bitcoin/src/validation.cpp
Wladimir J. van der Laan 20c54eef6e
Merge #14834: validation: assert that pindexPrev is non-null when required
fbaaf782ce validation: assert that pindexPrev is non-null when required (Karl-Johan Alm)

Pull request description:

  In `ContextualCheckBlock`, we are checking if `pindexPrev == nullptr` conditionally at the start, but then assume it is non-`null` later. This removes the latter assumption.

Tree-SHA512: 95f1e9dc839b2cc0e099d155e6180634ece8c6760d00b53e7d27128762e64c92e82d98a5f4a5786b48a4851b17cdbb4b667d3b6a99adb651256e2032de67d05c
2018-12-13 14:37:43 +01:00

4844 lines
217 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2018 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <validation.h>
#include <arith_uint256.h>
#include <chain.h>
#include <chainparams.h>
#include <checkpoints.h>
#include <checkqueue.h>
#include <consensus/consensus.h>
#include <consensus/merkle.h>
#include <consensus/tx_verify.h>
#include <consensus/validation.h>
#include <cuckoocache.h>
#include <hash.h>
#include <index/txindex.h>
#include <policy/fees.h>
#include <policy/policy.h>
#include <policy/rbf.h>
#include <pow.h>
#include <primitives/block.h>
#include <primitives/transaction.h>
#include <random.h>
#include <reverse_iterator.h>
#include <script/script.h>
#include <script/sigcache.h>
#include <script/standard.h>
#include <shutdown.h>
#include <timedata.h>
#include <tinyformat.h>
#include <txdb.h>
#include <txmempool.h>
#include <ui_interface.h>
#include <undo.h>
#include <util/system.h>
#include <util/moneystr.h>
#include <util/strencodings.h>
#include <validationinterface.h>
#include <warnings.h>
#include <future>
#include <sstream>
#include <boost/algorithm/string/replace.hpp>
#include <boost/thread.hpp>
#if defined(NDEBUG)
# error "Bitcoin cannot be compiled without assertions."
#endif
#define MICRO 0.000001
#define MILLI 0.001
/**
* Global state
*/
namespace {
struct CBlockIndexWorkComparator
{
bool operator()(const CBlockIndex *pa, const CBlockIndex *pb) const {
// First sort by most total work, ...
if (pa->nChainWork > pb->nChainWork) return false;
if (pa->nChainWork < pb->nChainWork) return true;
// ... then by earliest time received, ...
if (pa->nSequenceId < pb->nSequenceId) return false;
if (pa->nSequenceId > pb->nSequenceId) return true;
// Use pointer address as tie breaker (should only happen with blocks
// loaded from disk, as those all have id 0).
if (pa < pb) return false;
if (pa > pb) return true;
// Identical blocks.
return false;
}
};
} // anon namespace
enum DisconnectResult
{
DISCONNECT_OK, // All good.
DISCONNECT_UNCLEAN, // Rolled back, but UTXO set was inconsistent with block.
DISCONNECT_FAILED // Something else went wrong.
};
class ConnectTrace;
/**
* CChainState stores and provides an API to update our local knowledge of the
* current best chain and header tree.
*
* It generally provides access to the current block tree, as well as functions
* to provide new data, which it will appropriately validate and incorporate in
* its state as necessary.
*
* Eventually, the API here is targeted at being exposed externally as a
* consumable libconsensus library, so any functions added must only call
* other class member functions, pure functions in other parts of the consensus
* library, callbacks via the validation interface, or read/write-to-disk
* functions (eventually this will also be via callbacks).
*/
class CChainState {
private:
/**
* The set of all CBlockIndex entries with BLOCK_VALID_TRANSACTIONS (for itself and all ancestors) and
* as good as our current tip or better. Entries may be failed, though, and pruning nodes may be
* missing the data for the block.
*/
std::set<CBlockIndex*, CBlockIndexWorkComparator> setBlockIndexCandidates;
/**
* Every received block is assigned a unique and increasing identifier, so we
* know which one to give priority in case of a fork.
*/
CCriticalSection cs_nBlockSequenceId;
/** Blocks loaded from disk are assigned id 0, so start the counter at 1. */
int32_t nBlockSequenceId = 1;
/** Decreasing counter (used by subsequent preciousblock calls). */
int32_t nBlockReverseSequenceId = -1;
/** chainwork for the last block that preciousblock has been applied to. */
arith_uint256 nLastPreciousChainwork = 0;
/** In order to efficiently track invalidity of headers, we keep the set of
* blocks which we tried to connect and found to be invalid here (ie which
* were set to BLOCK_FAILED_VALID since the last restart). We can then
* walk this set and check if a new header is a descendant of something in
* this set, preventing us from having to walk mapBlockIndex when we try
* to connect a bad block and fail.
*
* While this is more complicated than marking everything which descends
* from an invalid block as invalid at the time we discover it to be
* invalid, doing so would require walking all of mapBlockIndex to find all
* descendants. Since this case should be very rare, keeping track of all
* BLOCK_FAILED_VALID blocks in a set should be just fine and work just as
* well.
*
* Because we already walk mapBlockIndex in height-order at startup, we go
* ahead and mark descendants of invalid blocks as FAILED_CHILD at that time,
* instead of putting things in this set.
*/
std::set<CBlockIndex*> m_failed_blocks;
/**
* the ChainState CriticalSection
* A lock that must be held when modifying this ChainState - held in ActivateBestChain()
*/
CCriticalSection m_cs_chainstate;
public:
CChain chainActive;
BlockMap mapBlockIndex;
std::multimap<CBlockIndex*, CBlockIndex*> mapBlocksUnlinked;
CBlockIndex *pindexBestInvalid = nullptr;
bool LoadBlockIndex(const Consensus::Params& consensus_params, CBlockTreeDB& blocktree) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
bool ActivateBestChain(CValidationState &state, const CChainParams& chainparams, std::shared_ptr<const CBlock> pblock);
/**
* If a block header hasn't already been seen, call CheckBlockHeader on it, ensure
* that it doesn't descend from an invalid block, and then add it to mapBlockIndex.
*/
bool AcceptBlockHeader(const CBlockHeader& block, CValidationState& state, const CChainParams& chainparams, CBlockIndex** ppindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
bool AcceptBlock(const std::shared_ptr<const CBlock>& pblock, CValidationState& state, const CChainParams& chainparams, CBlockIndex** ppindex, bool fRequested, const CDiskBlockPos* dbp, bool* fNewBlock) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
// Block (dis)connection on a given view:
DisconnectResult DisconnectBlock(const CBlock& block, const CBlockIndex* pindex, CCoinsViewCache& view);
bool ConnectBlock(const CBlock& block, CValidationState& state, CBlockIndex* pindex,
CCoinsViewCache& view, const CChainParams& chainparams, bool fJustCheck = false) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
// Block disconnection on our pcoinsTip:
bool DisconnectTip(CValidationState& state, const CChainParams& chainparams, DisconnectedBlockTransactions *disconnectpool);
// Manual block validity manipulation:
bool PreciousBlock(CValidationState& state, const CChainParams& params, CBlockIndex* pindex) LOCKS_EXCLUDED(cs_main);
bool InvalidateBlock(CValidationState& state, const CChainParams& chainparams, CBlockIndex* pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
void ResetBlockFailureFlags(CBlockIndex* pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
bool ReplayBlocks(const CChainParams& params, CCoinsView* view);
bool RewindBlockIndex(const CChainParams& params);
bool LoadGenesisBlock(const CChainParams& chainparams);
void PruneBlockIndexCandidates();
void UnloadBlockIndex();
private:
bool ActivateBestChainStep(CValidationState& state, const CChainParams& chainparams, CBlockIndex* pindexMostWork, const std::shared_ptr<const CBlock>& pblock, bool& fInvalidFound, ConnectTrace& connectTrace) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
bool ConnectTip(CValidationState& state, const CChainParams& chainparams, CBlockIndex* pindexNew, const std::shared_ptr<const CBlock>& pblock, ConnectTrace& connectTrace, DisconnectedBlockTransactions &disconnectpool) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
CBlockIndex* AddToBlockIndex(const CBlockHeader& block) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
/** Create a new block index entry for a given block hash */
CBlockIndex* InsertBlockIndex(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
/**
* Make various assertions about the state of the block index.
*
* By default this only executes fully when using the Regtest chain; see: fCheckBlockIndex.
*/
void CheckBlockIndex(const Consensus::Params& consensusParams);
void InvalidBlockFound(CBlockIndex *pindex, const CValidationState &state) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
CBlockIndex* FindMostWorkChain() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
void ReceivedBlockTransactions(const CBlock& block, CBlockIndex* pindexNew, const CDiskBlockPos& pos, const Consensus::Params& consensusParams) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
bool RollforwardBlock(const CBlockIndex* pindex, CCoinsViewCache& inputs, const CChainParams& params) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
} g_chainstate;
CCriticalSection cs_main;
BlockMap& mapBlockIndex = g_chainstate.mapBlockIndex;
CChain& chainActive = g_chainstate.chainActive;
CBlockIndex *pindexBestHeader = nullptr;
Mutex g_best_block_mutex;
std::condition_variable g_best_block_cv;
uint256 g_best_block;
int nScriptCheckThreads = 0;
std::atomic_bool fImporting(false);
std::atomic_bool fReindex(false);
bool fHavePruned = false;
bool fPruneMode = false;
bool fIsBareMultisigStd = DEFAULT_PERMIT_BAREMULTISIG;
bool fRequireStandard = true;
bool fCheckBlockIndex = false;
bool fCheckpointsEnabled = DEFAULT_CHECKPOINTS_ENABLED;
size_t nCoinCacheUsage = 5000 * 300;
uint64_t nPruneTarget = 0;
int64_t nMaxTipAge = DEFAULT_MAX_TIP_AGE;
bool fEnableReplacement = DEFAULT_ENABLE_REPLACEMENT;
uint256 hashAssumeValid;
arith_uint256 nMinimumChainWork;
CFeeRate minRelayTxFee = CFeeRate(DEFAULT_MIN_RELAY_TX_FEE);
CAmount maxTxFee = DEFAULT_TRANSACTION_MAXFEE;
CBlockPolicyEstimator feeEstimator;
CTxMemPool mempool(&feeEstimator);
std::atomic_bool g_is_mempool_loaded{false};
/** Constant stuff for coinbase transactions we create: */
CScript COINBASE_FLAGS;
const std::string strMessageMagic = "Bitcoin Signed Message:\n";
// Internal stuff
namespace {
CBlockIndex *&pindexBestInvalid = g_chainstate.pindexBestInvalid;
/** All pairs A->B, where A (or one of its ancestors) misses transactions, but B has transactions.
* Pruned nodes may have entries where B is missing data.
*/
std::multimap<CBlockIndex*, CBlockIndex*>& mapBlocksUnlinked = g_chainstate.mapBlocksUnlinked;
CCriticalSection cs_LastBlockFile;
std::vector<CBlockFileInfo> vinfoBlockFile;
int nLastBlockFile = 0;
/** Global flag to indicate we should check to see if there are
* block/undo files that should be deleted. Set on startup
* or if we allocate more file space when we're in prune mode
*/
bool fCheckForPruning = false;
/** Dirty block index entries. */
std::set<CBlockIndex*> setDirtyBlockIndex;
/** Dirty block file entries. */
std::set<int> setDirtyFileInfo;
} // anon namespace
CBlockIndex* FindForkInGlobalIndex(const CChain& chain, const CBlockLocator& locator)
{
AssertLockHeld(cs_main);
// Find the latest block common to locator and chain - we expect that
// locator.vHave is sorted descending by height.
for (const uint256& hash : locator.vHave) {
CBlockIndex* pindex = LookupBlockIndex(hash);
if (pindex) {
if (chain.Contains(pindex))
return pindex;
if (pindex->GetAncestor(chain.Height()) == chain.Tip()) {
return chain.Tip();
}
}
}
return chain.Genesis();
}
std::unique_ptr<CCoinsViewDB> pcoinsdbview;
std::unique_ptr<CCoinsViewCache> pcoinsTip;
std::unique_ptr<CBlockTreeDB> pblocktree;
enum class FlushStateMode {
NONE,
IF_NEEDED,
PERIODIC,
ALWAYS
};
// See definition for documentation
static bool FlushStateToDisk(const CChainParams& chainParams, CValidationState &state, FlushStateMode mode, int nManualPruneHeight=0);
static void FindFilesToPruneManual(std::set<int>& setFilesToPrune, int nManualPruneHeight);
static void FindFilesToPrune(std::set<int>& setFilesToPrune, uint64_t nPruneAfterHeight);
bool CheckInputs(const CTransaction& tx, CValidationState &state, const CCoinsViewCache &inputs, bool fScriptChecks, unsigned int flags, bool cacheSigStore, bool cacheFullScriptStore, PrecomputedTransactionData& txdata, std::vector<CScriptCheck> *pvChecks = nullptr);
static FILE* OpenUndoFile(const CDiskBlockPos &pos, bool fReadOnly = false);
bool CheckFinalTx(const CTransaction &tx, int flags)
{
AssertLockHeld(cs_main);
// By convention a negative value for flags indicates that the
// current network-enforced consensus rules should be used. In
// a future soft-fork scenario that would mean checking which
// rules would be enforced for the next block and setting the
// appropriate flags. At the present time no soft-forks are
// scheduled, so no flags are set.
flags = std::max(flags, 0);
// CheckFinalTx() uses chainActive.Height()+1 to evaluate
// nLockTime because when IsFinalTx() is called within
// CBlock::AcceptBlock(), the height of the block *being*
// evaluated is what is used. Thus if we want to know if a
// transaction can be part of the *next* block, we need to call
// IsFinalTx() with one more than chainActive.Height().
const int nBlockHeight = chainActive.Height() + 1;
// BIP113 requires that time-locked transactions have nLockTime set to
// less than the median time of the previous block they're contained in.
// When the next block is created its previous block will be the current
// chain tip, so we use that to calculate the median time passed to
// IsFinalTx() if LOCKTIME_MEDIAN_TIME_PAST is set.
const int64_t nBlockTime = (flags & LOCKTIME_MEDIAN_TIME_PAST)
? chainActive.Tip()->GetMedianTimePast()
: GetAdjustedTime();
return IsFinalTx(tx, nBlockHeight, nBlockTime);
}
bool TestLockPointValidity(const LockPoints* lp)
{
AssertLockHeld(cs_main);
assert(lp);
// If there are relative lock times then the maxInputBlock will be set
// If there are no relative lock times, the LockPoints don't depend on the chain
if (lp->maxInputBlock) {
// Check whether chainActive is an extension of the block at which the LockPoints
// calculation was valid. If not LockPoints are no longer valid
if (!chainActive.Contains(lp->maxInputBlock)) {
return false;
}
}
// LockPoints still valid
return true;
}
bool CheckSequenceLocks(const CTxMemPool& pool, const CTransaction& tx, int flags, LockPoints* lp, bool useExistingLockPoints)
{
AssertLockHeld(cs_main);
AssertLockHeld(pool.cs);
CBlockIndex* tip = chainActive.Tip();
assert(tip != nullptr);
CBlockIndex index;
index.pprev = tip;
// CheckSequenceLocks() uses chainActive.Height()+1 to evaluate
// height based locks because when SequenceLocks() is called within
// ConnectBlock(), the height of the block *being*
// evaluated is what is used.
// Thus if we want to know if a transaction can be part of the
// *next* block, we need to use one more than chainActive.Height()
index.nHeight = tip->nHeight + 1;
std::pair<int, int64_t> lockPair;
if (useExistingLockPoints) {
assert(lp);
lockPair.first = lp->height;
lockPair.second = lp->time;
}
else {
// pcoinsTip contains the UTXO set for chainActive.Tip()
CCoinsViewMemPool viewMemPool(pcoinsTip.get(), pool);
std::vector<int> prevheights;
prevheights.resize(tx.vin.size());
for (size_t txinIndex = 0; txinIndex < tx.vin.size(); txinIndex++) {
const CTxIn& txin = tx.vin[txinIndex];
Coin coin;
if (!viewMemPool.GetCoin(txin.prevout, coin)) {
return error("%s: Missing input", __func__);
}
if (coin.nHeight == MEMPOOL_HEIGHT) {
// Assume all mempool transaction confirm in the next block
prevheights[txinIndex] = tip->nHeight + 1;
} else {
prevheights[txinIndex] = coin.nHeight;
}
}
lockPair = CalculateSequenceLocks(tx, flags, &prevheights, index);
if (lp) {
lp->height = lockPair.first;
lp->time = lockPair.second;
// Also store the hash of the block with the highest height of
// all the blocks which have sequence locked prevouts.
// This hash needs to still be on the chain
// for these LockPoint calculations to be valid
// Note: It is impossible to correctly calculate a maxInputBlock
// if any of the sequence locked inputs depend on unconfirmed txs,
// except in the special case where the relative lock time/height
// is 0, which is equivalent to no sequence lock. Since we assume
// input height of tip+1 for mempool txs and test the resulting
// lockPair from CalculateSequenceLocks against tip+1. We know
// EvaluateSequenceLocks will fail if there was a non-zero sequence
// lock on a mempool input, so we can use the return value of
// CheckSequenceLocks to indicate the LockPoints validity
int maxInputHeight = 0;
for (const int height : prevheights) {
// Can ignore mempool inputs since we'll fail if they had non-zero locks
if (height != tip->nHeight+1) {
maxInputHeight = std::max(maxInputHeight, height);
}
}
lp->maxInputBlock = tip->GetAncestor(maxInputHeight);
}
}
return EvaluateSequenceLocks(index, lockPair);
}
// Returns the script flags which should be checked for a given block
static unsigned int GetBlockScriptFlags(const CBlockIndex* pindex, const Consensus::Params& chainparams);
static void LimitMempoolSize(CTxMemPool& pool, size_t limit, unsigned long age) {
int expired = pool.Expire(GetTime() - age);
if (expired != 0) {
LogPrint(BCLog::MEMPOOL, "Expired %i transactions from the memory pool\n", expired);
}
std::vector<COutPoint> vNoSpendsRemaining;
pool.TrimToSize(limit, &vNoSpendsRemaining);
for (const COutPoint& removed : vNoSpendsRemaining)
pcoinsTip->Uncache(removed);
}
/** Convert CValidationState to a human-readable message for logging */
std::string FormatStateMessage(const CValidationState &state)
{
return strprintf("%s%s (code %i)",
state.GetRejectReason(),
state.GetDebugMessage().empty() ? "" : ", "+state.GetDebugMessage(),
state.GetRejectCode());
}
static bool IsCurrentForFeeEstimation() EXCLUSIVE_LOCKS_REQUIRED(cs_main)
{
AssertLockHeld(cs_main);
if (IsInitialBlockDownload())
return false;
if (chainActive.Tip()->GetBlockTime() < (GetTime() - MAX_FEE_ESTIMATION_TIP_AGE))
return false;
if (chainActive.Height() < pindexBestHeader->nHeight - 1)
return false;
return true;
}
/* Make mempool consistent after a reorg, by re-adding or recursively erasing
* disconnected block transactions from the mempool, and also removing any
* other transactions from the mempool that are no longer valid given the new
* tip/height.
*
* Note: we assume that disconnectpool only contains transactions that are NOT
* confirmed in the current chain nor already in the mempool (otherwise,
* in-mempool descendants of such transactions would be removed).
*
* Passing fAddToMempool=false will skip trying to add the transactions back,
* and instead just erase from the mempool as needed.
*/
static void UpdateMempoolForReorg(DisconnectedBlockTransactions &disconnectpool, bool fAddToMempool) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
{
AssertLockHeld(cs_main);
std::vector<uint256> vHashUpdate;
// disconnectpool's insertion_order index sorts the entries from
// oldest to newest, but the oldest entry will be the last tx from the
// latest mined block that was disconnected.
// Iterate disconnectpool in reverse, so that we add transactions
// back to the mempool starting with the earliest transaction that had
// been previously seen in a block.
auto it = disconnectpool.queuedTx.get<insertion_order>().rbegin();
while (it != disconnectpool.queuedTx.get<insertion_order>().rend()) {
// ignore validation errors in resurrected transactions
CValidationState stateDummy;
if (!fAddToMempool || (*it)->IsCoinBase() ||
!AcceptToMemoryPool(mempool, stateDummy, *it, nullptr /* pfMissingInputs */,
nullptr /* plTxnReplaced */, true /* bypass_limits */, 0 /* nAbsurdFee */)) {
// If the transaction doesn't make it in to the mempool, remove any
// transactions that depend on it (which would now be orphans).
mempool.removeRecursive(**it, MemPoolRemovalReason::REORG);
} else if (mempool.exists((*it)->GetHash())) {
vHashUpdate.push_back((*it)->GetHash());
}
++it;
}
disconnectpool.queuedTx.clear();
// AcceptToMemoryPool/addUnchecked all assume that new mempool entries have
// no in-mempool children, which is generally not true when adding
// previously-confirmed transactions back to the mempool.
// UpdateTransactionsFromBlock finds descendants of any transactions in
// the disconnectpool that were added back and cleans up the mempool state.
mempool.UpdateTransactionsFromBlock(vHashUpdate);
// We also need to remove any now-immature transactions
mempool.removeForReorg(pcoinsTip.get(), chainActive.Tip()->nHeight + 1, STANDARD_LOCKTIME_VERIFY_FLAGS);
// Re-limit mempool size, in case we added any transactions
LimitMempoolSize(mempool, gArgs.GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000, gArgs.GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60);
}
// Used to avoid mempool polluting consensus critical paths if CCoinsViewMempool
// were somehow broken and returning the wrong scriptPubKeys
static bool CheckInputsFromMempoolAndCache(const CTransaction& tx, CValidationState& state, const CCoinsViewCache& view, const CTxMemPool& pool,
unsigned int flags, bool cacheSigStore, PrecomputedTransactionData& txdata) EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
AssertLockHeld(cs_main);
// pool.cs should be locked already, but go ahead and re-take the lock here
// to enforce that mempool doesn't change between when we check the view
// and when we actually call through to CheckInputs
LOCK(pool.cs);
assert(!tx.IsCoinBase());
for (const CTxIn& txin : tx.vin) {
const Coin& coin = view.AccessCoin(txin.prevout);
// At this point we haven't actually checked if the coins are all
// available (or shouldn't assume we have, since CheckInputs does).
// So we just return failure if the inputs are not available here,
// and then only have to check equivalence for available inputs.
if (coin.IsSpent()) return false;
const CTransactionRef& txFrom = pool.get(txin.prevout.hash);
if (txFrom) {
assert(txFrom->GetHash() == txin.prevout.hash);
assert(txFrom->vout.size() > txin.prevout.n);
assert(txFrom->vout[txin.prevout.n] == coin.out);
} else {
const Coin& coinFromDisk = pcoinsTip->AccessCoin(txin.prevout);
assert(!coinFromDisk.IsSpent());
assert(coinFromDisk.out == coin.out);
}
}
return CheckInputs(tx, state, view, true, flags, cacheSigStore, true, txdata);
}
static bool AcceptToMemoryPoolWorker(const CChainParams& chainparams, CTxMemPool& pool, CValidationState& state, const CTransactionRef& ptx,
bool* pfMissingInputs, int64_t nAcceptTime, std::list<CTransactionRef>* plTxnReplaced,
bool bypass_limits, const CAmount& nAbsurdFee, std::vector<COutPoint>& coins_to_uncache, bool test_accept) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
{
const CTransaction& tx = *ptx;
const uint256 hash = tx.GetHash();
AssertLockHeld(cs_main);
LOCK(pool.cs); // mempool "read lock" (held through GetMainSignals().TransactionAddedToMempool())
if (pfMissingInputs) {
*pfMissingInputs = false;
}
if (!CheckTransaction(tx, state))
return false; // state filled in by CheckTransaction
// Coinbase is only valid in a block, not as a loose transaction
if (tx.IsCoinBase())
return state.DoS(100, false, REJECT_INVALID, "coinbase");
// Rather not work on nonstandard transactions (unless -testnet/-regtest)
std::string reason;
if (fRequireStandard && !IsStandardTx(tx, reason))
return state.DoS(0, false, REJECT_NONSTANDARD, reason);
// Do not work on transactions that are too small.
// A transaction with 1 segwit input and 1 P2WPHK output has non-witness size of 82 bytes.
// Transactions smaller than this are not relayed to reduce unnecessary malloc overhead.
if (::GetSerializeSize(tx, PROTOCOL_VERSION | SERIALIZE_TRANSACTION_NO_WITNESS) < MIN_STANDARD_TX_NONWITNESS_SIZE)
return state.DoS(0, false, REJECT_NONSTANDARD, "tx-size-small");
// Only accept nLockTime-using transactions that can be mined in the next
// block; we don't want our mempool filled up with transactions that can't
// be mined yet.
if (!CheckFinalTx(tx, STANDARD_LOCKTIME_VERIFY_FLAGS))
return state.DoS(0, false, REJECT_NONSTANDARD, "non-final");
// is it already in the memory pool?
if (pool.exists(hash)) {
return state.Invalid(false, REJECT_DUPLICATE, "txn-already-in-mempool");
}
// Check for conflicts with in-memory transactions
std::set<uint256> setConflicts;
for (const CTxIn &txin : tx.vin)
{
const CTransaction* ptxConflicting = pool.GetConflictTx(txin.prevout);
if (ptxConflicting) {
if (!setConflicts.count(ptxConflicting->GetHash()))
{
// Allow opt-out of transaction replacement by setting
// nSequence > MAX_BIP125_RBF_SEQUENCE (SEQUENCE_FINAL-2) on all inputs.
//
// SEQUENCE_FINAL-1 is picked to still allow use of nLockTime by
// non-replaceable transactions. All inputs rather than just one
// is for the sake of multi-party protocols, where we don't
// want a single party to be able to disable replacement.
