mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-15 06:12:37 -03:00
5743 lines
270 KiB
C++
5743 lines
270 KiB
C++
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
|
// Copyright (c) 2009-2021 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include <net_processing.h>
|
|
|
|
#include <addrman.h>
|
|
#include <banman.h>
|
|
#include <blockencodings.h>
|
|
#include <blockfilter.h>
|
|
#include <chainparams.h>
|
|
#include <consensus/amount.h>
|
|
#include <consensus/validation.h>
|
|
#include <deploymentstatus.h>
|
|
#include <hash.h>
|
|
#include <headerssync.h>
|
|
#include <index/blockfilterindex.h>
|
|
#include <merkleblock.h>
|
|
#include <netbase.h>
|
|
#include <netmessagemaker.h>
|
|
#include <node/blockstorage.h>
|
|
#include <policy/fees.h>
|
|
#include <policy/policy.h>
|
|
#include <policy/settings.h>
|
|
#include <primitives/block.h>
|
|
#include <primitives/transaction.h>
|
|
#include <random.h>
|
|
#include <reverse_iterator.h>
|
|
#include <scheduler.h>
|
|
#include <streams.h>
|
|
#include <sync.h>
|
|
#include <timedata.h>
|
|
#include <tinyformat.h>
|
|
#include <txmempool.h>
|
|
#include <txorphanage.h>
|
|
#include <txrequest.h>
|
|
#include <util/check.h> // For NDEBUG compile time check
|
|
#include <util/strencodings.h>
|
|
#include <util/system.h>
|
|
#include <util/trace.h>
|
|
#include <validation.h>
|
|
|
|
#include <algorithm>
|
|
#include <atomic>
|
|
#include <chrono>
|
|
#include <future>
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <typeinfo>
|
|
|
|
using node::ReadBlockFromDisk;
|
|
using node::ReadRawBlockFromDisk;
|
|
using node::fImporting;
|
|
using node::fPruneMode;
|
|
using node::fReindex;
|
|
|
|
/** How long to cache transactions in mapRelay for normal relay */
|
|
static constexpr auto RELAY_TX_CACHE_TIME = 15min;
|
|
/** How long a transaction has to be in the mempool before it can unconditionally be relayed (even when not in mapRelay). */
|
|
static constexpr auto UNCONDITIONAL_RELAY_DELAY = 2min;
|
|
/** Headers download timeout.
|
|
* Timeout = base + per_header * (expected number of headers) */
|
|
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE = 15min;
|
|
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1ms;
|
|
/** How long to wait for a peer to respond to a getheaders request */
|
|
static constexpr auto HEADERS_RESPONSE_TIME{2min};
|
|
/** Protect at least this many outbound peers from disconnection due to slow/
|
|
* behind headers chain.
|
|
*/
|
|
static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT = 4;
|
|
/** Timeout for (unprotected) outbound peers to sync to our chainwork */
|
|
static constexpr auto CHAIN_SYNC_TIMEOUT{20min};
|
|
/** How frequently to check for stale tips */
|
|
static constexpr auto STALE_CHECK_INTERVAL{10min};
|
|
/** How frequently to check for extra outbound peers and disconnect */
|
|
static constexpr auto EXTRA_PEER_CHECK_INTERVAL{45s};
|
|
/** Minimum time an outbound-peer-eviction candidate must be connected for, in order to evict */
|
|
static constexpr auto MINIMUM_CONNECT_TIME{30s};
|
|
/** SHA256("main address relay")[0:8] */
|
|
static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL;
|
|
/// Age after which a stale block will no longer be served if requested as
|
|
/// protection against fingerprinting. Set to one month, denominated in seconds.
|
|
static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60;
|
|
/// Age after which a block is considered historical for purposes of rate
|
|
/// limiting block relay. Set to one week, denominated in seconds.
|
|
static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60;
|
|
/** Time between pings automatically sent out for latency probing and keepalive */
|
|
static constexpr auto PING_INTERVAL{2min};
|
|
/** The maximum number of entries in a locator */
|
|
static const unsigned int MAX_LOCATOR_SZ = 101;
|
|
/** The maximum number of entries in an 'inv' protocol message */
|
|
static const unsigned int MAX_INV_SZ = 50000;
|
|
/** Maximum number of in-flight transaction requests from a peer. It is not a hard limit, but the threshold at which
|
|
* point the OVERLOADED_PEER_TX_DELAY kicks in. */
|
|
static constexpr int32_t MAX_PEER_TX_REQUEST_IN_FLIGHT = 100;
|
|
/** Maximum number of transactions to consider for requesting, per peer. It provides a reasonable DoS limit to
|
|
* per-peer memory usage spent on announcements, while covering peers continuously sending INVs at the maximum
|
|
* rate (by our own policy, see INVENTORY_BROADCAST_PER_SECOND) for several minutes, while not receiving
|
|
* the actual transaction (from any peer) in response to requests for them. */
|
|
static constexpr int32_t MAX_PEER_TX_ANNOUNCEMENTS = 5000;
|
|
/** How long to delay requesting transactions via txids, if we have wtxid-relaying peers */
|
|
static constexpr auto TXID_RELAY_DELAY{2s};
|
|
/** How long to delay requesting transactions from non-preferred peers */
|
|
static constexpr auto NONPREF_PEER_TX_DELAY{2s};
|
|
/** How long to delay requesting transactions from overloaded peers (see MAX_PEER_TX_REQUEST_IN_FLIGHT). */
|
|
static constexpr auto OVERLOADED_PEER_TX_DELAY{2s};
|
|
/** How long to wait before downloading a transaction from an additional peer */
|
|
static constexpr auto GETDATA_TX_INTERVAL{60s};
|
|
/** Limit to avoid sending big packets. Not used in processing incoming GETDATA for compatibility */
|
|
static const unsigned int MAX_GETDATA_SZ = 1000;
|
|
/** Number of blocks that can be requested at any given time from a single peer. */
|
|
static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16;
|
|
/** Time during which a peer must stall block download progress before being disconnected. */
|
|
static constexpr auto BLOCK_STALLING_TIMEOUT{2s};
|
|
/** Number of headers sent in one getheaders result. We rely on the assumption that if a peer sends
|
|
* less than this number, we reached its tip. Changing this value is a protocol upgrade. */
|
|
static const unsigned int MAX_HEADERS_RESULTS = 2000;
|
|
/** Maximum depth of blocks we're willing to serve as compact blocks to peers
|
|
* when requested. For older blocks, a regular BLOCK response will be sent. */
|
|
static const int MAX_CMPCTBLOCK_DEPTH = 5;
|
|
/** Maximum depth of blocks we're willing to respond to GETBLOCKTXN requests for. */
|
|
static const int MAX_BLOCKTXN_DEPTH = 10;
|
|
/** Size of the "block download window": how far ahead of our current height do we fetch?
|
|
* Larger windows tolerate larger download speed differences between peer, but increase the potential
|
|
* degree of disordering of blocks on disk (which make reindexing and pruning harder). We'll probably
|
|
* want to make this a per-peer adaptive value at some point. */
|
|
static const unsigned int BLOCK_DOWNLOAD_WINDOW = 1024;
|
|
/** Block download timeout base, expressed in multiples of the block interval (i.e. 10 min) */
|
|
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE = 1;
|
|
/** Additional block download timeout per parallel downloading peer (i.e. 5 min) */
|
|
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER = 0.5;
|
|
/** Maximum number of headers to announce when relaying blocks with headers message.*/
|
|
static const unsigned int MAX_BLOCKS_TO_ANNOUNCE = 8;
|
|
/** Maximum number of unconnecting headers announcements before DoS score */
|
|
static const int MAX_UNCONNECTING_HEADERS = 10;
|
|
/** Minimum blocks required to signal NODE_NETWORK_LIMITED */
|
|
static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288;
|
|
/** Average delay between local address broadcasts */
|
|
static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL{24h};
|
|
/** Average delay between peer address broadcasts */
|
|
static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL{30s};
|
|
/** Delay between rotating the peers we relay a particular address to */
|
|
static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL{24h};
|
|
/** Average delay between trickled inventory transmissions for inbound peers.
|
|
* Blocks and peers with NetPermissionFlags::NoBan permission bypass this. */
|
|
static constexpr auto INBOUND_INVENTORY_BROADCAST_INTERVAL{5s};
|
|
/** Average delay between trickled inventory transmissions for outbound peers.
|
|
* Use a smaller delay as there is less privacy concern for them.
|
|
* Blocks and peers with NetPermissionFlags::NoBan permission bypass this. */
|
|
static constexpr auto OUTBOUND_INVENTORY_BROADCAST_INTERVAL{2s};
|
|
/** Maximum rate of inventory items to send per second.
|
|
* Limits the impact of low-fee transaction floods. */
|
|
static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND = 7;
|
|
/** Maximum number of inventory items to send per transmission. */
|
|
static constexpr unsigned int INVENTORY_BROADCAST_MAX = INVENTORY_BROADCAST_PER_SECOND * count_seconds(INBOUND_INVENTORY_BROADCAST_INTERVAL);
|
|
/** The number of most recently announced transactions a peer can request. */
|
|
static constexpr unsigned int INVENTORY_MAX_RECENT_RELAY = 3500;
|
|
/** Verify that INVENTORY_MAX_RECENT_RELAY is enough to cache everything typically
|
|
* relayed before unconditional relay from the mempool kicks in. This is only a
|
|
* lower bound, and it should be larger to account for higher inv rate to outbound
|
|
* peers, and random variations in the broadcast mechanism. */
|
|
static_assert(INVENTORY_MAX_RECENT_RELAY >= INVENTORY_BROADCAST_PER_SECOND * UNCONDITIONAL_RELAY_DELAY / std::chrono::seconds{1}, "INVENTORY_RELAY_MAX too low");
|
|
/** Average delay between feefilter broadcasts in seconds. */
|
|
static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL{10min};
|
|
/** Maximum feefilter broadcast delay after significant change. */
|
|
static constexpr auto MAX_FEEFILTER_CHANGE_DELAY{5min};
|
|
/** Maximum number of compact filters that may be requested with one getcfilters. See BIP 157. */
|
|
static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000;
|
|
/** Maximum number of cf hashes that may be requested with one getcfheaders. See BIP 157. */
|
|
static constexpr uint32_t MAX_GETCFHEADERS_SIZE = 2000;
|
|
/** the maximum percentage of addresses from our addrman to return in response to a getaddr message. */
|
|
static constexpr size_t MAX_PCT_ADDR_TO_SEND = 23;
|
|
/** The maximum number of address records permitted in an ADDR message. */
|
|
static constexpr size_t MAX_ADDR_TO_SEND{1000};
|
|
/** The maximum rate of address records we're willing to process on average. Can be bypassed using
|
|
* the NetPermissionFlags::Addr permission. */
|
|
static constexpr double MAX_ADDR_RATE_PER_SECOND{0.1};
|
|
/** The soft limit of the address processing token bucket (the regular MAX_ADDR_RATE_PER_SECOND
|
|
* based increments won't go above this, but the MAX_ADDR_TO_SEND increment following GETADDR
|
|
* is exempt from this limit). */
|
|
static constexpr size_t MAX_ADDR_PROCESSING_TOKEN_BUCKET{MAX_ADDR_TO_SEND};
|
|
/** The compactblocks version we support. See BIP 152. */
|
|
static constexpr uint64_t CMPCTBLOCKS_VERSION{2};
|
|
|
|
// Internal stuff
|
|
namespace {
|
|
/** Blocks that are in flight, and that are in the queue to be downloaded. */
|
|
struct QueuedBlock {
|
|
/** BlockIndex. We must have this since we only request blocks when we've already validated the header. */
|
|
const CBlockIndex* pindex;
|
|
/** Optional, used for CMPCTBLOCK downloads */
|
|
std::unique_ptr<PartiallyDownloadedBlock> partialBlock;
|
|
};
|
|
|
|
/**
|
|
* Data structure for an individual peer. This struct is not protected by
|
|
* cs_main since it does not contain validation-critical data.
|
|
*
|
|
* Memory is owned by shared pointers and this object is destructed when
|
|
* the refcount drops to zero.
|
|
*
|
|
* Mutexes inside this struct must not be held when locking m_peer_mutex.
|
|
*
|
|
* TODO: move most members from CNodeState to this structure.
|
|
* TODO: move remaining application-layer data members from CNode to this structure.
|
|
*/
|
|
struct Peer {
|
|
/** Same id as the CNode object for this peer */
|
|
const NodeId m_id{0};
|
|
|
|
/** Services we offered to this peer.
|
|
*
|
|
* This is supplied by CConnman during peer initialization. It's const
|
|
* because there is no protocol defined for renegotiating services
|
|
* initially offered to a peer. The set of local services we offer should
|
|
* not change after initialization.
|
|
*
|
|
* An interesting example of this is NODE_NETWORK and initial block
|
|
* download: a node which starts up from scratch doesn't have any blocks
|
|
* to serve, but still advertises NODE_NETWORK because it will eventually
|
|
* fulfill this role after IBD completes. P2P code is written in such a
|
|
* way that it can gracefully handle peers who don't make good on their
|
|
* service advertisements. */
|
|
const ServiceFlags m_our_services;
|
|
/** Services this peer offered to us. */
|
|
std::atomic<ServiceFlags> m_their_services{NODE_NONE};
|
|
|
|
/** Protects misbehavior data members */
|
|
Mutex m_misbehavior_mutex;
|
|
/** Accumulated misbehavior score for this peer */
|
|
int m_misbehavior_score GUARDED_BY(m_misbehavior_mutex){0};
|
|
/** Whether this peer should be disconnected and marked as discouraged (unless it has NetPermissionFlags::NoBan permission). */
|
|
bool m_should_discourage GUARDED_BY(m_misbehavior_mutex){false};
|
|
|
|
/** Protects block inventory data members */
|
|
Mutex m_block_inv_mutex;
|
|
/** List of blocks that we'll announce via an `inv` message.
|
|
* There is no final sorting before sending, as they are always sent
|
|
* immediately and in the order requested. */
|
|
std::vector<uint256> m_blocks_for_inv_relay GUARDED_BY(m_block_inv_mutex);
|
|
/** Unfiltered list of blocks that we'd like to announce via a `headers`
|
|
* message. If we can't announce via a `headers` message, we'll fall back to
|
|
* announcing via `inv`. */
|
|
std::vector<uint256> m_blocks_for_headers_relay GUARDED_BY(m_block_inv_mutex);
|
|
/** The final block hash that we sent in an `inv` message to this peer.
|
|
* When the peer requests this block, we send an `inv` message to trigger
|
|
* the peer to request the next sequence of block hashes.
|
|
* Most peers use headers-first syncing, which doesn't use this mechanism */
|
|
uint256 m_continuation_block GUARDED_BY(m_block_inv_mutex) {};
|
|
|
|
/** This peer's reported block height when we connected */
|
|
std::atomic<int> m_starting_height{-1};
|
|
|
|
/** The pong reply we're expecting, or 0 if no pong expected. */
|
|
std::atomic<uint64_t> m_ping_nonce_sent{0};
|
|
/** When the last ping was sent, or 0 if no ping was ever sent */
|
|
std::atomic<std::chrono::microseconds> m_ping_start{0us};
|
|
/** Whether a ping has been requested by the user */
|
|
std::atomic<bool> m_ping_queued{false};
|
|
|
|
/** Whether this peer relays txs via wtxid */
|
|
std::atomic<bool> m_wtxid_relay{false};
|
|
/** The feerate in the most recent BIP133 `feefilter` message sent to the peer.
|
|
* It is *not* a p2p protocol violation for the peer to send us
|
|
* transactions with a lower fee rate than this. See BIP133. */
|
|
CAmount m_fee_filter_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
|
|
/** Timestamp after which we will send the next BIP133 `feefilter` message
|
|
* to the peer. */
|
|
std::chrono::microseconds m_next_send_feefilter GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
|
|
|
|
struct TxRelay {
|
|
mutable RecursiveMutex m_bloom_filter_mutex;
|
|
/** Whether the peer wishes to receive transaction announcements.
|
|
*
|
|
* This is initially set based on the fRelay flag in the received
|
|
* `version` message. If initially set to false, it can only be flipped
|
|
* to true if we have offered the peer NODE_BLOOM services and it sends
|
|
* us a `filterload` or `filterclear` message. See BIP37. */
|
|
bool m_relay_txs GUARDED_BY(m_bloom_filter_mutex){false};
|
|
/** A bloom filter for which transactions to announce to the peer. See BIP37. */
|
|
std::unique_ptr<CBloomFilter> m_bloom_filter PT_GUARDED_BY(m_bloom_filter_mutex) GUARDED_BY(m_bloom_filter_mutex){nullptr};
|
|
|
|
mutable RecursiveMutex m_tx_inventory_mutex;
|
|
/** A filter of all the txids and wtxids that the peer has announced to
|
|
* us or we have announced to the peer. We use this to avoid announcing
|
|
* the same txid/wtxid to a peer that already has the transaction. */
|
|
CRollingBloomFilter m_tx_inventory_known_filter GUARDED_BY(m_tx_inventory_mutex){50000, 0.000001};
|
|
/** Set of transaction ids we still have to announce (txid for
|
|
* non-wtxid-relay peers, wtxid for wtxid-relay peers). We use the
|
|
* mempool to sort transactions in dependency order before relay, so
|
|
* this does not have to be sorted. */
|
|
std::set<uint256> m_tx_inventory_to_send GUARDED_BY(m_tx_inventory_mutex);
|
|
/** Whether the peer has requested us to send our complete mempool. Only
|
|
* permitted if the peer has NetPermissionFlags::Mempool. See BIP35. */
|
|
bool m_send_mempool GUARDED_BY(m_tx_inventory_mutex){false};
|
|
/** The last time a BIP35 `mempool` request was serviced. */
|
|
std::atomic<std::chrono::seconds> m_last_mempool_req{0s};
|
|
/** The next time after which we will send an `inv` message containing
|
|
* transaction announcements to this peer. */
|
|
std::chrono::microseconds m_next_inv_send_time GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
|
|
|
|
/** Minimum fee rate with which to filter transaction announcements to this node. See BIP133. */
|
|
std::atomic<CAmount> m_fee_filter_received{0};
|
|
};
|
|
|
|
/* Initializes a TxRelay struct for this peer. Can be called at most once for a peer. */
|
|
TxRelay* SetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
|
|
{
|
|
LOCK(m_tx_relay_mutex);
|
|
Assume(!m_tx_relay);
|
|
m_tx_relay = std::make_unique<Peer::TxRelay>();
|
|
return m_tx_relay.get();
|
|
};
|
|
|
|
TxRelay* GetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
|
|
{
|
|
return WITH_LOCK(m_tx_relay_mutex, return m_tx_relay.get());
|
|
};
|
|
|
|
/** A vector of addresses to send to the peer, limited to MAX_ADDR_TO_SEND. */
|
|
std::vector<CAddress> m_addrs_to_send GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
|
|
/** Probabilistic filter to track recent addr messages relayed with this
|
|
* peer. Used to avoid relaying redundant addresses to this peer.
|
|
*
|
|
* We initialize this filter for outbound peers (other than
|
|
* block-relay-only connections) or when an inbound peer sends us an
|
|
* address related message (ADDR, ADDRV2, GETADDR).
|
|
*
|
|
* Presence of this filter must correlate with m_addr_relay_enabled.
|
|
**/
|
|
std::unique_ptr<CRollingBloomFilter> m_addr_known GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
|
|
/** Whether we are participating in address relay with this connection.
|
|
*
|
|
* We set this bool to true for outbound peers (other than
|
|
* block-relay-only connections), or when an inbound peer sends us an
|
|
* address related message (ADDR, ADDRV2, GETADDR).
|
|
*
|
|
* We use this bool to decide whether a peer is eligible for gossiping
|
|
* addr messages. This avoids relaying to peers that are unlikely to
|
|
* forward them, effectively blackholing self announcements. Reasons
|
|
* peers might support addr relay on the link include that they connected
|
|
* to us as a block-relay-only peer or they are a light client.
|
|
*
|
|
* This field must correlate with whether m_addr_known has been
|
|
* initialized.*/
|
|
std::atomic_bool m_addr_relay_enabled{false};
|
|
/** Whether a getaddr request to this peer is outstanding. */
|
|
bool m_getaddr_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
|
|
/** Guards address sending timers. */
|
|
mutable Mutex m_addr_send_times_mutex;
|
|
/** Time point to send the next ADDR message to this peer. */
|
|
std::chrono::microseconds m_next_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
|
|
/** Time point to possibly re-announce our local address to this peer. */
|
|
std::chrono::microseconds m_next_local_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
|
|
/** Whether the peer has signaled support for receiving ADDRv2 (BIP155)
|
|
* messages, indicating a preference to receive ADDRv2 instead of ADDR ones. */
|
|
std::atomic_bool m_wants_addrv2{false};
|
|
/** Whether this peer has already sent us a getaddr message. */
|
|
bool m_getaddr_recvd GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
|
|
/** Number of addresses that can be processed from this peer. Start at 1 to
|
|
* permit self-announcement. */
|
|
double m_addr_token_bucket GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1.0};
|
|
/** When m_addr_token_bucket was last updated */
|
|
std::chrono::microseconds m_addr_token_timestamp GUARDED_BY(NetEventsInterface::g_msgproc_mutex){GetTime<std::chrono::microseconds>()};
|
|
/** Total number of addresses that were dropped due to rate limiting. */
|
|
std::atomic<uint64_t> m_addr_rate_limited{0};
|
|
/** Total number of addresses that were processed (excludes rate-limited ones). */
|
|
std::atomic<uint64_t> m_addr_processed{0};
|
|
|
|
/** Set of txids to reconsider once their parent transactions have been accepted **/
|
|
std::set<uint256> m_orphan_work_set GUARDED_BY(g_cs_orphans);
|
|
|
|
/** Whether we've sent this peer a getheaders in response to an inv prior to initial-headers-sync completing */
|
|
bool m_inv_triggered_getheaders_before_sync GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
|
|
|
|
/** Protects m_getdata_requests **/
|
|
Mutex m_getdata_requests_mutex;
|
|
/** Work queue of items requested by this peer **/
|
|
std::deque<CInv> m_getdata_requests GUARDED_BY(m_getdata_requests_mutex);
|
|
|
|
/** Time of the last getheaders message to this peer */
|
|
NodeClock::time_point m_last_getheaders_timestamp GUARDED_BY(NetEventsInterface::g_msgproc_mutex){};
|
|
|
|
/** Protects m_headers_sync **/
|
|
Mutex m_headers_sync_mutex;
|
|
/** Headers-sync state for this peer (eg for initial sync, or syncing large
|
|
* reorgs) **/
|
|
std::unique_ptr<HeadersSyncState> m_headers_sync PT_GUARDED_BY(m_headers_sync_mutex) GUARDED_BY(m_headers_sync_mutex) {};
|
|
|
|
/** Whether we've sent our peer a sendheaders message. **/
|
|
std::atomic<bool> m_sent_sendheaders{false};
|
|
|
|
explicit Peer(NodeId id, ServiceFlags our_services)
|
|
: m_id{id}
|
|
, m_our_services{our_services}
|
|
{}
|
|
|
|
private:
|
|
Mutex m_tx_relay_mutex;
|
|
|
|
/** Transaction relay data. Will be a nullptr if we're not relaying
|
|
* transactions with this peer (e.g. if it's a block-relay-only peer or
|
|
* the peer has sent us fRelay=false with bloom filters disabled). */
|
|
std::unique_ptr<TxRelay> m_tx_relay GUARDED_BY(m_tx_relay_mutex);
|
|
};
|
|
|
|
using PeerRef = std::shared_ptr<Peer>;
|
|
|
|
/**
|
|
* Maintain validation-specific state about nodes, protected by cs_main, instead
|
|
* by CNode's own locks. This simplifies asynchronous operation, where
|
|
* processing of incoming data is done after the ProcessMessage call returns,
|
|
* and we're no longer holding the node's locks.
