bitcoin/test/functional/rpc_net.py
2021-11-03 14:58:53 +01:00

282 lines
14 KiB
Python
Executable file

#!/usr/bin/env python3
# Copyright (c) 2017-2020 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test RPC calls related to net.
Tests correspond to code in rpc/net.cpp.
"""
from decimal import Decimal
from itertools import product
import time
from test_framework.blocktools import COINBASE_MATURITY
import test_framework.messages
from test_framework.p2p import (
P2PInterface,
P2P_SERVICES,
)
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import (
assert_approx,
assert_equal,
assert_greater_than,
assert_raises_rpc_error,
p2p_port,
)
from test_framework.wallet import MiniWallet
def assert_net_servicesnames(servicesflag, servicenames):
"""Utility that checks if all flags are correctly decoded in
`getpeerinfo` and `getnetworkinfo`.
:param servicesflag: The services as an integer.
:param servicenames: The list of decoded services names, as strings.
"""
servicesflag_generated = 0
for servicename in servicenames:
servicesflag_generated |= getattr(test_framework.messages, 'NODE_' + servicename)
assert servicesflag_generated == servicesflag
class NetTest(BitcoinTestFramework):
def set_test_params(self):
self.setup_clean_chain = True
self.num_nodes = 2
self.extra_args = [["-minrelaytxfee=0.00001000"], ["-minrelaytxfee=0.00000500"]]
self.supports_cli = False
def run_test(self):
# We need miniwallet to make a transaction
self.wallet = MiniWallet(self.nodes[0])
self.generate(self.wallet, 1)
# Get out of IBD for the minfeefilter and getpeerinfo tests.
self.generate(self.nodes[0], COINBASE_MATURITY + 1)
# By default, the test framework sets up an addnode connection from
# node 1 --> node0. By connecting node0 --> node 1, we're left with
# the two nodes being connected both ways.
# Topology will look like: node0 <--> node1
self.connect_nodes(0, 1)
self.sync_all()
self.test_connection_count()
self.test_getpeerinfo()
self.test_getnettotals()
self.test_getnetworkinfo()
self.test_getaddednodeinfo()
self.test_service_flags()
self.test_getnodeaddresses()
self.test_addpeeraddress()
def test_connection_count(self):
self.log.info("Test getconnectioncount")
# After using `connect_nodes` to connect nodes 0 and 1 to each other.
assert_equal(self.nodes[0].getconnectioncount(), 2)
def test_getpeerinfo(self):
self.log.info("Test getpeerinfo")
# Create a few getpeerinfo last_block/last_transaction values.
self.wallet.send_self_transfer(from_node=self.nodes[0]) # Make a transaction so we can see it in the getpeerinfo results
self.generate(self.nodes[1], 1)
self.sync_all()
time_now = int(time.time())
peer_info = [x.getpeerinfo() for x in self.nodes]
# Verify last_block and last_transaction keys/values.
for node, peer, field in product(range(self.num_nodes), range(2), ['last_block', 'last_transaction']):
assert field in peer_info[node][peer].keys()
if peer_info[node][peer][field] != 0:
assert_approx(peer_info[node][peer][field], time_now, vspan=60)
# check both sides of bidirectional connection between nodes
# the address bound to on one side will be the source address for the other node
assert_equal(peer_info[0][0]['addrbind'], peer_info[1][0]['addr'])
assert_equal(peer_info[1][0]['addrbind'], peer_info[0][0]['addr'])
assert_equal(peer_info[0][0]['minfeefilter'], Decimal("0.00000500"))
assert_equal(peer_info[1][0]['minfeefilter'], Decimal("0.00001000"))
# check the `servicesnames` field
for info in peer_info:
assert_net_servicesnames(int(info[0]["services"], 0x10), info[0]["servicesnames"])
assert_equal(peer_info[0][0]['connection_type'], 'inbound')
assert_equal(peer_info[0][1]['connection_type'], 'manual')
assert_equal(peer_info[1][0]['connection_type'], 'manual')
assert_equal(peer_info[1][1]['connection_type'], 'inbound')
# Check dynamically generated networks list in getpeerinfo help output.
assert "(ipv4, ipv6, onion, i2p, cjdns, not_publicly_routable)" in self.nodes[0].help("getpeerinfo")
def test_getnettotals(self):
self.log.info("Test getnettotals")