//
// The opt-out ignores descendants as anyone relying on
// first-seen mempool behavior should be checking all
// unconfirmed ancestors anyway; doing otherwise is hopelessly
// insecure.
bool fReplacementOptOut = true;
if (fEnableReplacement)
{
for (const CTxIn &_txin : ptxConflicting->vin)
{
if (_txin.nSequence <= MAX_BIP125_RBF_SEQUENCE)
{
fReplacementOptOut = false;
break;
}
}
}
if (fReplacementOptOut) {
return state.Invalid(false, REJECT_DUPLICATE, "txn-mempool-conflict");
}
setConflicts.insert(ptxConflicting->GetHash());
}
}
}
{
CCoinsView dummy;
CCoinsViewCache view(&dummy);
LockPoints lp;
CCoinsViewMemPool viewMemPool(pcoinsTip.get(), pool);
view.SetBackend(viewMemPool);
// do all inputs exist?
for (const CTxIn& txin : tx.vin) {
if (!pcoinsTip->HaveCoinInCache(txin.prevout)) {
coins_to_uncache.push_back(txin.prevout);
}
if (!view.HaveCoin(txin.prevout)) {
// Are inputs missing because we already have the tx?
for (size_t out = 0; out < tx.vout.size(); out++) {
// Optimistically just do efficient check of cache for outputs
if (pcoinsTip->HaveCoinInCache(COutPoint(hash, out))) {
return state.Invalid(false, REJECT_DUPLICATE, "txn-already-known");
}
}
// Otherwise assume this might be an orphan tx for which we just haven't seen parents yet
if (pfMissingInputs) {
*pfMissingInputs = true;
}
return false; // fMissingInputs and !state.IsInvalid() is used to detect this condition, don't set state.Invalid()
}
}
// Bring the best block into scope
view.GetBestBlock();
// we have all inputs cached now, so switch back to dummy, so we don't need to keep lock on mempool
view.SetBackend(dummy);
// Only accept BIP68 sequence locked transactions that can be mined in the next
// block; we don't want our mempool filled up with transactions that can't
// be mined yet.
// Must keep pool.cs for this unless we change CheckSequenceLocks to take a
// CoinsViewCache instead of create its own
if (!CheckSequenceLocks(pool, tx, STANDARD_LOCKTIME_VERIFY_FLAGS, &lp))
return state.DoS(0, false, REJECT_NONSTANDARD, "non-BIP68-final");
CAmount nFees = 0;
if (!Consensus::CheckTxInputs(tx, state, view, GetSpendHeight(view), nFees)) {
return error("%s: Consensus::CheckTxInputs: %s, %s", __func__, tx.GetHash().ToString(), FormatStateMessage(state));
}
// Check for non-standard pay-to-script-hash in inputs
if (fRequireStandard && !AreInputsStandard(tx, view))
return state.Invalid(false, REJECT_NONSTANDARD, "bad-txns-nonstandard-inputs");
// Check for non-standard witness in P2WSH
if (tx.HasWitness() && fRequireStandard && !IsWitnessStandard(tx, view))
return state.DoS(0, false, REJECT_NONSTANDARD, "bad-witness-nonstandard", true);
int64_t nSigOpsCost = GetTransactionSigOpCost(tx, view, STANDARD_SCRIPT_VERIFY_FLAGS);
// nModifiedFees includes any fee deltas from PrioritiseTransaction
CAmount nModifiedFees = nFees;
pool.ApplyDelta(hash, nModifiedFees);
// Keep track of transactions that spend a coinbase, which we re-scan
// during reorgs to ensure COINBASE_MATURITY is still met.
bool fSpendsCoinbase = false;
for (const CTxIn &txin : tx.vin) {
const Coin &coin = view.AccessCoin(txin.prevout);
if (coin.IsCoinBase()) {
fSpendsCoinbase = true;
break;
}
}
CTxMemPoolEntry entry(ptx, nFees, nAcceptTime, chainActive.Height(),
fSpendsCoinbase, nSigOpsCost, lp);
unsigned int nSize = entry.GetTxSize();
// Check that the transaction doesn't have an excessive number of
// sigops, making it impossible to mine. Since the coinbase transaction
// itself can contain sigops MAX_STANDARD_TX_SIGOPS is less than
// MAX_BLOCK_SIGOPS; we still consider this an invalid rather than
// merely non-standard transaction.
if (nSigOpsCost > MAX_STANDARD_TX_SIGOPS_COST)
return state.DoS(0, false, REJECT_NONSTANDARD, "bad-txns-too-many-sigops", false,
strprintf("%d", nSigOpsCost));
CAmount mempoolRejectFee = pool.GetMinFee(gArgs.GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000).GetFee(nSize);
if (!bypass_limits && mempoolRejectFee > 0 && nModifiedFees < mempoolRejectFee) {
return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "mempool min fee not met", false, strprintf("%d < %d", nModifiedFees, mempoolRejectFee));
}
// No transactions are allowed below minRelayTxFee except from disconnected blocks
if (!bypass_limits && nModifiedFees < ::minRelayTxFee.GetFee(nSize)) {
return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "min relay fee not met", false, strprintf("%d < %d", nModifiedFees, ::minRelayTxFee.GetFee(nSize)));
}
if (nAbsurdFee && nFees > nAbsurdFee)
return state.Invalid(false,
REJECT_HIGHFEE, "absurdly-high-fee",
strprintf("%d > %d", nFees, nAbsurdFee));
// Calculate in-mempool ancestors, up to a limit.
CTxMemPool::setEntries setAncestors;
size_t nLimitAncestors = gArgs.GetArg("-limitancestorcount", DEFAULT_ANCESTOR_LIMIT);
size_t nLimitAncestorSize = gArgs.GetArg("-limitancestorsize", DEFAULT_ANCESTOR_SIZE_LIMIT)*1000;
size_t nLimitDescendants = gArgs.GetArg("-limitdescendantcount", DEFAULT_DESCENDANT_LIMIT);
size_t nLimitDescendantSize = gArgs.GetArg("-limitdescendantsize", DEFAULT_DESCENDANT_SIZE_LIMIT)*1000;
std::string errString;
if (!pool.CalculateMemPoolAncestors(entry, setAncestors, nLimitAncestors, nLimitAncestorSize, nLimitDescendants, nLimitDescendantSize, errString)) {
return state.DoS(0, false, REJECT_NONSTANDARD, "too-long-mempool-chain", false, errString);
}
// A transaction that spends outputs that would be replaced by it is invalid. Now
// that we have the set of all ancestors we can detect this
// pathological case by making sure setConflicts and setAncestors don't
// intersect.
for (CTxMemPool::txiter ancestorIt : setAncestors)
{
const uint256 &hashAncestor = ancestorIt->GetTx().GetHash();
if (setConflicts.count(hashAncestor))
{
return state.DoS(10, false,
REJECT_INVALID, "bad-txns-spends-conflicting-tx", false,
strprintf("%s spends conflicting transaction %s",
hash.ToString(),
hashAncestor.ToString()));
}
}
// Check if it's economically rational to mine this transaction rather
// than the ones it replaces.
CAmount nConflictingFees = 0;
size_t nConflictingSize = 0;
uint64_t nConflictingCount = 0;
CTxMemPool::setEntries allConflicting;
// If we don't hold the lock allConflicting might be incomplete; the
// subsequent RemoveStaged() and addUnchecked() calls don't guarantee
// mempool consistency for us.
const bool fReplacementTransaction = setConflicts.size();
if (fReplacementTransaction)
{
CFeeRate newFeeRate(nModifiedFees, nSize);
std::set<uint256> setConflictsParents;
const int maxDescendantsToVisit = 100;
const CTxMemPool::setEntries setIterConflicting = pool.GetIterSet(setConflicts);
for (const auto& mi : setIterConflicting) {
// Don't allow the replacement to reduce the feerate of the
// mempool.
//
// We usually don't want to accept replacements with lower
// feerates than what they replaced as that would lower the
// feerate of the next block. Requiring that the feerate always
// be increased is also an easy-to-reason about way to prevent
// DoS attacks via replacements.
//
// We only consider the feerates of transactions being directly
// replaced, not their indirect descendants. While that does
// mean high feerate children are ignored when deciding whether
// or not to replace, we do require the replacement to pay more
// overall fees too, mitigating most cases.
CFeeRate oldFeeRate(mi->GetModifiedFee(), mi->GetTxSize());
if (newFeeRate <= oldFeeRate)
{
return state.DoS(0, false,
REJECT_INSUFFICIENTFEE, "insufficient fee", false,
strprintf("rejecting replacement %s; new feerate %s <= old feerate %s",
hash.ToString(),
newFeeRate.ToString(),
oldFeeRate.ToString()));
}
for (const CTxIn &txin : mi->GetTx().vin)
{
setConflictsParents.insert(txin.prevout.hash);
}
nConflictingCount += mi->GetCountWithDescendants();
}
// This potentially overestimates the number of actual descendants
// but we just want to be conservative to avoid doing too much
// work.
if (nConflictingCount <= maxDescendantsToVisit) {
// If not too many to replace, then calculate the set of
// transactions that would have to be evicted
for (CTxMemPool::txiter it : setIterConflicting) {
pool.CalculateDescendants(it, allConflicting);
}
for (CTxMemPool::txiter it : allConflicting) {
nConflictingFees += it->GetModifiedFee();
nConflictingSize += it->GetTxSize();
}
} else {
return state.DoS(0, false,
REJECT_NONSTANDARD, "too many potential replacements", false,
strprintf("rejecting replacement %s; too many potential replacements (%d > %d)\n",
hash.ToString(),
nConflictingCount,
maxDescendantsToVisit));
}
for (unsigned int j = 0; j < tx.vin.size(); j++)
{
// We don't want to accept replacements that require low
// feerate junk to be mined first. Ideally we'd keep track of
// the ancestor feerates and make the decision based on that,
// but for now requiring all new inputs to be confirmed works.
if (!setConflictsParents.count(tx.vin[j].prevout.hash))
{
// Rather than check the UTXO set - potentially expensive -
// it's cheaper to just check if the new input refers to a
// tx that's in the mempool.
if (pool.exists(tx.vin[j].prevout.hash)) {
return state.DoS(0, false,
REJECT_NONSTANDARD, "replacement-adds-unconfirmed", false,
strprintf("replacement %s adds unconfirmed input, idx %d",
hash.ToString(), j));
}
}
}
// The replacement must pay greater fees than the transactions it
// replaces - if we did the bandwidth used by those conflicting
// transactions would not be paid for.
if (nModifiedFees < nConflictingFees)
{
return state.DoS(0, false,
REJECT_INSUFFICIENTFEE, "insufficient fee", false,
strprintf("rejecting replacement %s, less fees than conflicting txs; %s < %s",
hash.ToString(), FormatMoney(nModifiedFees), FormatMoney(nConflictingFees)));
}
// Finally in addition to paying more fees than the conflicts the
// new transaction must pay for its own bandwidth.
CAmount nDeltaFees = nModifiedFees - nConflictingFees;
if (nDeltaFees < ::incrementalRelayFee.GetFee(nSize))
{
return state.DoS(0, false,
REJECT_INSUFFICIENTFEE, "insufficient fee", false,
strprintf("rejecting replacement %s, not enough additional fees to relay; %s < %s",
hash.ToString(),
FormatMoney(nDeltaFees),
FormatMoney(::incrementalRelayFee.GetFee(nSize))));
}
}
constexpr unsigned int scriptVerifyFlags = STANDARD_SCRIPT_VERIFY_FLAGS;
// Check against previous transactions
// This is done last to help prevent CPU exhaustion denial-of-service attacks.
PrecomputedTransactionData txdata(tx);
if (!CheckInputs(tx, state, view, true, scriptVerifyFlags, true, false, txdata)) {
// SCRIPT_VERIFY_CLEANSTACK requires SCRIPT_VERIFY_WITNESS, so we
// need to turn both off, and compare against just turning off CLEANSTACK
// to see if the failure is specifically due to witness validation.
CValidationState stateDummy; // Want reported failures to be from first CheckInputs
if (!tx.HasWitness() && CheckInputs(tx, stateDummy, view, true, scriptVerifyFlags & ~(SCRIPT_VERIFY_WITNESS | SCRIPT_VERIFY_CLEANSTACK), true, false, txdata) &&
!CheckInputs(tx, stateDummy, view, true, scriptVerifyFlags & ~SCRIPT_VERIFY_CLEANSTACK, true, false, txdata)) {
// Only the witness is missing, so the transaction itself may be fine.
state.SetCorruptionPossible();
}
return false; // state filled in by CheckInputs
}
// Check again against the current block tip's script verification
// flags to cache our script execution flags. This is, of course,
// useless if the next block has different script flags from the
// previous one, but because the cache tracks script flags for us it
// will auto-invalidate and we'll just have a few blocks of extra
// misses on soft-fork activation.
//
// This is also useful in case of bugs in the standard flags that cause
// transactions to pass as valid when they're actually invalid. For
// instance the STRICTENC flag was incorrectly allowing certain
// CHECKSIG NOT scripts to pass, even though they were invalid.
//
// There is a similar check in CreateNewBlock() to prevent creating
// invalid blocks (using TestBlockValidity), however allowing such
// transactions into the mempool can be exploited as a DoS attack.
unsigned int currentBlockScriptVerifyFlags = GetBlockScriptFlags(chainActive.Tip(), chainparams.GetConsensus());
if (!CheckInputsFromMempoolAndCache(tx, state, view, pool, currentBlockScriptVerifyFlags, true, txdata)) {
return error("%s: BUG! PLEASE REPORT THIS! CheckInputs failed against latest-block but not STANDARD flags %s, %s",
__func__, hash.ToString(), FormatStateMessage(state));
}
if (test_accept) {
// Tx was accepted, but not added
return true;
}
// Remove conflicting transactions from the mempool
for (CTxMemPool::txiter it : allConflicting)
{
LogPrint(BCLog::MEMPOOL, "replacing tx %s with %s for %s BTC additional fees, %d delta bytes\n",
it->GetTx().GetHash().ToString(),
hash.ToString(),
FormatMoney(nModifiedFees - nConflictingFees),
(int)nSize - (int)nConflictingSize);
if (plTxnReplaced)
plTxnReplaced->push_back(it->GetSharedTx());
}
pool.RemoveStaged(allConflicting, false, MemPoolRemovalReason::REPLACED);
// This transaction should only count for fee estimation if:
// - it isn't a BIP 125 replacement transaction (may not be widely supported)
// - it's not being re-added during a reorg which bypasses typical mempool fee limits
// - the node is not behind
// - the transaction is not dependent on any other transactions in the mempool
bool validForFeeEstimation = !fReplacementTransaction && !bypass_limits && IsCurrentForFeeEstimation() && pool.HasNoInputsOf(tx);
// Store transaction in memory
pool.addUnchecked(entry, setAncestors, validForFeeEstimation);
// trim mempool and check if tx was trimmed
if (!bypass_limits) {
LimitMempoolSize(pool, gArgs.GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000, gArgs.GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60);
if (!pool.exists(hash))
return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "mempool full");
}
}
GetMainSignals().TransactionAddedToMempool(ptx);
return true;
}
/** (try to) add transaction to memory pool with a specified acceptance time **/
static bool AcceptToMemoryPoolWithTime(const CChainParams& chainparams, CTxMemPool& pool, CValidationState &state, const CTransactionRef &tx,
bool* pfMissingInputs, int64_t nAcceptTime, std::list<CTransactionRef>* plTxnReplaced,
bool bypass_limits, const CAmount nAbsurdFee, bool test_accept) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
{
std::vector<COutPoint> coins_to_uncache;
bool res = AcceptToMemoryPoolWorker(chainparams, pool, state, tx, pfMissingInputs, nAcceptTime, plTxnReplaced, bypass_limits, nAbsurdFee, coins_to_uncache, test_accept);
if (!res) {
for (const COutPoint& hashTx : coins_to_uncache)
pcoinsTip->Uncache(hashTx);
}
// After we've (potentially) uncached entries, ensure our coins cache is still within its size limits
CValidationState stateDummy;
FlushStateToDisk(chainparams, stateDummy, FlushStateMode::PERIODIC);
return res;
}
bool AcceptToMemoryPool(CTxMemPool& pool, CValidationState &state, const CTransactionRef &tx,
bool* pfMissingInputs, std::list<CTransactionRef>* plTxnReplaced,
bool bypass_limits, const CAmount nAbsurdFee, bool test_accept)
{
const CChainParams& chainparams = Params();
return AcceptToMemoryPoolWithTime(chainparams, pool, state, tx, pfMissingInputs, GetTime(), plTxnReplaced, bypass_limits, nAbsurdFee, test_accept);
}
/**
* Return transaction in txOut, and if it was found inside a block, its hash is placed in hashBlock.
* If blockIndex is provided, the transaction is fetched from the corresponding block.
*/
bool GetTransaction(const uint256& hash, CTransactionRef& txOut, const Consensus::Params& consensusParams, uint256& hashBlock, bool fAllowSlow, CBlockIndex* blockIndex)
{
CBlockIndex* pindexSlow = blockIndex;
LOCK(cs_main);
if (!blockIndex) {
CTransactionRef ptx = mempool.get(hash);
if (ptx) {
txOut = ptx;
return true;
}
if (g_txindex) {
return g_txindex->FindTx(hash, hashBlock, txOut);
}
if (fAllowSlow) { // use coin database to locate block that contains transaction, and scan it
const Coin& coin = AccessByTxid(*pcoinsTip, hash);
if (!coin.IsSpent()) pindexSlow = chainActive[coin.nHeight];
}
}
if (pindexSlow) {
CBlock block;
if (ReadBlockFromDisk(block, pindexSlow, consensusParams)) {
for (const auto& tx : block.vtx) {
if (tx->GetHash() == hash) {
txOut = tx;
hashBlock = pindexSlow->GetBlockHash();
return true;
}
}
}
}
return false;
}
//////////////////////////////////////////////////////////////////////////////
//
// CBlock and CBlockIndex
//
static bool WriteBlockToDisk(const CBlock& block, CDiskBlockPos& pos, const CMessageHeader::MessageStartChars& messageStart)
{
// Open history file to append
CAutoFile fileout(OpenBlockFile(pos), SER_DISK, CLIENT_VERSION);
if (fileout.IsNull())
return error("WriteBlockToDisk: OpenBlockFile failed");
// Write index header
unsigned int nSize = GetSerializeSize(block, fileout.GetVersion());
fileout << messageStart << nSize;
// Write block
long fileOutPos = ftell(fileout.Get());
if (fileOutPos < 0)
return error("WriteBlockToDisk: ftell failed");
pos.nPos = (unsigned int)fileOutPos;
fileout << block;
return true;
}
bool ReadBlockFromDisk(CBlock& block, const CDiskBlockPos& pos, const Consensus::Params& consensusParams)
{
block.SetNull();
// Open history file to read
CAutoFile filein(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION);
if (filein.IsNull())
return error("ReadBlockFromDisk: OpenBlockFile failed for %s", pos.ToString());
// Read block
try {
filein >> block;
}
catch (const std::exception& e) {
return error("%s: Deserialize or I/O error - %s at %s", __func__, e.what(), pos.ToString());
}
// Check the header
if (!CheckProofOfWork(block.GetHash(), block.nBits, consensusParams))
return error("ReadBlockFromDisk: Errors in block header at %s", pos.ToString());
return true;
}
bool ReadBlockFromDisk(CBlock& block, const CBlockIndex* pindex, const Consensus::Params& consensusParams)
{
CDiskBlockPos blockPos;
{
LOCK(cs_main);
blockPos = pindex->GetBlockPos();
}
if (!ReadBlockFromDisk(block, blockPos, consensusParams))
return false;
if (block.GetHash() != pindex->GetBlockHash())
return error("ReadBlockFromDisk(CBlock&, CBlockIndex*): GetHash() doesn't match index for %s at %s",
pindex->ToString(), pindex->GetBlockPos().ToString());
return true;
}
bool ReadRawBlockFromDisk(std::vector<uint8_t>& block, const CDiskBlockPos& pos, const CMessageHeader::MessageStartChars& message_start)
{
CDiskBlockPos hpos = pos;
hpos.nPos -= 8; // Seek back 8 bytes for meta header
CAutoFile filein(OpenBlockFile(hpos, true), SER_DISK, CLIENT_VERSION);
if (filein.IsNull()) {
return error("%s: OpenBlockFile failed for %s", __func__, pos.ToString());
}
try {
CMessageHeader::MessageStartChars blk_start;
unsigned int blk_size;
filein >> blk_start >> blk_size;
if (memcmp(blk_start, message_start, CMessageHeader::MESSAGE_START_SIZE)) {
return error("%s: Block magic mismatch for %s: %s versus expected %s", __func__, pos.ToString(),
HexStr(blk_start, blk_start + CMessageHeader::MESSAGE_START_SIZE),
HexStr(message_start, message_start + CMessageHeader::MESSAGE_START_SIZE));
}
if (blk_size > MAX_SIZE) {
return error("%s: Block data is larger than maximum deserialization size for %s: %s versus %s", __func__, pos.ToString(),
blk_size, MAX_SIZE);
}
block.resize(blk_size); // Zeroing of memory is intentional here
filein.read((char*)block.data(), blk_size);
} catch(const std::exception& e) {
return error("%s: Read from block file failed: %s for %s", __func__, e.what(), pos.ToString());
}
return true;
}
bool ReadRawBlockFromDisk(std::vector<uint8_t>& block, const CBlockIndex* pindex, const CMessageHeader::MessageStartChars& message_start)
{
CDiskBlockPos block_pos;
{
LOCK(cs_main);
block_pos = pindex->GetBlockPos();
}
return ReadRawBlockFromDisk(block, block_pos, message_start);
}
CAmount GetBlockSubsidy(int nHeight, const Consensus::Params& consensusParams)
{
int halvings = nHeight / consensusParams.nSubsidyHalvingInterval;
// Force block reward to zero when right shift is undefined.
if (halvings >= 64)
return 0;
CAmount nSubsidy = 50 * COIN;
// Subsidy is cut in half every 210,000 blocks which will occur approximately every 4 years.
nSubsidy >>= halvings;
return nSubsidy;
}
bool IsInitialBlockDownload()
{
// Once this function has returned false, it must remain false.
static std::atomic<bool> latchToFalse{false};
// Optimization: pre-test latch before taking the lock.
if (latchToFalse.load(std::memory_order_relaxed))
return false;
LOCK(cs_main);
if (latchToFalse.load(std::memory_order_relaxed))
return false;
if (fImporting || fReindex)
return true;
if (chainActive.Tip() == nullptr)
return true;
if (chainActive.Tip()->nChainWork < nMinimumChainWork)
return true;
if (chainActive.Tip()->GetBlockTime() < (GetTime() - nMaxTipAge))
return true;
LogPrintf("Leaving InitialBlockDownload (latching to false)\n");
latchToFalse.store(true, std::memory_order_relaxed);
return false;
}
CBlockIndex *pindexBestForkTip = nullptr, *pindexBestForkBase = nullptr;
static void AlertNotify(const std::string& strMessage)
{
uiInterface.NotifyAlertChanged();
std::string strCmd = gArgs.GetArg("-alertnotify", "");
if (strCmd.empty()) return;
// Alert text should be plain ascii coming from a trusted source, but to
// be safe we first strip anything not in safeChars, then add single quotes around
// the whole string before passing it to the shell:
std::string singleQuote("'");
std::string safeStatus = SanitizeString(strMessage);
safeStatus = singleQuote+safeStatus+singleQuote;
boost::replace_all(strCmd, "%s", safeStatus);
std::thread t(runCommand, strCmd);
t.detach(); // thread runs free
}
static void CheckForkWarningConditions() EXCLUSIVE_LOCKS_REQUIRED(cs_main)
{
AssertLockHeld(cs_main);
// Before we get past initial download, we cannot reliably alert about forks
// (we assume we don't get stuck on a fork before finishing our initial sync)
if (IsInitialBlockDownload())
return;
// If our best fork is no longer within 72 blocks (+/- 12 hours if no one mines it)
// of our head, drop it
if (pindexBestForkTip && chainActive.Height() - pindexBestForkTip->nHeight >= 72)
pindexBestForkTip = nullptr;
if (pindexBestForkTip || (pindexBestInvalid && pindexBestInvalid->nChainWork > chainActive.Tip()->nChainWork + (GetBlockProof(*chainActive.Tip()) * 6)))
{
if (!GetfLargeWorkForkFound() && pindexBestForkBase)
{
std::string warning = std::string("'Warning: Large-work fork detected, forking after block ") +
pindexBestForkBase->phashBlock->ToString() + std::string("'");
AlertNotify(warning);
}
if (pindexBestForkTip && pindexBestForkBase)
{
LogPrintf("%s: Warning: Large valid fork found\n forking the chain at height %d (%s)\n lasting to height %d (%s).\nChain state database corruption likely.\n", __func__,
pindexBestForkBase->nHeight, pindexBestForkBase->phashBlock->ToString(),
pindexBestForkTip->nHeight, pindexBestForkTip->phashBlock->ToString());
SetfLargeWorkForkFound(true);
}
else
{
LogPrintf("%s: Warning: Found invalid chain at least ~6 blocks longer than our best chain.\nChain state database corruption likely.\n", __func__);
SetfLargeWorkInvalidChainFound(true);
}
}
else
{
SetfLargeWorkForkFound(false);
SetfLargeWorkInvalidChainFound(false);
}
}
static void CheckForkWarningConditionsOnNewFork(CBlockIndex* pindexNewForkTip) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
{
AssertLockHeld(cs_main);
// If we are on a fork that is sufficiently large, set a warning flag
CBlockIndex* pfork = pindexNewForkTip;
CBlockIndex* plonger = chainActive.Tip();
while (pfork && pfork != plonger)
{
while (plonger && plonger->nHeight > pfork->nHeight)
plonger = plonger->pprev;
if (pfork == plonger)
break;
pfork = pfork->pprev;
}
// We define a condition where we should warn the user about as a fork of at least 7 blocks
// with a tip within 72 blocks (+/- 12 hours if no one mines it) of ours
// We use 7 blocks rather arbitrarily as it represents just under 10% of sustained network
// hash rate operating on the fork.