|
|
*/
|
|
struct CNodeState {
|
|
//! The best known block we know this peer has announced.
|
|
const CBlockIndex* pindexBestKnownBlock{nullptr};
|
|
//! The hash of the last unknown block this peer has announced.
|
|
uint256 hashLastUnknownBlock{};
|
|
//! The last full block we both have.
|
|
const CBlockIndex* pindexLastCommonBlock{nullptr};
|
|
//! The best header we have sent our peer.
|
|
const CBlockIndex* pindexBestHeaderSent{nullptr};
|
|
//! Length of current-streak of unconnecting headers announcements
|
|
int nUnconnectingHeaders{0};
|
|
//! Whether we've started headers synchronization with this peer.
|
|
bool fSyncStarted{false};
|
|
//! When to potentially disconnect peer for stalling headers download
|
|
std::chrono::microseconds m_headers_sync_timeout{0us};
|
|
//! Since when we're stalling block download progress (in microseconds), or 0.
|
|
std::chrono::microseconds m_stalling_since{0us};
|
|
std::list<QueuedBlock> vBlocksInFlight;
|
|
//! When the first entry in vBlocksInFlight started downloading. Don't care when vBlocksInFlight is empty.
|
|
std::chrono::microseconds m_downloading_since{0us};
|
|
int nBlocksInFlight{0};
|
|
//! Whether we consider this a preferred download peer.
|
|
bool fPreferredDownload{false};
|
|
//! Whether this peer wants invs or headers (when possible) for block announcements.
|
|
bool fPreferHeaders{false};
|
|
/** Whether this peer wants invs or cmpctblocks (when possible) for block announcements. */
|
|
bool m_requested_hb_cmpctblocks{false};
|
|
/** Whether this peer will send us cmpctblocks if we request them. */
|
|
bool m_provides_cmpctblocks{false};
|
|
|
|
/** State used to enforce CHAIN_SYNC_TIMEOUT and EXTRA_PEER_CHECK_INTERVAL logic.
|
|
*
|
|
* Both are only in effect for outbound, non-manual, non-protected connections.
|
|
* Any peer protected (m_protect = true) is not chosen for eviction. A peer is
|
|
* marked as protected if all of these are true:
|
|
* - its connection type is IsBlockOnlyConn() == false
|
|
* - it gave us a valid connecting header
|
|
* - we haven't reached MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT yet
|
|
* - its chain tip has at least as much work as ours
|
|
*
|
|
* CHAIN_SYNC_TIMEOUT: if a peer's best known block has less work than our tip,
|
|
* set a timeout CHAIN_SYNC_TIMEOUT in the future:
|
|
* - If at timeout their best known block now has more work than our tip
|
|
* when the timeout was set, then either reset the timeout or clear it
|
|
* (after comparing against our current tip's work)
|
|
* - If at timeout their best known block still has less work than our
|
|
* tip did when the timeout was set, then send a getheaders message,
|
|
* and set a shorter timeout, HEADERS_RESPONSE_TIME seconds in future.
|
|
* If their best known block is still behind when that new timeout is
|
|
* reached, disconnect.
|
|
*
|
|
* EXTRA_PEER_CHECK_INTERVAL: after each interval, if we have too many outbound peers,
|
|
* drop the outbound one that least recently announced us a new block.
|
|
*/
|
|
struct ChainSyncTimeoutState {
|
|
//! A timeout used for checking whether our peer has sufficiently synced
|
|
std::chrono::seconds m_timeout{0s};
|
|
//! A header with the work we require on our peer's chain
|
|
const CBlockIndex* m_work_header{nullptr};
|
|
//! After timeout is reached, set to true after sending getheaders
|
|
bool m_sent_getheaders{false};
|
|
//! Whether this peer is protected from disconnection due to a bad/slow chain
|
|
bool m_protect{false};
|
|
};
|
|
|
|
ChainSyncTimeoutState m_chain_sync;
|
|
|
|
//! Time of last new block announcement
|
|
int64_t m_last_block_announcement{0};
|
|
|
|
//! Whether this peer is an inbound connection
|
|
const bool m_is_inbound;
|
|
|
|
//! A rolling bloom filter of all announced tx CInvs to this peer.
|
|
CRollingBloomFilter m_recently_announced_invs = CRollingBloomFilter{INVENTORY_MAX_RECENT_RELAY, 0.000001};
|
|
|
|
CNodeState(bool is_inbound) : m_is_inbound(is_inbound) {}
|
|
};
|
|
|
|
class PeerManagerImpl final : public PeerManager
|
|
{
|
|
public:
|
|
PeerManagerImpl(CConnman& connman, AddrMan& addrman,
|
|
BanMan* banman, ChainstateManager& chainman,
|
|
CTxMemPool& pool, bool ignore_incoming_txs);
|
|
|
|
/** Overridden from CValidationInterface. */
|
|
void BlockConnected(const std::shared_ptr<const CBlock>& pblock, const CBlockIndex* pindexConnected) override
|
|
EXCLUSIVE_LOCKS_REQUIRED(!m_recent_confirmed_transactions_mutex);
|
|
void BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex) override
|
|
EXCLUSIVE_LOCKS_REQUIRED(!m_recent_confirmed_transactions_mutex);
|
|
void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) override
|
|
EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
|
|
void BlockChecked(const CBlock& block, const BlockValidationState& state) override
|
|
EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
|
|
void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock) override
|
|
EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex);
|
|
|
|
/** Implement NetEventsInterface */
|
|
void InitializeNode(CNode& node, ServiceFlags our_services) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
|
|
void FinalizeNode(const CNode& node) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex);
|
|
bool ProcessMessages(CNode* pfrom, std::atomic<bool>& interrupt) override
|
|
EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_recent_confirmed_transactions_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
|
|
bool SendMessages(CNode* pto) override
|
|
EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_recent_confirmed_transactions_mutex, !m_most_recent_block_mutex, g_msgproc_mutex);
|
|
|
|
/** Implement PeerManager */
|
|
void StartScheduledTasks(CScheduler& scheduler) override;
|
|
void CheckForStaleTipAndEvictPeers() override;
|
|
std::optional<std::string> FetchBlock(NodeId peer_id, const CBlockIndex& block_index) override
|
|
EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
|
|
bool GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
|
|
bool IgnoresIncomingTxs() override { return m_ignore_incoming_txs; }
|
|
void SendPings() override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
|
|
void RelayTransaction(const uint256& txid, const uint256& wtxid) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
|
|
void SetBestHeight(int height) override { m_best_height = height; };
|
|
void UnitTestMisbehaving(NodeId peer_id, int howmuch) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex) { Misbehaving(*Assert(GetPeerRef(peer_id)), howmuch, ""); };
|
|
void ProcessMessage(CNode& pfrom, const std::string& msg_type, CDataStream& vRecv,
|
|
const std::chrono::microseconds time_received, const std::atomic<bool>& interruptMsgProc) override
|
|
EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_recent_confirmed_transactions_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
|
|
void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) override;
|
|
|
|
private:
|
|
/** Consider evicting an outbound peer based on the amount of time they've been behind our tip */
|
|
void ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds) EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_msgproc_mutex);
|
|
|
|
/** If we have extra outbound peers, try to disconnect the one with the oldest block announcement */
|
|
void EvictExtraOutboundPeers(std::chrono::seconds now) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
|
|
|
|
/** Retrieve unbroadcast transactions from the mempool and reattempt sending to peers */
|
|
void ReattemptInitialBroadcast(CScheduler& scheduler) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
|
|
|
|
/** Get a shared pointer to the Peer object.
|
|
* May return an empty shared_ptr if the Peer object can't be found. */
|
|
PeerRef GetPeerRef(NodeId id) const EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
|
|
|
|
/** Get a shared pointer to the Peer object and remove it from m_peer_map.
|
|
* May return an empty shared_ptr if the Peer object can't be found. */
|
|
PeerRef RemovePeer(NodeId id) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
|
|
|
|
/**
|
|
* Increment peer's misbehavior score. If the new value >= DISCOURAGEMENT_THRESHOLD, mark the node
|
|
* to be discouraged, meaning the peer might be disconnected and added to the discouragement filter.
|
|
*/
|
|
void Misbehaving(Peer& peer, int howmuch, const std::string& message);
|
|
|
|
/**
|
|
* Potentially mark a node discouraged based on the contents of a BlockValidationState object
|
|
*
|
|
* @param[in] via_compact_block this bool is passed in because net_processing should
|
|
* punish peers differently depending on whether the data was provided in a compact
|
|
* block message or not. If the compact block had a valid header, but contained invalid
|
|
* txs, the peer should not be punished. See BIP 152.
|
|
*
|
|
* @return Returns true if the peer was punished (probably disconnected)
|
|
*/
|
|
bool MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
|
|
bool via_compact_block, const std::string& message = "")
|
|
EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
|
|
|
|
/**
|
|
* Potentially disconnect and discourage a node based on the contents of a TxValidationState object
|
|
*
|
|
* @return Returns true if the peer was punished (probably disconnected)
|
|
*/
|
|
bool MaybePunishNodeForTx(NodeId nodeid, const TxValidationState& state, const std::string& message = "")
|
|
EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
|
|
|
|
/** Maybe disconnect a peer and discourage future connections from its address.
|
|
*
|
|
* @param[in] pnode The node to check.
|
|
* @param[in] peer The peer object to check.
|
|
* @return True if the peer was marked for disconnection in this function
|
|
*/
|
|
bool MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer);
|
|
|
|
void ProcessOrphanTx(std::set<uint256>& orphan_work_set) EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_cs_orphans)
|
|
EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
|
|
/** Process a single headers message from a peer.
|
|
*
|
|
* @param[in] pfrom CNode of the peer
|
|
* @param[in] peer The peer sending us the headers
|
|
* @param[in] headers The headers received. Note that this may be modified within ProcessHeadersMessage.
|
|
* @param[in] via_compact_block Whether this header came in via compact block handling.
|
|
*/
|
|
void ProcessHeadersMessage(CNode& pfrom, Peer& peer,
|
|
std::vector<CBlockHeader>&& headers,
|
|
bool via_compact_block)
|
|
EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
|
|
/** Various helpers for headers processing, invoked by ProcessHeadersMessage() */
|
|
/** Return true if headers are continuous and have valid proof-of-work (DoS points assigned on failure) */
|
|
bool CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer);
|
|
/** Calculate an anti-DoS work threshold for headers chains */
|
|
arith_uint256 GetAntiDoSWorkThreshold();
|
|
/** Deal with state tracking and headers sync for peers that send the
|
|
* occasional non-connecting header (this can happen due to BIP 130 headers
|
|
* announcements for blocks interacting with the 2hr (MAX_FUTURE_BLOCK_TIME) rule). */
|
|
void HandleFewUnconnectingHeaders(CNode& pfrom, Peer& peer, const std::vector<CBlockHeader>& headers) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
|
|
/** Return true if the headers connect to each other, false otherwise */
|
|
bool CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const;
|
|
/** Try to continue a low-work headers sync that has already begun.
|
|
* Assumes the caller has already verified the headers connect, and has
|
|
* checked that each header satisfies the proof-of-work target included in
|
|
* the header.
|
|
* @param[in] peer The peer we're syncing with.
|
|
* @param[in] pfrom CNode of the peer
|
|
* @param[in,out] headers The headers to be processed.
|
|
* @return True if the passed in headers were successfully processed
|
|
* as the continuation of a low-work headers sync in progress;
|
|
* false otherwise.
|
|
* If false, the passed in headers will be returned back to
|
|
* the caller.
|
|
* If true, the returned headers may be empty, indicating
|
|
* there is no more work for the caller to do; or the headers
|
|
* may be populated with entries that have passed anti-DoS
|
|
* checks (and therefore may be validated for block index
|
|
* acceptance by the caller).
|
|
*/
|
|
bool IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom,
|
|
std::vector<CBlockHeader>& headers)
|
|
EXCLUSIVE_LOCKS_REQUIRED(peer.m_headers_sync_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
|
|
/** Check work on a headers chain to be processed, and if insufficient,
|
|
* initiate our anti-DoS headers sync mechanism.
|
|
*
|
|
* @param[in] peer The peer whose headers we're processing.
|
|
* @param[in] pfrom CNode of the peer
|
|
* @param[in] chain_start_header Where these headers connect in our index.
|
|
* @param[in,out] headers The headers to be processed.
|
|
*
|
|
* @return True if chain was low work and a headers sync was
|
|
* initiated (and headers will be empty after calling); false
|
|
* otherwise.
|
|
*/
|
|
bool TryLowWorkHeadersSync(Peer& peer, CNode& pfrom,
|
|
const CBlockIndex* chain_start_header,
|
|
std::vector<CBlockHeader>& headers)
|
|
EXCLUSIVE_LOCKS_REQUIRED(!peer.m_headers_sync_mutex, !m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
|
|
|
|
/** Return true if the given header is an ancestor of
|
|
* m_chainman.m_best_header or our current tip */
|
|
bool IsAncestorOfBestHeaderOrTip(const CBlockIndex* header) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
|
|
|
|
/** Request further headers from this peer with a given locator.
|
|
* We don't issue a getheaders message if we have a recent one outstanding.
|
|
* This returns true if a getheaders is actually sent, and false otherwise.
|
|
*/
|
|
bool MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
|
|
/** Potentially fetch blocks from this peer upon receipt of a new headers tip */
|
|
void HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex* pindexLast);
|
|
/** Update peer state based on received headers message */
|
|
void UpdatePeerStateForReceivedHeaders(CNode& pfrom, const CBlockIndex *pindexLast, bool received_new_header, bool may_have_more_headers);
|
|
|
|
void SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req);
|
|
|
|
/** Register with TxRequestTracker that an INV has been received from a
|
|
* peer. The announcement parameters are decided in PeerManager and then
|
|
* passed to TxRequestTracker. */
|
|
void AddTxAnnouncement(const CNode& node, const GenTxid& gtxid, std::chrono::microseconds current_time)
|
|
EXCLUSIVE_LOCKS_REQUIRED(::cs_main);
|
|
|
|
/** Send a version message to a peer */
|
|
void PushNodeVersion(CNode& pnode, const Peer& peer);
|
|
|
|
/** Send a ping message every PING_INTERVAL or if requested via RPC. May
|
|
* mark the peer to be disconnected if a ping has timed out.
|
|
* We use mockable time for ping timeouts, so setmocktime may cause pings
|
|
* to time out. */
|
|
void MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now);
|
|
|
|
/** Send `addr` messages on a regular schedule. */
|
|
void MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
|
|
|
|
/** Send a single `sendheaders` message, after we have completed headers sync with a peer. */
|
|
void MaybeSendSendHeaders(CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
|
|
|
|
/** Relay (gossip) an address to a few randomly chosen nodes.
|
|
*
|
|
* @param[in] originator The id of the peer that sent us the address. We don't want to relay it back.
|
|
* @param[in] addr Address to relay.
|
|
* @param[in] fReachable Whether the address' network is reachable. We relay unreachable
|
|
* addresses less.
|
|
*/
|
|
void RelayAddress(NodeId originator, const CAddress& addr, bool fReachable) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex);
|
|
|
|
/** Send `feefilter` message. */
|
|
void MaybeSendFeefilter(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
|
|
|
|
const CChainParams& m_chainparams;
|
|
CConnman& m_connman;
|
|
AddrMan& m_addrman;
|
|
/** Pointer to this node's banman. May be nullptr - check existence before dereferencing. */
|
|
BanMan* const m_banman;
|
|
ChainstateManager& m_chainman;
|
|
CTxMemPool& m_mempool;
|
|
TxRequestTracker m_txrequest GUARDED_BY(::cs_main);
|
|
|
|
/** The height of the best chain */
|
|
std::atomic<int> m_best_height{-1};
|
|
|
|
/** Next time to check for stale tip */
|
|
std::chrono::seconds m_stale_tip_check_time GUARDED_BY(cs_main){0s};
|
|
|
|
/** Whether this node is running in -blocksonly mode */
|
|
const bool m_ignore_incoming_txs;
|
|
|
|
bool RejectIncomingTxs(const CNode& peer) const;
|
|
|
|
/** Whether we've completed initial sync yet, for determining when to turn
|
|
* on extra block-relay-only peers. */
|
|
bool m_initial_sync_finished GUARDED_BY(cs_main){false};
|
|
|
|
/** Protects m_peer_map. This mutex must not be locked while holding a lock
|
|
* on any of the mutexes inside a Peer object. */
|
|
mutable Mutex m_peer_mutex;
|
|
/**
|
|
* Map of all Peer objects, keyed by peer id. This map is protected
|
|
* by the m_peer_mutex. Once a shared pointer reference is
|
|
* taken, the lock may be released. Individual fields are protected by
|
|
* their own locks.
|
|
*/
|
|
std::map<NodeId, PeerRef> m_peer_map GUARDED_BY(m_peer_mutex);
|
|
|
|
/** Map maintaining per-node state. */
|
|
std::map<NodeId, CNodeState> m_node_states GUARDED_BY(cs_main);
|
|
|
|
/** Get a pointer to a const CNodeState, used when not mutating the CNodeState object. */
|
|
const CNodeState* State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main);
|
|
/** Get a pointer to a mutable CNodeState. */
|
|
CNodeState* State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
|
|
|
|
uint32_t GetFetchFlags(const Peer& peer) const;
|
|
|
|
std::atomic<std::chrono::microseconds> m_next_inv_to_inbounds{0us};
|
|
|
|
/** Number of nodes with fSyncStarted. */
|
|
int nSyncStarted GUARDED_BY(cs_main) = 0;
|
|
|
|
/** Hash of the last block we received via INV */
|
|
uint256 m_last_block_inv_triggering_headers_sync GUARDED_BY(g_msgproc_mutex){};
|
|
|
|
/**
|
|
* Sources of received blocks, saved to be able punish them when processing
|
|
* happens afterwards.
|
|
* Set mapBlockSource[hash].second to false if the node should not be
|
|
* punished if the block is invalid.
|
|
*/
|
|
std::map<uint256, std::pair<NodeId, bool>> mapBlockSource GUARDED_BY(cs_main);
|
|
|
|
/** Number of peers with wtxid relay. */
|
|
std::atomic<int> m_wtxid_relay_peers{0};
|
|
|
|
/** Number of outbound peers with m_chain_sync.m_protect. */
|
|
int m_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0;
|
|
|
|
/** Number of preferable block download peers. */
|
|
int m_num_preferred_download_peers GUARDED_BY(cs_main){0};
|
|
|
|
bool AlreadyHaveTx(const GenTxid& gtxid)
|
|
EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_recent_confirmed_transactions_mutex);
|
|
|
|
/**
|
|
* Filter for transactions that were recently rejected by the mempool.
|
|
* These are not rerequested until the chain tip changes, at which point
|
|
* the entire filter is reset.
|
|
*
|
|
* Without this filter we'd be re-requesting txs from each of our peers,
|
|
* increasing bandwidth consumption considerably. For instance, with 100
|
|
* peers, half of which relay a tx we don't accept, that might be a 50x
|
|
* bandwidth increase. A flooding attacker attempting to roll-over the
|
|
* filter using minimum-sized, 60byte, transactions might manage to send
|
|
* 1000/sec if we have fast peers, so we pick 120,000 to give our peers a
|
|
* two minute window to send invs to us.
|
|
*
|
|
* Decreasing the false positive rate is fairly cheap, so we pick one in a
|
|
* million to make it highly unlikely for users to have issues with this
|
|
* filter.
|
|
*
|
|
* We typically only add wtxids to this filter. For non-segwit
|
|
* transactions, the txid == wtxid, so this only prevents us from
|
|
* re-downloading non-segwit transactions when communicating with
|
|
* non-wtxidrelay peers -- which is important for avoiding malleation
|
|
* attacks that could otherwise interfere with transaction relay from
|
|
* non-wtxidrelay peers. For communicating with wtxidrelay peers, having
|
|
* the reject filter store wtxids is exactly what we want to avoid
|
|
* redownload of a rejected transaction.
|
|
*
|
|
* In cases where we can tell that a segwit transaction will fail
|
|
* validation no matter the witness, we may add the txid of such
|
|
* transaction to the filter as well. This can be helpful when
|
|
* communicating with txid-relay peers or if we were to otherwise fetch a
|
|
* transaction via txid (eg in our orphan handling).
|
|
*
|
|
* Memory used: 1.3 MB
|
|
*/
|
|
CRollingBloomFilter m_recent_rejects GUARDED_BY(::cs_main){120'000, 0.000'001};
|
|
uint256 hashRecentRejectsChainTip GUARDED_BY(cs_main);
|
|
|
|
/*
|
|
* Filter for transactions that have been recently confirmed.
|
|
* We use this to avoid requesting transactions that have already been
|
|
* confirnmed.
|
|
*
|
|
* Blocks don't typically have more than 4000 transactions, so this should
|
|
* be at least six blocks (~1 hr) worth of transactions that we can store,
|
|
* inserting both a txid and wtxid for every observed transaction.
|
|
* If the number of transactions appearing in a block goes up, or if we are
|
|
* seeing getdata requests more than an hour after initial announcement, we
|
|
* can increase this number.
|
|
* The false positive rate of 1/1M should come out to less than 1
|
|
* transaction per day that would be inadvertently ignored (which is the
|
|
* same probability that we have in the reject filter).
|
|
*/
|
|
Mutex m_recent_confirmed_transactions_mutex;
|
|
CRollingBloomFilter m_recent_confirmed_transactions GUARDED_BY(m_recent_confirmed_transactions_mutex){48'000, 0.000'001};
|
|
|
|
/**
|
|
* For sending `inv`s to inbound peers, we use a single (exponentially
|
|
* distributed) timer for all peers. If we used a separate timer for each
|
|
* peer, a spy node could make multiple inbound connections to us to
|
|
* accurately determine when we received the transaction (and potentially
|
|
* determine the transaction's origin). */
|
|
std::chrono::microseconds NextInvToInbounds(std::chrono::microseconds now,
|
|
std::chrono::seconds average_interval);
|
|
|
|
|
|
// All of the following cache a recent block, and are protected by m_most_recent_block_mutex
|
|
Mutex m_most_recent_block_mutex;
|
|
std::shared_ptr<const CBlock> m_most_recent_block GUARDED_BY(m_most_recent_block_mutex);
|
|
std::shared_ptr<const CBlockHeaderAndShortTxIDs> m_most_recent_compact_block GUARDED_BY(m_most_recent_block_mutex);
|
|
uint256 m_most_recent_block_hash GUARDED_BY(m_most_recent_block_mutex);
|
|
|
|
// Data about the low-work headers synchronization, aggregated from all peers' HeadersSyncStates.
|
|
/** Mutex guarding the other m_headers_presync_* variables. */
|
|
Mutex m_headers_presync_mutex;
|
|
/** A type to represent statistics about a peer's low-work headers sync.
