mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-15 22:32:37 -03:00
240 lines
12 KiB
C++
240 lines
12 KiB
C++
// Copyright (c) 2022 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include <node/eviction.h>
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <chrono>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <map>
|
|
#include <vector>
|
|
|
|
|
|
static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
|
|
{
|
|
return a.m_min_ping_time > b.m_min_ping_time;
|
|
}
|
|
|
|
static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
|
|
{
|
|
return a.m_connected > b.m_connected;
|
|
}
|
|
|
|
static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) {
|
|
return a.nKeyedNetGroup < b.nKeyedNetGroup;
|
|
}
|
|
|
|
static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
|
|
{
|
|
// There is a fall-through here because it is common for a node to have many peers which have not yet relayed a block.
|
|
if (a.m_last_block_time != b.m_last_block_time) return a.m_last_block_time < b.m_last_block_time;
|
|
if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices;
|
|
return a.m_connected > b.m_connected;
|
|
}
|
|
|
|
static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
|
|
{
|
|
// There is a fall-through here because it is common for a node to have more than a few peers that have not yet relayed txn.
|
|
if (a.m_last_tx_time != b.m_last_tx_time) return a.m_last_tx_time < b.m_last_tx_time;
|
|
if (a.m_relay_txs != b.m_relay_txs) return b.m_relay_txs;
|
|
if (a.fBloomFilter != b.fBloomFilter) return a.fBloomFilter;
|
|
return a.m_connected > b.m_connected;
|
|
}
|
|
|
|
// Pick out the potential block-relay only peers, and sort them by last block time.
|
|
static bool CompareNodeBlockRelayOnlyTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
|
|
{
|
|
if (a.m_relay_txs != b.m_relay_txs) return a.m_relay_txs;
|
|
if (a.m_last_block_time != b.m_last_block_time) return a.m_last_block_time < b.m_last_block_time;
|
|
if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices;
|
|
return a.m_connected > b.m_connected;
|
|
}
|
|
|
|
/**
|
|
* Sort eviction candidates by network/localhost and connection uptime.
|
|
* Candidates near the beginning are more likely to be evicted, and those
|
|
* near the end are more likely to be protected, e.g. less likely to be evicted.
|
|
* - First, nodes that are not `is_local` and that do not belong to `network`,
|
|
* sorted by increasing uptime (from most recently connected to connected longer).
|
|
* - Then, nodes that are `is_local` or belong to `network`, sorted by increasing uptime.
|
|
*/
|
|
struct CompareNodeNetworkTime {
|
|
const bool m_is_local;
|
|
const Network m_network;
|
|
CompareNodeNetworkTime(bool is_local, Network network) : m_is_local(is_local), m_network(network) {}
|
|
bool operator()(const NodeEvictionCandidate& a, const NodeEvictionCandidate& b) const
|
|
{
|
|
if (m_is_local && a.m_is_local != b.m_is_local) return b.m_is_local;
|
|
if ((a.m_network == m_network) != (b.m_network == m_network)) return b.m_network == m_network;
|
|
return a.m_connected > b.m_connected;
|
|
};
|
|
};
|
|
|
|
//! Sort an array by the specified comparator, then erase the last K elements where predicate is true.
|
|
template <typename T, typename Comparator>
|
|
static void EraseLastKElements(
|
|
std::vector<T>& elements, Comparator comparator, size_t k,
|
|
std::function<bool(const NodeEvictionCandidate&)> predicate = [](const NodeEvictionCandidate& n) { return true; })
|
|
{
|
|
std::sort(elements.begin(), elements.end(), comparator);
|
|
size_t eraseSize = std::min(k, elements.size());
|
|
elements.erase(std::remove_if(elements.end() - eraseSize, elements.end(), predicate), elements.end());
|
|
}
|
|
|
|
void ProtectNoBanConnections(std::vector<NodeEvictionCandidate>& eviction_candidates)
|
|
{
|
|
eviction_candidates.erase(std::remove_if(eviction_candidates.begin(), eviction_candidates.end(),
|
|
[](NodeEvictionCandidate const& n) {
|
|
return n.m_noban;
|
|
}),
|
|
eviction_candidates.end());
|
|
}
|
|
|
|
void ProtectOutboundConnections(std::vector<NodeEvictionCandidate>& eviction_candidates)
|
|
{
|
|
eviction_candidates.erase(std::remove_if(eviction_candidates.begin(), eviction_candidates.end(),
|
|
[](NodeEvictionCandidate const& n) {
|
|
return n.m_conn_type != ConnectionType::INBOUND;
|
|
}),
|
|
eviction_candidates.end());
|
|
}
|
|
|
|
void ProtectEvictionCandidatesByRatio(std::vector<NodeEvictionCandidate>& eviction_candidates)
|
|
{
|
|
// Protect the half of the remaining nodes which have been connected the longest.