// or a chain that is entirely longer than ours and invalid (note that this should be detected by both)
// We define it this way because it allows us to only store the highest fork tip (+ base) which meets
// the 7-block condition and from this always have the most-likely-to-cause-warning fork
if (pfork && (!pindexBestForkTip || pindexNewForkTip->nHeight > pindexBestForkTip->nHeight) &&
pindexNewForkTip->nChainWork - pfork->nChainWork > (GetBlockProof(*pfork) * 7) &&
chainActive.Height() - pindexNewForkTip->nHeight < 72)
{
pindexBestForkTip = pindexNewForkTip;
pindexBestForkBase = pfork;
}
CheckForkWarningConditions();
}
void static InvalidChainFound(CBlockIndex* pindexNew) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
{
if (!pindexBestInvalid || pindexNew->nChainWork > pindexBestInvalid->nChainWork)
pindexBestInvalid = pindexNew;
LogPrintf("%s: invalid block=%s height=%d log2_work=%.8g date=%s\n", __func__,
pindexNew->GetBlockHash().ToString(), pindexNew->nHeight,
log(pindexNew->nChainWork.getdouble())/log(2.0), FormatISO8601DateTime(pindexNew->GetBlockTime()));
CBlockIndex *tip = chainActive.Tip();
assert (tip);
LogPrintf("%s: current best=%s height=%d log2_work=%.8g date=%s\n", __func__,
tip->GetBlockHash().ToString(), chainActive.Height(), log(tip->nChainWork.getdouble())/log(2.0),
FormatISO8601DateTime(tip->GetBlockTime()));
CheckForkWarningConditions();
}
void CChainState::InvalidBlockFound(CBlockIndex *pindex, const CValidationState &state) {
if (!state.CorruptionPossible()) {
pindex->nStatus |= BLOCK_FAILED_VALID;
m_failed_blocks.insert(pindex);
setDirtyBlockIndex.insert(pindex);
setBlockIndexCandidates.erase(pindex);
InvalidChainFound(pindex);
}
}
void UpdateCoins(const CTransaction& tx, CCoinsViewCache& inputs, CTxUndo &txundo, int nHeight)
{
// mark inputs spent
if (!tx.IsCoinBase()) {
txundo.vprevout.reserve(tx.vin.size());
for (const CTxIn &txin : tx.vin) {
txundo.vprevout.emplace_back();
bool is_spent = inputs.SpendCoin(txin.prevout, &txundo.vprevout.back());
assert(is_spent);
}
}
// add outputs
AddCoins(inputs, tx, nHeight);
}
void UpdateCoins(const CTransaction& tx, CCoinsViewCache& inputs, int nHeight)
{
CTxUndo txundo;
UpdateCoins(tx, inputs, txundo, nHeight);
}
bool CScriptCheck::operator()() {
const CScript &scriptSig = ptxTo->vin[nIn].scriptSig;
const CScriptWitness *witness = &ptxTo->vin[nIn].scriptWitness;
return VerifyScript(scriptSig, m_tx_out.scriptPubKey, witness, nFlags, CachingTransactionSignatureChecker(ptxTo, nIn, m_tx_out.nValue, cacheStore, *txdata), &error);
}
int GetSpendHeight(const CCoinsViewCache& inputs)
{
LOCK(cs_main);
CBlockIndex* pindexPrev = LookupBlockIndex(inputs.GetBestBlock());
return pindexPrev->nHeight + 1;
}
static CuckooCache::cache<uint256, SignatureCacheHasher> scriptExecutionCache;
static uint256 scriptExecutionCacheNonce(GetRandHash());
void InitScriptExecutionCache() {
// nMaxCacheSize is unsigned. If -maxsigcachesize is set to zero,
// setup_bytes creates the minimum possible cache (2 elements).
size_t nMaxCacheSize = std::min(std::max((int64_t)0, gArgs.GetArg("-maxsigcachesize", DEFAULT_MAX_SIG_CACHE_SIZE) / 2), MAX_MAX_SIG_CACHE_SIZE) * ((size_t) 1 << 20);
size_t nElems = scriptExecutionCache.setup_bytes(nMaxCacheSize);
LogPrintf("Using %zu MiB out of %zu/2 requested for script execution cache, able to store %zu elements\n",
(nElems*sizeof(uint256)) >>20, (nMaxCacheSize*2)>>20, nElems);
}
/**
* Check whether all inputs of this transaction are valid (no double spends, scripts & sigs, amounts)
* This does not modify the UTXO set.
*
* If pvChecks is not nullptr, script checks are pushed onto it instead of being performed inline. Any
* script checks which are not necessary (eg due to script execution cache hits) are, obviously,
* not pushed onto pvChecks/run.
*
* Setting cacheSigStore/cacheFullScriptStore to false will remove elements from the corresponding cache
* which are matched. This is useful for checking blocks where we will likely never need the cache
* entry again.
*
* Non-static (and re-declared) in src/test/txvalidationcache_tests.cpp
*/
bool CheckInputs(const CTransaction& tx, CValidationState &state, const CCoinsViewCache &inputs, bool fScriptChecks, unsigned int flags, bool cacheSigStore, bool cacheFullScriptStore, PrecomputedTransactionData& txdata, std::vector<CScriptCheck> *pvChecks) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
{
if (!tx.IsCoinBase())
{
if (pvChecks)
pvChecks->reserve(tx.vin.size());
// The first loop above does all the inexpensive checks.
// Only if ALL inputs pass do we perform expensive ECDSA signature checks.
// Helps prevent CPU exhaustion attacks.
// Skip script verification when connecting blocks under the
// assumevalid block. Assuming the assumevalid block is valid this
// is safe because block merkle hashes are still computed and checked,
// Of course, if an assumed valid block is invalid due to false scriptSigs
// this optimization would allow an invalid chain to be accepted.
if (fScriptChecks) {
// First check if script executions have been cached with the same
// flags. Note that this assumes that the inputs provided are
// correct (ie that the transaction hash which is in tx's prevouts
// properly commits to the scriptPubKey in the inputs view of that
// transaction).
uint256 hashCacheEntry;
// We only use the first 19 bytes of nonce to avoid a second SHA
// round - giving us 19 + 32 + 4 = 55 bytes (+ 8 + 1 = 64)
static_assert(55 - sizeof(flags) - 32 >= 128/8, "Want at least 128 bits of nonce for script execution cache");
CSHA256().Write(scriptExecutionCacheNonce.begin(), 55 - sizeof(flags) - 32).Write(tx.GetWitnessHash().begin(), 32).Write((unsigned char*)&flags, sizeof(flags)).Finalize(hashCacheEntry.begin());
AssertLockHeld(cs_main); //TODO: Remove this requirement by making CuckooCache not require external locks
if (scriptExecutionCache.contains(hashCacheEntry, !cacheFullScriptStore)) {
return true;
}
for (unsigned int i = 0; i < tx.vin.size(); i++) {
const COutPoint &prevout = tx.vin[i].prevout;
const Coin& coin = inputs.AccessCoin(prevout);
assert(!coin.IsSpent());
// We very carefully only pass in things to CScriptCheck which
// are clearly committed to by tx' witness hash. This provides
// a sanity check that our caching is not introducing consensus
// failures through additional data in, eg, the coins being
// spent being checked as a part of CScriptCheck.
// Verify signature
CScriptCheck check(coin.out, tx, i, flags, cacheSigStore, &txdata);
if (pvChecks) {
pvChecks->push_back(CScriptCheck());
check.swap(pvChecks->back());
} else if (!check()) {
if (flags & STANDARD_NOT_MANDATORY_VERIFY_FLAGS) {
// Check whether the failure was caused by a
// non-mandatory script verification check, such as
// non-standard DER encodings or non-null dummy
// arguments; if so, don't trigger DoS protection to
// avoid splitting the network between upgraded and
// non-upgraded nodes.
CScriptCheck check2(coin.out, tx, i,
flags & ~STANDARD_NOT_MANDATORY_VERIFY_FLAGS, cacheSigStore, &txdata);
if (check2())
return state.Invalid(false, REJECT_NONSTANDARD, strprintf("non-mandatory-script-verify-flag (%s)", ScriptErrorString(check.GetScriptError())));
}
// Failures of other flags indicate a transaction that is
// invalid in new blocks, e.g. an invalid P2SH. We DoS ban
// such nodes as they are not following the protocol. That
// said during an upgrade careful thought should be taken
// as to the correct behavior - we may want to continue
// peering with non-upgraded nodes even after soft-fork
// super-majority signaling has occurred.
return state.DoS(100,false, REJECT_INVALID, strprintf("mandatory-script-verify-flag-failed (%s)", ScriptErrorString(check.GetScriptError())));
}
}
if (cacheFullScriptStore && !pvChecks) {
// We executed all of the provided scripts, and were told to
// cache the result. Do so now.
scriptExecutionCache.insert(hashCacheEntry);
}
}
}
return true;
}
namespace {
bool UndoWriteToDisk(const CBlockUndo& blockundo, CDiskBlockPos& pos, const uint256& hashBlock, const CMessageHeader::MessageStartChars& messageStart)
{
// Open history file to append
CAutoFile fileout(OpenUndoFile(pos), SER_DISK, CLIENT_VERSION);
if (fileout.IsNull())
return error("%s: OpenUndoFile failed", __func__);
// Write index header
unsigned int nSize = GetSerializeSize(blockundo, fileout.GetVersion());
fileout << messageStart << nSize;
// Write undo data
long fileOutPos = ftell(fileout.Get());
if (fileOutPos < 0)
return error("%s: ftell failed", __func__);
pos.nPos = (unsigned int)fileOutPos;
fileout << blockundo;
// calculate & write checksum
CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION);
hasher << hashBlock;
hasher << blockundo;
fileout << hasher.GetHash();
return true;
}
static bool UndoReadFromDisk(CBlockUndo& blockundo, const CBlockIndex *pindex)
{
CDiskBlockPos pos = pindex->GetUndoPos();
if (pos.IsNull()) {
return error("%s: no undo data available", __func__);
}
// Open history file to read
CAutoFile filein(OpenUndoFile(pos, true), SER_DISK, CLIENT_VERSION);
if (filein.IsNull())
return error("%s: OpenUndoFile failed", __func__);
// Read block
uint256 hashChecksum;
CHashVerifier<CAutoFile> verifier(&filein); // We need a CHashVerifier as reserializing may lose data
try {
verifier << pindex->pprev->GetBlockHash();
verifier >> blockundo;
filein >> hashChecksum;
}
catch (const std::exception& e) {
return error("%s: Deserialize or I/O error - %s", __func__, e.what());
}
// Verify checksum
if (hashChecksum != verifier.GetHash())
return error("%s: Checksum mismatch", __func__);
return true;
}
/** Abort with a message */
static bool AbortNode(const std::string& strMessage, const std::string& userMessage="")
{
SetMiscWarning(strMessage);
LogPrintf("*** %s\n", strMessage);
uiInterface.ThreadSafeMessageBox(
userMessage.empty() ? _("Error: A fatal internal error occurred, see debug.log for details") : userMessage,
"", CClientUIInterface::MSG_ERROR);
StartShutdown();
return false;
}
static bool AbortNode(CValidationState& state, const std::string& strMessage, const std::string& userMessage="")
{
AbortNode(strMessage, userMessage);
return state.Error(strMessage);
}
} // namespace
/**
* Restore the UTXO in a Coin at a given COutPoint
* @param undo The Coin to be restored.
* @param view The coins view to which to apply the changes.
* @param out The out point that corresponds to the tx input.
* @return A DisconnectResult as an int
*/
int ApplyTxInUndo(Coin&& undo, CCoinsViewCache& view, const COutPoint& out)
{
bool fClean = true;
if (view.HaveCoin(out)) fClean = false; // overwriting transaction output
if (undo.nHeight == 0) {
// Missing undo metadata (height and coinbase). Older versions included this
// information only in undo records for the last spend of a transactions'
// outputs. This implies that it must be present for some other output of the same tx.
const Coin& alternate = AccessByTxid(view, out.hash);
if (!alternate.IsSpent()) {
undo.nHeight = alternate.nHeight;
undo.fCoinBase = alternate.fCoinBase;
} else {
return DISCONNECT_FAILED; // adding output for transaction without known metadata
}
}
// The potential_overwrite parameter to AddCoin is only allowed to be false if we know for
// sure that the coin did not already exist in the cache. As we have queried for that above
// using HaveCoin, we don't need to guess. When fClean is false, a coin already existed and
// it is an overwrite.
view.AddCoin(out, std::move(undo), !fClean);
return fClean ? DISCONNECT_OK : DISCONNECT_UNCLEAN;
}
/** Undo the effects of this block (with given index) on the UTXO set represented by coins.
* When FAILED is returned, view is left in an indeterminate state. */
DisconnectResult CChainState::DisconnectBlock(const CBlock& block, const CBlockIndex* pindex, CCoinsViewCache& view)
{
bool fClean = true;
CBlockUndo blockUndo;
if (!UndoReadFromDisk(blockUndo, pindex)) {
error("DisconnectBlock(): failure reading undo data");
return DISCONNECT_FAILED;
}
if (blockUndo.vtxundo.size() + 1 != block.vtx.size()) {
error("DisconnectBlock(): block and undo data inconsistent");
return DISCONNECT_FAILED;
}
// undo transactions in reverse order
for (int i = block.vtx.size() - 1; i >= 0; i--) {
const CTransaction &tx = *(block.vtx[i]);
uint256 hash = tx.GetHash();
bool is_coinbase = tx.IsCoinBase();
// Check that all outputs are available and match the outputs in the block itself
// exactly.
for (size_t o = 0; o < tx.vout.size(); o++) {
if (!tx.vout[o].scriptPubKey.IsUnspendable()) {
COutPoint out(hash, o);
Coin coin;
bool is_spent = view.SpendCoin(out, &coin);
if (!is_spent || tx.vout[o] != coin.out || pindex->nHeight != coin.nHeight || is_coinbase != coin.fCoinBase) {
fClean = false; // transaction output mismatch
}
}
}
// restore inputs
if (i > 0) { // not coinbases
CTxUndo &txundo = blockUndo.vtxundo[i-1];
if (txundo.vprevout.size() != tx.vin.size()) {
error("DisconnectBlock(): transaction and undo data inconsistent");
return DISCONNECT_FAILED;
}
for (unsigned int j = tx.vin.size(); j-- > 0;) {
const COutPoint &out = tx.vin[j].prevout;
int res = ApplyTxInUndo(std::move(txundo.vprevout[j]), view, out);
if (res == DISCONNECT_FAILED) return DISCONNECT_FAILED;
fClean = fClean && res != DISCONNECT_UNCLEAN;
}
// At this point, all of txundo.vprevout should have been moved out.
}
}
// move best block pointer to prevout block
view.SetBestBlock(pindex->pprev->GetBlockHash());
return fClean ? DISCONNECT_OK : DISCONNECT_UNCLEAN;
}
void static FlushBlockFile(bool fFinalize = false)
{
LOCK(cs_LastBlockFile);
CDiskBlockPos posOld(nLastBlockFile, 0);
bool status = true;
FILE *fileOld = OpenBlockFile(posOld);
if (fileOld) {
if (fFinalize)
status &= TruncateFile(fileOld, vinfoBlockFile[nLastBlockFile].nSize);
status &= FileCommit(fileOld);
fclose(fileOld);
}
fileOld = OpenUndoFile(posOld);
if (fileOld) {
if (fFinalize)
status &= TruncateFile(fileOld, vinfoBlockFile[nLastBlockFile].nUndoSize);
status &= FileCommit(fileOld);
fclose(fileOld);
}
if (!status) {
AbortNode("Flushing block file to disk failed. This is likely the result of an I/O error.");
}
}
static bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, unsigned int nAddSize);
static bool WriteUndoDataForBlock(const CBlockUndo& blockundo, CValidationState& state, CBlockIndex* pindex, const CChainParams& chainparams)
{
// Write undo information to disk
if (pindex->GetUndoPos().IsNull()) {
CDiskBlockPos _pos;
if (!FindUndoPos(state, pindex->nFile, _pos, ::GetSerializeSize(blockundo, CLIENT_VERSION) + 40))
return error("ConnectBlock(): FindUndoPos failed");
if (!UndoWriteToDisk(blockundo, _pos, pindex->pprev->GetBlockHash(), chainparams.MessageStart()))
return AbortNode(state, "Failed to write undo data");
// update nUndoPos in block index
pindex->nUndoPos = _pos.nPos;
pindex->nStatus |= BLOCK_HAVE_UNDO;
setDirtyBlockIndex.insert(pindex);
}
return true;
}
static CCheckQueue<CScriptCheck> scriptcheckqueue(128);
void ThreadScriptCheck() {
RenameThread("bitcoin-scriptch");
scriptcheckqueue.Thread();
}
VersionBitsCache versionbitscache GUARDED_BY(cs_main);
int32_t ComputeBlockVersion(const CBlockIndex* pindexPrev, const Consensus::Params& params)
{
LOCK(cs_main);
int32_t nVersion = VERSIONBITS_TOP_BITS;
for (int i = 0; i < (int)Consensus::MAX_VERSION_BITS_DEPLOYMENTS; i++) {
ThresholdState state = VersionBitsState(pindexPrev, params, static_cast<Consensus::DeploymentPos>(i), versionbitscache);
if (state == ThresholdState::LOCKED_IN || state == ThresholdState::STARTED) {
nVersion |= VersionBitsMask(params, static_cast<Consensus::DeploymentPos>(i));
}
}
return nVersion;
}
/**
* Threshold condition checker that triggers when unknown versionbits are seen on the network.
*/
class WarningBitsConditionChecker : public AbstractThresholdConditionChecker
{
private:
int bit;
public:
explicit WarningBitsConditionChecker(int bitIn) : bit(bitIn) {}
int64_t BeginTime(const Consensus::Params& params) const override { return 0; }
int64_t EndTime(const Consensus::Params& params) const override { return std::numeric_limits<int64_t>::max(); }
int Period(const Consensus::Params& params) const override { return params.nMinerConfirmationWindow; }
int Threshold(const Consensus::Params& params) const override { return params.nRuleChangeActivationThreshold; }
bool Condition(const CBlockIndex* pindex, const Consensus::Params& params) const override
{
return ((pindex->nVersion & VERSIONBITS_TOP_MASK) == VERSIONBITS_TOP_BITS) &&
((pindex->nVersion >> bit) & 1) != 0 &&
((ComputeBlockVersion(pindex->pprev, params) >> bit) & 1) == 0;
}
};
static ThresholdConditionCache warningcache[VERSIONBITS_NUM_BITS] GUARDED_BY(cs_main);
// 0.13.0 was shipped with a segwit deployment defined for testnet, but not for
// mainnet. We no longer need to support disabling the segwit deployment
// except for testing purposes, due to limitations of the functional test
// environment. See test/functional/p2p-segwit.py.
static bool IsScriptWitnessEnabled(const Consensus::Params& params)
{
return params.vDeployments[Consensus::DEPLOYMENT_SEGWIT].nTimeout != 0;
}
static unsigned int GetBlockScriptFlags(const CBlockIndex* pindex, const Consensus::Params& consensusparams) EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
AssertLockHeld(cs_main);
unsigned int flags = SCRIPT_VERIFY_NONE;
// BIP16 didn't become active until Apr 1 2012 (on mainnet, and
// retroactively applied to testnet)
// However, only one historical block violated the P2SH rules (on both
// mainnet and testnet), so for simplicity, always leave P2SH
// on except for the one violating block.
if (consensusparams.BIP16Exception.IsNull() || // no bip16 exception on this chain
pindex->phashBlock == nullptr || // this is a new candidate block, eg from TestBlockValidity()
*pindex->phashBlock != consensusparams.BIP16Exception) // this block isn't the historical exception
{
flags |= SCRIPT_VERIFY_P2SH;
}
// Enforce WITNESS rules whenever P2SH is in effect (and the segwit
// deployment is defined).
if (flags & SCRIPT_VERIFY_P2SH && IsScriptWitnessEnabled(consensusparams)) {
flags |= SCRIPT_VERIFY_WITNESS;
}
// Start enforcing the DERSIG (BIP66) rule
if (pindex->nHeight >= consensusparams.BIP66Height) {
flags |= SCRIPT_VERIFY_DERSIG;
}
// Start enforcing CHECKLOCKTIMEVERIFY (BIP65) rule
if (pindex->nHeight >= consensusparams.BIP65Height) {
flags |= SCRIPT_VERIFY_CHECKLOCKTIMEVERIFY;
}
// Start enforcing BIP68 (sequence locks) and BIP112 (CHECKSEQUENCEVERIFY) using versionbits logic.
if (VersionBitsState(pindex->pprev, consensusparams, Consensus::DEPLOYMENT_CSV, versionbitscache) == ThresholdState::ACTIVE) {
flags |= SCRIPT_VERIFY_CHECKSEQUENCEVERIFY;
}
if (IsNullDummyEnabled(pindex->pprev, consensusparams)) {
flags |= SCRIPT_VERIFY_NULLDUMMY;
}
return flags;
}
static int64_t nTimeCheck = 0;
static int64_t nTimeForks = 0;
static int64_t nTimeVerify = 0;
static int64_t nTimeConnect = 0;
static int64_t nTimeIndex = 0;
static int64_t nTimeCallbacks = 0;
static int64_t nTimeTotal = 0;
static int64_t nBlocksTotal = 0;
/** Apply the effects of this block (with given index) on the UTXO set represented by coins.
* Validity checks that depend on the UTXO set are also done; ConnectBlock()
* can fail if those validity checks fail (among other reasons). */
bool CChainState::ConnectBlock(const CBlock& block, CValidationState& state, CBlockIndex* pindex,
CCoinsViewCache& view, const CChainParams& chainparams, bool fJustCheck)
{
AssertLockHeld(cs_main);
assert(pindex);
assert(*pindex->phashBlock == block.GetHash());
int64_t nTimeStart = GetTimeMicros();
// Check it again in case a previous version let a bad block in
// NOTE: We don't currently (re-)invoke ContextualCheckBlock() or
// ContextualCheckBlockHeader() here. This means that if we add a new
// consensus rule that is enforced in one of those two functions, then we
// may have let in a block that violates the rule prior to updating the
// software, and we would NOT be enforcing the rule here. Fully solving
// upgrade from one software version to the next after a consensus rule
// change is potentially tricky and issue-specific (see RewindBlockIndex()
// for one general approach that was used for BIP 141 deployment).
// Also, currently the rule against blocks more than 2 hours in the future
// is enforced in ContextualCheckBlockHeader(); we wouldn't want to
// re-enforce that rule here (at least until we make it impossible for
// GetAdjustedTime() to go backward).
if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck)) {
if (state.CorruptionPossible()) {
// We don't write down blocks to disk if they may have been
// corrupted, so this should be impossible unless we're having hardware
// problems.
return AbortNode(state, "Corrupt block found indicating potential hardware failure; shutting down");
}
return error("%s: Consensus::CheckBlock: %s", __func__, FormatStateMessage(state));
}
// verify that the view's current state corresponds to the previous block
uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : pindex->pprev->GetBlockHash();
assert(hashPrevBlock == view.GetBestBlock());
// Special case for the genesis block, skipping connection of its transactions
// (its coinbase is unspendable)
if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {
if (!fJustCheck)
view.SetBestBlock(pindex->GetBlockHash());
return true;
}
nBlocksTotal++;
bool fScriptChecks = true;
if (!hashAssumeValid.IsNull()) {
// We've been configured with the hash of a block which has been externally verified to have a valid history.
// A suitable default value is included with the software and updated from time to time. Because validity
// relative to a piece of software is an objective fact these defaults can be easily reviewed.
// This setting doesn't force the selection of any particular chain but makes validating some faster by
// effectively caching the result of part of the verification.
BlockMap::const_iterator it = mapBlockIndex.find(hashAssumeValid);
if (it != mapBlockIndex.end()) {
if (it->second->GetAncestor(pindex->nHeight) == pindex &&
pindexBestHeader->GetAncestor(pindex->nHeight) == pindex &&
pindexBestHeader->nChainWork >= nMinimumChainWork) {
// This block is a member of the assumed verified chain and an ancestor of the best header.
// The equivalent time check discourages hash power from extorting the network via DOS attack
// into accepting an invalid block through telling users they must manually set assumevalid.
// Requiring a software change or burying the invalid block, regardless of the setting, makes
// it hard to hide the implication of the demand. This also avoids having release candidates
// that are hardly doing any signature verification at all in testing without having to
// artificially set the default assumed verified block further back.
// The test against nMinimumChainWork prevents the skipping when denied access to any chain at
// least as good as the expected chain.
fScriptChecks = (GetBlockProofEquivalentTime(*pindexBestHeader, *pindex, *pindexBestHeader, chainparams.GetConsensus()) <= 60 * 60 * 24 * 7 * 2);
}
}
}
int64_t nTime1 = GetTimeMicros(); nTimeCheck += nTime1 - nTimeStart;
LogPrint(BCLog::BENCH, " - Sanity checks: %.2fms [%.2fs (%.2fms/blk)]\n", MILLI * (nTime1 - nTimeStart), nTimeCheck * MICRO, nTimeCheck * MILLI / nBlocksTotal);
// Do not allow blocks that contain transactions which 'overwrite' older transactions,
// unless those are already completely spent.
// If such overwrites are allowed, coinbases and transactions depending upon those
// can be duplicated to remove the ability to spend the first instance -- even after
// being sent to another address.
// See BIP30 and http://r6.ca/blog/20120206T005236Z.html for more information.
// This logic is not necessary for memory pool transactions, as AcceptToMemoryPool
// already refuses previously-known transaction ids entirely.
// This rule was originally applied to all blocks with a timestamp after March 15, 2012, 0:00 UTC.
// Now that the whole chain is irreversibly beyond that time it is applied to all blocks except the
// two in the chain that violate it. This prevents exploiting the issue against nodes during their
// initial block download.
bool fEnforceBIP30 = !((pindex->nHeight==91842 && pindex->GetBlockHash() == uint256S("0x00000000000a4d0a398161ffc163c503763b1f4360639393e0e4c8e300e0caec")) ||
(pindex->nHeight==91880 && pindex->GetBlockHash() == uint256S("0x00000000000743f190a18c5577a3c2d2a1f610ae9601ac046a38084ccb7cd721")));
// Once BIP34 activated it was not possible to create new duplicate coinbases and thus other than starting
// with the 2 existing duplicate coinbase pairs, not possible to create overwriting txs. But by the
// time BIP34 activated, in each of the existing pairs the duplicate coinbase had overwritten the first
// before the first had been spent. Since those coinbases are sufficiently buried it's no longer possible to create further
// duplicate transactions descending from the known pairs either.
// If we're on the known chain at height greater than where BIP34 activated, we can save the db accesses needed for the BIP30 check.
