bitcoin/test/functional/mempool_packages.py

298 lines
14 KiB
Python
Executable file

#!/usr/bin/env python3
# Copyright (c) 2014-2022 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test descendant package tracking code."""
from decimal import Decimal
from test_framework.messages import (
DEFAULT_ANCESTOR_LIMIT,
DEFAULT_DESCENDANT_LIMIT,
)
from test_framework.p2p import P2PTxInvStore
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import (
assert_equal,
assert_raises_rpc_error,
)
from test_framework.wallet import MiniWallet
# custom limits for node1
CUSTOM_ANCESTOR_LIMIT = 5
CUSTOM_DESCENDANT_LIMIT = 10
assert CUSTOM_DESCENDANT_LIMIT >= CUSTOM_ANCESTOR_LIMIT
class MempoolPackagesTest(BitcoinTestFramework):
def set_test_params(self):
self.num_nodes = 2
self.extra_args = [
[
"-maxorphantx=1000",
"-whitelist=noban@127.0.0.1", # immediate tx relay
],
[
"-maxorphantx=1000",
"-limitancestorcount={}".format(CUSTOM_ANCESTOR_LIMIT),
"-limitdescendantcount={}".format(CUSTOM_DESCENDANT_LIMIT),
],
]
def run_test(self):
self.wallet = MiniWallet(self.nodes[0])
self.wallet.rescan_utxos()
peer_inv_store = self.nodes[0].add_p2p_connection(P2PTxInvStore()) # keep track of invs
# DEFAULT_ANCESTOR_LIMIT transactions off a confirmed tx should be fine
chain = self.wallet.create_self_transfer_chain(chain_length=DEFAULT_ANCESTOR_LIMIT)
witness_chain = [t["wtxid"] for t in chain]
ancestor_vsize = 0
ancestor_fees = Decimal(0)
for i, t in enumerate(chain):
ancestor_vsize += t["tx"].get_vsize()
ancestor_fees += t["fee"]
self.wallet.sendrawtransaction(from_node=self.nodes[0], tx_hex=t["hex"])
# Wait until mempool transactions have passed initial broadcast (sent inv and received getdata)
# Otherwise, getrawmempool may be inconsistent with getmempoolentry if unbroadcast changes in between
peer_inv_store.wait_for_broadcast(witness_chain)
# Check mempool has DEFAULT_ANCESTOR_LIMIT transactions in it, and descendant and ancestor
# count and fees should look correct
mempool = self.nodes[0].getrawmempool(True)
assert_equal(len(mempool), DEFAULT_ANCESTOR_LIMIT)
descendant_count = 1
descendant_fees = 0
descendant_vsize = 0
assert_equal(ancestor_vsize, sum([mempool[tx]['vsize'] for tx in mempool]))
ancestor_count = DEFAULT_ANCESTOR_LIMIT
assert_equal(ancestor_fees, sum([mempool[tx]['fees']['base'] for tx in mempool]))
# Adding one more transaction on to the chain should fail.
next_hop = self.wallet.create_self_transfer(utxo_to_spend=chain[-1]["new_utxo"])["hex"]
assert_raises_rpc_error(-26, "too-long-mempool-chain", lambda: self.nodes[0].sendrawtransaction(next_hop))
descendants = []
ancestors = [t["txid"] for t in chain]
chain = [t["txid"] for t in chain]
for x in reversed(chain):
# Check that getmempoolentry is consistent with getrawmempool
entry = self.nodes[0].getmempoolentry(x)
assert_equal(entry, mempool[x])
# Check that gettxspendingprevout is consistent with getrawmempool
witnesstx = self.nodes[0].getrawtransaction(txid=x, verbose=True)
for tx_in in witnesstx["vin"]:
spending_result = self.nodes[0].gettxspendingprevout([ {'txid' : tx_in["txid"], 'vout' : tx_in["vout"]} ])
assert_equal(spending_result, [ {'txid' : tx_in["txid"], 'vout' : tx_in["vout"], 'spendingtxid' : x} ])
# Check that the descendant calculations are correct
assert_equal(entry['descendantcount'], descendant_count)
descendant_fees += entry['fees']['base']
assert_equal(entry['fees']['modified'], entry['fees']['base'])
assert_equal(entry['fees']['descendant'], descendant_fees)
descendant_vsize += entry['vsize']
assert_equal(entry['descendantsize'], descendant_vsize)
descendant_count += 1
# Check that ancestor calculations are correct
assert_equal(entry['ancestorcount'], ancestor_count)
assert_equal(entry['fees']['ancestor'], ancestor_fees)
assert_equal(entry['ancestorsize'], ancestor_vsize)
