|
|
LogPrint(BCLog::NET, "Added connection to %s peer=%d\n", addrName, id);
|
|
} else {
|
|
LogPrint(BCLog::NET, "Added connection peer=%d\n", id);
|
|
}
|
|
|
|
m_deserializer = MakeUnique<V1TransportDeserializer>(V1TransportDeserializer(Params().MessageStart(), SER_NETWORK, INIT_PROTO_VERSION));
|
|
}
|
|
|
|
CNode::~CNode()
|
|
{
|
|
CloseSocket(hSocket);
|
|
}
|
|
|
|
bool CConnman::NodeFullyConnected(const CNode* pnode)
|
|
{
|
|
return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
|
|
}
|
|
|
|
void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
|
|
{
|
|
size_t nMessageSize = msg.data.size();
|
|
size_t nTotalSize = nMessageSize + CMessageHeader::HEADER_SIZE;
|
|
LogPrint(BCLog::NET, "sending %s (%d bytes) peer=%d\n", SanitizeString(msg.command), nMessageSize, pnode->GetId());
|
|
|
|
std::vector<unsigned char> serializedHeader;
|
|
serializedHeader.reserve(CMessageHeader::HEADER_SIZE);
|
|
uint256 hash = Hash(msg.data.data(), msg.data.data() + nMessageSize);
|
|
CMessageHeader hdr(Params().MessageStart(), msg.command.c_str(), nMessageSize);
|
|
memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
|
|
|
|
CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, serializedHeader, 0, hdr};
|
|
|
|
size_t nBytesSent = 0;
|
|
{
|
|
LOCK(pnode->cs_vSend);
|
|
bool optimisticSend(pnode->vSendMsg.empty());
|
|
|
|
//log total amount of bytes per command
|
|
pnode->mapSendBytesPerMsgCmd[msg.command] += nTotalSize;
|
|
pnode->nSendSize += nTotalSize;
|
|
|
|
if (pnode->nSendSize > nSendBufferMaxSize)
|
|
pnode->fPauseSend = true;
|
|
pnode->vSendMsg.push_back(std::move(serializedHeader));
|
|
if (nMessageSize)
|
|
pnode->vSendMsg.push_back(std::move(msg.data));
|
|
|
|
// If write queue empty, attempt "optimistic write"
|
|
if (optimisticSend == true)
|
|
nBytesSent = SocketSendData(pnode);
|
|
}
|
|
if (nBytesSent)
|
|
RecordBytesSent(nBytesSent);
|
|
}
|
|
|
|
bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
|
|
{
|
|
CNode* found = nullptr;
|
|
LOCK(cs_vNodes);
|
|
for (auto&& pnode : vNodes) {
|
|
if(pnode->GetId() == id) {
|
|
found = pnode;
|
|
break;
|
|
}
|
|
}
|
|
return found != nullptr && NodeFullyConnected(found) && func(found);
|
|
}
|
|
|
|
int64_t CConnman::PoissonNextSendInbound(int64_t now, int average_interval_seconds)
|
|
{
|
|
if (m_next_send_inv_to_incoming < now) {
|
|
// If this function were called from multiple threads simultaneously
|
|
// it would possible that both update the next send variable, and return a different result to their caller.
|
|
// This is not possible in practice as only the net processing thread invokes this function.
|
|
m_next_send_inv_to_incoming = PoissonNextSend(now, average_interval_seconds);
|
|
}
|
|
return m_next_send_inv_to_incoming;
|
|
}
|
|
|
|
int64_t PoissonNextSend(int64_t now, int average_interval_seconds)
|
|
{
|
|
return now + (int64_t)(log1p(GetRand(1ULL << 48) * -0.0000000000000035527136788 /* -1/2^48 */) * average_interval_seconds * -1000000.0 + 0.5);
|
|
}
|
|
|
|
CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const
|
|
{
|
|
return CSipHasher(nSeed0, nSeed1).Write(id);
|
|
}
|
|
|
|
uint64_t CConnman::CalculateKeyedNetGroup(const CAddress& ad) const
|
|
{
|
|
std::vector<unsigned char> vchNetGroup(ad.GetGroup(addrman.m_asmap));
|
|
|
|
return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(vchNetGroup.data(), vchNetGroup.size()).Finalize();
|
|
}
|