// BIP34 requires that a block at height X (block X) has its coinbase
// scriptSig start with a CScriptNum of X (indicated height X). The above
// logic of no longer requiring BIP30 once BIP34 activates is flawed in the
// case that there is a block X before the BIP34 height of 227,931 which has
// an indicated height Y where Y is greater than X. The coinbase for block
// X would also be a valid coinbase for block Y, which could be a BIP30
// violation. An exhaustive search of all mainnet coinbases before the
// BIP34 height which have an indicated height greater than the block height
// reveals many occurrences. The 3 lowest indicated heights found are
// 209,921, 490,897, and 1,983,702 and thus coinbases for blocks at these 3
// heights would be the first opportunity for BIP30 to be violated.
// The search reveals a great many blocks which have an indicated height
// greater than 1,983,702, so we simply remove the optimization to skip
// BIP30 checking for blocks at height 1,983,702 or higher. Before we reach
// that block in another 25 years or so, we should take advantage of a
// future consensus change to do a new and improved version of BIP34 that
// will actually prevent ever creating any duplicate coinbases in the
// future.
static constexpr int BIP34_IMPLIES_BIP30_LIMIT = 1983702;
// There is no potential to create a duplicate coinbase at block 209,921
// because this is still before the BIP34 height and so explicit BIP30
// checking is still active.
// The final case is block 176,684 which has an indicated height of
// 490,897. Unfortunately, this issue was not discovered until about 2 weeks
// before block 490,897 so there was not much opportunity to address this
// case other than to carefully analyze it and determine it would not be a
// problem. Block 490,897 was, in fact, mined with a different coinbase than
// block 176,684, but it is important to note that even if it hadn't been or
// is remined on an alternate fork with a duplicate coinbase, we would still
// not run into a BIP30 violation. This is because the coinbase for 176,684
// is spent in block 185,956 in transaction
// d4f7fbbf92f4a3014a230b2dc70b8058d02eb36ac06b4a0736d9d60eaa9e8781. This
// spending transaction can't be duplicated because it also spends coinbase
// 0328dd85c331237f18e781d692c92de57649529bd5edf1d01036daea32ffde29. This
// coinbase has an indicated height of over 4.2 billion, and wouldn't be
// duplicatable until that height, and it's currently impossible to create a
// chain that long. Nevertheless we may wish to consider a future soft fork
// which retroactively prevents block 490,897 from creating a duplicate
// coinbase. The two historical BIP30 violations often provide a confusing
// edge case when manipulating the UTXO and it would be simpler not to have
// another edge case to deal with.
// testnet3 has no blocks before the BIP34 height with indicated heights
// post BIP34 before approximately height 486,000,000 and presumably will
// be reset before it reaches block 1,983,702 and starts doing unnecessary
// BIP30 checking again.
assert(pindex->pprev);
CBlockIndex *pindexBIP34height = pindex->pprev->GetAncestor(chainparams.GetConsensus().BIP34Height);
//Only continue to enforce if we're below BIP34 activation height or the block hash at that height doesn't correspond.
fEnforceBIP30 = fEnforceBIP30 && (!pindexBIP34height || !(pindexBIP34height->GetBlockHash() == chainparams.GetConsensus().BIP34Hash));
// TODO: Remove BIP30 checking from block height 1,983,702 on, once we have a
// consensus change that ensures coinbases at those heights can not
// duplicate earlier coinbases.
if (fEnforceBIP30 || pindex->nHeight >= BIP34_IMPLIES_BIP30_LIMIT) {
for (const auto& tx : block.vtx) {
for (size_t o = 0; o < tx->vout.size(); o++) {
if (view.HaveCoin(COutPoint(tx->GetHash(), o))) {
return state.DoS(100, error("ConnectBlock(): tried to overwrite transaction"),
REJECT_INVALID, "bad-txns-BIP30");
}
}
}
}
// Start enforcing BIP68 (sequence locks) and BIP112 (CHECKSEQUENCEVERIFY) using versionbits logic.
int nLockTimeFlags = 0;
if (VersionBitsState(pindex->pprev, chainparams.GetConsensus(), Consensus::DEPLOYMENT_CSV, versionbitscache) == ThresholdState::ACTIVE) {
nLockTimeFlags |= LOCKTIME_VERIFY_SEQUENCE;
}
// Get the script flags for this block
unsigned int flags = GetBlockScriptFlags(pindex, chainparams.GetConsensus());
int64_t nTime2 = GetTimeMicros(); nTimeForks += nTime2 - nTime1;
LogPrint(BCLog::BENCH, " - Fork checks: %.2fms [%.2fs (%.2fms/blk)]\n", MILLI * (nTime2 - nTime1), nTimeForks * MICRO, nTimeForks * MILLI / nBlocksTotal);
CBlockUndo blockundo;
CCheckQueueControl<CScriptCheck> control(fScriptChecks && nScriptCheckThreads ? &scriptcheckqueue : nullptr);
std::vector<int> prevheights;
CAmount nFees = 0;
int nInputs = 0;
int64_t nSigOpsCost = 0;
blockundo.vtxundo.reserve(block.vtx.size() - 1);
std::vector<PrecomputedTransactionData> txdata;
txdata.reserve(block.vtx.size()); // Required so that pointers to individual PrecomputedTransactionData don't get invalidated
for (unsigned int i = 0; i < block.vtx.size(); i++)
{
const CTransaction &tx = *(block.vtx[i]);
nInputs += tx.vin.size();
if (!tx.IsCoinBase())
{
CAmount txfee = 0;
if (!Consensus::CheckTxInputs(tx, state, view, pindex->nHeight, txfee)) {
return error("%s: Consensus::CheckTxInputs: %s, %s", __func__, tx.GetHash().ToString(), FormatStateMessage(state));
}
nFees += txfee;
if (!MoneyRange(nFees)) {
return state.DoS(100, error("%s: accumulated fee in the block out of range.", __func__),
REJECT_INVALID, "bad-txns-accumulated-fee-outofrange");
}
// Check that transaction is BIP68 final
// BIP68 lock checks (as opposed to nLockTime checks) must
// be in ConnectBlock because they require the UTXO set
prevheights.resize(tx.vin.size());
for (size_t j = 0; j < tx.vin.size(); j++) {
prevheights[j] = view.AccessCoin(tx.vin[j].prevout).nHeight;
}
if (!SequenceLocks(tx, nLockTimeFlags, &prevheights, *pindex)) {
return state.DoS(100, error("%s: contains a non-BIP68-final transaction", __func__),
REJECT_INVALID, "bad-txns-nonfinal");
}
}
// GetTransactionSigOpCost counts 3 types of sigops:
// * legacy (always)
// * p2sh (when P2SH enabled in flags and excludes coinbase)
// * witness (when witness enabled in flags and excludes coinbase)
nSigOpsCost += GetTransactionSigOpCost(tx, view, flags);
if (nSigOpsCost > MAX_BLOCK_SIGOPS_COST)
return state.DoS(100, error("ConnectBlock(): too many sigops"),
REJECT_INVALID, "bad-blk-sigops");
txdata.emplace_back(tx);
if (!tx.IsCoinBase())
{
std::vector<CScriptCheck> vChecks;
bool fCacheResults = fJustCheck; /* Don't cache results if we're actually connecting blocks (still consult the cache, though) */
if (!CheckInputs(tx, state, view, fScriptChecks, flags, fCacheResults, fCacheResults, txdata[i], nScriptCheckThreads ? &vChecks : nullptr))
return error("ConnectBlock(): CheckInputs on %s failed with %s",
tx.GetHash().ToString(), FormatStateMessage(state));
control.Add(vChecks);
}
CTxUndo undoDummy;
if (i > 0) {
blockundo.vtxundo.push_back(CTxUndo());
}
UpdateCoins(tx, view, i == 0 ? undoDummy : blockundo.vtxundo.back(), pindex->nHeight);
}
int64_t nTime3 = GetTimeMicros(); nTimeConnect += nTime3 - nTime2;
LogPrint(BCLog::BENCH, " - Connect %u transactions: %.2fms (%.3fms/tx, %.3fms/txin) [%.2fs (%.2fms/blk)]\n", (unsigned)block.vtx.size(), MILLI * (nTime3 - nTime2), MILLI * (nTime3 - nTime2) / block.vtx.size(), nInputs <= 1 ? 0 : MILLI * (nTime3 - nTime2) / (nInputs-1), nTimeConnect * MICRO, nTimeConnect * MILLI / nBlocksTotal);
CAmount blockReward = nFees + GetBlockSubsidy(pindex->nHeight, chainparams.GetConsensus());
if (block.vtx[0]->GetValueOut() > blockReward)
return state.DoS(100,
error("ConnectBlock(): coinbase pays too much (actual=%d vs limit=%d)",
block.vtx[0]->GetValueOut(), blockReward),
REJECT_INVALID, "bad-cb-amount");
if (!control.Wait())
return state.DoS(100, error("%s: CheckQueue failed", __func__), REJECT_INVALID, "block-validation-failed");
int64_t nTime4 = GetTimeMicros(); nTimeVerify += nTime4 - nTime2;
LogPrint(BCLog::BENCH, " - Verify %u txins: %.2fms (%.3fms/txin) [%.2fs (%.2fms/blk)]\n", nInputs - 1, MILLI * (nTime4 - nTime2), nInputs <= 1 ? 0 : MILLI * (nTime4 - nTime2) / (nInputs-1), nTimeVerify * MICRO, nTimeVerify * MILLI / nBlocksTotal);
if (fJustCheck)
return true;
if (!WriteUndoDataForBlock(blockundo, state, pindex, chainparams))
return false;
if (!pindex->IsValid(BLOCK_VALID_SCRIPTS)) {
pindex->RaiseValidity(BLOCK_VALID_SCRIPTS);
setDirtyBlockIndex.insert(pindex);
}
assert(pindex->phashBlock);
// add this block to the view's block chain
view.SetBestBlock(pindex->GetBlockHash());
int64_t nTime5 = GetTimeMicros(); nTimeIndex += nTime5 - nTime4;
LogPrint(BCLog::BENCH, " - Index writing: %.2fms [%.2fs (%.2fms/blk)]\n", MILLI * (nTime5 - nTime4), nTimeIndex * MICRO, nTimeIndex * MILLI / nBlocksTotal);
int64_t nTime6 = GetTimeMicros(); nTimeCallbacks += nTime6 - nTime5;
LogPrint(BCLog::BENCH, " - Callbacks: %.2fms [%.2fs (%.2fms/blk)]\n", MILLI * (nTime6 - nTime5), nTimeCallbacks * MICRO, nTimeCallbacks * MILLI / nBlocksTotal);
return true;
}
/**
* Update the on-disk chain state.
* The caches and indexes are flushed depending on the mode we're called with
* if they're too large, if it's been a while since the last write,
* or always and in all cases if we're in prune mode and are deleting files.
*
* If FlushStateMode::NONE is used, then FlushStateToDisk(...) won't do anything
* besides checking if we need to prune.
*/
bool static FlushStateToDisk(const CChainParams& chainparams, CValidationState &state, FlushStateMode mode, int nManualPruneHeight) {
int64_t nMempoolUsage = mempool.DynamicMemoryUsage();
LOCK(cs_main);
static int64_t nLastWrite = 0;
static int64_t nLastFlush = 0;
std::set<int> setFilesToPrune;
bool full_flush_completed = false;
try {
{
bool fFlushForPrune = false;
bool fDoFullFlush = false;
LOCK(cs_LastBlockFile);
if (fPruneMode && (fCheckForPruning || nManualPruneHeight > 0) && !fReindex) {
if (nManualPruneHeight > 0) {
FindFilesToPruneManual(setFilesToPrune, nManualPruneHeight);
} else {
FindFilesToPrune(setFilesToPrune, chainparams.PruneAfterHeight());
fCheckForPruning = false;
}
if (!setFilesToPrune.empty()) {
fFlushForPrune = true;
if (!fHavePruned) {
pblocktree->WriteFlag("prunedblockfiles", true);
fHavePruned = true;
}
}
}
int64_t nNow = GetTimeMicros();
// Avoid writing/flushing immediately after startup.
if (nLastWrite == 0) {
nLastWrite = nNow;
}
if (nLastFlush == 0) {
nLastFlush = nNow;
}
int64_t nMempoolSizeMax = gArgs.GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000;
int64_t cacheSize = pcoinsTip->DynamicMemoryUsage();
int64_t nTotalSpace = nCoinCacheUsage + std::max<int64_t>(nMempoolSizeMax - nMempoolUsage, 0);
// The cache is large and we're within 10% and 10 MiB of the limit, but we have time now (not in the middle of a block processing).
bool fCacheLarge = mode == FlushStateMode::PERIODIC && cacheSize > std::max((9 * nTotalSpace) / 10, nTotalSpace - MAX_BLOCK_COINSDB_USAGE * 1024 * 1024);
// The cache is over the limit, we have to write now.
bool fCacheCritical = mode == FlushStateMode::IF_NEEDED && cacheSize > nTotalSpace;
// It's been a while since we wrote the block index to disk. Do this frequently, so we don't need to redownload after a crash.
bool fPeriodicWrite = mode == FlushStateMode::PERIODIC && nNow > nLastWrite + (int64_t)DATABASE_WRITE_INTERVAL * 1000000;
// It's been very long since we flushed the cache. Do this infrequently, to optimize cache usage.
bool fPeriodicFlush = mode == FlushStateMode::PERIODIC && nNow > nLastFlush + (int64_t)DATABASE_FLUSH_INTERVAL * 1000000;
// Combine all conditions that result in a full cache flush.
fDoFullFlush = (mode == FlushStateMode::ALWAYS) || fCacheLarge || fCacheCritical || fPeriodicFlush || fFlushForPrune;
// Write blocks and block index to disk.
if (fDoFullFlush || fPeriodicWrite) {
// Depend on nMinDiskSpace to ensure we can write block index
if (!CheckDiskSpace(0, true))
return state.Error("out of disk space");
// First make sure all block and undo data is flushed to disk.
FlushBlockFile();
// Then update all block file information (which may refer to block and undo files).
{
std::vector<std::pair<int, const CBlockFileInfo*> > vFiles;
vFiles.reserve(setDirtyFileInfo.size());
for (std::set<int>::iterator it = setDirtyFileInfo.begin(); it != setDirtyFileInfo.end(); ) {
vFiles.push_back(std::make_pair(*it, &vinfoBlockFile[*it]));
setDirtyFileInfo.erase(it++);
}
std::vector<const CBlockIndex*> vBlocks;
vBlocks.reserve(setDirtyBlockIndex.size());
for (std::set<CBlockIndex*>::iterator it = setDirtyBlockIndex.begin(); it != setDirtyBlockIndex.end(); ) {
vBlocks.push_back(*it);
setDirtyBlockIndex.erase(it++);
}
if (!pblocktree->WriteBatchSync(vFiles, nLastBlockFile, vBlocks)) {
return AbortNode(state, "Failed to write to block index database");
}
}
// Finally remove any pruned files
if (fFlushForPrune)
UnlinkPrunedFiles(setFilesToPrune);
nLastWrite = nNow;
}
// Flush best chain related state. This can only be done if the blocks / block index write was also done.
if (fDoFullFlush && !pcoinsTip->GetBestBlock().IsNull()) {
// Typical Coin structures on disk are around 48 bytes in size.
// Pushing a new one to the database can cause it to be written
// twice (once in the log, and once in the tables). This is already
// an overestimation, as most will delete an existing entry or
// overwrite one. Still, use a conservative safety factor of 2.
if (!CheckDiskSpace(48 * 2 * 2 * pcoinsTip->GetCacheSize()))
return state.Error("out of disk space");
// Flush the chainstate (which may refer to block index entries).
if (!pcoinsTip->Flush())
return AbortNode(state, "Failed to write to coin database");
nLastFlush = nNow;
full_flush_completed = true;
}
}
if (full_flush_completed) {
// Update best block in wallet (so we can detect restored wallets).
GetMainSignals().ChainStateFlushed(chainActive.GetLocator());
}
} catch (const std::runtime_error& e) {
return AbortNode(state, std::string("System error while flushing: ") + e.what());
}
return true;
}
void FlushStateToDisk() {
CValidationState state;
const CChainParams& chainparams = Params();
if (!FlushStateToDisk(chainparams, state, FlushStateMode::ALWAYS)) {
LogPrintf("%s: failed to flush state (%s)\n", __func__, FormatStateMessage(state));
}
}
void PruneAndFlush() {
CValidationState state;
fCheckForPruning = true;
const CChainParams& chainparams = Params();
if (!FlushStateToDisk(chainparams, state, FlushStateMode::NONE)) {
LogPrintf("%s: failed to flush state (%s)\n", __func__, FormatStateMessage(state));
}
}
static void DoWarning(const std::string& strWarning)
{
static bool fWarned = false;
SetMiscWarning(strWarning);
if (!fWarned) {
AlertNotify(strWarning);
fWarned = true;
}
}
/** Private helper function that concatenates warning messages. */
static void AppendWarning(std::string& res, const std::string& warn)
{
if (!res.empty()) res += ", ";
res += warn;
}
/** Check warning conditions and do some notifications on new chain tip set. */
void static UpdateTip(const CBlockIndex *pindexNew, const CChainParams& chainParams) {
// New best block
mempool.AddTransactionsUpdated(1);
{
LOCK(g_best_block_mutex);
g_best_block = pindexNew->GetBlockHash();
g_best_block_cv.notify_all();
}
std::string warningMessages;
if (!IsInitialBlockDownload())
{
int nUpgraded = 0;
const CBlockIndex* pindex = pindexNew;
for (int bit = 0; bit < VERSIONBITS_NUM_BITS; bit++) {
WarningBitsConditionChecker checker(bit);
ThresholdState state = checker.GetStateFor(pindex, chainParams.GetConsensus(), warningcache[bit]);
if (state == ThresholdState::ACTIVE || state == ThresholdState::LOCKED_IN) {
const std::string strWarning = strprintf(_("Warning: unknown new rules activated (versionbit %i)"), bit);
if (state == ThresholdState::ACTIVE) {
DoWarning(strWarning);
} else {
AppendWarning(warningMessages, strWarning);
}
}
}
// Check the version of the last 100 blocks to see if we need to upgrade:
for (int i = 0; i < 100 && pindex != nullptr; i++)
{
int32_t nExpectedVersion = ComputeBlockVersion(pindex->pprev, chainParams.GetConsensus());
if (pindex->nVersion > VERSIONBITS_LAST_OLD_BLOCK_VERSION && (pindex->nVersion & ~nExpectedVersion) != 0)
++nUpgraded;
pindex = pindex->pprev;
}
if (nUpgraded > 0)
AppendWarning(warningMessages, strprintf(_("%d of last 100 blocks have unexpected version"), nUpgraded));
if (nUpgraded > 100/2)
{
std::string strWarning = _("Warning: Unknown block versions being mined! It's possible unknown rules are in effect");
// notify GetWarnings(), called by Qt and the JSON-RPC code to warn the user:
DoWarning(strWarning);
}
}
LogPrintf("%s: new best=%s height=%d version=0x%08x log2_work=%.8g tx=%lu date='%s' progress=%f cache=%.1fMiB(%utxo)", __func__, /* Continued */
pindexNew->GetBlockHash().ToString(), pindexNew->nHeight, pindexNew->nVersion,
log(pindexNew->nChainWork.getdouble())/log(2.0), (unsigned long)pindexNew->nChainTx,
FormatISO8601DateTime(pindexNew->GetBlockTime()),
GuessVerificationProgress(chainParams.TxData(), pindexNew), pcoinsTip->DynamicMemoryUsage() * (1.0 / (1<<20)), pcoinsTip->GetCacheSize());
if (!warningMessages.empty())
LogPrintf(" warning='%s'", warningMessages); /* Continued */
LogPrintf("\n");
}
/** Disconnect chainActive's tip.
* After calling, the mempool will be in an inconsistent state, with
* transactions from disconnected blocks being added to disconnectpool. You
* should make the mempool consistent again by calling UpdateMempoolForReorg.
* with cs_main held.
*
* If disconnectpool is nullptr, then no disconnected transactions are added to
* disconnectpool (note that the caller is responsible for mempool consistency
* in any case).
*/
bool CChainState::DisconnectTip(CValidationState& state, const CChainParams& chainparams, DisconnectedBlockTransactions *disconnectpool)
{
CBlockIndex *pindexDelete = chainActive.Tip();
assert(pindexDelete);
// Read block from disk.
std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
CBlock& block = *pblock;
if (!ReadBlockFromDisk(block, pindexDelete, chainparams.GetConsensus()))
return AbortNode(state, "Failed to read block");
// Apply the block atomically to the chain state.
int64_t nStart = GetTimeMicros();
{
CCoinsViewCache view(pcoinsTip.get());
assert(view.GetBestBlock() == pindexDelete->GetBlockHash());
if (DisconnectBlock(block, pindexDelete, view) != DISCONNECT_OK)
return error("DisconnectTip(): DisconnectBlock %s failed", pindexDelete->GetBlockHash().ToString());
bool flushed = view.Flush();
assert(flushed);
}
LogPrint(BCLog::BENCH, "- Disconnect block: %.2fms\n", (GetTimeMicros() - nStart) * MILLI);
// Write the chain state to disk, if necessary.
if (!FlushStateToDisk(chainparams, state, FlushStateMode::IF_NEEDED))
return false;
if (disconnectpool) {
// Save transactions to re-add to mempool at end of reorg
for (auto it = block.vtx.rbegin(); it != block.vtx.rend(); ++it) {
disconnectpool->addTransaction(*it);
}
while (disconnectpool->DynamicMemoryUsage() > MAX_DISCONNECTED_TX_POOL_SIZE * 1000) {
// Drop the earliest entry, and remove its children from the mempool.
auto it = disconnectpool->queuedTx.get<insertion_order>().begin();
mempool.removeRecursive(**it, MemPoolRemovalReason::REORG);
disconnectpool->removeEntry(it);
}
}
chainActive.SetTip(pindexDelete->pprev);
UpdateTip(pindexDelete->pprev, chainparams);
// Let wallets know transactions went from 1-confirmed to
// 0-confirmed or conflicted:
GetMainSignals().BlockDisconnected(pblock);
return true;
}
static int64_t nTimeReadFromDisk = 0;
static int64_t nTimeConnectTotal = 0;
static int64_t nTimeFlush = 0;
static int64_t nTimeChainState = 0;
static int64_t nTimePostConnect = 0;
struct PerBlockConnectTrace {
CBlockIndex* pindex = nullptr;
std::shared_ptr<const CBlock> pblock;
std::shared_ptr<std::vector<CTransactionRef>> conflictedTxs;
PerBlockConnectTrace() : conflictedTxs(std::make_shared<std::vector<CTransactionRef>>()) {}
};
/**
* Used to track blocks whose transactions were applied to the UTXO state as a
* part of a single ActivateBestChainStep call.
*
* This class also tracks transactions that are removed from the mempool as
* conflicts (per block) and can be used to pass all those transactions
* through SyncTransaction.
*
* This class assumes (and asserts) that the conflicted transactions for a given
* block are added via mempool callbacks prior to the BlockConnected() associated
* with those transactions. If any transactions are marked conflicted, it is
* assumed that an associated block will always be added.
*
* This class is single-use, once you call GetBlocksConnected() you have to throw
* it away and make a new one.
*/
class ConnectTrace {
private:
std::vector<PerBlockConnectTrace> blocksConnected;
CTxMemPool &pool;
public:
explicit ConnectTrace(CTxMemPool &_pool) : blocksConnected(1), pool(_pool) {
pool.NotifyEntryRemoved.connect(boost::bind(&ConnectTrace::NotifyEntryRemoved, this, _1, _2));
}
~ConnectTrace() {
pool.NotifyEntryRemoved.disconnect(boost::bind(&ConnectTrace::NotifyEntryRemoved, this, _1, _2));
}
void BlockConnected(CBlockIndex* pindex, std::shared_ptr<const CBlock> pblock) {
assert(!blocksConnected.back().pindex);
assert(pindex);
assert(pblock);
blocksConnected.back().pindex = pindex;
blocksConnected.back().pblock = std::move(pblock);
blocksConnected.emplace_back();
}
std::vector<PerBlockConnectTrace>& GetBlocksConnected() {
// We always keep one extra block at the end of our list because
// blocks are added after all the conflicted transactions have
// been filled in. Thus, the last entry should always be an empty
// one waiting for the transactions from the next block. We pop
// the last entry here to make sure the list we return is sane.
assert(!blocksConnected.back().pindex);
assert(blocksConnected.back().conflictedTxs->empty());
blocksConnected.pop_back();
return blocksConnected;
}
void NotifyEntryRemoved(CTransactionRef txRemoved, MemPoolRemovalReason reason) {
assert(!blocksConnected.back().pindex);
if (reason == MemPoolRemovalReason::CONFLICT) {
blocksConnected.back().conflictedTxs->emplace_back(std::move(txRemoved));
}
}
};
/**
* Connect a new block to chainActive. pblock is either nullptr or a pointer to a CBlock
* corresponding to pindexNew, to bypass loading it again from disk.
*
* The block is added to connectTrace if connection succeeds.