ancestor_vsize -= entry['vsize']
ancestor_fees -= entry['fees']['base']
ancestor_count -= 1
# Check that parent/child list is correct
assert_equal(entry['spentby'], descendants[-1:])
assert_equal(entry['depends'], ancestors[-2:-1])
# Check that getmempooldescendants is correct
assert_equal(sorted(descendants), sorted(self.nodes[0].getmempooldescendants(x)))
# Check getmempooldescendants verbose output is correct
for descendant, dinfo in self.nodes[0].getmempooldescendants(x, True).items():
assert_equal(dinfo['depends'], [chain[chain.index(descendant)-1]])
if dinfo['descendantcount'] > 1:
assert_equal(dinfo['spentby'], [chain[chain.index(descendant)+1]])
else:
assert_equal(dinfo['spentby'], [])
descendants.append(x)
# Check that getmempoolancestors is correct
ancestors.remove(x)
assert_equal(sorted(ancestors), sorted(self.nodes[0].getmempoolancestors(x)))
# Check that getmempoolancestors verbose output is correct
for ancestor, ainfo in self.nodes[0].getmempoolancestors(x, True).items():
assert_equal(ainfo['spentby'], [chain[chain.index(ancestor)+1]])
if ainfo['ancestorcount'] > 1:
assert_equal(ainfo['depends'], [chain[chain.index(ancestor)-1]])
else:
assert_equal(ainfo['depends'], [])
# Check that getmempoolancestors/getmempooldescendants correctly handle verbose=true
v_ancestors = self.nodes[0].getmempoolancestors(chain[-1], True)
assert_equal(len(v_ancestors), len(chain)-1)
for x in v_ancestors.keys():
assert_equal(mempool[x], v_ancestors[x])
assert chain[-1] not in v_ancestors.keys()
v_descendants = self.nodes[0].getmempooldescendants(chain[0], True)
assert_equal(len(v_descendants), len(chain)-1)
for x in v_descendants.keys():
assert_equal(mempool[x], v_descendants[x])
assert chain[0] not in v_descendants.keys()
# Check that ancestor modified fees includes fee deltas from
# prioritisetransaction
self.nodes[0].prioritisetransaction(txid=chain[0], fee_delta=1000)
ancestor_fees = 0
for x in chain:
entry = self.nodes[0].getmempoolentry(x)
ancestor_fees += entry['fees']['base']
assert_equal(entry['fees']['ancestor'], ancestor_fees + Decimal('0.00001'))
# Undo the prioritisetransaction for later tests
self.nodes[0].prioritisetransaction(txid=chain[0], fee_delta=-1000)
# Check that descendant modified fees includes fee deltas from
# prioritisetransaction
self.nodes[0].prioritisetransaction(txid=chain[-1], fee_delta=1000)
descendant_fees = 0
for x in reversed(chain):
entry = self.nodes[0].getmempoolentry(x)
descendant_fees += entry['fees']['base']
assert_equal(entry['fees']['descendant'], descendant_fees + Decimal('0.00001'))
# Check that prioritising a tx before it's added to the mempool works
# First clear the mempool by mining a block.
self.generate(self.nodes[0], 1)
assert_equal(len(self.nodes[0].getrawmempool()), 0)
# Prioritise a transaction that has been mined, then add it back to the
# mempool by using invalidateblock.
self.nodes[0].prioritisetransaction(txid=chain[-1], fee_delta=2000)
self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())
# Keep node1's tip synced with node0
self.nodes[1].invalidateblock(self.nodes[1].getbestblockhash())
# Now check that the transaction is in the mempool, with the right modified fee
descendant_fees = 0
for x in reversed(chain):
entry = self.nodes[0].getmempoolentry(x)
descendant_fees += entry['fees']['base']
if (x == chain[-1]):
assert_equal(entry['fees']['modified'], entry['fees']['base'] + Decimal("0.00002"))
assert_equal(entry['fees']['descendant'], descendant_fees + Decimal("0.00002"))
# Check that node1's mempool is as expected (-> custom ancestor limit)
mempool0 = self.nodes[0].getrawmempool(False)
mempool1 = self.nodes[1].getrawmempool(False)
assert_equal(len(mempool1), CUSTOM_ANCESTOR_LIMIT)
assert set(mempool1).issubset(set(mempool0))
for tx in chain[:CUSTOM_ANCESTOR_LIMIT]:
assert tx in mempool1
# TODO: more detailed check of node1's mempool (fees etc.)
# check transaction unbroadcast info (should be false if in both mempools)
mempool = self.nodes[0].getrawmempool(True)
for tx in mempool:
assert_equal(mempool[tx]['unbroadcast'], False)
# TODO: test ancestor size limits
# Now test descendant chain limits
tx_children = []
# First create one parent tx with 10 children
tx_with_children = self.wallet.send_self_transfer_multi(from_node=self.nodes[0], num_outputs=10)
parent_transaction = tx_with_children["txid"]
transaction_package = tx_with_children["new_utxos"]
# Sign and send up to MAX_DESCENDANT transactions chained off the parent tx
chain = [] # save sent txs for the purpose of checking node1's mempool later (see below)
for _ in range(DEFAULT_DESCENDANT_LIMIT - 1):
utxo = transaction_package.pop(0)
new_tx = self.wallet.send_self_transfer_multi(from_node=self.nodes[0], num_outputs=10, utxos_to_spend=[utxo])
txid = new_tx["txid"]
chain.append(txid)
if utxo['txid'] is parent_transaction:
tx_children.append(txid)
transaction_package.extend(new_tx["new_utxos"])
mempool = self.nodes[0].getrawmempool(True)
assert_equal(mempool[parent_transaction]['descendantcount'], DEFAULT_DESCENDANT_LIMIT)
assert_equal(sorted(mempool[parent_transaction]['spentby']), sorted(tx_children))
for child in tx_children:
assert_equal(mempool[child]['depends'], [parent_transaction])
# Sending one more chained transaction will fail
next_hop = self.wallet.create_self_transfer(utxo_to_spend=transaction_package.pop(0))["hex"]
assert_raises_rpc_error(-26, "too-long-mempool-chain", lambda: self.nodes[0].sendrawtransaction(next_hop))
# Check that node1's mempool is as expected, containing:
# - txs from previous ancestor test (-> custom ancestor limit)
# - parent tx for descendant test
# - txs chained off parent tx (-> custom descendant limit)
self.wait_until(lambda: len(self.nodes[1].getrawmempool()) ==
CUSTOM_ANCESTOR_LIMIT + 1 + CUSTOM_DESCENDANT_LIMIT, timeout=10)
mempool0 = self.nodes[0].getrawmempool(False)
mempool1 = self.nodes[1].getrawmempool(False)
assert set(mempool1).issubset(set(mempool0))
assert parent_transaction in mempool1
for tx in chain[:CUSTOM_DESCENDANT_LIMIT]:
assert tx in mempool1
for tx in chain[CUSTOM_DESCENDANT_LIMIT:]:
assert tx not in mempool1
# TODO: more detailed check of node1's mempool (fees etc.)
# TODO: test descendant size limits
# Test reorg handling
# First, the basics:
self.generate(self.nodes[0], 1)
self.nodes[1].invalidateblock(self.nodes[0].getbestblockhash())
self.nodes[1].reconsiderblock(self.nodes[0].getbestblockhash())
# Now test the case where node1 has a transaction T in its mempool that
# depends on transactions A and B which are in a mined block, and the
# block containing A and B is disconnected, AND B is not accepted back
# into node1's mempool because its ancestor count is too high.
# Create 8 transactions, like so:
# Tx0 -> Tx1 (vout0)
# \--> Tx2 (vout1) -> Tx3 -> Tx4 -> Tx5 -> Tx6 -> Tx7
#
# Mine them in the next block, then generate a new tx8 that spends
# Tx1 and Tx7, and add to node1's mempool, then disconnect the
# last block.
# Create tx0 with 2 outputs
tx0 = self.wallet.send_self_transfer_multi(from_node=self.nodes[0], num_outputs=2)
# Create tx1
tx1 = self.wallet.send_self_transfer(from_node=self.nodes[0], utxo_to_spend=tx0["new_utxos"][0])
# Create tx2-7
tx7 = self.wallet.send_self_transfer_chain(from_node=self.nodes[0], utxo_to_spend=tx0["new_utxos"][1], chain_length=6)[-1]
# Mine these in a block
self.generate(self.nodes[0], 1)
# Now generate tx8, with a big fee
self.wallet.send_self_transfer_multi(from_node=self.nodes[0], utxos_to_spend=[tx1["new_utxo"], tx7["new_utxo"]], fee_per_output=40000)
self.sync_mempools()
# Now try to disconnect the tip on each node...
self.nodes[1].invalidateblock(self.nodes[1].getbestblockhash())
self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())
self.sync_blocks()
if __name__ == '__main__':
MempoolPackagesTest().main()