|
|
// This replicates the non-eviction implicit behavior, and precludes attacks that start later.
|
|
// To favorise the diversity of our peer connections, reserve up to half of these protected
|
|
// spots for Tor/onion, localhost, I2P, and CJDNS peers, even if they're not longest uptime
|
|
// overall. This helps protect these higher-latency peers that tend to be otherwise
|
|
// disadvantaged under our eviction criteria.
|
|
const size_t initial_size = eviction_candidates.size();
|
|
const size_t total_protect_size{initial_size / 2};
|
|
|
|
// Disadvantaged networks to protect. In the case of equal counts, earlier array members
|
|
// have the first opportunity to recover unused slots from the previous iteration.
|
|
struct Net { bool is_local; Network id; size_t count; };
|
|
std::array<Net, 4> networks{
|
|
{{false, NET_CJDNS, 0}, {false, NET_I2P, 0}, {/*localhost=*/true, NET_MAX, 0}, {false, NET_ONION, 0}}};
|
|
|
|
// Count and store the number of eviction candidates per network.
|
|
for (Net& n : networks) {
|
|
n.count = std::count_if(eviction_candidates.cbegin(), eviction_candidates.cend(),
|
|
[&n](const NodeEvictionCandidate& c) {
|
|
return n.is_local ? c.m_is_local : c.m_network == n.id;
|
|
});
|
|
}
|
|
// Sort `networks` by ascending candidate count, to give networks having fewer candidates
|
|
// the first opportunity to recover unused protected slots from the previous iteration.
|
|
std::stable_sort(networks.begin(), networks.end(), [](Net a, Net b) { return a.count < b.count; });
|
|
|
|
// Protect up to 25% of the eviction candidates by disadvantaged network.
|
|
const size_t max_protect_by_network{total_protect_size / 2};
|
|
size_t num_protected{0};
|
|
|
|
while (num_protected < max_protect_by_network) {
|
|
// Count the number of disadvantaged networks from which we have peers to protect.
|
|
auto num_networks = std::count_if(networks.begin(), networks.end(), [](const Net& n) { return n.count; });
|
|
if (num_networks == 0) {
|
|
break;
|
|
}
|
|
const size_t disadvantaged_to_protect{max_protect_by_network - num_protected};
|
|
const size_t protect_per_network{std::max(disadvantaged_to_protect / num_networks, static_cast<size_t>(1))};
|
|
// Early exit flag if there are no remaining candidates by disadvantaged network.
|
|
bool protected_at_least_one{false};
|
|
|
|
for (Net& n : networks) {
|
|
if (n.count == 0) continue;
|
|
const size_t before = eviction_candidates.size();
|
|
EraseLastKElements(eviction_candidates, CompareNodeNetworkTime(n.is_local, n.id),
|
|
protect_per_network, [&n](const NodeEvictionCandidate& c) {
|
|
return n.is_local ? c.m_is_local : c.m_network == n.id;
|
|
});
|
|
const size_t after = eviction_candidates.size();
|
|
if (before > after) {
|
|
protected_at_least_one = true;
|
|
const size_t delta{before - after};
|
|
num_protected += delta;
|
|
if (num_protected >= max_protect_by_network) {
|
|
break;
|
|
}
|
|
n.count -= delta;
|
|
}
|
|
}
|
|
if (!protected_at_least_one) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Calculate how many we removed, and update our total number of peers that
|
|
// we want to protect based on uptime accordingly.