*/
bool CChainState::ConnectTip(CValidationState& state, const CChainParams& chainparams, CBlockIndex* pindexNew, const std::shared_ptr<const CBlock>& pblock, ConnectTrace& connectTrace, DisconnectedBlockTransactions &disconnectpool)
{
assert(pindexNew->pprev == chainActive.Tip());
// Read block from disk.
int64_t nTime1 = GetTimeMicros();
std::shared_ptr<const CBlock> pthisBlock;
if (!pblock) {
std::shared_ptr<CBlock> pblockNew = std::make_shared<CBlock>();
if (!ReadBlockFromDisk(*pblockNew, pindexNew, chainparams.GetConsensus()))
return AbortNode(state, "Failed to read block");
pthisBlock = pblockNew;
} else {
pthisBlock = pblock;
}
const CBlock& blockConnecting = *pthisBlock;
// Apply the block atomically to the chain state.
int64_t nTime2 = GetTimeMicros(); nTimeReadFromDisk += nTime2 - nTime1;
int64_t nTime3;
LogPrint(BCLog::BENCH, " - Load block from disk: %.2fms [%.2fs]\n", (nTime2 - nTime1) * MILLI, nTimeReadFromDisk * MICRO);
{
CCoinsViewCache view(pcoinsTip.get());
bool rv = ConnectBlock(blockConnecting, state, pindexNew, view, chainparams);
GetMainSignals().BlockChecked(blockConnecting, state);
if (!rv) {
if (state.IsInvalid())
InvalidBlockFound(pindexNew, state);
return error("%s: ConnectBlock %s failed, %s", __func__, pindexNew->GetBlockHash().ToString(), FormatStateMessage(state));
}
nTime3 = GetTimeMicros(); nTimeConnectTotal += nTime3 - nTime2;
LogPrint(BCLog::BENCH, " - Connect total: %.2fms [%.2fs (%.2fms/blk)]\n", (nTime3 - nTime2) * MILLI, nTimeConnectTotal * MICRO, nTimeConnectTotal * MILLI / nBlocksTotal);
bool flushed = view.Flush();
assert(flushed);
}
int64_t nTime4 = GetTimeMicros(); nTimeFlush += nTime4 - nTime3;
LogPrint(BCLog::BENCH, " - Flush: %.2fms [%.2fs (%.2fms/blk)]\n", (nTime4 - nTime3) * MILLI, nTimeFlush * MICRO, nTimeFlush * MILLI / nBlocksTotal);
// Write the chain state to disk, if necessary.
if (!FlushStateToDisk(chainparams, state, FlushStateMode::IF_NEEDED))
return false;
int64_t nTime5 = GetTimeMicros(); nTimeChainState += nTime5 - nTime4;
LogPrint(BCLog::BENCH, " - Writing chainstate: %.2fms [%.2fs (%.2fms/blk)]\n", (nTime5 - nTime4) * MILLI, nTimeChainState * MICRO, nTimeChainState * MILLI / nBlocksTotal);
// Remove conflicting transactions from the mempool.;
mempool.removeForBlock(blockConnecting.vtx, pindexNew->nHeight);
disconnectpool.removeForBlock(blockConnecting.vtx);
// Update chainActive & related variables.
chainActive.SetTip(pindexNew);
UpdateTip(pindexNew, chainparams);
int64_t nTime6 = GetTimeMicros(); nTimePostConnect += nTime6 - nTime5; nTimeTotal += nTime6 - nTime1;
LogPrint(BCLog::BENCH, " - Connect postprocess: %.2fms [%.2fs (%.2fms/blk)]\n", (nTime6 - nTime5) * MILLI, nTimePostConnect * MICRO, nTimePostConnect * MILLI / nBlocksTotal);
LogPrint(BCLog::BENCH, "- Connect block: %.2fms [%.2fs (%.2fms/blk)]\n", (nTime6 - nTime1) * MILLI, nTimeTotal * MICRO, nTimeTotal * MILLI / nBlocksTotal);
connectTrace.BlockConnected(pindexNew, std::move(pthisBlock));
return true;
}
/**
* Return the tip of the chain with the most work in it, that isn't
* known to be invalid (it's however far from certain to be valid).
*/
CBlockIndex* CChainState::FindMostWorkChain() {
do {
CBlockIndex *pindexNew = nullptr;
// Find the best candidate header.
{
std::set<CBlockIndex*, CBlockIndexWorkComparator>::reverse_iterator it = setBlockIndexCandidates.rbegin();
if (it == setBlockIndexCandidates.rend())
return nullptr;
pindexNew = *it;
}
// Check whether all blocks on the path between the currently active chain and the candidate are valid.
// Just going until the active chain is an optimization, as we know all blocks in it are valid already.
CBlockIndex *pindexTest = pindexNew;
bool fInvalidAncestor = false;
while (pindexTest && !chainActive.Contains(pindexTest)) {
assert(pindexTest->HaveTxsDownloaded() || pindexTest->nHeight == 0);
// Pruned nodes may have entries in setBlockIndexCandidates for
// which block files have been deleted. Remove those as candidates
// for the most work chain if we come across them; we can't switch
// to a chain unless we have all the non-active-chain parent blocks.
bool fFailedChain = pindexTest->nStatus & BLOCK_FAILED_MASK;
bool fMissingData = !(pindexTest->nStatus & BLOCK_HAVE_DATA);
if (fFailedChain || fMissingData) {
// Candidate chain is not usable (either invalid or missing data)
if (fFailedChain && (pindexBestInvalid == nullptr || pindexNew->nChainWork > pindexBestInvalid->nChainWork))
pindexBestInvalid = pindexNew;
CBlockIndex *pindexFailed = pindexNew;
// Remove the entire chain from the set.
while (pindexTest != pindexFailed) {
if (fFailedChain) {
pindexFailed->nStatus |= BLOCK_FAILED_CHILD;
} else if (fMissingData) {
// If we're missing data, then add back to mapBlocksUnlinked,
// so that if the block arrives in the future we can try adding
// to setBlockIndexCandidates again.
mapBlocksUnlinked.insert(std::make_pair(pindexFailed->pprev, pindexFailed));
}
setBlockIndexCandidates.erase(pindexFailed);
pindexFailed = pindexFailed->pprev;
}
setBlockIndexCandidates.erase(pindexTest);
fInvalidAncestor = true;
break;
}
pindexTest = pindexTest->pprev;
}
if (!fInvalidAncestor)
return pindexNew;
} while(true);
}
/** Delete all entries in setBlockIndexCandidates that are worse than the current tip. */
void CChainState::PruneBlockIndexCandidates() {
// Note that we can't delete the current block itself, as we may need to return to it later in case a
// reorganization to a better block fails.
std::set<CBlockIndex*, CBlockIndexWorkComparator>::iterator it = setBlockIndexCandidates.begin();
while (it != setBlockIndexCandidates.end() && setBlockIndexCandidates.value_comp()(*it, chainActive.Tip())) {
setBlockIndexCandidates.erase(it++);
}
// Either the current tip or a successor of it we're working towards is left in setBlockIndexCandidates.
assert(!setBlockIndexCandidates.empty());
}
/**
* Try to make some progress towards making pindexMostWork the active block.
* pblock is either nullptr or a pointer to a CBlock corresponding to pindexMostWork.
*/
bool CChainState::ActivateBestChainStep(CValidationState& state, const CChainParams& chainparams, CBlockIndex* pindexMostWork, const std::shared_ptr<const CBlock>& pblock, bool& fInvalidFound, ConnectTrace& connectTrace)
{
AssertLockHeld(cs_main);
const CBlockIndex *pindexOldTip = chainActive.Tip();
const CBlockIndex *pindexFork = chainActive.FindFork(pindexMostWork);
// Disconnect active blocks which are no longer in the best chain.
bool fBlocksDisconnected = false;
DisconnectedBlockTransactions disconnectpool;
while (chainActive.Tip() && chainActive.Tip() != pindexFork) {
if (!DisconnectTip(state, chainparams, &disconnectpool)) {
// This is likely a fatal error, but keep the mempool consistent,
// just in case. Only remove from the mempool in this case.
UpdateMempoolForReorg(disconnectpool, false);
return false;
}
fBlocksDisconnected = true;
}
// Build list of new blocks to connect.
std::vector<CBlockIndex*> vpindexToConnect;
bool fContinue = true;
int nHeight = pindexFork ? pindexFork->nHeight : -1;
while (fContinue && nHeight != pindexMostWork->nHeight) {
// Don't iterate the entire list of potential improvements toward the best tip, as we likely only need
// a few blocks along the way.
int nTargetHeight = std::min(nHeight + 32, pindexMostWork->nHeight);
vpindexToConnect.clear();
vpindexToConnect.reserve(nTargetHeight - nHeight);
CBlockIndex *pindexIter = pindexMostWork->GetAncestor(nTargetHeight);
while (pindexIter && pindexIter->nHeight != nHeight) {
vpindexToConnect.push_back(pindexIter);
pindexIter = pindexIter->pprev;
}
nHeight = nTargetHeight;
// Connect new blocks.
for (CBlockIndex *pindexConnect : reverse_iterate(vpindexToConnect)) {
if (!ConnectTip(state, chainparams, pindexConnect, pindexConnect == pindexMostWork ? pblock : std::shared_ptr<const CBlock>(), connectTrace, disconnectpool)) {
if (state.IsInvalid()) {
// The block violates a consensus rule.
if (!state.CorruptionPossible()) {
InvalidChainFound(vpindexToConnect.front());
}
state = CValidationState();
fInvalidFound = true;
fContinue = false;
break;
} else {
// A system error occurred (disk space, database error, ...).
// Make the mempool consistent with the current tip, just in case
// any observers try to use it before shutdown.
UpdateMempoolForReorg(disconnectpool, false);
return false;
}
} else {
PruneBlockIndexCandidates();
if (!pindexOldTip || chainActive.Tip()->nChainWork > pindexOldTip->nChainWork) {
// We're in a better position than we were. Return temporarily to release the lock.
fContinue = false;
break;
}
}
}
}
if (fBlocksDisconnected) {
// If any blocks were disconnected, disconnectpool may be non empty. Add
// any disconnected transactions back to the mempool.
UpdateMempoolForReorg(disconnectpool, true);
}
mempool.check(pcoinsTip.get());
// Callbacks/notifications for a new best chain.
if (fInvalidFound)
CheckForkWarningConditionsOnNewFork(vpindexToConnect.back());
else
CheckForkWarningConditions();
return true;
}
static void NotifyHeaderTip() LOCKS_EXCLUDED(cs_main) {
bool fNotify = false;
bool fInitialBlockDownload = false;
static CBlockIndex* pindexHeaderOld = nullptr;
CBlockIndex* pindexHeader = nullptr;
{
LOCK(cs_main);
pindexHeader = pindexBestHeader;
if (pindexHeader != pindexHeaderOld) {
fNotify = true;
fInitialBlockDownload = IsInitialBlockDownload();
pindexHeaderOld = pindexHeader;
}
}
// Send block tip changed notifications without cs_main
if (fNotify) {
uiInterface.NotifyHeaderTip(fInitialBlockDownload, pindexHeader);
}
}
/**
* Make the best chain active, in multiple steps. The result is either failure
* or an activated best chain. pblock is either nullptr or a pointer to a block
* that is already loaded (to avoid loading it again from disk).
*
* ActivateBestChain is split into steps (see ActivateBestChainStep) so that
* we avoid holding cs_main for an extended period of time; the length of this
* call may be quite long during reindexing or a substantial reorg.
*/
bool CChainState::ActivateBestChain(CValidationState &state, const CChainParams& chainparams, std::shared_ptr<const CBlock> pblock) {
// Note that while we're often called here from ProcessNewBlock, this is
// far from a guarantee. Things in the P2P/RPC will often end up calling
// us in the middle of ProcessNewBlock - do not assume pblock is set
// sanely for performance or correctness!
AssertLockNotHeld(cs_main);
// ABC maintains a fair degree of expensive-to-calculate internal state
// because this function periodically releases cs_main so that it does not lock up other threads for too long
// during large connects - and to allow for e.g. the callback queue to drain
// we use m_cs_chainstate to enforce mutual exclusion so that only one caller may execute this function at a time
LOCK(m_cs_chainstate);
CBlockIndex *pindexMostWork = nullptr;
CBlockIndex *pindexNewTip = nullptr;
int nStopAtHeight = gArgs.GetArg("-stopatheight", DEFAULT_STOPATHEIGHT);
do {
boost::this_thread::interruption_point();
if (GetMainSignals().CallbacksPending() > 10) {
// Block until the validation queue drains. This should largely
// never happen in normal operation, however may happen during
// reindex, causing memory blowup if we run too far ahead.
// Note that if a validationinterface callback ends up calling
// ActivateBestChain this may lead to a deadlock! We should
// probably have a DEBUG_LOCKORDER test for this in the future.
SyncWithValidationInterfaceQueue();
}
{
LOCK(cs_main);
CBlockIndex* starting_tip = chainActive.Tip();
bool blocks_connected = false;
do {
// We absolutely may not unlock cs_main until we've made forward progress
// (with the exception of shutdown due to hardware issues, low disk space, etc).
ConnectTrace connectTrace(mempool); // Destructed before cs_main is unlocked
if (pindexMostWork == nullptr) {
pindexMostWork = FindMostWorkChain();
}
// Whether we have anything to do at all.
if (pindexMostWork == nullptr || pindexMostWork == chainActive.Tip()) {
break;
}
bool fInvalidFound = false;
std::shared_ptr<const CBlock> nullBlockPtr;
if (!ActivateBestChainStep(state, chainparams, pindexMostWork, pblock && pblock->GetHash() == pindexMostWork->GetBlockHash() ? pblock : nullBlockPtr, fInvalidFound, connectTrace))
return false;
blocks_connected = true;
if (fInvalidFound) {
// Wipe cache, we may need another branch now.
pindexMostWork = nullptr;
}
pindexNewTip = chainActive.Tip();
for (const PerBlockConnectTrace& trace : connectTrace.GetBlocksConnected()) {
assert(trace.pblock && trace.pindex);
GetMainSignals().BlockConnected(trace.pblock, trace.pindex, trace.conflictedTxs);
}
} while (!chainActive.Tip() || (starting_tip && CBlockIndexWorkComparator()(chainActive.Tip(), starting_tip)));
if (!blocks_connected) return true;
const CBlockIndex* pindexFork = chainActive.FindFork(starting_tip);
bool fInitialDownload = IsInitialBlockDownload();
// Notify external listeners about the new tip.
// Enqueue while holding cs_main to ensure that UpdatedBlockTip is called in the order in which blocks are connected
if (pindexFork != pindexNewTip) {
// Notify ValidationInterface subscribers
GetMainSignals().UpdatedBlockTip(pindexNewTip, pindexFork, fInitialDownload);
// Always notify the UI if a new block tip was connected
uiInterface.NotifyBlockTip(fInitialDownload, pindexNewTip);
}
}
// When we reach this point, we switched to a new tip (stored in pindexNewTip).
if (nStopAtHeight && pindexNewTip && pindexNewTip->nHeight >= nStopAtHeight) StartShutdown();
// We check shutdown only after giving ActivateBestChainStep a chance to run once so that we
// never shutdown before connecting the genesis block during LoadChainTip(). Previously this
// caused an assert() failure during shutdown in such cases as the UTXO DB flushing checks
// that the best block hash is non-null.
if (ShutdownRequested())
break;
} while (pindexNewTip != pindexMostWork);
CheckBlockIndex(chainparams.GetConsensus());
// Write changes periodically to disk, after relay.
if (!FlushStateToDisk(chainparams, state, FlushStateMode::PERIODIC)) {
return false;
}
return true;
}
bool ActivateBestChain(CValidationState &state, const CChainParams& chainparams, std::shared_ptr<const CBlock> pblock) {
return g_chainstate.ActivateBestChain(state, chainparams, std::move(pblock));
}
bool CChainState::PreciousBlock(CValidationState& state, const CChainParams& params, CBlockIndex *pindex)
{
{
LOCK(cs_main);
if (pindex->nChainWork < chainActive.Tip()->nChainWork) {
// Nothing to do, this block is not at the tip.
return true;
}
if (chainActive.Tip()->nChainWork > nLastPreciousChainwork) {
// The chain has been extended since the last call, reset the counter.
nBlockReverseSequenceId = -1;
}
nLastPreciousChainwork = chainActive.Tip()->nChainWork;
setBlockIndexCandidates.erase(pindex);
pindex->nSequenceId = nBlockReverseSequenceId;
if (nBlockReverseSequenceId > std::numeric_limits<int32_t>::min()) {
// We can't keep reducing the counter if somebody really wants to
// call preciousblock 2**31-1 times on the same set of tips...
nBlockReverseSequenceId--;
}
if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS) && pindex->HaveTxsDownloaded()) {
setBlockIndexCandidates.insert(pindex);
PruneBlockIndexCandidates();
}
}
return ActivateBestChain(state, params, std::shared_ptr<const CBlock>());
}
bool PreciousBlock(CValidationState& state, const CChainParams& params, CBlockIndex *pindex) {
return g_chainstate.PreciousBlock(state, params, pindex);
}
bool CChainState::InvalidateBlock(CValidationState& state, const CChainParams& chainparams, CBlockIndex *pindex)
{
AssertLockHeld(cs_main);
// We first disconnect backwards and then mark the blocks as invalid.
// This prevents a case where pruned nodes may fail to invalidateblock
// and be left unable to start as they have no tip candidates (as there
// are no blocks that meet the "have data and are not invalid per
// nStatus" criteria for inclusion in setBlockIndexCandidates).
bool pindex_was_in_chain = false;
CBlockIndex *invalid_walk_tip = chainActive.Tip();
DisconnectedBlockTransactions disconnectpool;
while (chainActive.Contains(pindex)) {
pindex_was_in_chain = true;
// ActivateBestChain considers blocks already in chainActive
// unconditionally valid already, so force disconnect away from it.
if (!DisconnectTip(state, chainparams, &disconnectpool)) {
// It's probably hopeless to try to make the mempool consistent
// here if DisconnectTip failed, but we can try.
UpdateMempoolForReorg(disconnectpool, false);
return false;
}
}
// Now mark the blocks we just disconnected as descendants invalid
// (note this may not be all descendants).
while (pindex_was_in_chain && invalid_walk_tip != pindex) {
invalid_walk_tip->nStatus |= BLOCK_FAILED_CHILD;
setDirtyBlockIndex.insert(invalid_walk_tip);
setBlockIndexCandidates.erase(invalid_walk_tip);
invalid_walk_tip = invalid_walk_tip->pprev;
}
// Mark the block itself as invalid.
pindex->nStatus |= BLOCK_FAILED_VALID;
setDirtyBlockIndex.insert(pindex);
setBlockIndexCandidates.erase(pindex);
m_failed_blocks.insert(pindex);
// DisconnectTip will add transactions to disconnectpool; try to add these
// back to the mempool.
UpdateMempoolForReorg(disconnectpool, true);
// The resulting new best tip may not be in setBlockIndexCandidates anymore, so
// add it again.
BlockMap::iterator it = mapBlockIndex.begin();
while (it != mapBlockIndex.end()) {
if (it->second->IsValid(BLOCK_VALID_TRANSACTIONS) && it->second->HaveTxsDownloaded() && !setBlockIndexCandidates.value_comp()(it->second, chainActive.Tip())) {
setBlockIndexCandidates.insert(it->second);
}
it++;
}
InvalidChainFound(pindex);
// Only notify about a new block tip if the active chain was modified.
if (pindex_was_in_chain) {
uiInterface.NotifyBlockTip(IsInitialBlockDownload(), pindex->pprev);
}
return true;
}
bool InvalidateBlock(CValidationState& state, const CChainParams& chainparams, CBlockIndex *pindex) {
return g_chainstate.InvalidateBlock(state, chainparams, pindex);
}
void CChainState::ResetBlockFailureFlags(CBlockIndex *pindex) {
AssertLockHeld(cs_main);
int nHeight = pindex->nHeight;
// Remove the invalidity flag from this block and all its descendants.
BlockMap::iterator it = mapBlockIndex.begin();
while (it != mapBlockIndex.end()) {
if (!it->second->IsValid() && it->second->GetAncestor(nHeight) == pindex) {
it->second->nStatus &= ~BLOCK_FAILED_MASK;
setDirtyBlockIndex.insert(it->second);
if (it->second->IsValid(BLOCK_VALID_TRANSACTIONS) && it->second->HaveTxsDownloaded() && setBlockIndexCandidates.value_comp()(chainActive.Tip(), it->second)) {
setBlockIndexCandidates.insert(it->second);
}
if (it->second == pindexBestInvalid) {
// Reset invalid block marker if it was pointing to one of those.
pindexBestInvalid = nullptr;
}
m_failed_blocks.erase(it->second);
}
it++;
}
// Remove the invalidity flag from all ancestors too.
while (pindex != nullptr) {
if (pindex->nStatus & BLOCK_FAILED_MASK) {
pindex->nStatus &= ~BLOCK_FAILED_MASK;
setDirtyBlockIndex.insert(pindex);
m_failed_blocks.erase(pindex);
}
pindex = pindex->pprev;
}
}
void ResetBlockFailureFlags(CBlockIndex *pindex) {
return g_chainstate.ResetBlockFailureFlags(pindex);
}
CBlockIndex* CChainState::AddToBlockIndex(const CBlockHeader& block)
{
AssertLockHeld(cs_main);
// Check for duplicate
uint256 hash = block.GetHash();
BlockMap::iterator it = mapBlockIndex.find(hash);
if (it != mapBlockIndex.end())
return it->second;
// Construct new block index object
CBlockIndex* pindexNew = new CBlockIndex(block);
// We assign the sequence id to blocks only when the full data is available,
// to avoid miners withholding blocks but broadcasting headers, to get a
// competitive advantage.
pindexNew->nSequenceId = 0;
BlockMap::iterator mi = mapBlockIndex.insert(std::make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
BlockMap::iterator miPrev = mapBlockIndex.find(block.hashPrevBlock);
if (miPrev != mapBlockIndex.end())
{
pindexNew->pprev = (*miPrev).second;
pindexNew->nHeight = pindexNew->pprev->nHeight + 1;
pindexNew->BuildSkip();
}
pindexNew->nTimeMax = (pindexNew->pprev ? std::max(pindexNew->pprev->nTimeMax, pindexNew->nTime) : pindexNew->nTime);
pindexNew->nChainWork = (pindexNew->pprev ? pindexNew->pprev->nChainWork : 0) + GetBlockProof(*pindexNew);
pindexNew->RaiseValidity(BLOCK_VALID_TREE);
if (pindexBestHeader == nullptr || pindexBestHeader->nChainWork < pindexNew->nChainWork)
pindexBestHeader = pindexNew;
setDirtyBlockIndex.insert(pindexNew);
return pindexNew;
}
/** Mark a block as having its data received and checked (up to BLOCK_VALID_TRANSACTIONS). */
void CChainState::ReceivedBlockTransactions(const CBlock& block, CBlockIndex* pindexNew, const CDiskBlockPos& pos, const Consensus::Params& consensusParams)
{
pindexNew->nTx = block.vtx.size();
pindexNew->nChainTx = 0;
pindexNew->nFile = pos.nFile;
pindexNew->nDataPos = pos.nPos;
pindexNew->nUndoPos = 0;
pindexNew->nStatus |= BLOCK_HAVE_DATA;
if (IsWitnessEnabled(pindexNew->pprev, consensusParams)) {
pindexNew->nStatus |= BLOCK_OPT_WITNESS;
}
pindexNew->RaiseValidity(BLOCK_VALID_TRANSACTIONS);
setDirtyBlockIndex.insert(pindexNew);
if (pindexNew->pprev == nullptr || pindexNew->pprev->HaveTxsDownloaded()) {
// If pindexNew is the genesis block or all parents are BLOCK_VALID_TRANSACTIONS.
std::deque<CBlockIndex*> queue;
queue.push_back(pindexNew);
// Recursively process any descendant blocks that now may be eligible to be connected.
while (!queue.empty()) {
CBlockIndex *pindex = queue.front();
queue.pop_front();
pindex->nChainTx = (pindex->pprev ? pindex->pprev->nChainTx : 0) + pindex->nTx;
{
LOCK(cs_nBlockSequenceId);
pindex->nSequenceId = nBlockSequenceId++;
}
if (chainActive.Tip() == nullptr || !setBlockIndexCandidates.value_comp()(pindex, chainActive.Tip())) {
setBlockIndexCandidates.insert(pindex);
}
std::pair<std::multimap<CBlockIndex*, CBlockIndex*>::iterator, std::multimap<CBlockIndex*, CBlockIndex*>::iterator> range = mapBlocksUnlinked.equal_range(pindex);
while (range.first != range.second) {
std::multimap<CBlockIndex*, CBlockIndex*>::iterator it = range.first;
queue.push_back(it->second);
range.first++;
mapBlocksUnlinked.erase(it);
}
}
} else {
if (pindexNew->pprev && pindexNew->pprev->IsValid(BLOCK_VALID_TREE)) {
mapBlocksUnlinked.insert(std::make_pair(pindexNew->pprev, pindexNew));
}
}
}
static bool FindBlockPos(CDiskBlockPos &pos, unsigned int nAddSize, unsigned int nHeight, uint64_t nTime, bool fKnown = false)
{
LOCK(cs_LastBlockFile);
unsigned int nFile = fKnown ? pos.nFile : nLastBlockFile;
if (vinfoBlockFile.size() <= nFile) {
vinfoBlockFile.resize(nFile + 1);
}
if (!fKnown) {
while (vinfoBlockFile[nFile].nSize + nAddSize >= MAX_BLOCKFILE_SIZE) {
nFile++;
if (vinfoBlockFile.size() <= nFile) {
vinfoBlockFile.resize(nFile + 1);
}
}
pos.nFile = nFile;
pos.nPos = vinfoBlockFile[nFile].nSize;
}
if ((int)nFile != nLastBlockFile) {
if (!fKnown) {
LogPrintf("Leaving block file %i: %s\n", nLastBlockFile, vinfoBlockFile[nLastBlockFile].ToString());
}
FlushBlockFile(!fKnown);
nLastBlockFile = nFile;
}
vinfoBlockFile[nFile].AddBlock(nHeight, nTime);
if (fKnown)
vinfoBlockFile[nFile].nSize = std::max(pos.nPos + nAddSize, vinfoBlockFile[nFile].nSize);
else
vinfoBlockFile[nFile].nSize += nAddSize;
if (!fKnown) {
unsigned int nOldChunks = (pos.nPos + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE;
unsigned int nNewChunks = (vinfoBlockFile[nFile].nSize + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE;
if (nNewChunks > nOldChunks) {
if (fPruneMode)
fCheckForPruning = true;
if (CheckDiskSpace(nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos, true)) {
FILE *file = OpenBlockFile(pos);
if (file) {
LogPrintf("Pre-allocating up to position 0x%x in blk%05u.dat\n", nNewChunks * BLOCKFILE_CHUNK_SIZE, pos.nFile);
AllocateFileRange(file, pos.nPos, nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos);
fclose(file);
}
}
else
return error("out of disk space");
}
}
setDirtyFileInfo.insert(nFile);
return true;
}
static bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, unsigned int nAddSize)
{
pos.nFile = nFile;
LOCK(cs_LastBlockFile);
unsigned int nNewSize;
pos.nPos = vinfoBlockFile[nFile].nUndoSize;
nNewSize = vinfoBlockFile[nFile].nUndoSize += nAddSize;
setDirtyFileInfo.insert(nFile);
unsigned int nOldChunks = (pos.nPos + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE;
unsigned int nNewChunks = (nNewSize + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE;
if (nNewChunks > nOldChunks) {
if (fPruneMode)
fCheckForPruning = true;
if (CheckDiskSpace(nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos, true)) {
FILE *file = OpenUndoFile(pos);
if (file) {
LogPrintf("Pre-allocating up to position 0x%x in rev%05u.dat\n", nNewChunks * UNDOFILE_CHUNK_SIZE, pos.nFile);
AllocateFileRange(file, pos.nPos, nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos);
fclose(file);
}
}
else
return state.Error("out of disk space");
}
return true;
}
static bool CheckBlockHeader(const CBlockHeader& block, CValidationState& state, const Consensus::Params& consensusParams, bool fCheckPOW = true)
{
// Check proof of work matches claimed amount
if (fCheckPOW && !CheckProofOfWork(block.GetHash(), block.nBits, consensusParams))
return state.DoS(50, false, REJECT_INVALID, "high-hash", false, "proof of work failed");
return true;
}
bool CheckBlock(const CBlock& block, CValidationState& state, const Consensus::Params& consensusParams, bool fCheckPOW, bool fCheckMerkleRoot)
{
// These are checks that are independent of context.
if (block.fChecked)
return true;
// Check that the header is valid (particularly PoW). This is mostly
// redundant with the call in AcceptBlockHeader.
if (!CheckBlockHeader(block, state, consensusParams, fCheckPOW))
return false;
// Check the merkle root.
if (fCheckMerkleRoot) {
bool mutated;
uint256 hashMerkleRoot2 = BlockMerkleRoot(block, &mutated);
if (block.hashMerkleRoot != hashMerkleRoot2)
return state.DoS(100, false, REJECT_INVALID, "bad-txnmrklroot", true, "hashMerkleRoot mismatch");
// Check for merkle tree malleability (CVE-2012-2459): repeating sequences
// of transactions in a block without affecting the merkle root of a block,
// while still invalidating it.
if (mutated)
return state.DoS(100, false, REJECT_INVALID, "bad-txns-duplicate", true, "duplicate transaction");
}
// All potential-corruption validation must be done before we do any
// transaction validation, as otherwise we may mark the header as invalid
// because we receive the wrong transactions for it.