|
|
*
|
|
* - The first field is the total verified amount of work in that synchronization.
|
|
* - The second is:
|
|
* - nullopt: the sync is in REDOWNLOAD phase (phase 2).
|
|
* - {height, timestamp}: the sync has the specified tip height and block timestamp (phase 1).
|
|
*/
|
|
using HeadersPresyncStats = std::pair<arith_uint256, std::optional<std::pair<int64_t, uint32_t>>>;
|
|
/** Statistics for all peers in low-work headers sync. */
|
|
std::map<NodeId, HeadersPresyncStats> m_headers_presync_stats GUARDED_BY(m_headers_presync_mutex) {};
|
|
/** The peer with the most-work entry in m_headers_presync_stats. */
|
|
NodeId m_headers_presync_bestpeer GUARDED_BY(m_headers_presync_mutex) {-1};
|
|
/** The m_headers_presync_stats improved, and needs signalling. */
|
|
std::atomic_bool m_headers_presync_should_signal{false};
|
|
|
|
/** Height of the highest block announced using BIP 152 high-bandwidth mode. */
|
|
int m_highest_fast_announce GUARDED_BY(::cs_main){0};
|
|
|
|
/** Have we requested this block from a peer */
|
|
bool IsBlockRequested(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
|
|
|
|
/** Remove this block from our tracked requested blocks. Called if:
|
|
* - the block has been received from a peer
|
|
* - the request for the block has timed out
|
|
*/
|
|
void RemoveBlockRequest(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
|
|
|
|
/* Mark a block as in flight
|
|
* Returns false, still setting pit, if the block was already in flight from the same peer
|
|
* pit will only be valid as long as the same cs_main lock is being held
|
|
*/
|
|
bool BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
|
|
|
|
bool TipMayBeStale() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
|
|
|
|
/** Update pindexLastCommonBlock and add not-in-flight missing successors to vBlocks, until it has
|
|
* at most count entries.
|
|
*/
|
|
void FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
|
|
|
|
std::map<uint256, std::pair<NodeId, std::list<QueuedBlock>::iterator> > mapBlocksInFlight GUARDED_BY(cs_main);
|
|
|
|
/** When our tip was last updated. */
|
|
std::atomic<std::chrono::seconds> m_last_tip_update{0s};
|
|
|
|
/** Determine whether or not a peer can request a transaction, and return it (or nullptr if not found or not allowed). */
|
|
CTransactionRef FindTxForGetData(const CNode& peer, const GenTxid& gtxid, const std::chrono::seconds mempool_req, const std::chrono::seconds now) LOCKS_EXCLUDED(cs_main);
|
|
|
|
void ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
|
|
EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, peer.m_getdata_requests_mutex) LOCKS_EXCLUDED(::cs_main);
|
|
|
|
/** Process a new block. Perform any post-processing housekeeping */
|
|
void ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked);
|
|
|
|
/** Relay map (txid or wtxid -> CTransactionRef) */
|
|
typedef std::map<uint256, CTransactionRef> MapRelay;
|
|
MapRelay mapRelay GUARDED_BY(cs_main);
|
|
/** Expiration-time ordered list of (expire time, relay map entry) pairs. */
|
|
std::deque<std::pair<std::chrono::microseconds, MapRelay::iterator>> g_relay_expiration GUARDED_BY(cs_main);
|
|
|
|
/**
|
|
* When a peer sends us a valid block, instruct it to announce blocks to us
|
|
* using CMPCTBLOCK if possible by adding its nodeid to the end of
|
|
* lNodesAnnouncingHeaderAndIDs, and keeping that list under a certain size by
|
|
* removing the first element if necessary.
|
|
*/
|
|
void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
|
|
|
|
/** Stack of nodes which we have set to announce using compact blocks */
|
|
std::list<NodeId> lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main);
|
|
|
|
/** Number of peers from which we're downloading blocks. */
|
|
int m_peers_downloading_from GUARDED_BY(cs_main) = 0;
|
|
|
|
/** Storage for orphan information */
|
|
TxOrphanage m_orphanage;
|
|
|
|
void AddToCompactExtraTransactions(const CTransactionRef& tx) EXCLUSIVE_LOCKS_REQUIRED(g_cs_orphans);
|
|
|
|
/** Orphan/conflicted/etc transactions that are kept for compact block reconstruction.
|
|
* The last -blockreconstructionextratxn/DEFAULT_BLOCK_RECONSTRUCTION_EXTRA_TXN of
|
|
* these are kept in a ring buffer */
|
|
std::vector<std::pair<uint256, CTransactionRef>> vExtraTxnForCompact GUARDED_BY(g_cs_orphans);
|
|
/** Offset into vExtraTxnForCompact to insert the next tx */
|
|
size_t vExtraTxnForCompactIt GUARDED_BY(g_cs_orphans) = 0;
|
|
|
|
/** Check whether the last unknown block a peer advertised is not yet known. */
|
|
void ProcessBlockAvailability(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
|
|
/** Update tracking information about which blocks a peer is assumed to have. */
|
|
void UpdateBlockAvailability(NodeId nodeid, const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
|
|
bool CanDirectFetch() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
|
|
|
|
/**
|
|
* To prevent fingerprinting attacks, only send blocks/headers outside of
|
|
* the active chain if they are no more than a month older (both in time,
|
|
* and in best equivalent proof of work) than the best header chain we know
|
|
* about and we fully-validated them at some point.
|
|
*/
|
|
bool BlockRequestAllowed(const CBlockIndex* pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
|
|
bool AlreadyHaveBlock(const uint256& block_hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
|
|
void ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
|
|
EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex);
|
|
|
|
/**
|
|
* Validation logic for compact filters request handling.
|
|
*
|
|
* May disconnect from the peer in the case of a bad request.
|
|
*
|
|
* @param[in] node The node that we received the request from
|
|
* @param[in] peer The peer that we received the request from
|
|
* @param[in] filter_type The filter type the request is for. Must be basic filters.
|
|
* @param[in] start_height The start height for the request
|
|
* @param[in] stop_hash The stop_hash for the request
|
|
* @param[in] max_height_diff The maximum number of items permitted to request, as specified in BIP 157
|
|
* @param[out] stop_index The CBlockIndex for the stop_hash block, if the request can be serviced.
|
|
* @param[out] filter_index The filter index, if the request can be serviced.
|
|
* @return True if the request can be serviced.
|
|
*/
|
|
bool PrepareBlockFilterRequest(CNode& node, Peer& peer,
|
|
BlockFilterType filter_type, uint32_t start_height,
|
|
const uint256& stop_hash, uint32_t max_height_diff,
|
|
const CBlockIndex*& stop_index,
|
|
BlockFilterIndex*& filter_index);
|
|
|
|
/**
|
|
* Handle a cfilters request.
|
|
*
|
|
* May disconnect from the peer in the case of a bad request.
|
|
*
|
|
* @param[in] node The node that we received the request from
|
|
* @param[in] peer The peer that we received the request from
|
|
* @param[in] vRecv The raw message received
|
|
*/
|
|
void ProcessGetCFilters(CNode& node, Peer& peer, CDataStream& vRecv);
|
|
|
|
/**
|
|
* Handle a cfheaders request.
|
|
*
|
|
* May disconnect from the peer in the case of a bad request.
|
|
*
|
|
* @param[in] node The node that we received the request from
|
|
* @param[in] peer The peer that we received the request from
|
|
* @param[in] vRecv The raw message received
|
|
*/
|
|
void ProcessGetCFHeaders(CNode& node, Peer& peer, CDataStream& vRecv);
|
|
|
|
/**
|
|
* Handle a getcfcheckpt request.
|
|
*
|
|
* May disconnect from the peer in the case of a bad request.
|
|
*
|
|
* @param[in] node The node that we received the request from
|
|
* @param[in] peer The peer that we received the request from
|
|
* @param[in] vRecv The raw message received
|
|
*/
|
|
void ProcessGetCFCheckPt(CNode& node, Peer& peer, CDataStream& vRecv);
|
|
|
|
/** Checks if address relay is permitted with peer. If needed, initializes
|
|
* the m_addr_known bloom filter and sets m_addr_relay_enabled to true.
|
|
*
|
|
* @return True if address relay is enabled with peer
|
|
* False if address relay is disallowed
|
|
*/
|
|
bool SetupAddressRelay(const CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
|
|
|
|
void AddAddressKnown(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
|
|
void PushAddress(Peer& peer, const CAddress& addr, FastRandomContext& insecure_rand) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
|
|
};
|
|
|
|
const CNodeState* PeerManagerImpl::State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main)
|
|
{
|
|
std::map<NodeId, CNodeState>::const_iterator it = m_node_states.find(pnode);
|
|
if (it == m_node_states.end())
|
|
return nullptr;
|
|
return &it->second;
|
|
}
|
|
|
|
CNodeState* PeerManagerImpl::State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
|
|
{
|
|
return const_cast<CNodeState*>(std::as_const(*this).State(pnode));
|
|
}
|
|
|
|
/**
|
|
* Whether the peer supports the address. For example, a peer that does not
|
|
* implement BIP155 cannot receive Tor v3 addresses because it requires
|
|
* ADDRv2 (BIP155) encoding.
|
|
*/
|
|
static bool IsAddrCompatible(const Peer& peer, const CAddress& addr)
|
|
{
|
|
return peer.m_wants_addrv2 || addr.IsAddrV1Compatible();
|
|
}
|
|
|
|
void PeerManagerImpl::AddAddressKnown(Peer& peer, const CAddress& addr)
|
|
{
|
|
assert(peer.m_addr_known);
|
|
peer.m_addr_known->insert(addr.GetKey());
|
|
}
|
|
|
|
void PeerManagerImpl::PushAddress(Peer& peer, const CAddress& addr, FastRandomContext& insecure_rand)
|
|
{
|
|
// Known checking here is only to save space from duplicates.
|
|
// Before sending, we'll filter it again for known addresses that were
|
|
// added after addresses were pushed.
|
|
assert(peer.m_addr_known);
|
|
if (addr.IsValid() && !peer.m_addr_known->contains(addr.GetKey()) && IsAddrCompatible(peer, addr)) {
|
|
if (peer.m_addrs_to_send.size() >= MAX_ADDR_TO_SEND) {
|
|
peer.m_addrs_to_send[insecure_rand.randrange(peer.m_addrs_to_send.size())] = addr;
|
|
} else {
|
|
peer.m_addrs_to_send.push_back(addr);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void AddKnownTx(Peer& peer, const uint256& hash)
|
|
{
|
|
auto tx_relay = peer.GetTxRelay();
|
|
if (!tx_relay) return;
|
|
|
|
LOCK(tx_relay->m_tx_inventory_mutex);
|
|
tx_relay->m_tx_inventory_known_filter.insert(hash);
|
|
}
|
|
|
|
/** Whether this peer can serve us blocks. */
|
|
static bool CanServeBlocks(const Peer& peer)
|
|
{
|
|
return peer.m_their_services & (NODE_NETWORK|NODE_NETWORK_LIMITED);
|
|
}
|
|
|
|
/** Whether this peer can only serve limited recent blocks (e.g. because
|
|
* it prunes old blocks) */
|
|
static bool IsLimitedPeer(const Peer& peer)
|
|
{
|
|
return (!(peer.m_their_services & NODE_NETWORK) &&
|
|
(peer.m_their_services & NODE_NETWORK_LIMITED));
|
|
}
|
|
|
|
/** Whether this peer can serve us witness data */
|
|
static bool CanServeWitnesses(const Peer& peer)
|
|
{
|
|
return peer.m_their_services & NODE_WITNESS;
|
|
}
|
|
|
|
std::chrono::microseconds PeerManagerImpl::NextInvToInbounds(std::chrono::microseconds now,
|
|
std::chrono::seconds average_interval)
|
|
{
|
|
if (m_next_inv_to_inbounds.load() < now) {
|
|
// If this function were called from multiple threads simultaneously
|
|
// it would possible that both update the next send variable, and return a different result to their caller.
|
|
// This is not possible in practice as only the net processing thread invokes this function.
|
|
m_next_inv_to_inbounds = GetExponentialRand(now, average_interval);
|
|
}
|
|
return m_next_inv_to_inbounds;
|
|
}
|
|
|
|
bool PeerManagerImpl::IsBlockRequested(const uint256& hash)
|
|
{
|
|
return mapBlocksInFlight.find(hash) != mapBlocksInFlight.end();
|
|
}
|
|
|
|
void PeerManagerImpl::RemoveBlockRequest(const uint256& hash)
|
|
{
|
|
auto it = mapBlocksInFlight.find(hash);
|
|
if (it == mapBlocksInFlight.end()) {
|
|
// Block was not requested
|
|
return;
|
|
}
|
|
|
|
auto [node_id, list_it] = it->second;
|
|
CNodeState *state = State(node_id);
|
|
assert(state != nullptr);
|
|
|
|
if (state->vBlocksInFlight.begin() == list_it) {
|
|
// First block on the queue was received, update the start download time for the next one
|
|
state->m_downloading_since = std::max(state->m_downloading_since, GetTime<std::chrono::microseconds>());
|
|
}
|
|
state->vBlocksInFlight.erase(list_it);
|
|
|
|
state->nBlocksInFlight--;
|
|
if (state->nBlocksInFlight == 0) {
|
|
// Last validated block on the queue was received.
|
|
m_peers_downloading_from--;
|
|
}
|
|
state->m_stalling_since = 0us;
|
|
mapBlocksInFlight.erase(it);
|
|
}
|
|
|
|
bool PeerManagerImpl::BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit)
|
|
{
|
|
const uint256& hash{block.GetBlockHash()};
|
|
|
|
CNodeState *state = State(nodeid);
|
|
assert(state != nullptr);
|
|
|
|
// Short-circuit most stuff in case it is from the same node
|
|
std::map<uint256, std::pair<NodeId, std::list<QueuedBlock>::iterator> >::iterator itInFlight = mapBlocksInFlight.find(hash);
|
|
if (itInFlight != mapBlocksInFlight.end() && itInFlight->second.first == nodeid) {
|
|
if (pit) {
|
|
*pit = &itInFlight->second.second;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Make sure it's not listed somewhere already.
|
|
RemoveBlockRequest(hash);
|
|
|
|
std::list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(),
|
|
{&block, std::unique_ptr<PartiallyDownloadedBlock>(pit ? new PartiallyDownloadedBlock(&m_mempool) : nullptr)});
|
|
state->nBlocksInFlight++;
|
|
if (state->nBlocksInFlight == 1) {
|
|
// We're starting a block download (batch) from this peer.
|
|
state->m_downloading_since = GetTime<std::chrono::microseconds>();
|
|
m_peers_downloading_from++;
|
|
}
|
|
itInFlight = mapBlocksInFlight.insert(std::make_pair(hash, std::make_pair(nodeid, it))).first;
|
|
if (pit) {
|
|
*pit = &itInFlight->second.second;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void PeerManagerImpl::MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid)
|
|
{
|
|
AssertLockHeld(cs_main);
|
|
|
|
// When in -blocksonly mode, never request high-bandwidth mode from peers. Our
|
|
// mempool will not contain the transactions necessary to reconstruct the
|
|
// compact block.
|
|
if (m_ignore_incoming_txs) return;
|
|
|
|
CNodeState* nodestate = State(nodeid);
|
|
if (!nodestate || !nodestate->m_provides_cmpctblocks) {
|
|
// Don't request compact blocks if the peer has not signalled support
|
|
return;
|
|
}
|
|
|
|
int num_outbound_hb_peers = 0;
|
|
for (std::list<NodeId>::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) {
|
|
if (*it == nodeid) {
|
|
lNodesAnnouncingHeaderAndIDs.erase(it);
|
|
lNodesAnnouncingHeaderAndIDs.push_back(nodeid);
|
|
return;
|
|
}
|
|
CNodeState *state = State(*it);
|
|
if (state != nullptr && !state->m_is_inbound) ++num_outbound_hb_peers;
|
|
}
|
|
if (nodestate->m_is_inbound) {
|
|
// If we're adding an inbound HB peer, make sure we're not removing
|
|
// our last outbound HB peer in the process.
|
|
if (lNodesAnnouncingHeaderAndIDs.size() >= 3 && num_outbound_hb_peers == 1) {
|
|
CNodeState *remove_node = State(lNodesAnnouncingHeaderAndIDs.front());
|
|
if (remove_node != nullptr && !remove_node->m_is_inbound) {
|
|
// Put the HB outbound peer in the second slot, so that it
|
|
// doesn't get removed.
|
|
std::swap(lNodesAnnouncingHeaderAndIDs.front(), *std::next(lNodesAnnouncingHeaderAndIDs.begin()));
|
|
}
|
|
}
|
|
}
|
|
m_connman.ForNode(nodeid, [this](CNode* pfrom) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
|
|
AssertLockHeld(::cs_main);
|
|
if (lNodesAnnouncingHeaderAndIDs.size() >= 3) {
|
|
// As per BIP152, we only get 3 of our peers to announce
|
|
// blocks using compact encodings.
|
|
m_connman.ForNode(lNodesAnnouncingHeaderAndIDs.front(), [this](CNode* pnodeStop){
|
|
m_connman.PushMessage(pnodeStop, CNetMsgMaker(pnodeStop->GetCommonVersion()).Make(NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION));
|
|
// save BIP152 bandwidth state: we select peer to be low-bandwidth
|
|
pnodeStop->m_bip152_highbandwidth_to = false;
|
|
return true;
|
|
});
|
|
lNodesAnnouncingHeaderAndIDs.pop_front();
|
|
}
|
|
m_connman.PushMessage(pfrom, CNetMsgMaker(pfrom->GetCommonVersion()).Make(NetMsgType::SENDCMPCT, /*high_bandwidth=*/true, /*version=*/CMPCTBLOCKS_VERSION));
|
|
// save BIP152 bandwidth state: we select peer to be high-bandwidth
|
|
pfrom->m_bip152_highbandwidth_to = true;
|
|
lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId());
|
|
return true;
|
|
});
|
|
}
|
|
|
|
bool PeerManagerImpl::TipMayBeStale()
|
|
{
|
|
AssertLockHeld(cs_main);
|
|
const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
|
|
if (m_last_tip_update.load() == 0s) {
|
|
m_last_tip_update = GetTime<std::chrono::seconds>();
|
|
}
|
|
return m_last_tip_update.load() < GetTime<std::chrono::seconds>() - std::chrono::seconds{consensusParams.nPowTargetSpacing * 3} && mapBlocksInFlight.empty();
|
|
}
|
|
|
|
bool PeerManagerImpl::CanDirectFetch()
|
|
{
|
|
return m_chainman.ActiveChain().Tip()->Time() > GetAdjustedTime() - m_chainparams.GetConsensus().PowTargetSpacing() * 20;
|
|
}
|
|
|
|
static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
|
|
{
|
|
if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight))
|
|
return true;
|
|
if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void PeerManagerImpl::ProcessBlockAvailability(NodeId nodeid) {
|
|
CNodeState *state = State(nodeid);
|
|
assert(state != nullptr);
|
|
|
|
if (!state->hashLastUnknownBlock.IsNull()) {
|
|
const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(state->hashLastUnknownBlock);
|
|
if (pindex && pindex->nChainWork > 0) {
|
|
if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
|
|
state->pindexBestKnownBlock = pindex;
|
|
}
|
|
state->hashLastUnknownBlock.SetNull();
|
|
}
|
|
}
|
|
}
|
|
|
|
void PeerManagerImpl::UpdateBlockAvailability(NodeId nodeid, const uint256 &hash) {
|
|
CNodeState *state = State(nodeid);
|
|
assert(state != nullptr);
|
|
|
|
ProcessBlockAvailability(nodeid);
|
|
|
|
const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
|
|
if (pindex && pindex->nChainWork > 0) {
|
|
// An actually better block was announced.
|
|
if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
|
|
state->pindexBestKnownBlock = pindex;
|
|
}
|
|
} else {
|
|
// An unknown block was announced; just assume that the latest one is the best one.
|
|
state->hashLastUnknownBlock = hash;
|
|
}
|
|
}
|
|
|
|
void PeerManagerImpl::FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller)
|
|
{
|
|
if (count == 0)
|
|
return;
|
|
|
|
vBlocks.reserve(vBlocks.size() + count);
|
|
CNodeState *state = State(peer.m_id);
|
|
assert(state != nullptr);
|
|
|
|
// Make sure pindexBestKnownBlock is up to date, we'll need it.
|
|
ProcessBlockAvailability(peer.m_id);
|
|
|
|
if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->nChainWork < m_chainman.ActiveChain().Tip()->nChainWork || state->pindexBestKnownBlock->nChainWork < nMinimumChainWork) {
|
|
// This peer has nothing interesting.
|
|
return;
|
|
}
|
|
|
|
if (state->pindexLastCommonBlock == nullptr) {
|
|
// Bootstrap quickly by guessing a parent of our best tip is the forking point.
|
|
// Guessing wrong in either direction is not a problem.
|
|
state->pindexLastCommonBlock = m_chainman.ActiveChain()[std::min(state->pindexBestKnownBlock->nHeight, m_chainman.ActiveChain().Height())];
|
|
}
|
|
|
|
// If the peer reorganized, our previous pindexLastCommonBlock may not be an ancestor
|
|
// of its current tip anymore. Go back enough to fix that.
|
|
state->pindexLastCommonBlock = LastCommonAncestor(state->pindexLastCommonBlock, state->pindexBestKnownBlock);
|
|
if (state->pindexLastCommonBlock == state->pindexBestKnownBlock)
|
|
return;
|
|
|
|
std::vector<const CBlockIndex*> vToFetch;
|
|
const CBlockIndex *pindexWalk = state->pindexLastCommonBlock;
|
|
// Never fetch further than the best block we know the peer has, or more than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last
|
|
// linked block we have in common with this peer. The +1 is so we can detect stalling, namely if we would be able to
|
|
// download that next block if the window were 1 larger.
|
|
int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW;
|
|
int nMaxHeight = std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1);
|
|
NodeId waitingfor = -1;
|
|
while (pindexWalk->nHeight < nMaxHeight) {
|
|
// Read up to 128 (or more, if more blocks than that are needed) successors of pindexWalk (towards
|
|
// pindexBestKnownBlock) into vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as expensive
|
|
// as iterating over ~100 CBlockIndex* entries anyway.
|
|
int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max<int>(count - vBlocks.size(), 128));
|
|
vToFetch.resize(nToFetch);
|
|
pindexWalk = state->pindexBestKnownBlock->GetAncestor(pindexWalk->nHeight + nToFetch);
|
|
vToFetch[nToFetch - 1] = pindexWalk;
|
|
for (unsigned int i = nToFetch - 1; i > 0; i--) {
|
|
vToFetch[i - 1] = vToFetch[i]->pprev;
|
|
}
|
|
|
|
// Iterate over those blocks in vToFetch (in forward direction), adding the ones that
|
|
// are not yet downloaded and not in flight to vBlocks. In the meantime, update
|
|
// pindexLastCommonBlock as long as all ancestors are already downloaded, or if it's
|
|
// already part of our chain (and therefore don't need it even if pruned).
|
|
for (const CBlockIndex* pindex : vToFetch) {
|
|
if (!pindex->IsValid(BLOCK_VALID_TREE)) {
|
|
// We consider the chain that this peer is on invalid.
|
|
return;
|
|
}
|
|
if (!CanServeWitnesses(peer) && DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) {
|
|
// We wouldn't download this block or its descendants from this peer.