# Test getnettotals and getpeerinfo by doing a ping. The bytes
# sent/received should increase by at least the size of one ping (32
# bytes) and one pong (32 bytes).
net_totals_before = self.nodes[0].getnettotals()
peer_info_before = self.nodes[0].getpeerinfo()
self.nodes[0].ping()
self.wait_until(lambda: (self.nodes[0].getnettotals()['totalbytessent'] >= net_totals_before['totalbytessent'] + 32 * 2), timeout=1)
self.wait_until(lambda: (self.nodes[0].getnettotals()['totalbytesrecv'] >= net_totals_before['totalbytesrecv'] + 32 * 2), timeout=1)
for peer_before in peer_info_before:
peer_after = lambda: next(p for p in self.nodes[0].getpeerinfo() if p['id'] == peer_before['id'])
self.wait_until(lambda: peer_after()['bytesrecv_per_msg'].get('pong', 0) >= peer_before['bytesrecv_per_msg'].get('pong', 0) + 32, timeout=1)
self.wait_until(lambda: peer_after()['bytessent_per_msg'].get('ping', 0) >= peer_before['bytessent_per_msg'].get('ping', 0) + 32, timeout=1)
def test_getnetworkinfo(self):
self.log.info("Test getnetworkinfo")
info = self.nodes[0].getnetworkinfo()
assert_equal(info['networkactive'], True)
assert_equal(info['connections'], 2)
assert_equal(info['connections_in'], 1)
assert_equal(info['connections_out'], 1)
with self.nodes[0].assert_debug_log(expected_msgs=['SetNetworkActive: false\n']):
self.nodes[0].setnetworkactive(state=False)
assert_equal(self.nodes[0].getnetworkinfo()['networkactive'], False)
# Wait a bit for all sockets to close
self.wait_until(lambda: self.nodes[0].getnetworkinfo()['connections'] == 0, timeout=3)
with self.nodes[0].assert_debug_log(expected_msgs=['SetNetworkActive: true\n']):
self.nodes[0].setnetworkactive(state=True)
# Connect nodes both ways.
self.connect_nodes(0, 1)
self.connect_nodes(1, 0)
info = self.nodes[0].getnetworkinfo()
assert_equal(info['networkactive'], True)
assert_equal(info['connections'], 2)
assert_equal(info['connections_in'], 1)
assert_equal(info['connections_out'], 1)
# check the `servicesnames` field
network_info = [node.getnetworkinfo() for node in self.nodes]
for info in network_info:
assert_net_servicesnames(int(info["localservices"], 0x10), info["localservicesnames"])
# Check dynamically generated networks list in getnetworkinfo help output.
assert "(ipv4, ipv6, onion, i2p, cjdns)" in self.nodes[0].help("getnetworkinfo")
def test_getaddednodeinfo(self):
self.log.info("Test getaddednodeinfo")
assert_equal(self.nodes[0].getaddednodeinfo(), [])
# add a node (node2) to node0
ip_port = "127.0.0.1:{}".format(p2p_port(2))
self.nodes[0].addnode(node=ip_port, command='add')
# check that the node has indeed been added
added_nodes = self.nodes[0].getaddednodeinfo(ip_port)
assert_equal(len(added_nodes), 1)
assert_equal(added_nodes[0]['addednode'], ip_port)
# check that node cannot be added again
assert_raises_rpc_error(-23, "Node already added", self.nodes[0].addnode, node=ip_port, command='add')
# check that node can be removed
self.nodes[0].addnode(node=ip_port, command='remove')
assert_equal(self.nodes[0].getaddednodeinfo(), [])
# check that trying to remove the node again returns an error
assert_raises_rpc_error(-24, "Node could not be removed", self.nodes[0].addnode, node=ip_port, command='remove')
# check that a non-existent node returns an error
assert_raises_rpc_error(-24, "Node has not been added", self.nodes[0].getaddednodeinfo, '1.1.1.1')
def test_service_flags(self):
self.log.info("Test service flags")
self.nodes[0].add_p2p_connection(P2PInterface(), services=(1 << 4) | (1 << 63))
assert_equal(['UNKNOWN[2^4]', 'UNKNOWN[2^63]'], self.nodes[0].getpeerinfo()[-1]['servicesnames'])
self.nodes[0].disconnect_p2ps()
def test_getnodeaddresses(self):
self.log.info("Test getnodeaddresses")
self.nodes[0].add_p2p_connection(P2PInterface())