// Note that witness malleability is checked in ContextualCheckBlock, so no
// checks that use witness data may be performed here.
// Size limits
if (block.vtx.empty() || block.vtx.size() * WITNESS_SCALE_FACTOR > MAX_BLOCK_WEIGHT || ::GetSerializeSize(block, PROTOCOL_VERSION | SERIALIZE_TRANSACTION_NO_WITNESS) * WITNESS_SCALE_FACTOR > MAX_BLOCK_WEIGHT)
return state.DoS(100, false, REJECT_INVALID, "bad-blk-length", false, "size limits failed");
// First transaction must be coinbase, the rest must not be
if (block.vtx.empty() || !block.vtx[0]->IsCoinBase())
return state.DoS(100, false, REJECT_INVALID, "bad-cb-missing", false, "first tx is not coinbase");
for (unsigned int i = 1; i < block.vtx.size(); i++)
if (block.vtx[i]->IsCoinBase())
return state.DoS(100, false, REJECT_INVALID, "bad-cb-multiple", false, "more than one coinbase");
// Check transactions
for (const auto& tx : block.vtx)
if (!CheckTransaction(*tx, state, true))
return state.Invalid(false, state.GetRejectCode(), state.GetRejectReason(),
strprintf("Transaction check failed (tx hash %s) %s", tx->GetHash().ToString(), state.GetDebugMessage()));
unsigned int nSigOps = 0;
for (const auto& tx : block.vtx)
{
nSigOps += GetLegacySigOpCount(*tx);
}
if (nSigOps * WITNESS_SCALE_FACTOR > MAX_BLOCK_SIGOPS_COST)
return state.DoS(100, false, REJECT_INVALID, "bad-blk-sigops", false, "out-of-bounds SigOpCount");
if (fCheckPOW && fCheckMerkleRoot)
block.fChecked = true;
return true;
}
bool IsWitnessEnabled(const CBlockIndex* pindexPrev, const Consensus::Params& params)
{
LOCK(cs_main);
return (VersionBitsState(pindexPrev, params, Consensus::DEPLOYMENT_SEGWIT, versionbitscache) == ThresholdState::ACTIVE);
}
bool IsNullDummyEnabled(const CBlockIndex* pindexPrev, const Consensus::Params& params)
{
LOCK(cs_main);
return (VersionBitsState(pindexPrev, params, Consensus::DEPLOYMENT_SEGWIT, versionbitscache) == ThresholdState::ACTIVE);
}
// Compute at which vout of the block's coinbase transaction the witness
// commitment occurs, or -1 if not found.
static int GetWitnessCommitmentIndex(const CBlock& block)
{
int commitpos = -1;
if (!block.vtx.empty()) {
for (size_t o = 0; o < block.vtx[0]->vout.size(); o++) {
if (block.vtx[0]->vout[o].scriptPubKey.size() >= 38 && block.vtx[0]->vout[o].scriptPubKey[0] == OP_RETURN && block.vtx[0]->vout[o].scriptPubKey[1] == 0x24 && block.vtx[0]->vout[o].scriptPubKey[2] == 0xaa && block.vtx[0]->vout[o].scriptPubKey[3] == 0x21 && block.vtx[0]->vout[o].scriptPubKey[4] == 0xa9 && block.vtx[0]->vout[o].scriptPubKey[5] == 0xed) {
commitpos = o;
}
}
}
return commitpos;
}
void UpdateUncommittedBlockStructures(CBlock& block, const CBlockIndex* pindexPrev, const Consensus::Params& consensusParams)
{
int commitpos = GetWitnessCommitmentIndex(block);
static const std::vector<unsigned char> nonce(32, 0x00);
if (commitpos != -1 && IsWitnessEnabled(pindexPrev, consensusParams) && !block.vtx[0]->HasWitness()) {
CMutableTransaction tx(*block.vtx[0]);
tx.vin[0].scriptWitness.stack.resize(1);
tx.vin[0].scriptWitness.stack[0] = nonce;
block.vtx[0] = MakeTransactionRef(std::move(tx));
}
}
std::vector<unsigned char> GenerateCoinbaseCommitment(CBlock& block, const CBlockIndex* pindexPrev, const Consensus::Params& consensusParams)
{
std::vector<unsigned char> commitment;
int commitpos = GetWitnessCommitmentIndex(block);
std::vector<unsigned char> ret(32, 0x00);
if (consensusParams.vDeployments[Consensus::DEPLOYMENT_SEGWIT].nTimeout != 0) {
if (commitpos == -1) {
uint256 witnessroot = BlockWitnessMerkleRoot(block, nullptr);
CHash256().Write(witnessroot.begin(), 32).Write(ret.data(), 32).Finalize(witnessroot.begin());
CTxOut out;
out.nValue = 0;
out.scriptPubKey.resize(38);
out.scriptPubKey[0] = OP_RETURN;
out.scriptPubKey[1] = 0x24;
out.scriptPubKey[2] = 0xaa;
out.scriptPubKey[3] = 0x21;
out.scriptPubKey[4] = 0xa9;
out.scriptPubKey[5] = 0xed;
memcpy(&out.scriptPubKey[6], witnessroot.begin(), 32);
commitment = std::vector<unsigned char>(out.scriptPubKey.begin(), out.scriptPubKey.end());
CMutableTransaction tx(*block.vtx[0]);
tx.vout.push_back(out);
block.vtx[0] = MakeTransactionRef(std::move(tx));
}
}
UpdateUncommittedBlockStructures(block, pindexPrev, consensusParams);
return commitment;
}
/** Context-dependent validity checks.
* By "context", we mean only the previous block headers, but not the UTXO
* set; UTXO-related validity checks are done in ConnectBlock().
* NOTE: This function is not currently invoked by ConnectBlock(), so we
* should consider upgrade issues if we change which consensus rules are
* enforced in this function (eg by adding a new consensus rule). See comment
* in ConnectBlock().
* Note that -reindex-chainstate skips the validation that happens here!
*/
static bool ContextualCheckBlockHeader(const CBlockHeader& block, CValidationState& state, const CChainParams& params, const CBlockIndex* pindexPrev, int64_t nAdjustedTime)
{
assert(pindexPrev != nullptr);
const int nHeight = pindexPrev->nHeight + 1;
// Check proof of work
const Consensus::Params& consensusParams = params.GetConsensus();
if (block.nBits != GetNextWorkRequired(pindexPrev, &block, consensusParams))
return state.DoS(100, false, REJECT_INVALID, "bad-diffbits", false, "incorrect proof of work");
// Check against checkpoints
if (fCheckpointsEnabled) {
// Don't accept any forks from the main chain prior to last checkpoint.
// GetLastCheckpoint finds the last checkpoint in MapCheckpoints that's in our
// MapBlockIndex.
CBlockIndex* pcheckpoint = Checkpoints::GetLastCheckpoint(params.Checkpoints());
if (pcheckpoint && nHeight < pcheckpoint->nHeight)
return state.DoS(100, error("%s: forked chain older than last checkpoint (height %d)", __func__, nHeight), REJECT_CHECKPOINT, "bad-fork-prior-to-checkpoint");
}
// Check timestamp against prev
if (block.GetBlockTime() <= pindexPrev->GetMedianTimePast())
return state.Invalid(false, REJECT_INVALID, "time-too-old", "block's timestamp is too early");
// Check timestamp
if (block.GetBlockTime() > nAdjustedTime + MAX_FUTURE_BLOCK_TIME)
return state.Invalid(false, REJECT_INVALID, "time-too-new", "block timestamp too far in the future");
// Reject outdated version blocks when 95% (75% on testnet) of the network has upgraded:
// check for version 2, 3 and 4 upgrades
if((block.nVersion < 2 && nHeight >= consensusParams.BIP34Height) ||
(block.nVersion < 3 && nHeight >= consensusParams.BIP66Height) ||
(block.nVersion < 4 && nHeight >= consensusParams.BIP65Height))
return state.Invalid(false, REJECT_OBSOLETE, strprintf("bad-version(0x%08x)", block.nVersion),
strprintf("rejected nVersion=0x%08x block", block.nVersion));
return true;
}
/** NOTE: This function is not currently invoked by ConnectBlock(), so we
* should consider upgrade issues if we change which consensus rules are
* enforced in this function (eg by adding a new consensus rule). See comment
* in ConnectBlock().
* Note that -reindex-chainstate skips the validation that happens here!
*/
static bool ContextualCheckBlock(const CBlock& block, CValidationState& state, const Consensus::Params& consensusParams, const CBlockIndex* pindexPrev)
{
const int nHeight = pindexPrev == nullptr ? 0 : pindexPrev->nHeight + 1;
// Start enforcing BIP113 (Median Time Past) using versionbits logic.
int nLockTimeFlags = 0;
if (VersionBitsState(pindexPrev, consensusParams, Consensus::DEPLOYMENT_CSV, versionbitscache) == ThresholdState::ACTIVE) {
assert(pindexPrev != nullptr);
nLockTimeFlags |= LOCKTIME_MEDIAN_TIME_PAST;
}
int64_t nLockTimeCutoff = (nLockTimeFlags & LOCKTIME_MEDIAN_TIME_PAST)
? pindexPrev->GetMedianTimePast()
: block.GetBlockTime();
// Check that all transactions are finalized
for (const auto& tx : block.vtx) {
if (!IsFinalTx(*tx, nHeight, nLockTimeCutoff)) {
return state.DoS(10, false, REJECT_INVALID, "bad-txns-nonfinal", false, "non-final transaction");
}
}
// Enforce rule that the coinbase starts with serialized block height
if (nHeight >= consensusParams.BIP34Height)
{
CScript expect = CScript() << nHeight;
if (block.vtx[0]->vin[0].scriptSig.size() < expect.size() ||
!std::equal(expect.begin(), expect.end(), block.vtx[0]->vin[0].scriptSig.begin())) {
return state.DoS(100, false, REJECT_INVALID, "bad-cb-height", false, "block height mismatch in coinbase");
}
}
// Validation for witness commitments.
// * We compute the witness hash (which is the hash including witnesses) of all the block's transactions, except the
// coinbase (where 0x0000....0000 is used instead).
// * The coinbase scriptWitness is a stack of a single 32-byte vector, containing a witness reserved value (unconstrained).
// * We build a merkle tree with all those witness hashes as leaves (similar to the hashMerkleRoot in the block header).
// * There must be at least one output whose scriptPubKey is a single 36-byte push, the first 4 bytes of which are
// {0xaa, 0x21, 0xa9, 0xed}, and the following 32 bytes are SHA256^2(witness root, witness reserved value). In case there are
// multiple, the last one is used.
bool fHaveWitness = false;
if (VersionBitsState(pindexPrev, consensusParams, Consensus::DEPLOYMENT_SEGWIT, versionbitscache) == ThresholdState::ACTIVE) {
int commitpos = GetWitnessCommitmentIndex(block);
if (commitpos != -1) {
bool malleated = false;
uint256 hashWitness = BlockWitnessMerkleRoot(block, &malleated);
// The malleation check is ignored; as the transaction tree itself
// already does not permit it, it is impossible to trigger in the
// witness tree.
if (block.vtx[0]->vin[0].scriptWitness.stack.size() != 1 || block.vtx[0]->vin[0].scriptWitness.stack[0].size() != 32) {
return state.DoS(100, false, REJECT_INVALID, "bad-witness-nonce-size", true, strprintf("%s : invalid witness reserved value size", __func__));
}
CHash256().Write(hashWitness.begin(), 32).Write(&block.vtx[0]->vin[0].scriptWitness.stack[0][0], 32).Finalize(hashWitness.begin());
if (memcmp(hashWitness.begin(), &block.vtx[0]->vout[commitpos].scriptPubKey[6], 32)) {
return state.DoS(100, false, REJECT_INVALID, "bad-witness-merkle-match", true, strprintf("%s : witness merkle commitment mismatch", __func__));
}
fHaveWitness = true;
}
}
// No witness data is allowed in blocks that don't commit to witness data, as this would otherwise leave room for spam
if (!fHaveWitness) {
for (const auto& tx : block.vtx) {
if (tx->HasWitness()) {
return state.DoS(100, false, REJECT_INVALID, "unexpected-witness", true, strprintf("%s : unexpected witness data found", __func__));
}
}
}
// After the coinbase witness reserved value and commitment are verified,
// we can check if the block weight passes (before we've checked the
// coinbase witness, it would be possible for the weight to be too
// large by filling up the coinbase witness, which doesn't change
// the block hash, so we couldn't mark the block as permanently
// failed).
if (GetBlockWeight(block) > MAX_BLOCK_WEIGHT) {
return state.DoS(100, false, REJECT_INVALID, "bad-blk-weight", false, strprintf("%s : weight limit failed", __func__));
}
return true;
}
bool CChainState::AcceptBlockHeader(const CBlockHeader& block, CValidationState& state, const CChainParams& chainparams, CBlockIndex** ppindex)
{
AssertLockHeld(cs_main);
// Check for duplicate
uint256 hash = block.GetHash();
BlockMap::iterator miSelf = mapBlockIndex.find(hash);
CBlockIndex *pindex = nullptr;
if (hash != chainparams.GetConsensus().hashGenesisBlock) {
if (miSelf != mapBlockIndex.end()) {
// Block header is already known.
pindex = miSelf->second;
if (ppindex)
*ppindex = pindex;
if (pindex->nStatus & BLOCK_FAILED_MASK)
return state.Invalid(error("%s: block %s is marked invalid", __func__, hash.ToString()), 0, "duplicate");
return true;
}
if (!CheckBlockHeader(block, state, chainparams.GetConsensus()))
return error("%s: Consensus::CheckBlockHeader: %s, %s", __func__, hash.ToString(), FormatStateMessage(state));
// Get prev block index
CBlockIndex* pindexPrev = nullptr;
BlockMap::iterator mi = mapBlockIndex.find(block.hashPrevBlock);
if (mi == mapBlockIndex.end())
return state.DoS(10, error("%s: prev block not found", __func__), 0, "prev-blk-not-found");
pindexPrev = (*mi).second;
if (pindexPrev->nStatus & BLOCK_FAILED_MASK)
return state.DoS(100, error("%s: prev block invalid", __func__), REJECT_INVALID, "bad-prevblk");
if (!ContextualCheckBlockHeader(block, state, chainparams, pindexPrev, GetAdjustedTime()))
return error("%s: Consensus::ContextualCheckBlockHeader: %s, %s", __func__, hash.ToString(), FormatStateMessage(state));
// If the previous block index isn't valid, determine if it descends from any block which
// has been found invalid (m_failed_blocks), then mark pindexPrev and any blocks
// between them as failed.
if (!pindexPrev->IsValid(BLOCK_VALID_SCRIPTS)) {
for (const CBlockIndex* failedit : m_failed_blocks) {
if (pindexPrev->GetAncestor(failedit->nHeight) == failedit) {
assert(failedit->nStatus & BLOCK_FAILED_VALID);
CBlockIndex* invalid_walk = pindexPrev;
while (invalid_walk != failedit) {
invalid_walk->nStatus |= BLOCK_FAILED_CHILD;
setDirtyBlockIndex.insert(invalid_walk);
invalid_walk = invalid_walk->pprev;
}
return state.DoS(100, error("%s: prev block invalid", __func__), REJECT_INVALID, "bad-prevblk");
}
}
}
}
if (pindex == nullptr)
pindex = AddToBlockIndex(block);
if (ppindex)
*ppindex = pindex;
CheckBlockIndex(chainparams.GetConsensus());
return true;
}
// Exposed wrapper for AcceptBlockHeader
bool ProcessNewBlockHeaders(const std::vector<CBlockHeader>& headers, CValidationState& state, const CChainParams& chainparams, const CBlockIndex** ppindex, CBlockHeader *first_invalid)
{
if (first_invalid != nullptr) first_invalid->SetNull();
{
LOCK(cs_main);
for (const CBlockHeader& header : headers) {
CBlockIndex *pindex = nullptr; // Use a temp pindex instead of ppindex to avoid a const_cast
if (!g_chainstate.AcceptBlockHeader(header, state, chainparams, &pindex)) {
if (first_invalid) *first_invalid = header;
return false;
}
if (ppindex) {
*ppindex = pindex;
}
}
}
NotifyHeaderTip();
return true;
}
/** Store block on disk. If dbp is non-nullptr, the file is known to already reside on disk */
static CDiskBlockPos SaveBlockToDisk(const CBlock& block, int nHeight, const CChainParams& chainparams, const CDiskBlockPos* dbp) {
unsigned int nBlockSize = ::GetSerializeSize(block, CLIENT_VERSION);
CDiskBlockPos blockPos;
if (dbp != nullptr)
blockPos = *dbp;
if (!FindBlockPos(blockPos, nBlockSize+8, nHeight, block.GetBlockTime(), dbp != nullptr)) {
error("%s: FindBlockPos failed", __func__);
return CDiskBlockPos();
}
if (dbp == nullptr) {
if (!WriteBlockToDisk(block, blockPos, chainparams.MessageStart())) {
AbortNode("Failed to write block");
return CDiskBlockPos();
}
}
return blockPos;
}
/** Store block on disk. If dbp is non-nullptr, the file is known to already reside on disk */
bool CChainState::AcceptBlock(const std::shared_ptr<const CBlock>& pblock, CValidationState& state, const CChainParams& chainparams, CBlockIndex** ppindex, bool fRequested, const CDiskBlockPos* dbp, bool* fNewBlock)
{
const CBlock& block = *pblock;
if (fNewBlock) *fNewBlock = false;
AssertLockHeld(cs_main);
CBlockIndex *pindexDummy = nullptr;
CBlockIndex *&pindex = ppindex ? *ppindex : pindexDummy;
if (!AcceptBlockHeader(block, state, chainparams, &pindex))
return false;
// Try to process all requested blocks that we don't have, but only
// process an unrequested block if it's new and has enough work to
// advance our tip, and isn't too many blocks ahead.
bool fAlreadyHave = pindex->nStatus & BLOCK_HAVE_DATA;
bool fHasMoreOrSameWork = (chainActive.Tip() ? pindex->nChainWork >= chainActive.Tip()->nChainWork : true);
// Blocks that are too out-of-order needlessly limit the effectiveness of
// pruning, because pruning will not delete block files that contain any
// blocks which are too close in height to the tip. Apply this test
// regardless of whether pruning is enabled; it should generally be safe to
// not process unrequested blocks.
bool fTooFarAhead = (pindex->nHeight > int(chainActive.Height() + MIN_BLOCKS_TO_KEEP));
// TODO: Decouple this function from the block download logic by removing fRequested
// This requires some new chain data structure to efficiently look up if a
// block is in a chain leading to a candidate for best tip, despite not
// being such a candidate itself.
// TODO: deal better with return value and error conditions for duplicate
// and unrequested blocks.
if (fAlreadyHave) return true;
if (!fRequested) { // If we didn't ask for it:
if (pindex->nTx != 0) return true; // This is a previously-processed block that was pruned
if (!fHasMoreOrSameWork) return true; // Don't process less-work chains
if (fTooFarAhead) return true; // Block height is too high
// Protect against DoS attacks from low-work chains.
// If our tip is behind, a peer could try to send us
// low-work blocks on a fake chain that we would never
// request; don't process these.
if (pindex->nChainWork < nMinimumChainWork) return true;
}
if (!CheckBlock(block, state, chainparams.GetConsensus()) ||
!ContextualCheckBlock(block, state, chainparams.GetConsensus(), pindex->pprev)) {
if (state.IsInvalid() && !state.CorruptionPossible()) {
pindex->nStatus |= BLOCK_FAILED_VALID;
setDirtyBlockIndex.insert(pindex);
}
return error("%s: %s", __func__, FormatStateMessage(state));
}
// Header is valid/has work, merkle tree and segwit merkle tree are good...RELAY NOW
// (but if it does not build on our best tip, let the SendMessages loop relay it)
if (!IsInitialBlockDownload() && chainActive.Tip() == pindex->pprev)
GetMainSignals().NewPoWValidBlock(pindex, pblock);
// Write block to history file
if (fNewBlock) *fNewBlock = true;
try {
CDiskBlockPos blockPos = SaveBlockToDisk(block, pindex->nHeight, chainparams, dbp);
if (blockPos.IsNull()) {
state.Error(strprintf("%s: Failed to find position to write new block to disk", __func__));
return false;
}
ReceivedBlockTransactions(block, pindex, blockPos, chainparams.GetConsensus());
} catch (const std::runtime_error& e) {
return AbortNode(state, std::string("System error: ") + e.what());
}
FlushStateToDisk(chainparams, state, FlushStateMode::NONE);
CheckBlockIndex(chainparams.GetConsensus());
return true;
}
bool ProcessNewBlock(const CChainParams& chainparams, const std::shared_ptr<const CBlock> pblock, bool fForceProcessing, bool *fNewBlock)
{
AssertLockNotHeld(cs_main);
{
CBlockIndex *pindex = nullptr;
if (fNewBlock) *fNewBlock = false;
CValidationState state;
// CheckBlock() does not support multi-threaded block validation because CBlock::fChecked can cause data race.
// Therefore, the following critical section must include the CheckBlock() call as well.
LOCK(cs_main);
// Ensure that CheckBlock() passes before calling AcceptBlock, as
// belt-and-suspenders.
bool ret = CheckBlock(*pblock, state, chainparams.GetConsensus());
if (ret) {
// Store to disk
ret = g_chainstate.AcceptBlock(pblock, state, chainparams, &pindex, fForceProcessing, nullptr, fNewBlock);
}
if (!ret) {
GetMainSignals().BlockChecked(*pblock, state);
return error("%s: AcceptBlock FAILED (%s)", __func__, FormatStateMessage(state));
}
}
NotifyHeaderTip();
CValidationState state; // Only used to report errors, not invalidity - ignore it
if (!g_chainstate.ActivateBestChain(state, chainparams, pblock))
return error("%s: ActivateBestChain failed (%s)", __func__, FormatStateMessage(state));
return true;
}
bool TestBlockValidity(CValidationState& state, const CChainParams& chainparams, const CBlock& block, CBlockIndex* pindexPrev, bool fCheckPOW, bool fCheckMerkleRoot)
{
AssertLockHeld(cs_main);
assert(pindexPrev && pindexPrev == chainActive.Tip());
CCoinsViewCache viewNew(pcoinsTip.get());
uint256 block_hash(block.GetHash());
CBlockIndex indexDummy(block);
indexDummy.pprev = pindexPrev;
indexDummy.nHeight = pindexPrev->nHeight + 1;
indexDummy.phashBlock = &block_hash;
// NOTE: CheckBlockHeader is called by CheckBlock
if (!ContextualCheckBlockHeader(block, state, chainparams, pindexPrev, GetAdjustedTime()))
return error("%s: Consensus::ContextualCheckBlockHeader: %s", __func__, FormatStateMessage(state));
if (!CheckBlock(block, state, chainparams.GetConsensus(), fCheckPOW, fCheckMerkleRoot))
return error("%s: Consensus::CheckBlock: %s", __func__, FormatStateMessage(state));
if (!ContextualCheckBlock(block, state, chainparams.GetConsensus(), pindexPrev))
return error("%s: Consensus::ContextualCheckBlock: %s", __func__, FormatStateMessage(state));
if (!g_chainstate.ConnectBlock(block, state, &indexDummy, viewNew, chainparams, true))
return false;
assert(state.IsValid());
return true;
}
/**
* BLOCK PRUNING CODE
*/
/* Calculate the amount of disk space the block & undo files currently use */
uint64_t CalculateCurrentUsage()
{
LOCK(cs_LastBlockFile);
uint64_t retval = 0;
for (const CBlockFileInfo &file : vinfoBlockFile) {
retval += file.nSize + file.nUndoSize;
}
return retval;
}
/* Prune a block file (modify associated database entries)*/
void PruneOneBlockFile(const int fileNumber)
{
LOCK(cs_LastBlockFile);
for (const auto& entry : mapBlockIndex) {
CBlockIndex* pindex = entry.second;
if (pindex->nFile == fileNumber) {
pindex->nStatus &= ~BLOCK_HAVE_DATA;
pindex->nStatus &= ~BLOCK_HAVE_UNDO;
pindex->nFile = 0;
pindex->nDataPos = 0;
pindex->nUndoPos = 0;
setDirtyBlockIndex.insert(pindex);
// Prune from mapBlocksUnlinked -- any block we prune would have
// to be downloaded again in order to consider its chain, at which
// point it would be considered as a candidate for
// mapBlocksUnlinked or setBlockIndexCandidates.
std::pair<std::multimap<CBlockIndex*, CBlockIndex*>::iterator, std::multimap<CBlockIndex*, CBlockIndex*>::iterator> range = mapBlocksUnlinked.equal_range(pindex->pprev);
while (range.first != range.second) {
std::multimap<CBlockIndex *, CBlockIndex *>::iterator _it = range.first;
range.first++;
if (_it->second == pindex) {
mapBlocksUnlinked.erase(_it);
}
}
}
}
vinfoBlockFile[fileNumber].SetNull();
setDirtyFileInfo.insert(fileNumber);
}
void UnlinkPrunedFiles(const std::set<int>& setFilesToPrune)
{
for (std::set<int>::iterator it = setFilesToPrune.begin(); it != setFilesToPrune.end(); ++it) {
CDiskBlockPos pos(*it, 0);
fs::remove(GetBlockPosFilename(pos, "blk"));
fs::remove(GetBlockPosFilename(pos, "rev"));
LogPrintf("Prune: %s deleted blk/rev (%05u)\n", __func__, *it);
}
}
/* Calculate the block/rev files to delete based on height specified by user with RPC command pruneblockchain */
static void FindFilesToPruneManual(std::set<int>& setFilesToPrune, int nManualPruneHeight)
{
assert(fPruneMode && nManualPruneHeight > 0);
LOCK2(cs_main, cs_LastBlockFile);
if (chainActive.Tip() == nullptr)
return;
// last block to prune is the lesser of (user-specified height, MIN_BLOCKS_TO_KEEP from the tip)
unsigned int nLastBlockWeCanPrune = std::min((unsigned)nManualPruneHeight, chainActive.Tip()->nHeight - MIN_BLOCKS_TO_KEEP);
int count=0;
for (int fileNumber = 0; fileNumber < nLastBlockFile; fileNumber++) {
if (vinfoBlockFile[fileNumber].nSize == 0 || vinfoBlockFile[fileNumber].nHeightLast > nLastBlockWeCanPrune)
continue;
PruneOneBlockFile(fileNumber);
setFilesToPrune.insert(fileNumber);
count++;
}
LogPrintf("Prune (Manual): prune_height=%d removed %d blk/rev pairs\n", nLastBlockWeCanPrune, count);
}
/* This function is called from the RPC code for pruneblockchain */
void PruneBlockFilesManual(int nManualPruneHeight)
{
CValidationState state;
const CChainParams& chainparams = Params();
if (!FlushStateToDisk(chainparams, state, FlushStateMode::NONE, nManualPruneHeight)) {
LogPrintf("%s: failed to flush state (%s)\n", __func__, FormatStateMessage(state));
}
}
/**
* Prune block and undo files (blk???.dat and undo???.dat) so that the disk space used is less than a user-defined target.