|
|
return;
|
|
}
|
|
if (pindex->nStatus & BLOCK_HAVE_DATA || m_chainman.ActiveChain().Contains(pindex)) {
|
|
if (pindex->HaveTxsDownloaded())
|
|
state->pindexLastCommonBlock = pindex;
|
|
} else if (!IsBlockRequested(pindex->GetBlockHash())) {
|
|
// The block is not already downloaded, and not yet in flight.
|
|
if (pindex->nHeight > nWindowEnd) {
|
|
// We reached the end of the window.
|
|
if (vBlocks.size() == 0 && waitingfor != peer.m_id) {
|
|
// We aren't able to fetch anything, but we would be if the download window was one larger.
|
|
nodeStaller = waitingfor;
|
|
}
|
|
return;
|
|
}
|
|
vBlocks.push_back(pindex);
|
|
if (vBlocks.size() == count) {
|
|
return;
|
|
}
|
|
} else if (waitingfor == -1) {
|
|
// This is the first already-in-flight block.
|
|
waitingfor = mapBlocksInFlight[pindex->GetBlockHash()].first;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void PeerManagerImpl::PushNodeVersion(CNode& pnode, const Peer& peer)
|
|
{
|
|
uint64_t my_services{peer.m_our_services};
|
|
const int64_t nTime{count_seconds(GetTime<std::chrono::seconds>())};
|
|
uint64_t nonce = pnode.GetLocalNonce();
|
|
const int nNodeStartingHeight{m_best_height};
|
|
NodeId nodeid = pnode.GetId();
|
|
CAddress addr = pnode.addr;
|
|
|
|
CService addr_you = addr.IsRoutable() && !IsProxy(addr) && addr.IsAddrV1Compatible() ? addr : CService();
|
|
uint64_t your_services{addr.nServices};
|
|
|
|
const bool tx_relay = !m_ignore_incoming_txs && !pnode.IsBlockOnlyConn() && !pnode.IsFeelerConn();
|
|
m_connman.PushMessage(&pnode, CNetMsgMaker(INIT_PROTO_VERSION).Make(NetMsgType::VERSION, PROTOCOL_VERSION, my_services, nTime,
|
|
your_services, addr_you, // Together the pre-version-31402 serialization of CAddress "addrYou" (without nTime)
|
|
my_services, CService(), // Together the pre-version-31402 serialization of CAddress "addrMe" (without nTime)
|
|
nonce, strSubVersion, nNodeStartingHeight, tx_relay));
|
|
|
|
if (fLogIPs) {
|
|
LogPrint(BCLog::NET, "send version message: version %d, blocks=%d, them=%s, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addr_you.ToString(), tx_relay, nodeid);
|
|
} else {
|
|
LogPrint(BCLog::NET, "send version message: version %d, blocks=%d, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, tx_relay, nodeid);
|
|
}
|
|
}
|
|
|
|
void PeerManagerImpl::AddTxAnnouncement(const CNode& node, const GenTxid& gtxid, std::chrono::microseconds current_time)
|
|
{
|
|
AssertLockHeld(::cs_main); // For m_txrequest
|
|
NodeId nodeid = node.GetId();
|
|
if (!node.HasPermission(NetPermissionFlags::Relay) && m_txrequest.Count(nodeid) >= MAX_PEER_TX_ANNOUNCEMENTS) {
|
|
// Too many queued announcements from this peer
|
|
return;
|
|
}
|
|
const CNodeState* state = State(nodeid);
|
|
|
|
// Decide the TxRequestTracker parameters for this announcement:
|
|
// - "preferred": if fPreferredDownload is set (= outbound, or NetPermissionFlags::NoBan permission)
|
|
// - "reqtime": current time plus delays for:
|
|
// - NONPREF_PEER_TX_DELAY for announcements from non-preferred connections
|
|
// - TXID_RELAY_DELAY for txid announcements while wtxid peers are available
|
|
// - OVERLOADED_PEER_TX_DELAY for announcements from peers which have at least
|
|
// MAX_PEER_TX_REQUEST_IN_FLIGHT requests in flight (and don't have NetPermissionFlags::Relay).
|
|
auto delay{0us};
|
|
const bool preferred = state->fPreferredDownload;
|
|
if (!preferred) delay += NONPREF_PEER_TX_DELAY;
|
|
if (!gtxid.IsWtxid() && m_wtxid_relay_peers > 0) delay += TXID_RELAY_DELAY;
|
|
const bool overloaded = !node.HasPermission(NetPermissionFlags::Relay) &&
|
|
m_txrequest.CountInFlight(nodeid) >= MAX_PEER_TX_REQUEST_IN_FLIGHT;
|
|
if (overloaded) delay += OVERLOADED_PEER_TX_DELAY;
|
|
m_txrequest.ReceivedInv(nodeid, gtxid, preferred, current_time + delay);
|
|
}
|
|
|
|
void PeerManagerImpl::UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)
|
|
{
|
|
LOCK(cs_main);
|
|
CNodeState *state = State(node);
|
|
if (state) state->m_last_block_announcement = time_in_seconds;
|
|
}
|
|
|
|
void PeerManagerImpl::InitializeNode(CNode& node, ServiceFlags our_services)
|
|
{
|
|
NodeId nodeid = node.GetId();
|
|
{
|
|
LOCK(cs_main);
|
|
m_node_states.emplace_hint(m_node_states.end(), std::piecewise_construct, std::forward_as_tuple(nodeid), std::forward_as_tuple(node.IsInboundConn()));
|
|
assert(m_txrequest.Count(nodeid) == 0);
|
|
}
|
|
PeerRef peer = std::make_shared<Peer>(nodeid, our_services);
|
|
{
|
|
LOCK(m_peer_mutex);
|
|
m_peer_map.emplace_hint(m_peer_map.end(), nodeid, peer);
|
|
}
|
|
if (!node.IsInboundConn()) {
|
|
PushNodeVersion(node, *peer);
|
|
}
|
|
}
|
|
|
|
void PeerManagerImpl::ReattemptInitialBroadcast(CScheduler& scheduler)
|
|
{
|
|
std::set<uint256> unbroadcast_txids = m_mempool.GetUnbroadcastTxs();
|
|
|
|
for (const auto& txid : unbroadcast_txids) {
|
|
CTransactionRef tx = m_mempool.get(txid);
|
|
|
|
if (tx != nullptr) {
|
|
RelayTransaction(txid, tx->GetWitnessHash());
|
|
} else {
|
|
m_mempool.RemoveUnbroadcastTx(txid, true);
|
|
}
|
|
}
|
|
|
|
// Schedule next run for 10-15 minutes in the future.
|
|
// We add randomness on every cycle to avoid the possibility of P2P fingerprinting.
|
|
const std::chrono::milliseconds delta = 10min + GetRandMillis(5min);
|
|
scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
|
|
}
|
|
|
|
void PeerManagerImpl::FinalizeNode(const CNode& node)
|
|
{
|
|
NodeId nodeid = node.GetId();
|
|
int misbehavior{0};
|
|
{
|
|
LOCK(cs_main);
|
|
{
|
|
// We remove the PeerRef from g_peer_map here, but we don't always
|
|
// destruct the Peer. Sometimes another thread is still holding a
|
|
// PeerRef, so the refcount is >= 1. Be careful not to do any
|
|
// processing here that assumes Peer won't be changed before it's
|
|
// destructed.
|
|
PeerRef peer = RemovePeer(nodeid);
|
|
assert(peer != nullptr);
|
|
misbehavior = WITH_LOCK(peer->m_misbehavior_mutex, return peer->m_misbehavior_score);
|
|
m_wtxid_relay_peers -= peer->m_wtxid_relay;
|
|
assert(m_wtxid_relay_peers >= 0);
|
|
}
|
|
CNodeState *state = State(nodeid);
|
|
assert(state != nullptr);
|
|
|
|
if (state->fSyncStarted)
|
|
nSyncStarted--;
|
|
|
|
for (const QueuedBlock& entry : state->vBlocksInFlight) {
|
|
mapBlocksInFlight.erase(entry.pindex->GetBlockHash());
|
|
}
|
|
WITH_LOCK(g_cs_orphans, m_orphanage.EraseForPeer(nodeid));
|
|
m_txrequest.DisconnectedPeer(nodeid);
|
|
m_num_preferred_download_peers -= state->fPreferredDownload;
|
|
m_peers_downloading_from -= (state->nBlocksInFlight != 0);
|
|
assert(m_peers_downloading_from >= 0);
|
|
m_outbound_peers_with_protect_from_disconnect -= state->m_chain_sync.m_protect;
|
|
assert(m_outbound_peers_with_protect_from_disconnect >= 0);
|
|
|
|
m_node_states.erase(nodeid);
|
|
|
|
if (m_node_states.empty()) {
|
|
// Do a consistency check after the last peer is removed.
|
|
assert(mapBlocksInFlight.empty());
|
|
assert(m_num_preferred_download_peers == 0);
|
|
assert(m_peers_downloading_from == 0);
|
|
assert(m_outbound_peers_with_protect_from_disconnect == 0);
|
|
assert(m_wtxid_relay_peers == 0);
|
|
assert(m_txrequest.Size() == 0);
|
|
assert(m_orphanage.Size() == 0);
|
|
}
|
|
} // cs_main
|
|
if (node.fSuccessfullyConnected && misbehavior == 0 &&
|
|
!node.IsBlockOnlyConn() && !node.IsInboundConn()) {
|
|
// Only change visible addrman state for full outbound peers. We don't
|
|
// call Connected() for feeler connections since they don't have
|
|
// fSuccessfullyConnected set.
|
|
m_addrman.Connected(node.addr);
|
|
}
|
|
{
|
|
LOCK(m_headers_presync_mutex);
|
|
m_headers_presync_stats.erase(nodeid);
|
|
}
|
|
LogPrint(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid);
|
|
}
|
|
|
|
PeerRef PeerManagerImpl::GetPeerRef(NodeId id) const
|
|
{
|
|
LOCK(m_peer_mutex);
|
|
auto it = m_peer_map.find(id);
|
|
return it != m_peer_map.end() ? it->second : nullptr;
|
|
}
|
|
|
|
PeerRef PeerManagerImpl::RemovePeer(NodeId id)
|
|
{
|
|
PeerRef ret;
|
|
LOCK(m_peer_mutex);
|
|
auto it = m_peer_map.find(id);
|
|
if (it != m_peer_map.end()) {
|
|
ret = std::move(it->second);
|
|
m_peer_map.erase(it);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
bool PeerManagerImpl::GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const
|
|
{
|
|
{
|
|
LOCK(cs_main);
|
|
const CNodeState* state = State(nodeid);
|
|
if (state == nullptr)
|
|
return false;
|
|
stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1;
|
|
stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1;
|
|
for (const QueuedBlock& queue : state->vBlocksInFlight) {
|
|
if (queue.pindex)
|
|
stats.vHeightInFlight.push_back(queue.pindex->nHeight);
|
|
}
|
|
}
|
|
|
|
PeerRef peer = GetPeerRef(nodeid);
|
|
if (peer == nullptr) return false;
|
|
stats.their_services = peer->m_their_services;
|
|
stats.m_starting_height = peer->m_starting_height;
|
|
// It is common for nodes with good ping times to suddenly become lagged,
|
|
// due to a new block arriving or other large transfer.
|
|
// Merely reporting pingtime might fool the caller into thinking the node was still responsive,
|
|
// since pingtime does not update until the ping is complete, which might take a while.
|
|
// So, if a ping is taking an unusually long time in flight,
|
|
// the caller can immediately detect that this is happening.
|
|
auto ping_wait{0us};
|
|
if ((0 != peer->m_ping_nonce_sent) && (0 != peer->m_ping_start.load().count())) {
|
|
ping_wait = GetTime<std::chrono::microseconds>() - peer->m_ping_start.load();
|
|
}
|
|
|
|
if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
|
|
stats.m_relay_txs = WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs);
|
|
stats.m_fee_filter_received = tx_relay->m_fee_filter_received.load();
|
|
} else {
|
|
stats.m_relay_txs = false;
|
|
stats.m_fee_filter_received = 0;
|
|
}
|
|
|
|
stats.m_ping_wait = ping_wait;
|
|
stats.m_addr_processed = peer->m_addr_processed.load();
|
|
stats.m_addr_rate_limited = peer->m_addr_rate_limited.load();
|
|
stats.m_addr_relay_enabled = peer->m_addr_relay_enabled.load();
|
|
{
|
|
LOCK(peer->m_headers_sync_mutex);
|
|
if (peer->m_headers_sync) {
|
|
stats.presync_height = peer->m_headers_sync->GetPresyncHeight();
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void PeerManagerImpl::AddToCompactExtraTransactions(const CTransactionRef& tx)
|
|
{
|
|
size_t max_extra_txn = gArgs.GetIntArg("-blockreconstructionextratxn", DEFAULT_BLOCK_RECONSTRUCTION_EXTRA_TXN);
|
|
if (max_extra_txn <= 0)
|
|
return;
|
|
if (!vExtraTxnForCompact.size())
|
|
vExtraTxnForCompact.resize(max_extra_txn);
|
|
vExtraTxnForCompact[vExtraTxnForCompactIt] = std::make_pair(tx->GetWitnessHash(), tx);
|
|
vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % max_extra_txn;
|
|
}
|
|
|
|
void PeerManagerImpl::Misbehaving(Peer& peer, int howmuch, const std::string& message)
|
|
{
|
|
assert(howmuch > 0);
|
|
|
|
LOCK(peer.m_misbehavior_mutex);
|
|
const int score_before{peer.m_misbehavior_score};
|
|
peer.m_misbehavior_score += howmuch;
|
|
const int score_now{peer.m_misbehavior_score};
|
|
|
|
const std::string message_prefixed = message.empty() ? "" : (": " + message);
|
|
std::string warning;
|
|
|
|
if (score_now >= DISCOURAGEMENT_THRESHOLD && score_before < DISCOURAGEMENT_THRESHOLD) {
|
|
warning = " DISCOURAGE THRESHOLD EXCEEDED";
|
|
peer.m_should_discourage = true;
|
|
}
|
|
|
|
LogPrint(BCLog::NET, "Misbehaving: peer=%d (%d -> %d)%s%s\n",
|
|
peer.m_id, score_before, score_now, warning, message_prefixed);
|
|
}
|
|
|
|
bool PeerManagerImpl::MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
|
|
bool via_compact_block, const std::string& message)
|
|
{
|
|
PeerRef peer{GetPeerRef(nodeid)};
|
|
switch (state.GetResult()) {
|
|
case BlockValidationResult::BLOCK_RESULT_UNSET:
|
|
break;
|
|
case BlockValidationResult::BLOCK_HEADER_LOW_WORK:
|
|
// We didn't try to process the block because the header chain may have
|
|
// too little work.
|
|
break;
|
|
// The node is providing invalid data:
|
|
case BlockValidationResult::BLOCK_CONSENSUS:
|
|
case BlockValidationResult::BLOCK_MUTATED:
|
|
if (!via_compact_block) {
|
|
if (peer) Misbehaving(*peer, 100, message);
|
|
return true;
|
|
}
|
|
break;
|
|
case BlockValidationResult::BLOCK_CACHED_INVALID:
|
|
{
|
|
LOCK(cs_main);
|
|
CNodeState *node_state = State(nodeid);
|
|
if (node_state == nullptr) {
|
|
break;
|
|
}
|
|
|
|
// Discourage outbound (but not inbound) peers if on an invalid chain.
|
|
// Exempt HB compact block peers. Manual connections are always protected from discouragement.
|
|
if (!via_compact_block && !node_state->m_is_inbound) {
|
|
if (peer) Misbehaving(*peer, 100, message);
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
case BlockValidationResult::BLOCK_INVALID_HEADER:
|
|
case BlockValidationResult::BLOCK_CHECKPOINT:
|
|
case BlockValidationResult::BLOCK_INVALID_PREV:
|
|
if (peer) Misbehaving(*peer, 100, message);
|
|
return true;
|
|
// Conflicting (but not necessarily invalid) data or different policy:
|
|
case BlockValidationResult::BLOCK_MISSING_PREV:
|
|
// TODO: Handle this much more gracefully (10 DoS points is super arbitrary)
|
|
if (peer) Misbehaving(*peer, 10, message);
|
|
return true;
|
|
case BlockValidationResult::BLOCK_RECENT_CONSENSUS_CHANGE:
|
|
case BlockValidationResult::BLOCK_TIME_FUTURE:
|
|
break;
|
|
}
|
|
if (message != "") {
|
|
LogPrint(BCLog::NET, "peer=%d: %s\n", nodeid, message);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool PeerManagerImpl::MaybePunishNodeForTx(NodeId nodeid, const TxValidationState& state, const std::string& message)
|
|
{
|
|
PeerRef peer{GetPeerRef(nodeid)};
|
|
switch (state.GetResult()) {
|
|
case TxValidationResult::TX_RESULT_UNSET:
|
|
break;
|
|
// The node is providing invalid data:
|
|
case TxValidationResult::TX_CONSENSUS:
|
|
if (peer) Misbehaving(*peer, 100, message);
|
|
return true;
|
|
// Conflicting (but not necessarily invalid) data or different policy:
|
|
case TxValidationResult::TX_RECENT_CONSENSUS_CHANGE:
|
|
case TxValidationResult::TX_INPUTS_NOT_STANDARD:
|
|
case TxValidationResult::TX_NOT_STANDARD:
|
|
case TxValidationResult::TX_MISSING_INPUTS:
|
|
case TxValidationResult::TX_PREMATURE_SPEND:
|
|
case TxValidationResult::TX_WITNESS_MUTATED:
|
|
case TxValidationResult::TX_WITNESS_STRIPPED:
|
|
case TxValidationResult::TX_CONFLICT:
|
|
case TxValidationResult::TX_MEMPOOL_POLICY:
|
|
case TxValidationResult::TX_NO_MEMPOOL:
|
|
break;
|
|
}
|
|
if (message != "") {
|
|
LogPrint(BCLog::NET, "peer=%d: %s\n", nodeid, message);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool PeerManagerImpl::BlockRequestAllowed(const CBlockIndex* pindex)
|
|
{
|
|
AssertLockHeld(cs_main);
|
|
if (m_chainman.ActiveChain().Contains(pindex)) return true;
|
|
return pindex->IsValid(BLOCK_VALID_SCRIPTS) && (m_chainman.m_best_header != nullptr) &&
|
|
(m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() < STALE_RELAY_AGE_LIMIT) &&
|
|
(GetBlockProofEquivalentTime(*m_chainman.m_best_header, *pindex, *m_chainman.m_best_header, m_chainparams.GetConsensus()) < STALE_RELAY_AGE_LIMIT);
|
|
}
|
|
|
|
std::optional<std::string> PeerManagerImpl::FetchBlock(NodeId peer_id, const CBlockIndex& block_index)
|
|
{
|
|
if (fImporting) return "Importing...";
|
|
if (fReindex) return "Reindexing...";
|
|
|
|
// Ensure this peer exists and hasn't been disconnected
|
|
PeerRef peer = GetPeerRef(peer_id);
|
|
if (peer == nullptr) return "Peer does not exist";
|
|
|
|
// Ignore pre-segwit peers
|
|
if (!CanServeWitnesses(*peer)) return "Pre-SegWit peer";
|
|
|
|
LOCK(cs_main);
|
|
|
|
// Mark block as in-flight unless it already is (for this peer).
|
|
// If a block was already in-flight for a different peer, its BLOCKTXN
|
|
// response will be dropped.
|
|
if (!BlockRequested(peer_id, block_index)) return "Already requested from this peer";
|
|
|
|
// Construct message to request the block
|
|
const uint256& hash{block_index.GetBlockHash()};
|
|
std::vector<CInv> invs{CInv(MSG_BLOCK | MSG_WITNESS_FLAG, hash)};
|
|
|
|
// Send block request message to the peer
|
|
bool success = m_connman.ForNode(peer_id, [this, &invs](CNode* node) {
|
|
const CNetMsgMaker msgMaker(node->GetCommonVersion());
|
|
this->m_connman.PushMessage(node, msgMaker.Make(NetMsgType::GETDATA, invs));
|
|
return true;
|
|
});
|
|
|
|
if (!success) return "Peer not fully connected";
|
|
|
|
LogPrint(BCLog::NET, "Requesting block %s from peer=%d\n",
|
|
hash.ToString(), peer_id);
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::unique_ptr<PeerManager> PeerManager::make(CConnman& connman, AddrMan& addrman,
|
|
BanMan* banman, ChainstateManager& chainman,
|
|
CTxMemPool& pool, bool ignore_incoming_txs)
|
|
{
|
|
return std::make_unique<PeerManagerImpl>(connman, addrman, banman, chainman, pool, ignore_incoming_txs);
|
|
}
|
|
|
|
PeerManagerImpl::PeerManagerImpl(CConnman& connman, AddrMan& addrman,
|
|
BanMan* banman, ChainstateManager& chainman,
|
|
CTxMemPool& pool, bool ignore_incoming_txs)
|
|
: m_chainparams(chainman.GetParams()),
|
|
m_connman(connman),
|
|
m_addrman(addrman),
|
|
m_banman(banman),
|
|
m_chainman(chainman),
|
|
m_mempool(pool),
|
|
m_ignore_incoming_txs(ignore_incoming_txs)
|
|
{
|
|
}
|
|
|
|
void PeerManagerImpl::StartScheduledTasks(CScheduler& scheduler)
|
|
{
|
|
// Stale tip checking and peer eviction are on two different timers, but we
|
|
// don't want them to get out of sync due to drift in the scheduler, so we
|
|
// combine them in one function and schedule at the quicker (peer-eviction)
|
|
// timer.
|
|
static_assert(EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL, "peer eviction timer should be less than stale tip check timer");
|
|
scheduler.scheduleEvery([this] { this->CheckForStaleTipAndEvictPeers(); }, std::chrono::seconds{EXTRA_PEER_CHECK_INTERVAL});
|
|
|
|
// schedule next run for 10-15 minutes in the future
|
|
const std::chrono::milliseconds delta = 10min + GetRandMillis(5min);
|
|
scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
|
|
}
|
|
|
|
/**
|
|
* Evict orphan txn pool entries based on a newly connected
|
|
* block, remember the recently confirmed transactions, and delete tracked
|
|
* announcements for them. Also save the time of the last tip update.
|
|
*/
|
|
void PeerManagerImpl::BlockConnected(const std::shared_ptr<const CBlock>& pblock, const CBlockIndex* pindex)
|
|
{
|
|
m_orphanage.EraseForBlock(*pblock);
|
|
m_last_tip_update = GetTime<std::chrono::seconds>();
|
|
|
|
{
|
|
LOCK(m_recent_confirmed_transactions_mutex);
|
|
for (const auto& ptx : pblock->vtx) {
|
|
m_recent_confirmed_transactions.insert(ptx->GetHash());
|
|
if (ptx->GetHash() != ptx->GetWitnessHash()) {
|
|
m_recent_confirmed_transactions.insert(ptx->GetWitnessHash());
|
|
}
|
|
}
|
|
}
|
|
{
|
|
LOCK(cs_main);
|
|
for (const auto& ptx : pblock->vtx) {
|
|
m_txrequest.ForgetTxHash(ptx->GetHash());
|
|
m_txrequest.ForgetTxHash(ptx->GetWitnessHash());
|
|
}
|
|
}
|
|
}
|
|
|
|
void PeerManagerImpl::BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex)
|
|
{
|
|
// To avoid relay problems with transactions that were previously
|
|
// confirmed, clear our filter of recently confirmed transactions whenever
|
|
// there's a reorg.