|
|
assert(num_protected == initial_size - eviction_candidates.size());
|
|
const size_t remaining_to_protect{total_protect_size - num_protected};
|
|
EraseLastKElements(eviction_candidates, ReverseCompareNodeTimeConnected, remaining_to_protect);
|
|
}
|
|
|
|
[[nodiscard]] std::optional<NodeId> SelectNodeToEvict(std::vector<NodeEvictionCandidate>&& vEvictionCandidates)
|
|
{
|
|
// Protect connections with certain characteristics
|
|
|
|
ProtectNoBanConnections(vEvictionCandidates);
|
|
|
|
ProtectOutboundConnections(vEvictionCandidates);
|
|
|
|
// Deterministically select 4 peers to protect by netgroup.
|
|
// An attacker cannot predict which netgroups will be protected
|
|
EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4);
|
|
// Protect the 8 nodes with the lowest minimum ping time.
|
|
// An attacker cannot manipulate this metric without physically moving nodes closer to the target.
|
|
EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8);
|
|
// Protect 4 nodes that most recently sent us novel transactions accepted into our mempool.
|
|
// An attacker cannot manipulate this metric without performing useful work.
|
|
EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4);
|
|
// Protect up to 8 non-tx-relay peers that have sent us novel blocks.
|
|
EraseLastKElements(vEvictionCandidates, CompareNodeBlockRelayOnlyTime, 8,
|
|
[](const NodeEvictionCandidate& n) { return !n.m_relay_txs && n.fRelevantServices; });
|
|
|
|
// Protect 4 nodes that most recently sent us novel blocks.
|
|
// An attacker cannot manipulate this metric without performing useful work.
|
|
EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4);
|
|
|
|
// Protect some of the remaining eviction candidates by ratios of desirable
|
|
// or disadvantaged characteristics.
|
|
ProtectEvictionCandidatesByRatio(vEvictionCandidates);
|
|
|
|
if (vEvictionCandidates.empty()) return std::nullopt;
|
|
|
|
// If any remaining peers are preferred for eviction consider only them.
|
|
// This happens after the other preferences since if a peer is really the best by other criteria (esp relaying blocks)
|
|
// then we probably don't want to evict it no matter what.
|
|
if (std::any_of(vEvictionCandidates.begin(),vEvictionCandidates.end(),[](NodeEvictionCandidate const &n){return n.prefer_evict;})) {
|
|
vEvictionCandidates.erase(std::remove_if(vEvictionCandidates.begin(),vEvictionCandidates.end(),
|
|
[](NodeEvictionCandidate const &n){return !n.prefer_evict;}),vEvictionCandidates.end());
|
|
}
|
|
|
|
// Identify the network group with the most connections and youngest member.
|
|
// (vEvictionCandidates is already sorted by reverse connect time)
|
|
uint64_t naMostConnections;
|
|
unsigned int nMostConnections = 0;
|
|
std::chrono::seconds nMostConnectionsTime{0};
|
|
std::map<uint64_t, std::vector<NodeEvictionCandidate> > mapNetGroupNodes;
|
|
for (const NodeEvictionCandidate &node : vEvictionCandidates) {
|
|
std::vector<NodeEvictionCandidate> &group = mapNetGroupNodes[node.nKeyedNetGroup];
|
|
group.push_back(node);
|
|
const auto grouptime{group[0].m_connected};
|
|
|
|
if (group.size() > nMostConnections || (group.size() == nMostConnections && grouptime > nMostConnectionsTime)) {
|
|
nMostConnections = group.size();
|
|
nMostConnectionsTime = grouptime;
|
|
naMostConnections = node.nKeyedNetGroup;
|
|
}
|
|
}
|
|
|
|
// Reduce to the network group with the most connections
|
|
vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]);
|
|
|
|
// Disconnect from the network group with the most connections
|
|
return vEvictionCandidates.front().id;
|
|
}
|