* The user sets the target (in MB) on the command line or in config file. This will be run on startup and whenever new
* space is allocated in a block or undo file, staying below the target. Changing back to unpruned requires a reindex
* (which in this case means the blockchain must be re-downloaded.)
*
* Pruning functions are called from FlushStateToDisk when the global fCheckForPruning flag has been set.
* Block and undo files are deleted in lock-step (when blk00003.dat is deleted, so is rev00003.dat.)
* Pruning cannot take place until the longest chain is at least a certain length (100000 on mainnet, 1000 on testnet, 1000 on regtest).
* Pruning will never delete a block within a defined distance (currently 288) from the active chain's tip.
* The block index is updated by unsetting HAVE_DATA and HAVE_UNDO for any blocks that were stored in the deleted files.
* A db flag records the fact that at least some block files have been pruned.
*
* @param[out] setFilesToPrune The set of file indices that can be unlinked will be returned
*/
static void FindFilesToPrune(std::set<int>& setFilesToPrune, uint64_t nPruneAfterHeight)
{
LOCK2(cs_main, cs_LastBlockFile);
if (chainActive.Tip() == nullptr || nPruneTarget == 0) {
return;
}
if ((uint64_t)chainActive.Tip()->nHeight <= nPruneAfterHeight) {
return;
}
unsigned int nLastBlockWeCanPrune = chainActive.Tip()->nHeight - MIN_BLOCKS_TO_KEEP;
uint64_t nCurrentUsage = CalculateCurrentUsage();
// We don't check to prune until after we've allocated new space for files
// So we should leave a buffer under our target to account for another allocation
// before the next pruning.
uint64_t nBuffer = BLOCKFILE_CHUNK_SIZE + UNDOFILE_CHUNK_SIZE;
uint64_t nBytesToPrune;
int count=0;
if (nCurrentUsage + nBuffer >= nPruneTarget) {
// On a prune event, the chainstate DB is flushed.
// To avoid excessive prune events negating the benefit of high dbcache
// values, we should not prune too rapidly.
// So when pruning in IBD, increase the buffer a bit to avoid a re-prune too soon.
if (IsInitialBlockDownload()) {
// Since this is only relevant during IBD, we use a fixed 10%
nBuffer += nPruneTarget / 10;
}
for (int fileNumber = 0; fileNumber < nLastBlockFile; fileNumber++) {
nBytesToPrune = vinfoBlockFile[fileNumber].nSize + vinfoBlockFile[fileNumber].nUndoSize;
if (vinfoBlockFile[fileNumber].nSize == 0)
continue;
if (nCurrentUsage + nBuffer < nPruneTarget) // are we below our target?
break;
// don't prune files that could have a block within MIN_BLOCKS_TO_KEEP of the main chain's tip but keep scanning
if (vinfoBlockFile[fileNumber].nHeightLast > nLastBlockWeCanPrune)
continue;
PruneOneBlockFile(fileNumber);
// Queue up the files for removal
setFilesToPrune.insert(fileNumber);
nCurrentUsage -= nBytesToPrune;
count++;
}
}
LogPrint(BCLog::PRUNE, "Prune: target=%dMiB actual=%dMiB diff=%dMiB max_prune_height=%d removed %d blk/rev pairs\n",
nPruneTarget/1024/1024, nCurrentUsage/1024/1024,
((int64_t)nPruneTarget - (int64_t)nCurrentUsage)/1024/1024,
nLastBlockWeCanPrune, count);
}
bool CheckDiskSpace(uint64_t nAdditionalBytes, bool blocks_dir)
{
uint64_t nFreeBytesAvailable = fs::space(blocks_dir ? GetBlocksDir() : GetDataDir()).available;
// Check for nMinDiskSpace bytes (currently 50MB)
if (nFreeBytesAvailable < nMinDiskSpace + nAdditionalBytes)
return AbortNode("Disk space is low!", _("Error: Disk space is low!"));
return true;
}
static FILE* OpenDiskFile(const CDiskBlockPos &pos, const char *prefix, bool fReadOnly)
{
if (pos.IsNull())
return nullptr;
fs::path path = GetBlockPosFilename(pos, prefix);
fs::create_directories(path.parent_path());
FILE* file = fsbridge::fopen(path, fReadOnly ? "rb": "rb+");
if (!file && !fReadOnly)
file = fsbridge::fopen(path, "wb+");
if (!file) {
LogPrintf("Unable to open file %s\n", path.string());
return nullptr;
}
if (pos.nPos) {
if (fseek(file, pos.nPos, SEEK_SET)) {
LogPrintf("Unable to seek to position %u of %s\n", pos.nPos, path.string());
fclose(file);
return nullptr;
}
}
return file;
}
FILE* OpenBlockFile(const CDiskBlockPos &pos, bool fReadOnly) {
return OpenDiskFile(pos, "blk", fReadOnly);
}
/** Open an undo file (rev?????.dat) */
static FILE* OpenUndoFile(const CDiskBlockPos &pos, bool fReadOnly) {
return OpenDiskFile(pos, "rev", fReadOnly);
}
fs::path GetBlockPosFilename(const CDiskBlockPos &pos, const char *prefix)
{
return GetBlocksDir() / strprintf("%s%05u.dat", prefix, pos.nFile);
}
CBlockIndex * CChainState::InsertBlockIndex(const uint256& hash)
{
AssertLockHeld(cs_main);
if (hash.IsNull())
return nullptr;
// Return existing
BlockMap::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end())
return (*mi).second;
// Create new
CBlockIndex* pindexNew = new CBlockIndex();
mi = mapBlockIndex.insert(std::make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
return pindexNew;
}
bool CChainState::LoadBlockIndex(const Consensus::Params& consensus_params, CBlockTreeDB& blocktree)
{
if (!blocktree.LoadBlockIndexGuts(consensus_params, [this](const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { return this->InsertBlockIndex(hash); }))
return false;
// Calculate nChainWork
std::vector<std::pair<int, CBlockIndex*> > vSortedByHeight;
vSortedByHeight.reserve(mapBlockIndex.size());
for (const std::pair<const uint256, CBlockIndex*>& item : mapBlockIndex)
{
CBlockIndex* pindex = item.second;
vSortedByHeight.push_back(std::make_pair(pindex->nHeight, pindex));
}
sort(vSortedByHeight.begin(), vSortedByHeight.end());
for (const std::pair<int, CBlockIndex*>& item : vSortedByHeight)
{
CBlockIndex* pindex = item.second;
pindex->nChainWork = (pindex->pprev ? pindex->pprev->nChainWork : 0) + GetBlockProof(*pindex);
pindex->nTimeMax = (pindex->pprev ? std::max(pindex->pprev->nTimeMax, pindex->nTime) : pindex->nTime);
// We can link the chain of blocks for which we've received transactions at some point.
// Pruned nodes may have deleted the block.
if (pindex->nTx > 0) {
if (pindex->pprev) {
if (pindex->pprev->HaveTxsDownloaded()) {
pindex->nChainTx = pindex->pprev->nChainTx + pindex->nTx;
} else {
pindex->nChainTx = 0;
mapBlocksUnlinked.insert(std::make_pair(pindex->pprev, pindex));
}
} else {
pindex->nChainTx = pindex->nTx;
}
}
if (!(pindex->nStatus & BLOCK_FAILED_MASK) && pindex->pprev && (pindex->pprev->nStatus & BLOCK_FAILED_MASK)) {
pindex->nStatus |= BLOCK_FAILED_CHILD;
setDirtyBlockIndex.insert(pindex);
}
if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS) && (pindex->HaveTxsDownloaded() || pindex->pprev == nullptr))
setBlockIndexCandidates.insert(pindex);
if (pindex->nStatus & BLOCK_FAILED_MASK && (!pindexBestInvalid || pindex->nChainWork > pindexBestInvalid->nChainWork))
pindexBestInvalid = pindex;
if (pindex->pprev)
pindex->BuildSkip();
if (pindex->IsValid(BLOCK_VALID_TREE) && (pindexBestHeader == nullptr || CBlockIndexWorkComparator()(pindexBestHeader, pindex)))
pindexBestHeader = pindex;
}
return true;
}
bool static LoadBlockIndexDB(const CChainParams& chainparams) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
{
if (!g_chainstate.LoadBlockIndex(chainparams.GetConsensus(), *pblocktree))
return false;
// Load block file info
pblocktree->ReadLastBlockFile(nLastBlockFile);
vinfoBlockFile.resize(nLastBlockFile + 1);
LogPrintf("%s: last block file = %i\n", __func__, nLastBlockFile);
for (int nFile = 0; nFile <= nLastBlockFile; nFile++) {
pblocktree->ReadBlockFileInfo(nFile, vinfoBlockFile[nFile]);
}
LogPrintf("%s: last block file info: %s\n", __func__, vinfoBlockFile[nLastBlockFile].ToString());
for (int nFile = nLastBlockFile + 1; true; nFile++) {
CBlockFileInfo info;
if (pblocktree->ReadBlockFileInfo(nFile, info)) {
vinfoBlockFile.push_back(info);
} else {
break;
}
}
// Check presence of blk files
LogPrintf("Checking all blk files are present...\n");
std::set<int> setBlkDataFiles;
for (const std::pair<const uint256, CBlockIndex*>& item : mapBlockIndex)
{
CBlockIndex* pindex = item.second;
if (pindex->nStatus & BLOCK_HAVE_DATA) {
setBlkDataFiles.insert(pindex->nFile);
}
}
for (std::set<int>::iterator it = setBlkDataFiles.begin(); it != setBlkDataFiles.end(); it++)
{
CDiskBlockPos pos(*it, 0);
if (CAutoFile(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION).IsNull()) {
return false;
}
}
// Check whether we have ever pruned block & undo files
pblocktree->ReadFlag("prunedblockfiles", fHavePruned);
if (fHavePruned)
LogPrintf("LoadBlockIndexDB(): Block files have previously been pruned\n");
// Check whether we need to continue reindexing
bool fReindexing = false;
pblocktree->ReadReindexing(fReindexing);
if(fReindexing) fReindex = true;
return true;
}
bool LoadChainTip(const CChainParams& chainparams)
{
AssertLockHeld(cs_main);
if (chainActive.Tip() && chainActive.Tip()->GetBlockHash() == pcoinsTip->GetBestBlock()) return true;
if (pcoinsTip->GetBestBlock().IsNull() && mapBlockIndex.size() == 1) {
// In case we just added the genesis block, connect it now, so
// that we always have a chainActive.Tip() when we return.
LogPrintf("%s: Connecting genesis block...\n", __func__);
CValidationState state;
if (!ActivateBestChain(state, chainparams)) {
LogPrintf("%s: failed to activate chain (%s)\n", __func__, FormatStateMessage(state));
return false;
}
}
// Load pointer to end of best chain
CBlockIndex* pindex = LookupBlockIndex(pcoinsTip->GetBestBlock());
if (!pindex) {
return false;
}
chainActive.SetTip(pindex);
g_chainstate.PruneBlockIndexCandidates();
LogPrintf("Loaded best chain: hashBestChain=%s height=%d date=%s progress=%f\n",
chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(),
FormatISO8601DateTime(chainActive.Tip()->GetBlockTime()),
GuessVerificationProgress(chainparams.TxData(), chainActive.Tip()));
return true;
}
CVerifyDB::CVerifyDB()
{
uiInterface.ShowProgress(_("Verifying blocks..."), 0, false);
}
CVerifyDB::~CVerifyDB()
{
uiInterface.ShowProgress("", 100, false);
}
bool CVerifyDB::VerifyDB(const CChainParams& chainparams, CCoinsView *coinsview, int nCheckLevel, int nCheckDepth)
{
LOCK(cs_main);
if (chainActive.Tip() == nullptr || chainActive.Tip()->pprev == nullptr)
return true;
// Verify blocks in the best chain
if (nCheckDepth <= 0 || nCheckDepth > chainActive.Height())
nCheckDepth = chainActive.Height();
nCheckLevel = std::max(0, std::min(4, nCheckLevel));
LogPrintf("Verifying last %i blocks at level %i\n", nCheckDepth, nCheckLevel);
CCoinsViewCache coins(coinsview);
CBlockIndex* pindex;
CBlockIndex* pindexFailure = nullptr;
int nGoodTransactions = 0;
CValidationState state;
int reportDone = 0;
LogPrintf("[0%%]..."); /* Continued */
for (pindex = chainActive.Tip(); pindex && pindex->pprev; pindex = pindex->pprev) {
boost::this_thread::interruption_point();
int percentageDone = std::max(1, std::min(99, (int)(((double)(chainActive.Height() - pindex->nHeight)) / (double)nCheckDepth * (nCheckLevel >= 4 ? 50 : 100))));
if (reportDone < percentageDone/10) {
// report every 10% step
LogPrintf("[%d%%]...", percentageDone); /* Continued */
reportDone = percentageDone/10;
}
uiInterface.ShowProgress(_("Verifying blocks..."), percentageDone, false);
if (pindex->nHeight <= chainActive.Height()-nCheckDepth)
break;
if (fPruneMode && !(pindex->nStatus & BLOCK_HAVE_DATA)) {
// If pruning, only go back as far as we have data.
LogPrintf("VerifyDB(): block verification stopping at height %d (pruning, no data)\n", pindex->nHeight);
break;
}
CBlock block;
// check level 0: read from disk
if (!ReadBlockFromDisk(block, pindex, chainparams.GetConsensus()))
return error("VerifyDB(): *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
// check level 1: verify block validity
if (nCheckLevel >= 1 && !CheckBlock(block, state, chainparams.GetConsensus()))
return error("%s: *** found bad block at %d, hash=%s (%s)\n", __func__,
pindex->nHeight, pindex->GetBlockHash().ToString(), FormatStateMessage(state));
// check level 2: verify undo validity
if (nCheckLevel >= 2 && pindex) {
CBlockUndo undo;
if (!pindex->GetUndoPos().IsNull()) {
if (!UndoReadFromDisk(undo, pindex)) {
return error("VerifyDB(): *** found bad undo data at %d, hash=%s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
}
}
}
// check level 3: check for inconsistencies during memory-only disconnect of tip blocks
if (nCheckLevel >= 3 && (coins.DynamicMemoryUsage() + pcoinsTip->DynamicMemoryUsage()) <= nCoinCacheUsage) {
assert(coins.GetBestBlock() == pindex->GetBlockHash());
DisconnectResult res = g_chainstate.DisconnectBlock(block, pindex, coins);
if (res == DISCONNECT_FAILED) {
return error("VerifyDB(): *** irrecoverable inconsistency in block data at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
}
if (res == DISCONNECT_UNCLEAN) {
nGoodTransactions = 0;
pindexFailure = pindex;
} else {
nGoodTransactions += block.vtx.size();
}
}
if (ShutdownRequested())
return true;
}
if (pindexFailure)
return error("VerifyDB(): *** coin database inconsistencies found (last %i blocks, %i good transactions before that)\n", chainActive.Height() - pindexFailure->nHeight + 1, nGoodTransactions);
// store block count as we move pindex at check level >= 4
int block_count = chainActive.Height() - pindex->nHeight;
// check level 4: try reconnecting blocks
if (nCheckLevel >= 4) {
while (pindex != chainActive.Tip()) {
boost::this_thread::interruption_point();
uiInterface.ShowProgress(_("Verifying blocks..."), std::max(1, std::min(99, 100 - (int)(((double)(chainActive.Height() - pindex->nHeight)) / (double)nCheckDepth * 50))), false);
pindex = chainActive.Next(pindex);
CBlock block;
if (!ReadBlockFromDisk(block, pindex, chainparams.GetConsensus()))
return error("VerifyDB(): *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
if (!g_chainstate.ConnectBlock(block, state, pindex, coins, chainparams))
return error("VerifyDB(): *** found unconnectable block at %d, hash=%s (%s)", pindex->nHeight, pindex->GetBlockHash().ToString(), FormatStateMessage(state));
}
}
LogPrintf("[DONE].\n");
LogPrintf("No coin database inconsistencies in last %i blocks (%i transactions)\n", block_count, nGoodTransactions);
return true;
}
/** Apply the effects of a block on the utxo cache, ignoring that it may already have been applied. */
bool CChainState::RollforwardBlock(const CBlockIndex* pindex, CCoinsViewCache& inputs, const CChainParams& params)
{
// TODO: merge with ConnectBlock
CBlock block;
if (!ReadBlockFromDisk(block, pindex, params.GetConsensus())) {
return error("ReplayBlock(): ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString());
}
for (const CTransactionRef& tx : block.vtx) {
if (!tx->IsCoinBase()) {
for (const CTxIn &txin : tx->vin) {
inputs.SpendCoin(txin.prevout);
}
}
// Pass check = true as every addition may be an overwrite.
AddCoins(inputs, *tx, pindex->nHeight, true);
}
return true;
}
bool CChainState::ReplayBlocks(const CChainParams& params, CCoinsView* view)
{
LOCK(cs_main);
CCoinsViewCache cache(view);
std::vector<uint256> hashHeads = view->GetHeadBlocks();
if (hashHeads.empty()) return true; // We're already in a consistent state.
if (hashHeads.size() != 2) return error("ReplayBlocks(): unknown inconsistent state");
uiInterface.ShowProgress(_("Replaying blocks..."), 0, false);
LogPrintf("Replaying blocks\n");
const CBlockIndex* pindexOld = nullptr; // Old tip during the interrupted flush.
const CBlockIndex* pindexNew; // New tip during the interrupted flush.
const CBlockIndex* pindexFork = nullptr; // Latest block common to both the old and the new tip.
if (mapBlockIndex.count(hashHeads[0]) == 0) {
return error("ReplayBlocks(): reorganization to unknown block requested");
}
pindexNew = mapBlockIndex[hashHeads[0]];
if (!hashHeads[1].IsNull()) { // The old tip is allowed to be 0, indicating it's the first flush.
if (mapBlockIndex.count(hashHeads[1]) == 0) {
return error("ReplayBlocks(): reorganization from unknown block requested");
}
pindexOld = mapBlockIndex[hashHeads[1]];
pindexFork = LastCommonAncestor(pindexOld, pindexNew);
assert(pindexFork != nullptr);
}
// Rollback along the old branch.
while (pindexOld != pindexFork) {
if (pindexOld->nHeight > 0) { // Never disconnect the genesis block.
CBlock block;
if (!ReadBlockFromDisk(block, pindexOld, params.GetConsensus())) {
return error("RollbackBlock(): ReadBlockFromDisk() failed at %d, hash=%s", pindexOld->nHeight, pindexOld->GetBlockHash().ToString());
}
LogPrintf("Rolling back %s (%i)\n", pindexOld->GetBlockHash().ToString(), pindexOld->nHeight);
DisconnectResult res = DisconnectBlock(block, pindexOld, cache);
if (res == DISCONNECT_FAILED) {
return error("RollbackBlock(): DisconnectBlock failed at %d, hash=%s", pindexOld->nHeight, pindexOld->GetBlockHash().ToString());
}
// If DISCONNECT_UNCLEAN is returned, it means a non-existing UTXO was deleted, or an existing UTXO was
// overwritten. It corresponds to cases where the block-to-be-disconnect never had all its operations
// applied to the UTXO set. However, as both writing a UTXO and deleting a UTXO are idempotent operations,
// the result is still a version of the UTXO set with the effects of that block undone.
}
pindexOld = pindexOld->pprev;
}
// Roll forward from the forking point to the new tip.
int nForkHeight = pindexFork ? pindexFork->nHeight : 0;
for (int nHeight = nForkHeight + 1; nHeight <= pindexNew->nHeight; ++nHeight) {
const CBlockIndex* pindex = pindexNew->GetAncestor(nHeight);
LogPrintf("Rolling forward %s (%i)\n", pindex->GetBlockHash().ToString(), nHeight);
uiInterface.ShowProgress(_("Replaying blocks..."), (int) ((nHeight - nForkHeight) * 100.0 / (pindexNew->nHeight - nForkHeight)) , false);
if (!RollforwardBlock(pindex, cache, params)) return false;
}
cache.SetBestBlock(pindexNew->GetBlockHash());
cache.Flush();
uiInterface.ShowProgress("", 100, false);
return true;
}
bool ReplayBlocks(const CChainParams& params, CCoinsView* view) {
return g_chainstate.ReplayBlocks(params, view);
}
bool CChainState::RewindBlockIndex(const CChainParams& params)
{
LOCK(cs_main);
// Note that during -reindex-chainstate we are called with an empty chainActive!
int nHeight = 1;
while (nHeight <= chainActive.Height()) {
// Although SCRIPT_VERIFY_WITNESS is now generally enforced on all
// blocks in ConnectBlock, we don't need to go back and
// re-download/re-verify blocks from before segwit actually activated.
if (IsWitnessEnabled(chainActive[nHeight - 1], params.GetConsensus()) && !(chainActive[nHeight]->nStatus & BLOCK_OPT_WITNESS)) {
break;
}
nHeight++;
}
// nHeight is now the height of the first insufficiently-validated block, or tipheight + 1
CValidationState state;
CBlockIndex* pindex = chainActive.Tip();
while (chainActive.Height() >= nHeight) {
if (fPruneMode && !(chainActive.Tip()->nStatus & BLOCK_HAVE_DATA)) {
// If pruning, don't try rewinding past the HAVE_DATA point;
// since older blocks can't be served anyway, there's
// no need to walk further, and trying to DisconnectTip()
// will fail (and require a needless reindex/redownload
// of the blockchain).
break;
}
if (!DisconnectTip(state, params, nullptr)) {
return error("RewindBlockIndex: unable to disconnect block at height %i (%s)", pindex->nHeight, FormatStateMessage(state));
}
// Occasionally flush state to disk.
if (!FlushStateToDisk(params, state, FlushStateMode::PERIODIC)) {
LogPrintf("RewindBlockIndex: unable to flush state to disk (%s)\n", FormatStateMessage(state));
return false;
}
}
// Reduce validity flag and have-data flags.
// We do this after actual disconnecting, otherwise we'll end up writing the lack of data
// to disk before writing the chainstate, resulting in a failure to continue if interrupted.
for (const auto& entry : mapBlockIndex) {
CBlockIndex* pindexIter = entry.second;
// Note: If we encounter an insufficiently validated block that
// is on chainActive, it must be because we are a pruning node, and
// this block or some successor doesn't HAVE_DATA, so we were unable to
// rewind all the way. Blocks remaining on chainActive at this point
// must not have their validity reduced.
if (IsWitnessEnabled(pindexIter->pprev, params.GetConsensus()) && !(pindexIter->nStatus & BLOCK_OPT_WITNESS) && !chainActive.Contains(pindexIter)) {
// Reduce validity
pindexIter->nStatus = std::min<unsigned int>(pindexIter->nStatus & BLOCK_VALID_MASK, BLOCK_VALID_TREE) | (pindexIter->nStatus & ~BLOCK_VALID_MASK);
// Remove have-data flags.
pindexIter->nStatus &= ~(BLOCK_HAVE_DATA | BLOCK_HAVE_UNDO);
// Remove storage location.
pindexIter->nFile = 0;
pindexIter->nDataPos = 0;
pindexIter->nUndoPos = 0;
// Remove various other things
pindexIter->nTx = 0;
pindexIter->nChainTx = 0;
pindexIter->nSequenceId = 0;
// Make sure it gets written.
setDirtyBlockIndex.insert(pindexIter);
// Update indexes
setBlockIndexCandidates.erase(pindexIter);
std::pair<std::multimap<CBlockIndex*, CBlockIndex*>::iterator, std::multimap<CBlockIndex*, CBlockIndex*>::iterator> ret = mapBlocksUnlinked.equal_range(pindexIter->pprev);
while (ret.first != ret.second) {
if (ret.first->second == pindexIter) {
mapBlocksUnlinked.erase(ret.first++);
} else {
++ret.first;
}
}
} else if (pindexIter->IsValid(BLOCK_VALID_TRANSACTIONS) && pindexIter->HaveTxsDownloaded()) {
setBlockIndexCandidates.insert(pindexIter);
}
}
if (chainActive.Tip() != nullptr) {
// We can't prune block index candidates based on our tip if we have
// no tip due to chainActive being empty!