|
|
// This means that in a 1-block reorg (where 1 block is disconnected and
|
|
// then another block reconnected), our filter will drop to having only one
|
|
// block's worth of transactions in it, but that should be fine, since
|
|
// presumably the most common case of relaying a confirmed transaction
|
|
// should be just after a new block containing it is found.
|
|
LOCK(m_recent_confirmed_transactions_mutex);
|
|
m_recent_confirmed_transactions.reset();
|
|
}
|
|
|
|
/**
|
|
* Maintain state about the best-seen block and fast-announce a compact block
|
|
* to compatible peers.
|
|
*/
|
|
void PeerManagerImpl::NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock)
|
|
{
|
|
auto pcmpctblock = std::make_shared<const CBlockHeaderAndShortTxIDs>(*pblock);
|
|
const CNetMsgMaker msgMaker(PROTOCOL_VERSION);
|
|
|
|
LOCK(cs_main);
|
|
|
|
if (pindex->nHeight <= m_highest_fast_announce)
|
|
return;
|
|
m_highest_fast_announce = pindex->nHeight;
|
|
|
|
if (!DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) return;
|
|
|
|
uint256 hashBlock(pblock->GetHash());
|
|
const std::shared_future<CSerializedNetMsg> lazy_ser{
|
|
std::async(std::launch::deferred, [&] { return msgMaker.Make(NetMsgType::CMPCTBLOCK, *pcmpctblock); })};
|
|
|
|
{
|
|
LOCK(m_most_recent_block_mutex);
|
|
m_most_recent_block_hash = hashBlock;
|
|
m_most_recent_block = pblock;
|
|
m_most_recent_compact_block = pcmpctblock;
|
|
}
|
|
|
|
m_connman.ForEachNode([this, pindex, &lazy_ser, &hashBlock](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
|
|
AssertLockHeld(::cs_main);
|
|
|
|
if (pnode->GetCommonVersion() < INVALID_CB_NO_BAN_VERSION || pnode->fDisconnect)
|
|
return;
|
|
ProcessBlockAvailability(pnode->GetId());
|
|
CNodeState &state = *State(pnode->GetId());
|
|
// If the peer has, or we announced to them the previous block already,
|
|
// but we don't think they have this one, go ahead and announce it
|
|
if (state.m_requested_hb_cmpctblocks && !PeerHasHeader(&state, pindex) && PeerHasHeader(&state, pindex->pprev)) {
|
|
|
|
LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", "PeerManager::NewPoWValidBlock",
|
|
hashBlock.ToString(), pnode->GetId());
|
|
|
|
const CSerializedNetMsg& ser_cmpctblock{lazy_ser.get()};
|
|
m_connman.PushMessage(pnode, ser_cmpctblock.Copy());
|
|
state.pindexBestHeaderSent = pindex;
|
|
}
|
|
});
|
|
}
|
|
|
|
/**
|
|
* Update our best height and announce any block hashes which weren't previously
|
|
* in m_chainman.ActiveChain() to our peers.
|
|
*/
|
|
void PeerManagerImpl::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
|
|
{
|
|
SetBestHeight(pindexNew->nHeight);
|
|
SetServiceFlagsIBDCache(!fInitialDownload);
|
|
|
|
// Don't relay inventory during initial block download.
|
|
if (fInitialDownload) return;
|
|
|
|
// Find the hashes of all blocks that weren't previously in the best chain.
|
|
std::vector<uint256> vHashes;
|
|
const CBlockIndex *pindexToAnnounce = pindexNew;
|
|
while (pindexToAnnounce != pindexFork) {
|
|
vHashes.push_back(pindexToAnnounce->GetBlockHash());
|
|
pindexToAnnounce = pindexToAnnounce->pprev;
|
|
if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) {
|
|
// Limit announcements in case of a huge reorganization.
|
|
// Rely on the peer's synchronization mechanism in that case.
|
|
break;
|
|
}
|
|
}
|
|
|
|
{
|
|
LOCK(m_peer_mutex);
|
|
for (auto& it : m_peer_map) {
|
|
Peer& peer = *it.second;
|
|
LOCK(peer.m_block_inv_mutex);
|
|
for (const uint256& hash : reverse_iterate(vHashes)) {
|
|
peer.m_blocks_for_headers_relay.push_back(hash);
|
|
}
|
|
}
|
|
}
|
|
|
|
m_connman.WakeMessageHandler();
|
|
}
|
|
|
|
/**
|
|
* Handle invalid block rejection and consequent peer discouragement, maintain which
|
|
* peers announce compact blocks.
|
|
*/
|
|
void PeerManagerImpl::BlockChecked(const CBlock& block, const BlockValidationState& state)
|
|
{
|
|
LOCK(cs_main);
|
|
|
|
const uint256 hash(block.GetHash());
|
|
std::map<uint256, std::pair<NodeId, bool>>::iterator it = mapBlockSource.find(hash);
|
|
|
|
// If the block failed validation, we know where it came from and we're still connected
|
|
// to that peer, maybe punish.
|
|
if (state.IsInvalid() &&
|
|
it != mapBlockSource.end() &&
|
|
State(it->second.first)) {
|
|
MaybePunishNodeForBlock(/*nodeid=*/ it->second.first, state, /*via_compact_block=*/ !it->second.second);
|
|
}
|
|
// Check that:
|
|
// 1. The block is valid
|
|
// 2. We're not in initial block download
|
|
// 3. This is currently the best block we're aware of. We haven't updated
|
|
// the tip yet so we have no way to check this directly here. Instead we
|
|
// just check that there are currently no other blocks in flight.
|
|
else if (state.IsValid() &&
|
|
!m_chainman.ActiveChainstate().IsInitialBlockDownload() &&
|
|
mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) {
|
|
if (it != mapBlockSource.end()) {
|
|
MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first);
|
|
}
|
|
}
|
|
if (it != mapBlockSource.end())
|
|
mapBlockSource.erase(it);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Messages
|
|
//
|
|
|
|
|
|
bool PeerManagerImpl::AlreadyHaveTx(const GenTxid& gtxid)
|
|
{
|
|
if (m_chainman.ActiveChain().Tip()->GetBlockHash() != hashRecentRejectsChainTip) {
|
|
// If the chain tip has changed previously rejected transactions
|
|
// might be now valid, e.g. due to a nLockTime'd tx becoming valid,
|
|
// or a double-spend. Reset the rejects filter and give those
|
|
// txs a second chance.
|
|
hashRecentRejectsChainTip = m_chainman.ActiveChain().Tip()->GetBlockHash();
|
|
m_recent_rejects.reset();
|
|
}
|
|
|
|
const uint256& hash = gtxid.GetHash();
|
|
|
|
if (m_orphanage.HaveTx(gtxid)) return true;
|
|
|
|
{
|
|
LOCK(m_recent_confirmed_transactions_mutex);
|
|
if (m_recent_confirmed_transactions.contains(hash)) return true;
|
|
}
|
|
|
|
return m_recent_rejects.contains(hash) || m_mempool.exists(gtxid);
|
|
}
|
|
|
|
bool PeerManagerImpl::AlreadyHaveBlock(const uint256& block_hash)
|
|
{
|
|
return m_chainman.m_blockman.LookupBlockIndex(block_hash) != nullptr;
|
|
}
|
|
|
|
void PeerManagerImpl::SendPings()
|
|
{
|
|
LOCK(m_peer_mutex);
|
|
for(auto& it : m_peer_map) it.second->m_ping_queued = true;
|
|
}
|
|
|
|
void PeerManagerImpl::RelayTransaction(const uint256& txid, const uint256& wtxid)
|
|
{
|
|
LOCK(m_peer_mutex);
|
|
for(auto& it : m_peer_map) {
|
|
Peer& peer = *it.second;
|
|
auto tx_relay = peer.GetTxRelay();
|
|
if (!tx_relay) continue;
|
|
|
|
const uint256& hash{peer.m_wtxid_relay ? wtxid : txid};
|
|
LOCK(tx_relay->m_tx_inventory_mutex);
|
|
if (!tx_relay->m_tx_inventory_known_filter.contains(hash)) {
|
|
tx_relay->m_tx_inventory_to_send.insert(hash);
|
|
}
|
|
};
|
|
}
|
|
|
|
void PeerManagerImpl::RelayAddress(NodeId originator,
|
|
const CAddress& addr,
|
|
bool fReachable)
|
|
{
|
|
// We choose the same nodes within a given 24h window (if the list of connected
|
|
// nodes does not change) and we don't relay to nodes that already know an
|
|
// address. So within 24h we will likely relay a given address once. This is to
|
|
// prevent a peer from unjustly giving their address better propagation by sending
|
|
// it to us repeatedly.
|
|
|
|
if (!fReachable && !addr.IsRelayable()) return;
|
|
|
|
// Relay to a limited number of other nodes
|
|
// Use deterministic randomness to send to the same nodes for 24 hours
|
|
// at a time so the m_addr_knowns of the chosen nodes prevent repeats
|
|
const uint64_t hash_addr{CServiceHash(0, 0)(addr)};
|
|
const auto current_time{GetTime<std::chrono::seconds>()};
|
|
// Adding address hash makes exact rotation time different per address, while preserving periodicity.
|
|
const uint64_t time_addr{(static_cast<uint64_t>(count_seconds(current_time)) + hash_addr) / count_seconds(ROTATE_ADDR_RELAY_DEST_INTERVAL)};
|
|
const CSipHasher hasher{m_connman.GetDeterministicRandomizer(RANDOMIZER_ID_ADDRESS_RELAY)
|
|
.Write(hash_addr)
|
|
.Write(time_addr)};
|
|
FastRandomContext insecure_rand;
|
|
|
|
// Relay reachable addresses to 2 peers. Unreachable addresses are relayed randomly to 1 or 2 peers.
|
|
unsigned int nRelayNodes = (fReachable || (hasher.Finalize() & 1)) ? 2 : 1;
|
|
|
|
std::array<std::pair<uint64_t, Peer*>, 2> best{{{0, nullptr}, {0, nullptr}}};
|
|
assert(nRelayNodes <= best.size());
|
|
|
|
LOCK(m_peer_mutex);
|
|
|
|
for (auto& [id, peer] : m_peer_map) {
|
|
if (peer->m_addr_relay_enabled && id != originator && IsAddrCompatible(*peer, addr)) {
|
|
uint64_t hashKey = CSipHasher(hasher).Write(id).Finalize();
|
|
for (unsigned int i = 0; i < nRelayNodes; i++) {
|
|
if (hashKey > best[i].first) {
|
|
std::copy(best.begin() + i, best.begin() + nRelayNodes - 1, best.begin() + i + 1);
|
|
best[i] = std::make_pair(hashKey, peer.get());
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) {
|
|
PushAddress(*best[i].second, addr, insecure_rand);
|
|
}
|
|
}
|
|
|
|
void PeerManagerImpl::ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
|
|
{
|
|
std::shared_ptr<const CBlock> a_recent_block;
|
|
std::shared_ptr<const CBlockHeaderAndShortTxIDs> a_recent_compact_block;
|
|
{
|
|
LOCK(m_most_recent_block_mutex);
|
|
a_recent_block = m_most_recent_block;
|
|
a_recent_compact_block = m_most_recent_compact_block;
|
|
}
|
|
|
|
bool need_activate_chain = false;
|
|
{
|
|
LOCK(cs_main);
|
|
const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
|
|
if (pindex) {
|
|
if (pindex->HaveTxsDownloaded() && !pindex->IsValid(BLOCK_VALID_SCRIPTS) &&
|
|
pindex->IsValid(BLOCK_VALID_TREE)) {
|
|
// If we have the block and all of its parents, but have not yet validated it,
|
|
// we might be in the middle of connecting it (ie in the unlock of cs_main
|
|
// before ActivateBestChain but after AcceptBlock).
|
|
// In this case, we need to run ActivateBestChain prior to checking the relay
|
|
// conditions below.
|
|
need_activate_chain = true;
|
|
}
|
|
}
|
|
} // release cs_main before calling ActivateBestChain
|
|
if (need_activate_chain) {
|
|
BlockValidationState state;
|
|
if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
|
|
LogPrint(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
|
|
}
|
|
}
|
|
|
|
LOCK(cs_main);
|
|
const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
|
|
if (!pindex) {
|
|
return;
|
|
}
|
|
if (!BlockRequestAllowed(pindex)) {
|
|
LogPrint(BCLog::NET, "%s: ignoring request from peer=%i for old block that isn't in the main chain\n", __func__, pfrom.GetId());
|
|
return;
|
|
}
|
|
const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
|
|
// disconnect node in case we have reached the outbound limit for serving historical blocks
|
|
if (m_connman.OutboundTargetReached(true) &&
|
|
(((m_chainman.m_best_header != nullptr) && (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() > HISTORICAL_BLOCK_AGE)) || inv.IsMsgFilteredBlk()) &&
|
|
!pfrom.HasPermission(NetPermissionFlags::Download) // nodes with the download permission may exceed target
|
|
) {
|
|
LogPrint(BCLog::NET, "historical block serving limit reached, disconnect peer=%d\n", pfrom.GetId());
|
|
pfrom.fDisconnect = true;
|
|
return;
|
|
}
|
|
// Avoid leaking prune-height by never sending blocks below the NODE_NETWORK_LIMITED threshold
|
|
if (!pfrom.HasPermission(NetPermissionFlags::NoBan) && (
|
|
(((peer.m_our_services & NODE_NETWORK_LIMITED) == NODE_NETWORK_LIMITED) && ((peer.m_our_services & NODE_NETWORK) != NODE_NETWORK) && (m_chainman.ActiveChain().Tip()->nHeight - pindex->nHeight > (int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2 /* add two blocks buffer extension for possible races */) )
|
|
)) {
|
|
LogPrint(BCLog::NET, "Ignore block request below NODE_NETWORK_LIMITED threshold, disconnect peer=%d\n", pfrom.GetId());
|
|
//disconnect node and prevent it from stalling (would otherwise wait for the missing block)
|
|
pfrom.fDisconnect = true;
|
|
return;
|
|
}
|
|
// Pruned nodes may have deleted the block, so check whether
|
|
// it's available before trying to send.
|
|
if (!(pindex->nStatus & BLOCK_HAVE_DATA)) {
|
|
return;
|
|
}
|
|
std::shared_ptr<const CBlock> pblock;
|
|
if (a_recent_block && a_recent_block->GetHash() == pindex->GetBlockHash()) {
|
|
pblock = a_recent_block;
|
|
} else if (inv.IsMsgWitnessBlk()) {
|
|
// Fast-path: in this case it is possible to serve the block directly from disk,
|
|
// as the network format matches the format on disk
|
|
std::vector<uint8_t> block_data;
|
|
if (!ReadRawBlockFromDisk(block_data, pindex->GetBlockPos(), m_chainparams.MessageStart())) {
|
|
assert(!"cannot load block from disk");
|
|
}
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::BLOCK, Span{block_data}));
|
|
// Don't set pblock as we've sent the block
|
|
} else {
|
|
// Send block from disk
|
|
std::shared_ptr<CBlock> pblockRead = std::make_shared<CBlock>();
|
|
if (!ReadBlockFromDisk(*pblockRead, pindex, m_chainparams.GetConsensus())) {
|
|
assert(!"cannot load block from disk");
|
|
}
|
|
pblock = pblockRead;
|
|
}
|
|
if (pblock) {
|
|
if (inv.IsMsgBlk()) {
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(SERIALIZE_TRANSACTION_NO_WITNESS, NetMsgType::BLOCK, *pblock));
|
|
} else if (inv.IsMsgWitnessBlk()) {
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::BLOCK, *pblock));
|
|
} else if (inv.IsMsgFilteredBlk()) {
|
|
bool sendMerkleBlock = false;
|
|
CMerkleBlock merkleBlock;
|
|
if (auto tx_relay = peer.GetTxRelay(); tx_relay != nullptr) {
|
|
LOCK(tx_relay->m_bloom_filter_mutex);
|
|
if (tx_relay->m_bloom_filter) {
|
|
sendMerkleBlock = true;
|
|
merkleBlock = CMerkleBlock(*pblock, *tx_relay->m_bloom_filter);
|
|
}
|
|
}
|
|
if (sendMerkleBlock) {
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::MERKLEBLOCK, merkleBlock));
|
|
// CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see
|
|
// This avoids hurting performance by pointlessly requiring a round-trip
|
|
// Note that there is currently no way for a node to request any single transactions we didn't send here -
|
|
// they must either disconnect and retry or request the full block.
|
|
// Thus, the protocol spec specified allows for us to provide duplicate txn here,
|
|
// however we MUST always provide at least what the remote peer needs
|
|
typedef std::pair<unsigned int, uint256> PairType;
|
|
for (PairType& pair : merkleBlock.vMatchedTxn)
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(SERIALIZE_TRANSACTION_NO_WITNESS, NetMsgType::TX, *pblock->vtx[pair.first]));
|
|
}
|
|
// else
|
|
// no response
|
|
} else if (inv.IsMsgCmpctBlk()) {
|
|
// If a peer is asking for old blocks, we're almost guaranteed
|
|
// they won't have a useful mempool to match against a compact block,
|
|
// and we don't feel like constructing the object for them, so
|
|
// instead we respond with the full, non-compact block.
|
|
if (CanDirectFetch() && pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_CMPCTBLOCK_DEPTH) {
|
|
if (a_recent_compact_block && a_recent_compact_block->header.GetHash() == pindex->GetBlockHash()) {
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::CMPCTBLOCK, *a_recent_compact_block));
|
|
} else {
|
|
CBlockHeaderAndShortTxIDs cmpctblock{*pblock};
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::CMPCTBLOCK, cmpctblock));
|
|
}
|
|
} else {
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::BLOCK, *pblock));
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
LOCK(peer.m_block_inv_mutex);
|
|
// Trigger the peer node to send a getblocks request for the next batch of inventory
|
|
if (inv.hash == peer.m_continuation_block) {
|
|
// Send immediately. This must send even if redundant,
|
|
// and we want it right after the last block so they don't
|
|
// wait for other stuff first.
|
|
std::vector<CInv> vInv;
|
|
vInv.push_back(CInv(MSG_BLOCK, m_chainman.ActiveChain().Tip()->GetBlockHash()));
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::INV, vInv));
|
|
peer.m_continuation_block.SetNull();
|
|
}
|
|
}
|
|
}
|
|
|
|
CTransactionRef PeerManagerImpl::FindTxForGetData(const CNode& peer, const GenTxid& gtxid, const std::chrono::seconds mempool_req, const std::chrono::seconds now)
|
|
{
|
|
auto txinfo = m_mempool.info(gtxid);
|
|
if (txinfo.tx) {
|
|
// If a TX could have been INVed in reply to a MEMPOOL request,
|
|
// or is older than UNCONDITIONAL_RELAY_DELAY, permit the request
|
|
// unconditionally.
|
|
if ((mempool_req.count() && txinfo.m_time <= mempool_req) || txinfo.m_time <= now - UNCONDITIONAL_RELAY_DELAY) {
|
|
return std::move(txinfo.tx);
|
|
}
|
|
}
|
|
|
|
{
|
|
LOCK(cs_main);
|
|
// Otherwise, the transaction must have been announced recently.
|
|
if (State(peer.GetId())->m_recently_announced_invs.contains(gtxid.GetHash())) {
|
|
// If it was, it can be relayed from either the mempool...
|
|
if (txinfo.tx) return std::move(txinfo.tx);
|
|
// ... or the relay pool.
|
|
auto mi = mapRelay.find(gtxid.GetHash());
|
|
if (mi != mapRelay.end()) return mi->second;
|
|
}
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
void PeerManagerImpl::ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
|
|
{
|
|
AssertLockNotHeld(cs_main);
|
|
|
|
auto tx_relay = peer.GetTxRelay();
|
|
|
|
std::deque<CInv>::iterator it = peer.m_getdata_requests.begin();
|
|
std::vector<CInv> vNotFound;
|
|
const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
|
|
|
|
const auto now{GetTime<std::chrono::seconds>()};
|
|
// Get last mempool request time
|
|
const auto mempool_req = tx_relay != nullptr ? tx_relay->m_last_mempool_req.load() : std::chrono::seconds::min();
|
|
|
|
// Process as many TX items from the front of the getdata queue as
|
|
// possible, since they're common and it's efficient to batch process
|
|
// them.
|
|
while (it != peer.m_getdata_requests.end() && it->IsGenTxMsg()) {
|
|
if (interruptMsgProc) return;
|
|
// The send buffer provides backpressure. If there's no space in
|
|
// the buffer, pause processing until the next call.
|
|
if (pfrom.fPauseSend) break;
|
|
|
|
const CInv &inv = *it++;
|
|
|
|
if (tx_relay == nullptr) {
|
|
// Ignore GETDATA requests for transactions from block-relay-only
|
|
// peers and peers that asked us not to announce transactions.
|
|
continue;
|
|
}
|
|
|
|
CTransactionRef tx = FindTxForGetData(pfrom, ToGenTxid(inv), mempool_req, now);
|
|
if (tx) {
|
|
// WTX and WITNESS_TX imply we serialize with witness
|
|
int nSendFlags = (inv.IsMsgTx() ? SERIALIZE_TRANSACTION_NO_WITNESS : 0);
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(nSendFlags, NetMsgType::TX, *tx));
|
|
m_mempool.RemoveUnbroadcastTx(tx->GetHash());
|
|
// As we're going to send tx, make sure its unconfirmed parents are made requestable.
|
|
std::vector<uint256> parent_ids_to_add;
|
|
{
|
|
LOCK(m_mempool.cs);
|
|
auto txiter = m_mempool.GetIter(tx->GetHash());
|
|
if (txiter) {
|
|
const CTxMemPoolEntry::Parents& parents = (*txiter)->GetMemPoolParentsConst();
|
|
parent_ids_to_add.reserve(parents.size());
|
|
for (const CTxMemPoolEntry& parent : parents) {
|
|
if (parent.GetTime() > now - UNCONDITIONAL_RELAY_DELAY) {
|
|
parent_ids_to_add.push_back(parent.GetTx().GetHash());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (const uint256& parent_txid : parent_ids_to_add) {
|
|
// Relaying a transaction with a recent but unconfirmed parent.
|
|
if (WITH_LOCK(tx_relay->m_tx_inventory_mutex, return !tx_relay->m_tx_inventory_known_filter.contains(parent_txid))) {
|
|
LOCK(cs_main);
|
|
State(pfrom.GetId())->m_recently_announced_invs.insert(parent_txid);
|
|
}
|
|
}
|
|
} else {
|
|
vNotFound.push_back(inv);
|
|
}
|
|
}
|
|
|
|
// Only process one BLOCK item per call, since they're uncommon and can be
|
|
// expensive to process.
|
|
if (it != peer.m_getdata_requests.end() && !pfrom.fPauseSend) {
|
|
const CInv &inv = *it++;
|
|
if (inv.IsGenBlkMsg()) {
|
|
ProcessGetBlockData(pfrom, peer, inv);
|
|
}
|
|
// else: If the first item on the queue is an unknown type, we erase it
|
|
// and continue processing the queue on the next call.
|
|
}
|
|
|
|
peer.m_getdata_requests.erase(peer.m_getdata_requests.begin(), it);
|
|
|
|
if (!vNotFound.empty()) {
|
|
// Let the peer know that we didn't find what it asked for, so it doesn't
|
|
// have to wait around forever.
|
|
// SPV clients care about this message: it's needed when they are
|
|
// recursively walking the dependencies of relevant unconfirmed
|
|
// transactions. SPV clients want to do that because they want to know
|
|
// about (and store and rebroadcast and risk analyze) the dependencies
|
|
// of transactions relevant to them, without having to download the
|
|
// entire memory pool.
|
|
// Also, other nodes can use these messages to automatically request a
|
|
// transaction from some other peer that annnounced it, and stop
|
|
// waiting for us to respond.
|
|
// In normal operation, we often send NOTFOUND messages for parents of
|
|
// transactions that we relay; if a peer is missing a parent, they may
|
|
// assume we have them and request the parents from us.