# Add an IPv6 address to the address manager.
ipv6_addr = "1233:3432:2434:2343:3234:2345:6546:4534"
self.nodes[0].addpeeraddress(address=ipv6_addr, port=8333)
# Add 10,000 IPv4 addresses to the address manager. Due to the way bucket
# and bucket positions are calculated, some of these addresses will collide.
imported_addrs = []
for i in range(10000):
first_octet = i >> 8
second_octet = i % 256
a = f"{first_octet}.{second_octet}.1.1"
imported_addrs.append(a)
self.nodes[0].addpeeraddress(a, 8333)
# Fetch the addresses via the RPC and test the results.
assert_equal(len(self.nodes[0].getnodeaddresses()), 1) # default count is 1
assert_equal(len(self.nodes[0].getnodeaddresses(count=2)), 2)
assert_equal(len(self.nodes[0].getnodeaddresses(network="ipv4", count=8)), 8)
# Maximum possible addresses in AddrMan is 10000. The actual number will
# usually be less due to bucket and bucket position collisions.
node_addresses = self.nodes[0].getnodeaddresses(0, "ipv4")
assert_greater_than(len(node_addresses), 5000)
assert_greater_than(10000, len(node_addresses))
for a in node_addresses:
assert_greater_than(a["time"], 1527811200) # 1st June 2018
assert_equal(a["services"], P2P_SERVICES)
assert a["address"] in imported_addrs
assert_equal(a["port"], 8333)
assert_equal(a["network"], "ipv4")
# Test the IPv6 address.
res = self.nodes[0].getnodeaddresses(0, "ipv6")
assert_equal(len(res), 1)
assert_equal(res[0]["address"], ipv6_addr)
assert_equal(res[0]["network"], "ipv6")
assert_equal(res[0]["port"], 8333)
assert_equal(res[0]["services"], P2P_SERVICES)
# Test for the absence of onion, I2P and CJDNS addresses.
for network in ["onion", "i2p", "cjdns"]:
assert_equal(self.nodes[0].getnodeaddresses(0, network), [])
# Test invalid arguments.
assert_raises_rpc_error(-8, "Address count out of range", self.nodes[0].getnodeaddresses, -1)
assert_raises_rpc_error(-8, "Network not recognized: Foo", self.nodes[0].getnodeaddresses, 1, "Foo")
def test_addpeeraddress(self):
"""RPC addpeeraddress sets the source address equal to the destination address.
If an address with the same /16 as an existing new entry is passed, it will be
placed in the same new bucket and have a 1/64 chance of the bucket positions
colliding (depending on the value of nKey in the addrman), in which case the
new address won't be added. The probability of collision can be reduced to
1/2^16 = 1/65536 by using an address from a different /16. We avoid this here
by first testing adding a tried table entry before testing adding a new table one.
"""
self.log.info("Test addpeeraddress")
self.restart_node(1, ["-checkaddrman=1"])
node = self.nodes[1]
self.log.debug("Test that addpeerinfo is a hidden RPC")
# It is hidden from general help, but its detailed help may be called directly.
assert "addpeerinfo" not in node.help()
assert "addpeerinfo" in node.help("addpeerinfo")
self.log.debug("Test that adding an empty address fails")
assert_equal(node.addpeeraddress(address="", port=8333), {"success": False})
assert_equal(node.getnodeaddresses(count=0), [])
self.log.debug("Test that adding a valid address to the tried table succeeds")
assert_equal(node.addpeeraddress(address="1.2.3.4", tried=True, port=8333), {"success": True})
with node.assert_debug_log(expected_msgs=["Addrman checks started: new 0, tried 1, total 1"]):
addrs = node.getnodeaddresses(count=0) # getnodeaddresses re-runs the addrman checks
assert_equal(len(addrs), 1)
assert_equal(addrs[0]["address"], "1.2.3.4")
assert_equal(addrs[0]["port"], 8333)
self.log.debug("Test that adding an already-present tried address to the new and tried tables fails")
for value in [True, False]:
assert_equal(node.addpeeraddress(address="1.2.3.4", tried=value, port=8333), {"success": False})
assert_equal(len(node.getnodeaddresses(count=0)), 1)
self.log.debug("Test that adding a second address, this time to the new table, succeeds")
assert_equal(node.addpeeraddress(address="2.0.0.0", port=8333), {"success": True})
with node.assert_debug_log(expected_msgs=["Addrman checks started: new 1, tried 1, total 2"]):
addrs = node.getnodeaddresses(count=0) # getnodeaddresses re-runs the addrman checks
assert_equal(len(addrs), 2)
if __name__ == '__main__':
NetTest().main()