PruneBlockIndexCandidates();
CheckBlockIndex(params.GetConsensus());
}
return true;
}
bool RewindBlockIndex(const CChainParams& params) {
if (!g_chainstate.RewindBlockIndex(params)) {
return false;
}
if (chainActive.Tip() != nullptr) {
// FlushStateToDisk can possibly read chainActive. Be conservative
// and skip it here, we're about to -reindex-chainstate anyway, so
// it'll get called a bunch real soon.
CValidationState state;
if (!FlushStateToDisk(params, state, FlushStateMode::ALWAYS)) {
LogPrintf("RewindBlockIndex: unable to flush state to disk (%s)\n", FormatStateMessage(state));
return false;
}
}
return true;
}
void CChainState::UnloadBlockIndex() {
nBlockSequenceId = 1;
m_failed_blocks.clear();
setBlockIndexCandidates.clear();
}
// May NOT be used after any connections are up as much
// of the peer-processing logic assumes a consistent
// block index state
void UnloadBlockIndex()
{
LOCK(cs_main);
chainActive.SetTip(nullptr);
pindexBestInvalid = nullptr;
pindexBestHeader = nullptr;
mempool.clear();
mapBlocksUnlinked.clear();
vinfoBlockFile.clear();
nLastBlockFile = 0;
setDirtyBlockIndex.clear();
setDirtyFileInfo.clear();
versionbitscache.Clear();
for (int b = 0; b < VERSIONBITS_NUM_BITS; b++) {
warningcache[b].clear();
}
for (const BlockMap::value_type& entry : mapBlockIndex) {
delete entry.second;
}
mapBlockIndex.clear();
fHavePruned = false;
g_chainstate.UnloadBlockIndex();
}
bool LoadBlockIndex(const CChainParams& chainparams)
{
// Load block index from databases
bool needs_init = fReindex;
if (!fReindex) {
bool ret = LoadBlockIndexDB(chainparams);
if (!ret) return false;
needs_init = mapBlockIndex.empty();
}
if (needs_init) {
// Everything here is for *new* reindex/DBs. Thus, though
// LoadBlockIndexDB may have set fReindex if we shut down
// mid-reindex previously, we don't check fReindex and
// instead only check it prior to LoadBlockIndexDB to set
// needs_init.
LogPrintf("Initializing databases...\n");
}
return true;
}
bool CChainState::LoadGenesisBlock(const CChainParams& chainparams)
{
LOCK(cs_main);
// Check whether we're already initialized by checking for genesis in
// mapBlockIndex. Note that we can't use chainActive here, since it is
// set based on the coins db, not the block index db, which is the only
// thing loaded at this point.
if (mapBlockIndex.count(chainparams.GenesisBlock().GetHash()))
return true;
try {
CBlock &block = const_cast<CBlock&>(chainparams.GenesisBlock());
CDiskBlockPos blockPos = SaveBlockToDisk(block, 0, chainparams, nullptr);
if (blockPos.IsNull())
return error("%s: writing genesis block to disk failed", __func__);
CBlockIndex *pindex = AddToBlockIndex(block);
ReceivedBlockTransactions(block, pindex, blockPos, chainparams.GetConsensus());
} catch (const std::runtime_error& e) {
return error("%s: failed to write genesis block: %s", __func__, e.what());
}
return true;
}
bool LoadGenesisBlock(const CChainParams& chainparams)
{
return g_chainstate.LoadGenesisBlock(chainparams);
}
bool LoadExternalBlockFile(const CChainParams& chainparams, FILE* fileIn, CDiskBlockPos *dbp)
{
// Map of disk positions for blocks with unknown parent (only used for reindex)
static std::multimap<uint256, CDiskBlockPos> mapBlocksUnknownParent;
int64_t nStart = GetTimeMillis();
int nLoaded = 0;
try {
// This takes over fileIn and calls fclose() on it in the CBufferedFile destructor
CBufferedFile blkdat(fileIn, 2*MAX_BLOCK_SERIALIZED_SIZE, MAX_BLOCK_SERIALIZED_SIZE+8, SER_DISK, CLIENT_VERSION);
uint64_t nRewind = blkdat.GetPos();
while (!blkdat.eof()) {
boost::this_thread::interruption_point();
blkdat.SetPos(nRewind);
nRewind++; // start one byte further next time, in case of failure
blkdat.SetLimit(); // remove former limit
unsigned int nSize = 0;
try {
// locate a header
unsigned char buf[CMessageHeader::MESSAGE_START_SIZE];
blkdat.FindByte(chainparams.MessageStart()[0]);
nRewind = blkdat.GetPos()+1;
blkdat >> buf;
if (memcmp(buf, chainparams.MessageStart(), CMessageHeader::MESSAGE_START_SIZE))
continue;
// read size
blkdat >> nSize;
if (nSize < 80 || nSize > MAX_BLOCK_SERIALIZED_SIZE)
continue;
} catch (const std::exception&) {
// no valid block header found; don't complain
break;
}
try {
// read block
uint64_t nBlockPos = blkdat.GetPos();
if (dbp)
dbp->nPos = nBlockPos;
blkdat.SetLimit(nBlockPos + nSize);
blkdat.SetPos(nBlockPos);
std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
CBlock& block = *pblock;
blkdat >> block;
nRewind = blkdat.GetPos();
uint256 hash = block.GetHash();
{
LOCK(cs_main);
// detect out of order blocks, and store them for later
if (hash != chainparams.GetConsensus().hashGenesisBlock && !LookupBlockIndex(block.hashPrevBlock)) {
LogPrint(BCLog::REINDEX, "%s: Out of order block %s, parent %s not known\n", __func__, hash.ToString(),
block.hashPrevBlock.ToString());
if (dbp)
mapBlocksUnknownParent.insert(std::make_pair(block.hashPrevBlock, *dbp));
continue;
}
// process in case the block isn't known yet
CBlockIndex* pindex = LookupBlockIndex(hash);
if (!pindex || (pindex->nStatus & BLOCK_HAVE_DATA) == 0) {
CValidationState state;
if (g_chainstate.AcceptBlock(pblock, state, chainparams, nullptr, true, dbp, nullptr)) {
nLoaded++;
}
if (state.IsError()) {
break;
}
} else if (hash != chainparams.GetConsensus().hashGenesisBlock && pindex->nHeight % 1000 == 0) {
LogPrint(BCLog::REINDEX, "Block Import: already had block %s at height %d\n", hash.ToString(), pindex->nHeight);
}
}
// Activate the genesis block so normal node progress can continue
if (hash == chainparams.GetConsensus().hashGenesisBlock) {
CValidationState state;
if (!ActivateBestChain(state, chainparams)) {
break;
}
}
NotifyHeaderTip();
// Recursively process earlier encountered successors of this block
std::deque<uint256> queue;
queue.push_back(hash);
while (!queue.empty()) {
uint256 head = queue.front();
queue.pop_front();
std::pair<std::multimap<uint256, CDiskBlockPos>::iterator, std::multimap<uint256, CDiskBlockPos>::iterator> range = mapBlocksUnknownParent.equal_range(head);
while (range.first != range.second) {
std::multimap<uint256, CDiskBlockPos>::iterator it = range.first;
std::shared_ptr<CBlock> pblockrecursive = std::make_shared<CBlock>();
if (ReadBlockFromDisk(*pblockrecursive, it->second, chainparams.GetConsensus()))
{
LogPrint(BCLog::REINDEX, "%s: Processing out of order child %s of %s\n", __func__, pblockrecursive->GetHash().ToString(),
head.ToString());
LOCK(cs_main);
CValidationState dummy;
if (g_chainstate.AcceptBlock(pblockrecursive, dummy, chainparams, nullptr, true, &it->second, nullptr))
{
nLoaded++;
queue.push_back(pblockrecursive->GetHash());
}
}
range.first++;
mapBlocksUnknownParent.erase(it);
NotifyHeaderTip();
}
}
} catch (const std::exception& e) {
LogPrintf("%s: Deserialize or I/O error - %s\n", __func__, e.what());
}
}
} catch (const std::runtime_error& e) {
AbortNode(std::string("System error: ") + e.what());
}
if (nLoaded > 0)
LogPrintf("Loaded %i blocks from external file in %dms\n", nLoaded, GetTimeMillis() - nStart);
return nLoaded > 0;
}
void CChainState::CheckBlockIndex(const Consensus::Params& consensusParams)
{
if (!fCheckBlockIndex) {
return;
}
LOCK(cs_main);
// During a reindex, we read the genesis block and call CheckBlockIndex before ActivateBestChain,
// so we have the genesis block in mapBlockIndex but no active chain. (A few of the tests when
// iterating the block tree require that chainActive has been initialized.)
if (chainActive.Height() < 0) {
assert(mapBlockIndex.size() <= 1);
return;
}
// Build forward-pointing map of the entire block tree.
std::multimap<CBlockIndex*,CBlockIndex*> forward;
for (const std::pair<const uint256, CBlockIndex*>& entry : mapBlockIndex) {
forward.insert(std::make_pair(entry.second->pprev, entry.second));
}
assert(forward.size() == mapBlockIndex.size());
std::pair<std::multimap<CBlockIndex*,CBlockIndex*>::iterator,std::multimap<CBlockIndex*,CBlockIndex*>::iterator> rangeGenesis = forward.equal_range(nullptr);
CBlockIndex *pindex = rangeGenesis.first->second;
rangeGenesis.first++;
assert(rangeGenesis.first == rangeGenesis.second); // There is only one index entry with parent nullptr.
// Iterate over the entire block tree, using depth-first search.
// Along the way, remember whether there are blocks on the path from genesis
// block being explored which are the first to have certain properties.
size_t nNodes = 0;
int nHeight = 0;
CBlockIndex* pindexFirstInvalid = nullptr; // Oldest ancestor of pindex which is invalid.
CBlockIndex* pindexFirstMissing = nullptr; // Oldest ancestor of pindex which does not have BLOCK_HAVE_DATA.
CBlockIndex* pindexFirstNeverProcessed = nullptr; // Oldest ancestor of pindex for which nTx == 0.
CBlockIndex* pindexFirstNotTreeValid = nullptr; // Oldest ancestor of pindex which does not have BLOCK_VALID_TREE (regardless of being valid or not).
CBlockIndex* pindexFirstNotTransactionsValid = nullptr; // Oldest ancestor of pindex which does not have BLOCK_VALID_TRANSACTIONS (regardless of being valid or not).
CBlockIndex* pindexFirstNotChainValid = nullptr; // Oldest ancestor of pindex which does not have BLOCK_VALID_CHAIN (regardless of being valid or not).
CBlockIndex* pindexFirstNotScriptsValid = nullptr; // Oldest ancestor of pindex which does not have BLOCK_VALID_SCRIPTS (regardless of being valid or not).
while (pindex != nullptr) {
nNodes++;
if (pindexFirstInvalid == nullptr && pindex->nStatus & BLOCK_FAILED_VALID) pindexFirstInvalid = pindex;
if (pindexFirstMissing == nullptr && !(pindex->nStatus & BLOCK_HAVE_DATA)) pindexFirstMissing = pindex;
if (pindexFirstNeverProcessed == nullptr && pindex->nTx == 0) pindexFirstNeverProcessed = pindex;
if (pindex->pprev != nullptr && pindexFirstNotTreeValid == nullptr && (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_TREE) pindexFirstNotTreeValid = pindex;
if (pindex->pprev != nullptr && pindexFirstNotTransactionsValid == nullptr && (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_TRANSACTIONS) pindexFirstNotTransactionsValid = pindex;
if (pindex->pprev != nullptr && pindexFirstNotChainValid == nullptr && (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_CHAIN) pindexFirstNotChainValid = pindex;
if (pindex->pprev != nullptr && pindexFirstNotScriptsValid == nullptr && (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_SCRIPTS) pindexFirstNotScriptsValid = pindex;
// Begin: actual consistency checks.
if (pindex->pprev == nullptr) {
// Genesis block checks.
assert(pindex->GetBlockHash() == consensusParams.hashGenesisBlock); // Genesis block's hash must match.
assert(pindex == chainActive.Genesis()); // The current active chain's genesis block must be this block.
}
if (!pindex->HaveTxsDownloaded()) assert(pindex->nSequenceId <= 0); // nSequenceId can't be set positive for blocks that aren't linked (negative is used for preciousblock)
// VALID_TRANSACTIONS is equivalent to nTx > 0 for all nodes (whether or not pruning has occurred).
// HAVE_DATA is only equivalent to nTx > 0 (or VALID_TRANSACTIONS) if no pruning has occurred.
if (!fHavePruned) {
// If we've never pruned, then HAVE_DATA should be equivalent to nTx > 0
assert(!(pindex->nStatus & BLOCK_HAVE_DATA) == (pindex->nTx == 0));
assert(pindexFirstMissing == pindexFirstNeverProcessed);
} else {
// If we have pruned, then we can only say that HAVE_DATA implies nTx > 0
if (pindex->nStatus & BLOCK_HAVE_DATA) assert(pindex->nTx > 0);
}
if (pindex->nStatus & BLOCK_HAVE_UNDO) assert(pindex->nStatus & BLOCK_HAVE_DATA);
assert(((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_TRANSACTIONS) == (pindex->nTx > 0)); // This is pruning-independent.
// All parents having had data (at some point) is equivalent to all parents being VALID_TRANSACTIONS, which is equivalent to HaveTxsDownloaded().
assert((pindexFirstNeverProcessed == nullptr) == pindex->HaveTxsDownloaded());
assert((pindexFirstNotTransactionsValid == nullptr) == pindex->HaveTxsDownloaded());
assert(pindex->nHeight == nHeight); // nHeight must be consistent.
assert(pindex->pprev == nullptr || pindex->nChainWork >= pindex->pprev->nChainWork); // For every block except the genesis block, the chainwork must be larger than the parent's.
assert(nHeight < 2 || (pindex->pskip && (pindex->pskip->nHeight < nHeight))); // The pskip pointer must point back for all but the first 2 blocks.
assert(pindexFirstNotTreeValid == nullptr); // All mapBlockIndex entries must at least be TREE valid
if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_TREE) assert(pindexFirstNotTreeValid == nullptr); // TREE valid implies all parents are TREE valid
if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_CHAIN) assert(pindexFirstNotChainValid == nullptr); // CHAIN valid implies all parents are CHAIN valid
if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_SCRIPTS) assert(pindexFirstNotScriptsValid == nullptr); // SCRIPTS valid implies all parents are SCRIPTS valid
if (pindexFirstInvalid == nullptr) {
// Checks for not-invalid blocks.
assert((pindex->nStatus & BLOCK_FAILED_MASK) == 0); // The failed mask cannot be set for blocks without invalid parents.
}
if (!CBlockIndexWorkComparator()(pindex, chainActive.Tip()) && pindexFirstNeverProcessed == nullptr) {
if (pindexFirstInvalid == nullptr) {
// If this block sorts at least as good as the current tip and
// is valid and we have all data for its parents, it must be in
// setBlockIndexCandidates. chainActive.Tip() must also be there
// even if some data has been pruned.
if (pindexFirstMissing == nullptr || pindex == chainActive.Tip()) {
assert(setBlockIndexCandidates.count(pindex));
}
// If some parent is missing, then it could be that this block was in
// setBlockIndexCandidates but had to be removed because of the missing data.
// In this case it must be in mapBlocksUnlinked -- see test below.
}
} else { // If this block sorts worse than the current tip or some ancestor's block has never been seen, it cannot be in setBlockIndexCandidates.
assert(setBlockIndexCandidates.count(pindex) == 0);
}
// Check whether this block is in mapBlocksUnlinked.
std::pair<std::multimap<CBlockIndex*,CBlockIndex*>::iterator,std::multimap<CBlockIndex*,CBlockIndex*>::iterator> rangeUnlinked = mapBlocksUnlinked.equal_range(pindex->pprev);
bool foundInUnlinked = false;
while (rangeUnlinked.first != rangeUnlinked.second) {
assert(rangeUnlinked.first->first == pindex->pprev);
if (rangeUnlinked.first->second == pindex) {
foundInUnlinked = true;
break;
}
rangeUnlinked.first++;
}
if (pindex->pprev && (pindex->nStatus & BLOCK_HAVE_DATA) && pindexFirstNeverProcessed != nullptr && pindexFirstInvalid == nullptr) {
// If this block has block data available, some parent was never received, and has no invalid parents, it must be in mapBlocksUnlinked.
assert(foundInUnlinked);
}
if (!(pindex->nStatus & BLOCK_HAVE_DATA)) assert(!foundInUnlinked); // Can't be in mapBlocksUnlinked if we don't HAVE_DATA
if (pindexFirstMissing == nullptr) assert(!foundInUnlinked); // We aren't missing data for any parent -- cannot be in mapBlocksUnlinked.
if (pindex->pprev && (pindex->nStatus & BLOCK_HAVE_DATA) && pindexFirstNeverProcessed == nullptr && pindexFirstMissing != nullptr) {
// We HAVE_DATA for this block, have received data for all parents at some point, but we're currently missing data for some parent.
assert(fHavePruned); // We must have pruned.
// This block may have entered mapBlocksUnlinked if:
// - it has a descendant that at some point had more work than the
// tip, and
// - we tried switching to that descendant but were missing
// data for some intermediate block between chainActive and the
// tip.
// So if this block is itself better than chainActive.Tip() and it wasn't in
// setBlockIndexCandidates, then it must be in mapBlocksUnlinked.
if (!CBlockIndexWorkComparator()(pindex, chainActive.Tip()) && setBlockIndexCandidates.count(pindex) == 0) {
if (pindexFirstInvalid == nullptr) {
assert(foundInUnlinked);
}
}
}
// assert(pindex->GetBlockHash() == pindex->GetBlockHeader().GetHash()); // Perhaps too slow
// End: actual consistency checks.
// Try descending into the first subnode.
std::pair<std::multimap<CBlockIndex*,CBlockIndex*>::iterator,std::multimap<CBlockIndex*,CBlockIndex*>::iterator> range = forward.equal_range(pindex);
if (range.first != range.second) {
// A subnode was found.
pindex = range.first->second;
nHeight++;
continue;
}
// This is a leaf node.
// Move upwards until we reach a node of which we have not yet visited the last child.
while (pindex) {
// We are going to either move to a parent or a sibling of pindex.
// If pindex was the first with a certain property, unset the corresponding variable.
if (pindex == pindexFirstInvalid) pindexFirstInvalid = nullptr;
if (pindex == pindexFirstMissing) pindexFirstMissing = nullptr;
if (pindex == pindexFirstNeverProcessed) pindexFirstNeverProcessed = nullptr;
if (pindex == pindexFirstNotTreeValid) pindexFirstNotTreeValid = nullptr;
if (pindex == pindexFirstNotTransactionsValid) pindexFirstNotTransactionsValid = nullptr;
if (pindex == pindexFirstNotChainValid) pindexFirstNotChainValid = nullptr;
if (pindex == pindexFirstNotScriptsValid) pindexFirstNotScriptsValid = nullptr;
// Find our parent.
CBlockIndex* pindexPar = pindex->pprev;
// Find which child we just visited.
std::pair<std::multimap<CBlockIndex*,CBlockIndex*>::iterator,std::multimap<CBlockIndex*,CBlockIndex*>::iterator> rangePar = forward.equal_range(pindexPar);
while (rangePar.first->second != pindex) {
assert(rangePar.first != rangePar.second); // Our parent must have at least the node we're coming from as child.
rangePar.first++;
}
// Proceed to the next one.
rangePar.first++;
if (rangePar.first != rangePar.second) {
// Move to the sibling.
pindex = rangePar.first->second;
break;
} else {
// Move up further.
pindex = pindexPar;
nHeight--;
continue;
}
}
}
// Check that we actually traversed the entire map.
assert(nNodes == forward.size());
}
std::string CBlockFileInfo::ToString() const
{
return strprintf("CBlockFileInfo(blocks=%u, size=%u, heights=%u...%u, time=%s...%s)", nBlocks, nSize, nHeightFirst, nHeightLast, FormatISO8601Date(nTimeFirst), FormatISO8601Date(nTimeLast));
}
CBlockFileInfo* GetBlockFileInfo(size_t n)
{
LOCK(cs_LastBlockFile);
return &vinfoBlockFile.at(n);
}
ThresholdState VersionBitsTipState(const Consensus::Params& params, Consensus::DeploymentPos pos)
{
LOCK(cs_main);
return VersionBitsState(chainActive.Tip(), params, pos, versionbitscache);
}
BIP9Stats VersionBitsTipStatistics(const Consensus::Params& params, Consensus::DeploymentPos pos)
{
LOCK(cs_main);
return VersionBitsStatistics(chainActive.Tip(), params, pos);
}
int VersionBitsTipStateSinceHeight(const Consensus::Params& params, Consensus::DeploymentPos pos)
{
LOCK(cs_main);
return VersionBitsStateSinceHeight(chainActive.Tip(), params, pos, versionbitscache);
}
static const uint64_t MEMPOOL_DUMP_VERSION = 1;
bool LoadMempool()
{
const CChainParams& chainparams = Params();
int64_t nExpiryTimeout = gArgs.GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60;
FILE* filestr = fsbridge::fopen(GetDataDir() / "mempool.dat", "rb");
CAutoFile file(filestr, SER_DISK, CLIENT_VERSION);
if (file.IsNull()) {
LogPrintf("Failed to open mempool file from disk. Continuing anyway.\n");
return false;
}
int64_t count = 0;
int64_t expired = 0;
int64_t failed = 0;
int64_t already_there = 0;
int64_t nNow = GetTime();
try {
uint64_t version;
file >> version;
if (version != MEMPOOL_DUMP_VERSION) {
return false;
}
uint64_t num;
file >> num;
while (num--) {
CTransactionRef tx;
int64_t nTime;
int64_t nFeeDelta;
file >> tx;
file >> nTime;
file >> nFeeDelta;
CAmount amountdelta = nFeeDelta;
if (amountdelta) {
mempool.PrioritiseTransaction(tx->GetHash(), amountdelta);
}
CValidationState state;
if (nTime + nExpiryTimeout > nNow) {
LOCK(cs_main);
AcceptToMemoryPoolWithTime(chainparams, mempool, state, tx, nullptr /* pfMissingInputs */, nTime,
nullptr /* plTxnReplaced */, false /* bypass_limits */, 0 /* nAbsurdFee */,
false /* test_accept */);
if (state.IsValid()) {
++count;
} else {
// mempool may contain the transaction already, e.g. from
// wallet(s) having loaded it while we were processing
// mempool transactions; consider these as valid, instead of
// failed, but mark them as 'already there'
if (mempool.exists(tx->GetHash())) {
++already_there;
} else {
++failed;
}
}
} else {
++expired;
}
if (ShutdownRequested())
return false;
}
std::map<uint256, CAmount> mapDeltas;
file >> mapDeltas;
for (const auto& i : mapDeltas) {
mempool.PrioritiseTransaction(i.first, i.second);
}
} catch (const std::exception& e) {
LogPrintf("Failed to deserialize mempool data on disk: %s. Continuing anyway.\n", e.what());
return false;
}
LogPrintf("Imported mempool transactions from disk: %i succeeded, %i failed, %i expired, %i already there\n", count, failed, expired, already_there);
return true;
}
bool DumpMempool()
{
int64_t start = GetTimeMicros();
std::map<uint256, CAmount> mapDeltas;
std::vector<TxMempoolInfo> vinfo;
static Mutex dump_mutex;
LOCK(dump_mutex);
{
LOCK(mempool.cs);
for (const auto &i : mempool.mapDeltas) {
mapDeltas[i.first] = i.second;
}
vinfo = mempool.infoAll();
}
int64_t mid = GetTimeMicros();
try {
FILE* filestr = fsbridge::fopen(GetDataDir() / "mempool.dat.new", "wb");
if (!filestr) {
return false;
}
CAutoFile file(filestr, SER_DISK, CLIENT_VERSION);
uint64_t version = MEMPOOL_DUMP_VERSION;
file << version;
file << (uint64_t)vinfo.size();
for (const auto& i : vinfo) {
file << *(i.tx);
file << (int64_t)i.nTime;
file << (int64_t)i.nFeeDelta;
mapDeltas.erase(i.tx->GetHash());
}
file << mapDeltas;
if (!FileCommit(file.Get()))
throw std::runtime_error("FileCommit failed");
file.fclose();
RenameOver(GetDataDir() / "mempool.dat.new", GetDataDir() / "mempool.dat");
int64_t last = GetTimeMicros();
LogPrintf("Dumped mempool: %gs to copy, %gs to dump\n", (mid-start)*MICRO, (last-mid)*MICRO);
} catch (const std::exception& e) {
LogPrintf("Failed to dump mempool: %s. Continuing anyway.\n", e.what());
return false;
}
return true;
}
//! Guess how far we are in the verification process at the given block index
//! require cs_main if pindex has not been validated yet (because nChainTx might be unset)
double GuessVerificationProgress(const ChainTxData& data, const CBlockIndex *pindex) {
if (pindex == nullptr)
return 0.0;
int64_t nNow = time(nullptr);
double fTxTotal;
if (pindex->nChainTx <= data.nTxCount) {
fTxTotal = data.nTxCount + (nNow - data.nTime) * data.dTxRate;
} else {
fTxTotal = pindex->nChainTx + (nNow - pindex->GetBlockTime()) * data.dTxRate;
}
return pindex->nChainTx / fTxTotal;
}
class CMainCleanup
{
public:
CMainCleanup() {}
~CMainCleanup() {
// block headers
BlockMap::iterator it1 = mapBlockIndex.begin();
for (; it1 != mapBlockIndex.end(); it1++)
delete (*it1).second;
mapBlockIndex.clear();
}
} instance_of_cmaincleanup;