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::NOTFOUND, vNotFound));
|
|
}
|
|
}
|
|
|
|
uint32_t PeerManagerImpl::GetFetchFlags(const Peer& peer) const
|
|
{
|
|
uint32_t nFetchFlags = 0;
|
|
if (CanServeWitnesses(peer)) {
|
|
nFetchFlags |= MSG_WITNESS_FLAG;
|
|
}
|
|
return nFetchFlags;
|
|
}
|
|
|
|
void PeerManagerImpl::SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req)
|
|
{
|
|
BlockTransactions resp(req);
|
|
for (size_t i = 0; i < req.indexes.size(); i++) {
|
|
if (req.indexes[i] >= block.vtx.size()) {
|
|
Misbehaving(peer, 100, "getblocktxn with out-of-bounds tx indices");
|
|
return;
|
|
}
|
|
resp.txn[i] = block.vtx[req.indexes[i]];
|
|
}
|
|
|
|
const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::BLOCKTXN, resp));
|
|
}
|
|
|
|
bool PeerManagerImpl::CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer)
|
|
{
|
|
// Do these headers have proof-of-work matching what's claimed?
|
|
if (!HasValidProofOfWork(headers, consensusParams)) {
|
|
Misbehaving(peer, 100, "header with invalid proof of work");
|
|
return false;
|
|
}
|
|
|
|
// Are these headers connected to each other?
|
|
if (!CheckHeadersAreContinuous(headers)) {
|
|
Misbehaving(peer, 20, "non-continuous headers sequence");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
arith_uint256 PeerManagerImpl::GetAntiDoSWorkThreshold()
|
|
{
|
|
arith_uint256 near_chaintip_work = 0;
|
|
LOCK(cs_main);
|
|
if (m_chainman.ActiveChain().Tip() != nullptr) {
|
|
const CBlockIndex *tip = m_chainman.ActiveChain().Tip();
|
|
// Use a 144 block buffer, so that we'll accept headers that fork from
|
|
// near our tip.
|
|
near_chaintip_work = tip->nChainWork - std::min<arith_uint256>(144*GetBlockProof(*tip), tip->nChainWork);
|
|
}
|
|
return std::max(near_chaintip_work, arith_uint256(nMinimumChainWork));
|
|
}
|
|
|
|
/**
|
|
* Special handling for unconnecting headers that might be part of a block
|
|
* announcement.
|
|
*
|
|
* We'll send a getheaders message in response to try to connect the chain.
|
|
*
|
|
* The peer can send up to MAX_UNCONNECTING_HEADERS in a row that
|
|
* don't connect before given DoS points.
|
|
*
|
|
* Once a headers message is received that is valid and does connect,
|
|
* nUnconnectingHeaders gets reset back to 0.
|
|
*/
|
|
void PeerManagerImpl::HandleFewUnconnectingHeaders(CNode& pfrom, Peer& peer,
|
|
const std::vector<CBlockHeader>& headers)
|
|
{
|
|
const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
|
|
|
|
LOCK(cs_main);
|
|
CNodeState *nodestate = State(pfrom.GetId());
|
|
|
|
nodestate->nUnconnectingHeaders++;
|
|
// Try to fill in the missing headers.
|
|
if (MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), peer)) {
|
|
LogPrint(BCLog::NET, "received header %s: missing prev block %s, sending getheaders (%d) to end (peer=%d, nUnconnectingHeaders=%d)\n",
|
|
headers[0].GetHash().ToString(),
|
|
headers[0].hashPrevBlock.ToString(),
|
|
m_chainman.m_best_header->nHeight,
|
|
pfrom.GetId(), nodestate->nUnconnectingHeaders);
|
|
}
|
|
// Set hashLastUnknownBlock for this peer, so that if we
|
|
// eventually get the headers - even from a different peer -
|
|
// we can use this peer to download.
|
|
UpdateBlockAvailability(pfrom.GetId(), headers.back().GetHash());
|
|
|
|
// The peer may just be broken, so periodically assign DoS points if this
|
|
// condition persists.
|
|
if (nodestate->nUnconnectingHeaders % MAX_UNCONNECTING_HEADERS == 0) {
|
|
Misbehaving(peer, 20, strprintf("%d non-connecting headers", nodestate->nUnconnectingHeaders));
|
|
}
|
|
}
|
|
|
|
bool PeerManagerImpl::CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const
|
|
{
|
|
uint256 hashLastBlock;
|
|
for (const CBlockHeader& header : headers) {
|
|
if (!hashLastBlock.IsNull() && header.hashPrevBlock != hashLastBlock) {
|
|
return false;
|
|
}
|
|
hashLastBlock = header.GetHash();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool PeerManagerImpl::IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom, std::vector<CBlockHeader>& headers)
|
|
{
|
|
if (peer.m_headers_sync) {
|
|
auto result = peer.m_headers_sync->ProcessNextHeaders(headers, headers.size() == MAX_HEADERS_RESULTS);
|
|
if (result.request_more) {
|
|
auto locator = peer.m_headers_sync->NextHeadersRequestLocator();
|
|
// If we were instructed to ask for a locator, it should not be empty.
|
|
Assume(!locator.vHave.empty());
|
|
if (!locator.vHave.empty()) {
|
|
// It should be impossible for the getheaders request to fail,
|
|
// because we should have cleared the last getheaders timestamp
|
|
// when processing the headers that triggered this call. But
|
|
// it may be possible to bypass this via compactblock
|
|
// processing, so check the result before logging just to be
|
|
// safe.
|
|
bool sent_getheaders = MaybeSendGetHeaders(pfrom, locator, peer);
|
|
if (sent_getheaders) {
|
|
LogPrint(BCLog::NET, "more getheaders (from %s) to peer=%d\n",
|
|
locator.vHave.front().ToString(), pfrom.GetId());
|
|
} else {
|
|
LogPrint(BCLog::NET, "error sending next getheaders (from %s) to continue sync with peer=%d\n",
|
|
locator.vHave.front().ToString(), pfrom.GetId());
|
|
}
|
|
}
|
|
}
|
|
|
|
if (peer.m_headers_sync->GetState() == HeadersSyncState::State::FINAL) {
|
|
peer.m_headers_sync.reset(nullptr);
|
|
|
|
// Delete this peer's entry in m_headers_presync_stats.
|
|
// If this is m_headers_presync_bestpeer, it will be replaced later
|
|
// by the next peer that triggers the else{} branch below.
|
|
LOCK(m_headers_presync_mutex);
|
|
m_headers_presync_stats.erase(pfrom.GetId());
|
|
} else {
|
|
// Build statistics for this peer's sync.
|
|
HeadersPresyncStats stats;
|
|
stats.first = peer.m_headers_sync->GetPresyncWork();
|
|
if (peer.m_headers_sync->GetState() == HeadersSyncState::State::PRESYNC) {
|
|
stats.second = {peer.m_headers_sync->GetPresyncHeight(),
|
|
peer.m_headers_sync->GetPresyncTime()};
|
|
}
|
|
|
|
// Update statistics in stats.
|
|
LOCK(m_headers_presync_mutex);
|
|
m_headers_presync_stats[pfrom.GetId()] = stats;
|
|
auto best_it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
|
|
bool best_updated = false;
|
|
if (best_it == m_headers_presync_stats.end()) {
|
|
// If the cached best peer is outdated, iterate over all remaining ones (including
|
|
// newly updated one) to find the best one.
|
|
NodeId peer_best{-1};
|
|
const HeadersPresyncStats* stat_best{nullptr};
|
|
for (const auto& [peer, stat] : m_headers_presync_stats) {
|
|
if (!stat_best || stat > *stat_best) {
|
|
peer_best = peer;
|
|
stat_best = &stat;
|
|
}
|
|
}
|
|
m_headers_presync_bestpeer = peer_best;
|
|
best_updated = (peer_best == pfrom.GetId());
|
|
} else if (best_it->first == pfrom.GetId() || stats > best_it->second) {
|
|
// pfrom was and remains the best peer, or pfrom just became best.
|
|
m_headers_presync_bestpeer = pfrom.GetId();
|
|
best_updated = true;
|
|
}
|
|
if (best_updated && stats.second.has_value()) {
|
|
// If the best peer updated, and it is in its first phase, signal.
|
|
m_headers_presync_should_signal = true;
|
|
}
|
|
}
|
|
|
|
if (result.success) {
|
|
// We only overwrite the headers passed in if processing was
|
|
// successful.
|
|
headers.swap(result.pow_validated_headers);
|
|
}
|
|
|
|
return result.success;
|
|
}
|
|
// Either we didn't have a sync in progress, or something went wrong
|
|
// processing these headers, or we are returning headers to the caller to
|
|
// process.
|
|
return false;
|
|
}
|
|
|
|
bool PeerManagerImpl::TryLowWorkHeadersSync(Peer& peer, CNode& pfrom, const CBlockIndex* chain_start_header, std::vector<CBlockHeader>& headers)
|
|
{
|
|
// Calculate the total work on this chain.
|
|
arith_uint256 total_work = chain_start_header->nChainWork + CalculateHeadersWork(headers);
|
|
|
|
// Our dynamic anti-DoS threshold (minimum work required on a headers chain
|
|
// before we'll store it)
|
|
arith_uint256 minimum_chain_work = GetAntiDoSWorkThreshold();
|
|
|
|
// Avoid DoS via low-difficulty-headers by only processing if the headers
|
|
// are part of a chain with sufficient work.
|
|
if (total_work < minimum_chain_work) {
|
|
// Only try to sync with this peer if their headers message was full;
|
|
// otherwise they don't have more headers after this so no point in
|
|
// trying to sync their too-little-work chain.
|
|
if (headers.size() == MAX_HEADERS_RESULTS) {
|
|
// Note: we could advance to the last header in this set that is
|
|
// known to us, rather than starting at the first header (which we
|
|
// may already have); however this is unlikely to matter much since
|
|
// ProcessHeadersMessage() already handles the case where all
|
|
// headers in a received message are already known and are
|
|
// ancestors of m_best_header or chainActive.Tip(), by skipping
|
|
// this logic in that case. So even if the first header in this set
|
|
// of headers is known, some header in this set must be new, so
|
|
// advancing to the first unknown header would be a small effect.
|
|
LOCK(peer.m_headers_sync_mutex);
|
|
peer.m_headers_sync.reset(new HeadersSyncState(peer.m_id, m_chainparams.GetConsensus(),
|
|
chain_start_header, minimum_chain_work));
|
|
|
|
// Now a HeadersSyncState object for tracking this synchronization is created,
|
|
// process the headers using it as normal.
|
|
return IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
|
|
} else {
|
|
LogPrint(BCLog::NET, "Ignoring low-work chain (height=%u) from peer=%d\n", chain_start_header->nHeight + headers.size(), pfrom.GetId());
|
|
// Since this is a low-work headers chain, no further processing is required.
|
|
headers = {};
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool PeerManagerImpl::IsAncestorOfBestHeaderOrTip(const CBlockIndex* header)
|
|
{
|
|
if (header == nullptr) {
|
|
return false;
|
|
} else if (m_chainman.m_best_header != nullptr && header == m_chainman.m_best_header->GetAncestor(header->nHeight)) {
|
|
return true;
|
|
} else if (m_chainman.ActiveChain().Contains(header)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool PeerManagerImpl::MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer)
|
|
{
|
|
const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
|
|
|
|
const auto current_time = NodeClock::now();
|
|
|
|
// Only allow a new getheaders message to go out if we don't have a recent
|
|
// one already in-flight
|
|
if (current_time - peer.m_last_getheaders_timestamp > HEADERS_RESPONSE_TIME) {
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETHEADERS, locator, uint256()));
|
|
peer.m_last_getheaders_timestamp = current_time;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Given a new headers tip ending in pindexLast, potentially request blocks towards that tip.
|
|
* We require that the given tip have at least as much work as our tip, and for
|
|
* our current tip to be "close to synced" (see CanDirectFetch()).
|
|
*/
|
|
void PeerManagerImpl::HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex* pindexLast)
|
|
{
|
|
const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
|
|
|
|
LOCK(cs_main);
|
|
CNodeState *nodestate = State(pfrom.GetId());
|
|
|
|
if (CanDirectFetch() && pindexLast->IsValid(BLOCK_VALID_TREE) && m_chainman.ActiveChain().Tip()->nChainWork <= pindexLast->nChainWork) {
|
|
|
|
std::vector<const CBlockIndex*> vToFetch;
|
|
const CBlockIndex *pindexWalk = pindexLast;
|
|
// Calculate all the blocks we'd need to switch to pindexLast, up to a limit.
|
|
while (pindexWalk && !m_chainman.ActiveChain().Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
|
|
if (!(pindexWalk->nStatus & BLOCK_HAVE_DATA) &&
|
|
!IsBlockRequested(pindexWalk->GetBlockHash()) &&
|
|
(!DeploymentActiveAt(*pindexWalk, m_chainman, Consensus::DEPLOYMENT_SEGWIT) || CanServeWitnesses(peer))) {
|
|
// We don't have this block, and it's not yet in flight.
|
|
vToFetch.push_back(pindexWalk);
|
|
}
|
|
pindexWalk = pindexWalk->pprev;
|
|
}
|
|
// If pindexWalk still isn't on our main chain, we're looking at a
|
|
// very large reorg at a time we think we're close to caught up to
|
|
// the main chain -- this shouldn't really happen. Bail out on the
|
|
// direct fetch and rely on parallel download instead.
|
|
if (!m_chainman.ActiveChain().Contains(pindexWalk)) {
|
|
LogPrint(BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n",
|
|
pindexLast->GetBlockHash().ToString(),
|
|
pindexLast->nHeight);
|
|
} else {
|
|
std::vector<CInv> vGetData;
|
|
// Download as much as possible, from earliest to latest.
|
|
for (const CBlockIndex *pindex : reverse_iterate(vToFetch)) {
|
|
if (nodestate->nBlocksInFlight >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
|
|
// Can't download any more from this peer
|
|
break;
|
|
}
|
|
uint32_t nFetchFlags = GetFetchFlags(peer);
|
|
vGetData.push_back(CInv(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash()));
|
|
BlockRequested(pfrom.GetId(), *pindex);
|
|
LogPrint(BCLog::NET, "Requesting block %s from peer=%d\n",
|
|
pindex->GetBlockHash().ToString(), pfrom.GetId());
|
|
}
|
|
if (vGetData.size() > 1) {
|
|
LogPrint(BCLog::NET, "Downloading blocks toward %s (%d) via headers direct fetch\n",
|
|
pindexLast->GetBlockHash().ToString(), pindexLast->nHeight);
|
|
}
|
|
if (vGetData.size() > 0) {
|
|
if (!m_ignore_incoming_txs &&
|
|
nodestate->m_provides_cmpctblocks &&
|
|
vGetData.size() == 1 &&
|
|
mapBlocksInFlight.size() == 1 &&
|
|
pindexLast->pprev->IsValid(BLOCK_VALID_CHAIN)) {
|
|
// In any case, we want to download using a compact block, not a regular one
|
|
vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash);
|
|
}
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETDATA, vGetData));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Given receipt of headers from a peer ending in pindexLast, along with
|
|
* whether that header was new and whether the headers message was full,
|
|
* update the state we keep for the peer.
|
|
*/
|
|
void PeerManagerImpl::UpdatePeerStateForReceivedHeaders(CNode& pfrom,
|
|
const CBlockIndex *pindexLast, bool received_new_header, bool may_have_more_headers)
|
|
{
|
|
LOCK(cs_main);
|
|
CNodeState *nodestate = State(pfrom.GetId());
|
|
if (nodestate->nUnconnectingHeaders > 0) {
|
|
LogPrint(BCLog::NET, "peer=%d: resetting nUnconnectingHeaders (%d -> 0)\n", pfrom.GetId(), nodestate->nUnconnectingHeaders);
|
|
}
|
|
nodestate->nUnconnectingHeaders = 0;
|
|
|
|
assert(pindexLast);
|
|
UpdateBlockAvailability(pfrom.GetId(), pindexLast->GetBlockHash());
|
|
|
|
// From here, pindexBestKnownBlock should be guaranteed to be non-null,
|
|
// because it is set in UpdateBlockAvailability. Some nullptr checks
|
|
// are still present, however, as belt-and-suspenders.
|
|
|
|
if (received_new_header && pindexLast->nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
|
|
nodestate->m_last_block_announcement = GetTime();
|
|
}
|
|
|
|
// If we're in IBD, we want outbound peers that will serve us a useful
|
|
// chain. Disconnect peers that are on chains with insufficient work.
|
|
if (m_chainman.ActiveChainstate().IsInitialBlockDownload() && !may_have_more_headers) {
|
|
// If the peer has no more headers to give us, then we know we have
|
|
// their tip.
|
|
if (nodestate->pindexBestKnownBlock && nodestate->pindexBestKnownBlock->nChainWork < nMinimumChainWork) {
|
|
// This peer has too little work on their headers chain to help
|
|
// us sync -- disconnect if it is an outbound disconnection
|
|
// candidate.
|
|
// Note: We compare their tip to nMinimumChainWork (rather than
|
|
// m_chainman.ActiveChain().Tip()) because we won't start block download
|
|
// until we have a headers chain that has at least
|
|
// nMinimumChainWork, even if a peer has a chain past our tip,
|
|
// as an anti-DoS measure.
|
|
if (pfrom.IsOutboundOrBlockRelayConn()) {
|
|
LogPrintf("Disconnecting outbound peer %d -- headers chain has insufficient work\n", pfrom.GetId());
|
|
pfrom.fDisconnect = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this is an outbound full-relay peer, check to see if we should protect
|
|
// it from the bad/lagging chain logic.
|
|
// Note that outbound block-relay peers are excluded from this protection, and
|
|
// thus always subject to eviction under the bad/lagging chain logic.
|
|
// See ChainSyncTimeoutState.
|
|
if (!pfrom.fDisconnect && pfrom.IsFullOutboundConn() && nodestate->pindexBestKnownBlock != nullptr) {
|
|
if (m_outbound_peers_with_protect_from_disconnect < MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT && nodestate->pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork && !nodestate->m_chain_sync.m_protect) {
|
|
LogPrint(BCLog::NET, "Protecting outbound peer=%d from eviction\n", pfrom.GetId());
|
|
nodestate->m_chain_sync.m_protect = true;
|
|
++m_outbound_peers_with_protect_from_disconnect;
|
|
}
|
|
}
|
|
}
|
|
|
|
void PeerManagerImpl::ProcessHeadersMessage(CNode& pfrom, Peer& peer,
|
|
std::vector<CBlockHeader>&& headers,
|
|
bool via_compact_block)
|
|
{
|
|
size_t nCount = headers.size();
|
|
|
|
if (nCount == 0) {
|
|
// Nothing interesting. Stop asking this peers for more headers.
|
|
// If we were in the middle of headers sync, receiving an empty headers
|
|
// message suggests that the peer suddenly has nothing to give us
|
|
// (perhaps it reorged to our chain). Clear download state for this peer.
|
|
LOCK(peer.m_headers_sync_mutex);
|
|
if (peer.m_headers_sync) {
|
|
peer.m_headers_sync.reset(nullptr);
|
|
LOCK(m_headers_presync_mutex);
|
|
m_headers_presync_stats.erase(pfrom.GetId());
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Before we do any processing, make sure these pass basic sanity checks.
|
|
// We'll rely on headers having valid proof-of-work further down, as an
|
|
// anti-DoS criteria (note: this check is required before passing any
|
|
// headers into HeadersSyncState).
|
|
if (!CheckHeadersPoW(headers, m_chainparams.GetConsensus(), peer)) {
|
|
// Misbehaving() calls are handled within CheckHeadersPoW(), so we can
|
|
// just return. (Note that even if a header is announced via compact
|
|
// block, the header itself should be valid, so this type of error can
|
|
// always be punished.)
|
|
return;
|
|
}
|
|
|
|
const CBlockIndex *pindexLast = nullptr;
|
|
|
|
// We'll set already_validated_work to true if these headers are
|
|
// successfully processed as part of a low-work headers sync in progress
|
|
// (either in PRESYNC or REDOWNLOAD phase).
|
|
// If true, this will mean that any headers returned to us (ie during
|
|
// REDOWNLOAD) can be validated without further anti-DoS checks.
|
|
bool already_validated_work = false;
|
|
|
|
// If we're in the middle of headers sync, let it do its magic.
|
|
bool have_headers_sync = false;
|
|
{
|
|
LOCK(peer.m_headers_sync_mutex);
|
|
|
|
already_validated_work = IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
|
|
|
|
// The headers we passed in may have been:
|
|
// - untouched, perhaps if no headers-sync was in progress, or some
|
|
// failure occurred
|
|
// - erased, such as if the headers were successfully processed and no
|
|
// additional headers processing needs to take place (such as if we
|
|
// are still in PRESYNC)
|
|
// - replaced with headers that are now ready for validation, such as
|
|
// during the REDOWNLOAD phase of a low-work headers sync.
|
|
// So just check whether we still have headers that we need to process,
|
|
// or not.
|
|
if (headers.empty()) {
|
|
return;
|
|
}
|
|
|
|
have_headers_sync = !!peer.m_headers_sync;
|
|
}
|
|
|
|
// Do these headers connect to something in our block index?
|
|
const CBlockIndex *chain_start_header{WITH_LOCK(::cs_main, return m_chainman.m_blockman.LookupBlockIndex(headers[0].hashPrevBlock))};
|
|
bool headers_connect_blockindex{chain_start_header != nullptr};
|
|
|
|
if (!headers_connect_blockindex) {
|
|
if (nCount <= MAX_BLOCKS_TO_ANNOUNCE) {
|
|
// If this looks like it could be a BIP 130 block announcement, use
|
|
// special logic for handling headers that don't connect, as this
|
|
// could be benign.
|
|
HandleFewUnconnectingHeaders(pfrom, peer, headers);
|
|
} else {
|
|
Misbehaving(peer, 10, "invalid header received");
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If the headers we received are already in memory and an ancestor of
|
|
// m_best_header or our tip, skip anti-DoS checks. These headers will not
|
|
// use any more memory (and we are not leaking information that could be
|
|
// used to fingerprint us).
|
|
const CBlockIndex *last_received_header{nullptr};
|
|
{
|
|
LOCK(cs_main);
|
|
last_received_header = m_chainman.m_blockman.LookupBlockIndex(headers.back().GetHash());
|
|
if (IsAncestorOfBestHeaderOrTip(last_received_header)) {
|
|
already_validated_work = true;
|
|
}
|
|
}
|
|
|
|
// If our peer has NetPermissionFlags::NoBan privileges, then bypass our
|
|
// anti-DoS logic (this saves bandwidth when we connect to a trusted peer
|
|
// on startup).
|
|
if (pfrom.HasPermission(NetPermissionFlags::NoBan)) {
|
|
already_validated_work = true;
|
|
}
|
|
|
|
// At this point, the headers connect to something in our block index.
|
|
// Do anti-DoS checks to determine if we should process or store for later
|
|
// processing.
|
|
if (!already_validated_work && TryLowWorkHeadersSync(peer, pfrom,
|
|
chain_start_header, headers)) {
|
|
// If we successfully started a low-work headers sync, then there
|
|
// should be no headers to process any further.
|
|
Assume(headers.empty());
|
|
return;
|
|
}
|
|
|
|
// At this point, we have a set of headers with sufficient work on them
|
|
// which can be processed.
|
|
|
|
// If we don't have the last header, then this peer will have given us
|
|
// something new (if these headers are valid).
|
|
bool received_new_header{last_received_header != nullptr};
|
|
|
|
// Now process all the headers.
|
|
BlockValidationState state;
|
|
if (!m_chainman.ProcessNewBlockHeaders(headers, /*min_pow_checked=*/true, state, &pindexLast)) {
|
|
if (state.IsInvalid()) {
|
|
MaybePunishNodeForBlock(pfrom.GetId(), state, via_compact_block, "invalid header received");
|
|
return;
|
|
}
|
|
}
|
|
Assume(pindexLast);
|
|
|
|
// Consider fetching more headers if we are not using our headers-sync mechanism.
|
|
if (nCount == MAX_HEADERS_RESULTS && !have_headers_sync) {
|
|
// Headers message had its maximum size; the peer may have more headers.
|
|
if (MaybeSendGetHeaders(pfrom, GetLocator(pindexLast), peer)) {
|
|
LogPrint(BCLog::NET, "more getheaders (%d) to end to peer=%d (startheight:%d)\n",
|
|
pindexLast->nHeight, pfrom.GetId(), peer.m_starting_height);
|
|
}
|
|
}
|
|
|
|
UpdatePeerStateForReceivedHeaders(pfrom, pindexLast, received_new_header, nCount == MAX_HEADERS_RESULTS);
|
|
|
|
// Consider immediately downloading blocks.
|
|
HeadersDirectFetchBlocks(pfrom, peer, pindexLast);
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* Reconsider orphan transactions after a parent has been accepted to the mempool.
|
|
*
|
|
* @param[in,out] orphan_work_set The set of orphan transactions to reconsider. Generally only one
|
|
* orphan will be reconsidered on each call of this function. This set
|
|
* may be added to if accepting an orphan causes its children to be
|
|
* reconsidered.
|
|
*/
|
|
void PeerManagerImpl::ProcessOrphanTx(std::set<uint256>& orphan_work_set)
|
|
{
|
|
AssertLockHeld(cs_main);
|
|
AssertLockHeld(g_cs_orphans);
|
|
|
|
while (!orphan_work_set.empty()) {
|
|
const uint256 orphanHash = *orphan_work_set.begin();
|
|
orphan_work_set.erase(orphan_work_set.begin());
|
|
|
|
const auto [porphanTx, from_peer] = m_orphanage.GetTx(orphanHash);
|
|
if (porphanTx == nullptr) continue;
|
|
|
|
const MempoolAcceptResult result = m_chainman.ProcessTransaction(porphanTx);
|
|
const TxValidationState& state = result.m_state;
|
|
|
|
if (result.m_result_type == MempoolAcceptResult::ResultType::VALID) {
|
|
LogPrint(BCLog::MEMPOOL, " accepted orphan tx %s\n", orphanHash.ToString());
|
|
RelayTransaction(orphanHash, porphanTx->GetWitnessHash());
|
|
m_orphanage.AddChildrenToWorkSet(*porphanTx, orphan_work_set);
|
|
m_orphanage.EraseTx(orphanHash);
|
|
for (const CTransactionRef& removedTx : result.m_replaced_transactions.value()) {
|
|
AddToCompactExtraTransactions(removedTx);
|
|
}
|
|
break;
|
|
} else if (state.GetResult() != TxValidationResult::TX_MISSING_INPUTS) {
|
|
if (state.IsInvalid()) {
|
|
LogPrint(BCLog::MEMPOOL, " invalid orphan tx %s from peer=%d. %s\n",
|
|
orphanHash.ToString(),
|
|
from_peer,
|
|
state.ToString());
|
|
// Maybe punish peer that gave us an invalid orphan tx
|
|
MaybePunishNodeForTx(from_peer, state);
|
|
}
|
|
// Has inputs but not accepted to mempool
|
|
// Probably non-standard or insufficient fee
|
|
LogPrint(BCLog::MEMPOOL, " removed orphan tx %s\n", orphanHash.ToString());
|
|
if (state.GetResult() != TxValidationResult::TX_WITNESS_STRIPPED) {
|
|
// We can add the wtxid of this transaction to our reject filter.
|
|
// Do not add txids of witness transactions or witness-stripped
|
|
// transactions to the filter, as they can have been malleated;
|
|
// adding such txids to the reject filter would potentially
|
|
// interfere with relay of valid transactions from peers that
|
|
// do not support wtxid-based relay. See
|
|
// https://github.com/bitcoin/bitcoin/issues/8279 for details.
|
|
// We can remove this restriction (and always add wtxids to
|
|
// the filter even for witness stripped transactions) once
|
|
// wtxid-based relay is broadly deployed.
|
|
// See also comments in https://github.com/bitcoin/bitcoin/pull/18044#discussion_r443419034
|
|
// for concerns around weakening security of unupgraded nodes
|
|
// if we start doing this too early.
|
|
m_recent_rejects.insert(porphanTx->GetWitnessHash());
|
|
// If the transaction failed for TX_INPUTS_NOT_STANDARD,
|
|
// then we know that the witness was irrelevant to the policy
|
|
// failure, since this check depends only on the txid
|
|
// (the scriptPubKey being spent is covered by the txid).
|
|
// Add the txid to the reject filter to prevent repeated
|
|
// processing of this transaction in the event that child
|
|
// transactions are later received (resulting in
|
|
// parent-fetching by txid via the orphan-handling logic).
|
|
if (state.GetResult() == TxValidationResult::TX_INPUTS_NOT_STANDARD && porphanTx->GetWitnessHash() != porphanTx->GetHash()) {
|
|
// We only add the txid if it differs from the wtxid, to
|
|
// avoid wasting entries in the rolling bloom filter.
|
|
m_recent_rejects.insert(porphanTx->GetHash());
|
|
}
|
|
}
|
|
m_orphanage.EraseTx(orphanHash);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool PeerManagerImpl::PrepareBlockFilterRequest(CNode& node, Peer& peer,
|
|
BlockFilterType filter_type, uint32_t start_height,
|
|
const uint256& stop_hash, uint32_t max_height_diff,
|
|
const CBlockIndex*& stop_index,
|
|
BlockFilterIndex*& filter_index)
|
|
{
|
|
const bool supported_filter_type =
|
|
(filter_type == BlockFilterType::BASIC &&
|
|
(peer.m_our_services & NODE_COMPACT_FILTERS));
|
|
if (!supported_filter_type) {
|
|
LogPrint(BCLog::NET, "peer %d requested unsupported block filter type: %d\n",
|
|
node.GetId(), static_cast<uint8_t>(filter_type));
|
|
node.fDisconnect = true;
|
|
return false;
|
|
}
|
|
|
|
{
|
|
LOCK(cs_main);
|
|
stop_index = m_chainman.m_blockman.LookupBlockIndex(stop_hash);
|
|
|
|
// Check that the stop block exists and the peer would be allowed to fetch it.
|
|
if (!stop_index || !BlockRequestAllowed(stop_index)) {
|
|
LogPrint(BCLog::NET, "peer %d requested invalid block hash: %s\n",
|
|
node.GetId(), stop_hash.ToString());
|
|
node.fDisconnect = true;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
uint32_t stop_height = stop_index->nHeight;
|
|
if (start_height > stop_height) {
|
|
LogPrint(BCLog::NET, "peer %d sent invalid getcfilters/getcfheaders with " /* Continued */
|
|
"start height %d and stop height %d\n",
|
|
node.GetId(), start_height, stop_height);
|
|
node.fDisconnect = true;
|
|
return false;
|
|
}
|
|
if (stop_height - start_height >= max_height_diff) {
|
|
LogPrint(BCLog::NET, "peer %d requested too many cfilters/cfheaders: %d / %d\n",
|
|
node.GetId(), stop_height - start_height + 1, max_height_diff);
|
|
node.fDisconnect = true;
|
|
return false;
|
|
}
|
|
|
|
filter_index = GetBlockFilterIndex(filter_type);
|
|
if (!filter_index) {
|
|
LogPrint(BCLog::NET, "Filter index for supported type %s not found\n", BlockFilterTypeName(filter_type));
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void PeerManagerImpl::ProcessGetCFilters(CNode& node,Peer& peer, CDataStream& vRecv)
|
|
{
|
|
uint8_t filter_type_ser;
|
|
uint32_t start_height;
|
|
uint256 stop_hash;
|
|
|
|
vRecv >> filter_type_ser >> start_height >> stop_hash;
|
|
|
|
const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
|
|
|
|
const CBlockIndex* stop_index;
|
|
BlockFilterIndex* filter_index;
|
|
if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
|
|
MAX_GETCFILTERS_SIZE, stop_index, filter_index)) {
|
|
return;
|
|
}
|
|
|
|
std::vector<BlockFilter> filters;
|
|
if (!filter_index->LookupFilterRange(start_height, stop_index, filters)) {
|
|
LogPrint(BCLog::NET, "Failed to find block filter in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
|
|
BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
|
|
return;
|
|
}
|
|
|
|
for (const auto& filter : filters) {
|
|
CSerializedNetMsg msg = CNetMsgMaker(node.GetCommonVersion())
|
|
.Make(NetMsgType::CFILTER, filter);
|
|
m_connman.PushMessage(&node, std::move(msg));
|
|
}
|
|
}
|
|
|
|
void PeerManagerImpl::ProcessGetCFHeaders(CNode& node, Peer& peer, CDataStream& vRecv)
|
|
{
|
|
uint8_t filter_type_ser;
|
|
uint32_t start_height;
|
|
uint256 stop_hash;
|
|
|
|
vRecv >> filter_type_ser >> start_height >> stop_hash;
|
|
|
|
const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
|
|
|
|
const CBlockIndex* stop_index;
|
|
BlockFilterIndex* filter_index;
|
|
if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
|
|
MAX_GETCFHEADERS_SIZE, stop_index, filter_index)) {
|
|
return;
|
|
}
|
|
|
|
uint256 prev_header;
|
|
if (start_height > 0) {
|
|
const CBlockIndex* const prev_block =
|
|
stop_index->GetAncestor(static_cast<int>(start_height - 1));
|
|
if (!filter_index->LookupFilterHeader(prev_block, prev_header)) {
|
|
LogPrint(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
|
|
BlockFilterTypeName(filter_type), prev_block->GetBlockHash().ToString());
|
|
return;
|
|
}
|
|
}
|
|
|
|
std::vector<uint256> filter_hashes;
|
|
if (!filter_index->LookupFilterHashRange(start_height, stop_index, filter_hashes)) {
|
|
LogPrint(BCLog::NET, "Failed to find block filter hashes in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
|
|
BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
|
|
return;
|
|
}
|
|
|
|
CSerializedNetMsg msg = CNetMsgMaker(node.GetCommonVersion())
|
|
.Make(NetMsgType::CFHEADERS,
|
|
filter_type_ser,
|
|
stop_index->GetBlockHash(),
|
|
prev_header,
|
|
filter_hashes);
|
|
m_connman.PushMessage(&node, std::move(msg));
|
|
}
|
|
|
|
void PeerManagerImpl::ProcessGetCFCheckPt(CNode& node, Peer& peer, CDataStream& vRecv)
|
|
{
|
|
uint8_t filter_type_ser;
|
|
uint256 stop_hash;
|
|
|
|
vRecv >> filter_type_ser >> stop_hash;
|
|
|
|
const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
|
|
|
|
const CBlockIndex* stop_index;
|
|
BlockFilterIndex* filter_index;
|
|
if (!PrepareBlockFilterRequest(node, peer, filter_type, /*start_height=*/0, stop_hash,
|
|
/*max_height_diff=*/std::numeric_limits<uint32_t>::max(),
|
|
stop_index, filter_index)) {
|
|
return;
|
|
}
|
|
|
|
std::vector<uint256> headers(stop_index->nHeight / CFCHECKPT_INTERVAL);
|
|
|
|
// Populate headers.
|
|
const CBlockIndex* block_index = stop_index;
|
|
for (int i = headers.size() - 1; i >= 0; i--) {
|
|
int height = (i + 1) * CFCHECKPT_INTERVAL;
|
|
block_index = block_index->GetAncestor(height);
|
|
|
|
if (!filter_index->LookupFilterHeader(block_index, headers[i])) {
|
|
LogPrint(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
|
|
BlockFilterTypeName(filter_type), block_index->GetBlockHash().ToString());
|
|
return;
|
|
}
|
|
}
|
|
|
|
CSerializedNetMsg msg = CNetMsgMaker(node.GetCommonVersion())
|
|
.Make(NetMsgType::CFCHECKPT,
|
|
filter_type_ser,
|
|
stop_index->GetBlockHash(),
|
|
headers);
|
|
m_connman.PushMessage(&node, std::move(msg));
|
|
}
|
|
|
|
void PeerManagerImpl::ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked)
|
|
{
|
|
bool new_block{false};
|
|
m_chainman.ProcessNewBlock(block, force_processing, min_pow_checked, &new_block);
|
|
if (new_block) {
|
|
node.m_last_block_time = GetTime<std::chrono::seconds>();
|
|
} else {
|
|
LOCK(cs_main);
|
|
mapBlockSource.erase(block->GetHash());
|
|
}
|
|
}
|
|
|
|
void PeerManagerImpl::ProcessMessage(CNode& pfrom, const std::string& msg_type, CDataStream& vRecv,
|
|
const std::chrono::microseconds time_received,
|
|
const std::atomic<bool>& interruptMsgProc)
|
|
{
|
|
AssertLockHeld(g_msgproc_mutex);
|
|
|
|
LogPrint(BCLog::NET, "received: %s (%u bytes) peer=%d\n", SanitizeString(msg_type), vRecv.size(), pfrom.GetId());
|
|
|
|
PeerRef peer = GetPeerRef(pfrom.GetId());
|
|
if (peer == nullptr) return;
|
|
|
|
if (msg_type == NetMsgType::VERSION) {
|
|
if (pfrom.nVersion != 0) {
|
|
LogPrint(BCLog::NET, "redundant version message from peer=%d\n", pfrom.GetId());
|
|
return;
|
|
}
|
|
|
|
int64_t nTime;
|
|
CService addrMe;
|
|
uint64_t nNonce = 1;
|
|
ServiceFlags nServices;
|
|
int nVersion;
|
|
std::string cleanSubVer;
|
|
int starting_height = -1;
|
|
bool fRelay = true;
|
|
|
|
vRecv >> nVersion >> Using<CustomUintFormatter<8>>(nServices) >> nTime;
|
|
if (nTime < 0) {
|
|
nTime = 0;
|
|
}
|
|
vRecv.ignore(8); // Ignore the addrMe service bits sent by the peer
|
|
vRecv >> addrMe;
|
|
if (!pfrom.IsInboundConn())
|
|
{
|
|
m_addrman.SetServices(pfrom.addr, nServices);
|
|
}
|
|
if (pfrom.ExpectServicesFromConn() && !HasAllDesirableServiceFlags(nServices))
|
|
{
|
|
LogPrint(BCLog::NET, "peer=%d does not offer the expected services (%08x offered, %08x expected); disconnecting\n", pfrom.GetId(), nServices, GetDesirableServiceFlags(nServices));
|
|
pfrom.fDisconnect = true;
|
|
return;
|
|
}
|
|
|
|
if (nVersion < MIN_PEER_PROTO_VERSION) {
|
|
// disconnect from peers older than this proto version
|
|
LogPrint(BCLog::NET, "peer=%d using obsolete version %i; disconnecting\n", pfrom.GetId(), nVersion);
|
|
pfrom.fDisconnect = true;
|
|
return;
|
|
}
|
|
|
|
if (!vRecv.empty()) {
|
|
// The version message includes information about the sending node which we don't use:
|
|
// - 8 bytes (service bits)
|
|
// - 16 bytes (ipv6 address)
|
|
// - 2 bytes (port)
|
|
vRecv.ignore(26);
|
|
vRecv >> nNonce;
|
|
}
|
|
if (!vRecv.empty()) {
|
|
std::string strSubVer;
|
|
vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH);
|
|
cleanSubVer = SanitizeString(strSubVer);
|
|
}
|
|
if (!vRecv.empty()) {
|
|
vRecv >> starting_height;
|
|
}
|
|
if (!vRecv.empty())
|
|
vRecv >> fRelay;
|
|
// Disconnect if we connected to ourself
|
|
if (pfrom.IsInboundConn() && !m_connman.CheckIncomingNonce(nNonce))
|
|
{
|
|
LogPrintf("connected to self at %s, disconnecting\n", pfrom.addr.ToString());
|
|
pfrom.fDisconnect = true;
|
|
return;
|
|
}
|
|
|
|
if (pfrom.IsInboundConn() && addrMe.IsRoutable())
|
|
{
|
|
SeenLocal(addrMe);
|
|
}
|
|
|
|
// Inbound peers send us their version message when they connect.
|
|
// We send our version message in response.
|
|
if (pfrom.IsInboundConn()) {
|
|
PushNodeVersion(pfrom, *peer);
|
|
}
|
|
|
|
// Change version
|
|
const int greatest_common_version = std::min(nVersion, PROTOCOL_VERSION);
|
|
pfrom.SetCommonVersion(greatest_common_version);
|
|
pfrom.nVersion = nVersion;
|
|
|
|
const CNetMsgMaker msg_maker(greatest_common_version);
|
|
|
|
if (greatest_common_version >= WTXID_RELAY_VERSION) {
|
|
m_connman.PushMessage(&pfrom, msg_maker.Make(NetMsgType::WTXIDRELAY));
|
|
}
|
|
|
|
// Signal ADDRv2 support (BIP155).
|
|
if (greatest_common_version >= 70016) {
|
|
// BIP155 defines addrv2 and sendaddrv2 for all protocol versions, but some
|
|
// implementations reject messages they don't know. As a courtesy, don't send
|
|
// it to nodes with a version before 70016, as no software is known to support
|
|
// BIP155 that doesn't announce at least that protocol version number.
|
|
m_connman.PushMessage(&pfrom, msg_maker.Make(NetMsgType::SENDADDRV2));
|
|
}
|
|
|
|
m_connman.PushMessage(&pfrom, msg_maker.Make(NetMsgType::VERACK));
|
|
|
|
pfrom.m_has_all_wanted_services = HasAllDesirableServiceFlags(nServices);
|
|
peer->m_their_services = nServices;
|
|
pfrom.SetAddrLocal(addrMe);
|
|
{
|
|
LOCK(pfrom.m_subver_mutex);
|
|
pfrom.cleanSubVer = cleanSubVer;
|
|
}
|
|
peer->m_starting_height = starting_height;
|
|
|
|
// We only initialize the m_tx_relay data structure if:
|
|
// - this isn't an outbound block-relay-only connection; and
|
|
// - fRelay=true or we're offering NODE_BLOOM to this peer
|
|
// (NODE_BLOOM means that the peer may turn on tx relay later)
|
|
if (!pfrom.IsBlockOnlyConn() &&
|
|
(fRelay || (peer->m_our_services & NODE_BLOOM))) {
|
|
auto* const tx_relay = peer->SetTxRelay();
|
|
{
|
|
LOCK(tx_relay->m_bloom_filter_mutex);
|
|
tx_relay->m_relay_txs = fRelay; // set to true after we get the first filter* message
|
|
}
|
|
if (fRelay) pfrom.m_relays_txs = true;
|
|
}
|
|
|
|
// Potentially mark this peer as a preferred download peer.
|
|
{
|
|
LOCK(cs_main);
|
|
CNodeState* state = State(pfrom.GetId());
|
|
state->fPreferredDownload = (!pfrom.IsInboundConn() || pfrom.HasPermission(NetPermissionFlags::NoBan)) && !pfrom.IsAddrFetchConn() && CanServeBlocks(*peer);
|
|
m_num_preferred_download_peers += state->fPreferredDownload;
|
|
}
|
|
|
|
// Self advertisement & GETADDR logic
|
|
if (!pfrom.IsInboundConn() && SetupAddressRelay(pfrom, *peer)) {
|
|
// For outbound peers, we try to relay our address (so that other
|
|
// nodes can try to find us more quickly, as we have no guarantee
|
|
// that an outbound peer is even aware of how to reach us) and do a
|
|
// one-time address fetch (to help populate/update our addrman). If
|
|
// we're starting up for the first time, our addrman may be pretty
|
|
// empty and no one will know who we are, so these mechanisms are
|
|
// important to help us connect to the network.
|
|
//
|
|
// We skip this for block-relay-only peers. We want to avoid
|
|
// potentially leaking addr information and we do not want to
|
|
// indicate to the peer that we will participate in addr relay.
|
|
if (fListen && !m_chainman.ActiveChainstate().IsInitialBlockDownload())
|
|
{
|
|
CAddress addr{GetLocalAddress(pfrom.addr), peer->m_our_services, Now<NodeSeconds>()};
|
|
FastRandomContext insecure_rand;
|
|
if (addr.IsRoutable())
|
|
{
|
|
LogPrint(BCLog::NET, "ProcessMessages: advertising address %s\n", addr.ToString());
|
|
PushAddress(*peer, addr, insecure_rand);
|
|
} else if (IsPeerAddrLocalGood(&pfrom)) {
|
|
// Override just the address with whatever the peer sees us as.
|
|
// Leave the port in addr as it was returned by GetLocalAddress()
|
|
// above, as this is an outbound connection and the peer cannot
|
|
// observe our listening port.
|
|
addr.SetIP(addrMe);
|
|
LogPrint(BCLog::NET, "ProcessMessages: advertising address %s\n", addr.ToString());
|
|
PushAddress(*peer, addr, insecure_rand);
|
|
}
|
|
}
|
|
|
|
// Get recent addresses
|
|
m_connman.PushMessage(&pfrom, CNetMsgMaker(greatest_common_version).Make(NetMsgType::GETADDR));
|
|
peer->m_getaddr_sent = true;
|
|
// When requesting a getaddr, accept an additional MAX_ADDR_TO_SEND addresses in response
|
|
// (bypassing the MAX_ADDR_PROCESSING_TOKEN_BUCKET limit).
|
|
peer->m_addr_token_bucket += MAX_ADDR_TO_SEND;
|
|
}
|
|
|
|
if (!pfrom.IsInboundConn()) {
|
|
// For non-inbound connections, we update the addrman to record
|
|
// connection success so that addrman will have an up-to-date
|
|
// notion of which peers are online and available.
|
|
//
|
|
// While we strive to not leak information about block-relay-only
|
|
// connections via the addrman, not moving an address to the tried
|
|
// table is also potentially detrimental because new-table entries
|
|
// are subject to eviction in the event of addrman collisions. We
|
|
// mitigate the information-leak by never calling
|
|
// AddrMan::Connected() on block-relay-only peers; see
|
|
// FinalizeNode().
|
|
//
|
|
// This moves an address from New to Tried table in Addrman,
|
|
// resolves tried-table collisions, etc.
|
|
m_addrman.Good(pfrom.addr);
|
|
}
|
|
|
|
std::string remoteAddr;
|
|
if (fLogIPs)
|
|
remoteAddr = ", peeraddr=" + pfrom.addr.ToString();
|
|
|
|
LogPrint(BCLog::NET, "receive version message: %s: version %d, blocks=%d, us=%s, txrelay=%d, peer=%d%s\n",
|
|
cleanSubVer, pfrom.nVersion,
|
|
peer->m_starting_height, addrMe.ToString(), fRelay, pfrom.GetId(),
|
|
remoteAddr);
|
|
|
|
int64_t nTimeOffset = nTime - GetTime();
|
|
pfrom.nTimeOffset = nTimeOffset;
|
|
if (!pfrom.IsInboundConn()) {
|
|
// Don't use timedata samples from inbound peers to make it
|
|
// harder for others to tamper with our adjusted time.
|
|
AddTimeData(pfrom.addr, nTimeOffset);
|
|
}
|
|
|
|
// If the peer is old enough to have the old alert system, send it the final alert.
|
|
if (greatest_common_version <= 70012) {
|
|
CDataStream finalAlert(ParseHex("60010000000000000000000000ffffff7f00000000ffffff7ffeffff7f01ffffff7f00000000ffffff7f00ffffff7f002f555247454e543a20416c657274206b657920636f6d70726f6d697365642c2075706772616465207265717569726564004630440220653febd6410f470f6bae11cad19c48413becb1ac2c17f908fd0fd53bdc3abd5202206d0e9c96fe88d4a0f01ed9dedae2b6f9e00da94cad0fecaae66ecf689bf71b50"), SER_NETWORK, PROTOCOL_VERSION);
|
|
m_connman.PushMessage(&pfrom, CNetMsgMaker(greatest_common_version).Make("alert", finalAlert));
|
|
}
|
|
|
|
// Feeler connections exist only to verify if address is online.
|
|
if (pfrom.IsFeelerConn()) {
|
|
LogPrint(BCLog::NET, "feeler connection completed peer=%d; disconnecting\n", pfrom.GetId());
|
|
pfrom.fDisconnect = true;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (pfrom.nVersion == 0) {
|
|
// Must have a version message before anything else
|
|
LogPrint(BCLog::NET, "non-version message before version handshake. Message \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
|
|
return;
|
|
}
|
|
|
|
// At this point, the outgoing message serialization version can't change.
|
|
const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
|
|
|
|
if (msg_type == NetMsgType::VERACK) {
|
|
if (pfrom.fSuccessfullyConnected) {
|
|
LogPrint(BCLog::NET, "ignoring redundant verack message from peer=%d\n", pfrom.GetId());
|
|
return;
|
|
}
|
|
|
|
if (!pfrom.IsInboundConn()) {
|
|
LogPrintf("New outbound peer connected: version: %d, blocks=%d, peer=%d%s (%s)\n",
|
|
pfrom.nVersion.load(), peer->m_starting_height,
|
|
pfrom.GetId(), (fLogIPs ? strprintf(", peeraddr=%s", pfrom.addr.ToString()) : ""),
|
|
pfrom.ConnectionTypeAsString());
|
|
}
|
|
|
|
if (pfrom.GetCommonVersion() >= SHORT_IDS_BLOCKS_VERSION) {
|
|
// Tell our peer we are willing to provide version 2 cmpctblocks.
|
|
// However, we do not request new block announcements using
|
|
// cmpctblock messages.
|
|
// We send this to non-NODE NETWORK peers as well, because
|
|
// they may wish to request compact blocks from us
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION));
|
|
}
|
|
pfrom.fSuccessfullyConnected = true;
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::SENDHEADERS) {
|
|
LOCK(cs_main);
|
|
State(pfrom.GetId())->fPreferHeaders = true;
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::SENDCMPCT) {
|
|
bool sendcmpct_hb{false};
|
|
uint64_t sendcmpct_version{0};
|
|
vRecv >> sendcmpct_hb >> sendcmpct_version;
|
|
|
|
// Only support compact block relay with witnesses
|
|
if (sendcmpct_version != CMPCTBLOCKS_VERSION) return;
|
|
|
|
LOCK(cs_main);
|
|
CNodeState* nodestate = State(pfrom.GetId());
|
|
nodestate->m_provides_cmpctblocks = true;
|
|
nodestate->m_requested_hb_cmpctblocks = sendcmpct_hb;
|
|
// save whether peer selects us as BIP152 high-bandwidth peer
|
|
// (receiving sendcmpct(1) signals high-bandwidth, sendcmpct(0) low-bandwidth)
|
|
pfrom.m_bip152_highbandwidth_from = sendcmpct_hb;
|
|
return;
|
|
}
|
|
|
|
// BIP339 defines feature negotiation of wtxidrelay, which must happen between
|
|
// VERSION and VERACK to avoid relay problems from switching after a connection is up.
|
|
if (msg_type == NetMsgType::WTXIDRELAY) {
|
|
if (pfrom.fSuccessfullyConnected) {
|
|
// Disconnect peers that send a wtxidrelay message after VERACK.
|
|
LogPrint(BCLog::NET, "wtxidrelay received after verack from peer=%d; disconnecting\n", pfrom.GetId());
|
|
pfrom.fDisconnect = true;
|
|
return;
|
|
}
|
|
if (pfrom.GetCommonVersion() >= WTXID_RELAY_VERSION) {
|
|
if (!peer->m_wtxid_relay) {
|
|
peer->m_wtxid_relay = true;
|
|
m_wtxid_relay_peers++;
|
|
} else {
|
|
LogPrint(BCLog::NET, "ignoring duplicate wtxidrelay from peer=%d\n", pfrom.GetId());
|
|
}
|
|
} else {
|
|
LogPrint(BCLog::NET, "ignoring wtxidrelay due to old common version=%d from peer=%d\n", pfrom.GetCommonVersion(), pfrom.GetId());
|
|
}
|
|
return;
|
|
}
|
|
|
|
// BIP155 defines feature negotiation of addrv2 and sendaddrv2, which must happen
|
|
// between VERSION and VERACK.
|
|
if (msg_type == NetMsgType::SENDADDRV2) {
|
|
if (pfrom.fSuccessfullyConnected) {
|
|
// Disconnect peers that send a SENDADDRV2 message after VERACK.
|
|
LogPrint(BCLog::NET, "sendaddrv2 received after verack from peer=%d; disconnecting\n", pfrom.GetId());
|
|
pfrom.fDisconnect = true;
|
|
return;
|
|
}
|
|
peer->m_wants_addrv2 = true;
|
|
return;
|
|
}
|
|
|
|
if (!pfrom.fSuccessfullyConnected) {
|
|
LogPrint(BCLog::NET, "Unsupported message \"%s\" prior to verack from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::ADDR || msg_type == NetMsgType::ADDRV2) {
|
|
int stream_version = vRecv.GetVersion();
|
|
if (msg_type == NetMsgType::ADDRV2) {
|
|
// Add ADDRV2_FORMAT to the version so that the CNetAddr and CAddress
|
|
// unserialize methods know that an address in v2 format is coming.
|
|
stream_version |= ADDRV2_FORMAT;
|
|
}
|
|
|
|
OverrideStream<CDataStream> s(&vRecv, vRecv.GetType(), stream_version);
|
|
std::vector<CAddress> vAddr;
|
|
|
|
s >> vAddr;
|
|
|
|
if (!SetupAddressRelay(pfrom, *peer)) {
|
|
LogPrint(BCLog::NET, "ignoring %s message from %s peer=%d\n", msg_type, pfrom.ConnectionTypeAsString(), pfrom.GetId());
|
|
return;
|
|
}
|
|
|
|
if (vAddr.size() > MAX_ADDR_TO_SEND)
|
|
{
|
|
Misbehaving(*peer, 20, strprintf("%s message size = %u", msg_type, vAddr.size()));
|
|
return;
|
|
}
|
|
|
|
// Store the new addresses
|
|
std::vector<CAddress> vAddrOk;
|
|
const auto current_a_time{Now<NodeSeconds>()};
|
|
|
|
// Update/increment addr rate limiting bucket.
|
|
const auto current_time{GetTime<std::chrono::microseconds>()};
|
|
if (peer->m_addr_token_bucket < MAX_ADDR_PROCESSING_TOKEN_BUCKET) {
|
|
// Don't increment bucket if it's already full
|
|
const auto time_diff = std::max(current_time - peer->m_addr_token_timestamp, 0us);
|
|
const double increment = Ticks<SecondsDouble>(time_diff) * MAX_ADDR_RATE_PER_SECOND;
|
|
peer->m_addr_token_bucket = std::min<double>(peer->m_addr_token_bucket + increment, MAX_ADDR_PROCESSING_TOKEN_BUCKET);
|
|
}
|
|
peer->m_addr_token_timestamp = current_time;
|
|
|
|
const bool rate_limited = !pfrom.HasPermission(NetPermissionFlags::Addr);
|
|
uint64_t num_proc = 0;
|
|
uint64_t num_rate_limit = 0;
|
|
Shuffle(vAddr.begin(), vAddr.end(), FastRandomContext());
|
|
for (CAddress& addr : vAddr)
|
|
{
|
|
if (interruptMsgProc)
|
|
return;
|
|
|
|
// Apply rate limiting.
|
|
if (peer->m_addr_token_bucket < 1.0) {
|
|
if (rate_limited) {
|
|
++num_rate_limit;
|
|
continue;
|
|
}
|
|
} else {
|
|
peer->m_addr_token_bucket -= 1.0;
|
|
}
|
|
// We only bother storing full nodes, though this may include
|
|
// things which we would not make an outbound connection to, in
|
|
// part because we may make feeler connections to them.
|
|
if (!MayHaveUsefulAddressDB(addr.nServices) && !HasAllDesirableServiceFlags(addr.nServices))
|
|
continue;
|
|
|
|
if (addr.nTime <= NodeSeconds{100000000s} || addr.nTime > current_a_time + 10min) {
|
|
addr.nTime = current_a_time - 5 * 24h;
|
|
}
|
|
AddAddressKnown(*peer, addr);
|
|
if (m_banman && (m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr))) {
|
|
// Do not process banned/discouraged addresses beyond remembering we received them
|
|
continue;
|
|
}
|
|
++num_proc;
|
|
bool fReachable = IsReachable(addr);
|
|
if (addr.nTime > current_a_time - 10min && !peer->m_getaddr_sent && vAddr.size() <= 10 && addr.IsRoutable()) {
|
|
// Relay to a limited number of other nodes
|
|
RelayAddress(pfrom.GetId(), addr, fReachable);
|
|
}
|
|
// Do not store addresses outside our network
|
|
if (fReachable)
|
|
vAddrOk.push_back(addr);
|
|
}
|
|
peer->m_addr_processed += num_proc;
|
|
peer->m_addr_rate_limited += num_rate_limit;
|
|
LogPrint(BCLog::NET, "Received addr: %u addresses (%u processed, %u rate-limited) from peer=%d\n",
|
|
vAddr.size(), num_proc, num_rate_limit, pfrom.GetId());
|
|
|
|
m_addrman.Add(vAddrOk, pfrom.addr, 2h);
|
|
if (vAddr.size() < 1000) peer->m_getaddr_sent = false;
|
|
|
|
// AddrFetch: Require multiple addresses to avoid disconnecting on self-announcements
|
|
if (pfrom.IsAddrFetchConn() && vAddr.size() > 1) {
|
|
LogPrint(BCLog::NET, "addrfetch connection completed peer=%d; disconnecting\n", pfrom.GetId());
|
|
pfrom.fDisconnect = true;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::INV) {
|
|
std::vector<CInv> vInv;
|
|
vRecv >> vInv;
|
|
if (vInv.size() > MAX_INV_SZ)
|
|
{
|
|
Misbehaving(*peer, 20, strprintf("inv message size = %u", vInv.size()));
|
|
return;
|
|
}
|
|
|
|
const bool reject_tx_invs{RejectIncomingTxs(pfrom)};
|
|
|
|
LOCK(cs_main);
|
|
|
|
const auto current_time{GetTime<std::chrono::microseconds>()};
|
|
uint256* best_block{nullptr};
|
|
|
|
for (CInv& inv : vInv) {
|
|
if (interruptMsgProc) return;
|
|
|
|
// Ignore INVs that don't match wtxidrelay setting.
|
|
// Note that orphan parent fetching always uses MSG_TX GETDATAs regardless of the wtxidrelay setting.
|
|
// This is fine as no INV messages are involved in that process.
|
|
if (peer->m_wtxid_relay) {
|
|
if (inv.IsMsgTx()) continue;
|
|
} else {
|
|
if (inv.IsMsgWtx()) continue;
|
|
}
|
|
|
|
if (inv.IsMsgBlk()) {
|
|
const bool fAlreadyHave = AlreadyHaveBlock(inv.hash);
|
|
LogPrint(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
|
|
|
|
UpdateBlockAvailability(pfrom.GetId(), inv.hash);
|
|
if (!fAlreadyHave && !fImporting && !fReindex && !IsBlockRequested(inv.hash)) {
|
|
// Headers-first is the primary method of announcement on
|
|
// the network. If a node fell back to sending blocks by
|
|
// inv, it may be for a re-org, or because we haven't
|
|
// completed initial headers sync. The final block hash
|
|
// provided should be the highest, so send a getheaders and
|
|
// then fetch the blocks we need to catch up.
|
|
best_block = &inv.hash;
|
|
}
|
|
} else if (inv.IsGenTxMsg()) {
|
|
if (reject_tx_invs) {
|
|
LogPrint(BCLog::NET, "transaction (%s) inv sent in violation of protocol, disconnecting peer=%d\n", inv.hash.ToString(), pfrom.GetId());
|
|
pfrom.fDisconnect = true;
|
|
return;
|
|
}
|
|
const GenTxid gtxid = ToGenTxid(inv);
|
|
const bool fAlreadyHave = AlreadyHaveTx(gtxid);
|
|
LogPrint(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
|
|
|
|
AddKnownTx(*peer, inv.hash);
|
|
if (!fAlreadyHave && !m_chainman.ActiveChainstate().IsInitialBlockDownload()) {
|
|
AddTxAnnouncement(pfrom, gtxid, current_time);
|
|
}
|
|
} else {
|
|
LogPrint(BCLog::NET, "Unknown inv type \"%s\" received from peer=%d\n", inv.ToString(), pfrom.GetId());
|
|
}
|
|
}
|
|
|
|
if (best_block != nullptr) {
|
|
// If we haven't started initial headers-sync with this peer, then
|
|
// consider sending a getheaders now. On initial startup, there's a
|
|
// reliability vs bandwidth tradeoff, where we are only trying to do
|
|
// initial headers sync with one peer at a time, with a long
|
|
// timeout (at which point, if the sync hasn't completed, we will
|
|
// disconnect the peer and then choose another). In the meantime,
|
|
// as new blocks are found, we are willing to add one new peer per
|
|
// block to sync with as well, to sync quicker in the case where
|
|
// our initial peer is unresponsive (but less bandwidth than we'd
|
|
// use if we turned on sync with all peers).
|
|
CNodeState& state{*Assert(State(pfrom.GetId()))};
|
|
if (state.fSyncStarted || (!peer->m_inv_triggered_getheaders_before_sync && *best_block != m_last_block_inv_triggering_headers_sync)) {
|
|
if (MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer)) {
|
|
LogPrint(BCLog::NET, "getheaders (%d) %s to peer=%d\n",
|
|
m_chainman.m_best_header->nHeight, best_block->ToString(),
|
|
pfrom.GetId());
|
|
}
|
|
if (!state.fSyncStarted) {
|
|
peer->m_inv_triggered_getheaders_before_sync = true;
|
|
// Update the last block hash that triggered a new headers
|
|
// sync, so that we don't turn on headers sync with more
|
|
// than 1 new peer every new block.
|
|
m_last_block_inv_triggering_headers_sync = *best_block;
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::GETDATA) {
|
|
std::vector<CInv> vInv;
|
|
vRecv >> vInv;
|
|
if (vInv.size() > MAX_INV_SZ)
|
|
{
|
|
Misbehaving(*peer, 20, strprintf("getdata message size = %u", vInv.size()));
|
|
return;
|
|
}
|
|
|
|
LogPrint(BCLog::NET, "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom.GetId());
|
|
|
|
if (vInv.size() > 0) {
|
|
LogPrint(BCLog::NET, "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom.GetId());
|
|
}
|
|
|
|
{
|
|
LOCK(peer->m_getdata_requests_mutex);
|
|
peer->m_getdata_requests.insert(peer->m_getdata_requests.end(), vInv.begin(), vInv.end());
|
|
ProcessGetData(pfrom, *peer, interruptMsgProc);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::GETBLOCKS) {
|
|
CBlockLocator locator;
|
|
uint256 hashStop;
|
|
vRecv >> locator >> hashStop;
|
|
|
|
if (locator.vHave.size() > MAX_LOCATOR_SZ) {
|
|
LogPrint(BCLog::NET, "getblocks locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId());
|
|
pfrom.fDisconnect = true;
|
|
return;
|
|
}
|
|
|
|
// We might have announced the currently-being-connected tip using a
|
|
// compact block, which resulted in the peer sending a getblocks
|
|
// request, which we would otherwise respond to without the new block.
|
|
// To avoid this situation we simply verify that we are on our best
|
|
// known chain now. This is super overkill, but we handle it better
|
|
// for getheaders requests, and there are no known nodes which support
|
|
// compact blocks but still use getblocks to request blocks.
|
|
{
|
|
std::shared_ptr<const CBlock> a_recent_block;
|
|
{
|
|
LOCK(m_most_recent_block_mutex);
|
|
a_recent_block = m_most_recent_block;
|
|
}
|
|
BlockValidationState state;
|
|
if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
|
|
LogPrint(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
|
|
}
|
|
}
|
|
|
|
LOCK(cs_main);
|
|
|
|
// Find the last block the caller has in the main chain
|
|
const CBlockIndex* pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
|
|
|
|
// Send the rest of the chain
|
|
if (pindex)
|
|
pindex = m_chainman.ActiveChain().Next(pindex);
|
|
int nLimit = 500;
|
|
LogPrint(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom.GetId());
|
|
for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
|
|
{
|
|
if (pindex->GetBlockHash() == hashStop)
|
|
{
|
|
LogPrint(BCLog::NET, " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
|
|
break;
|
|
}
|
|
// If pruning, don't inv blocks unless we have on disk and are likely to still have
|
|
// for some reasonable time window (1 hour) that block relay might require.
|
|
const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / m_chainparams.GetConsensus().nPowTargetSpacing;
|
|
if (fPruneMode && (!(pindex->nStatus & BLOCK_HAVE_DATA) || pindex->nHeight <= m_chainman.ActiveChain().Tip()->nHeight - nPrunedBlocksLikelyToHave))
|
|
{
|
|
LogPrint(BCLog::NET, " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
|
|
break;
|
|
}
|
|
WITH_LOCK(peer->m_block_inv_mutex, peer->m_blocks_for_inv_relay.push_back(pindex->GetBlockHash()));
|
|
if (--nLimit <= 0) {
|
|
// When this block is requested, we'll send an inv that'll
|
|
// trigger the peer to getblocks the next batch of inventory.
|
|
LogPrint(BCLog::NET, " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
|
|
WITH_LOCK(peer->m_block_inv_mutex, {peer->m_continuation_block = pindex->GetBlockHash();});
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::GETBLOCKTXN) {
|
|
BlockTransactionsRequest req;
|
|
vRecv >> req;
|
|
|
|
std::shared_ptr<const CBlock> recent_block;
|
|
{
|
|
LOCK(m_most_recent_block_mutex);
|
|
if (m_most_recent_block_hash == req.blockhash)
|
|
recent_block = m_most_recent_block;
|
|
// Unlock m_most_recent_block_mutex to avoid cs_main lock inversion
|
|
}
|
|
if (recent_block) {
|
|
SendBlockTransactions(pfrom, *peer, *recent_block, req);
|
|
return;
|
|
}
|
|
|
|
{
|
|
LOCK(cs_main);
|
|
|
|
const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(req.blockhash);
|
|
if (!pindex || !(pindex->nStatus & BLOCK_HAVE_DATA)) {
|
|
LogPrint(BCLog::NET, "Peer %d sent us a getblocktxn for a block we don't have\n", pfrom.GetId());
|
|
return;
|
|
}
|
|
|
|
if (pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_BLOCKTXN_DEPTH) {
|
|
CBlock block;
|
|
bool ret = ReadBlockFromDisk(block, pindex, m_chainparams.GetConsensus());
|
|
assert(ret);
|
|
|
|
SendBlockTransactions(pfrom, *peer, block, req);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If an older block is requested (should never happen in practice,
|
|
// but can happen in tests) send a block response instead of a
|
|
// blocktxn response. Sending a full block response instead of a
|
|
// small blocktxn response is preferable in the case where a peer
|
|
// might maliciously send lots of getblocktxn requests to trigger
|
|
// expensive disk reads, because it will require the peer to
|
|
// actually receive all the data read from disk over the network.
|
|
LogPrint(BCLog::NET, "Peer %d sent us a getblocktxn for a block > %i deep\n", pfrom.GetId(), MAX_BLOCKTXN_DEPTH);
|
|
CInv inv{MSG_WITNESS_BLOCK, req.blockhash};
|
|
WITH_LOCK(peer->m_getdata_requests_mutex, peer->m_getdata_requests.push_back(inv));
|
|
// The message processing loop will go around again (without pausing) and we'll respond then
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::GETHEADERS) {
|
|
CBlockLocator locator;
|
|
uint256 hashStop;
|
|
vRecv >> locator >> hashStop;
|
|
|
|
if (locator.vHave.size() > MAX_LOCATOR_SZ) {
|
|
LogPrint(BCLog::NET, "getheaders locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId());
|
|
pfrom.fDisconnect = true;
|
|
return;
|
|
}
|
|
|
|
if (fImporting || fReindex) {
|
|
LogPrint(BCLog::NET, "Ignoring getheaders from peer=%d while importing/reindexing\n", pfrom.GetId());
|
|
return;
|
|
}
|
|
|
|
LOCK(cs_main);
|
|
|
|
// Note that if we were to be on a chain that forks from the checkpointed
|
|
// chain, then serving those headers to a peer that has seen the
|
|
// checkpointed chain would cause that peer to disconnect us. Requiring
|
|
// that our chainwork exceed nMinimumChainWork is a protection against
|
|
// being fed a bogus chain when we started up for the first time and
|
|
// getting partitioned off the honest network for serving that chain to
|
|
// others.
|
|
if (m_chainman.ActiveTip() == nullptr ||
|
|
(m_chainman.ActiveTip()->nChainWork < nMinimumChainWork && !pfrom.HasPermission(NetPermissionFlags::Download))) {
|
|
LogPrint(BCLog::NET, "Ignoring getheaders from peer=%d because active chain has too little work; sending empty response\n", pfrom.GetId());
|
|
// Just respond with an empty headers message, to tell the peer to
|
|
// go away but not treat us as unresponsive.
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::HEADERS, std::vector<CBlock>()));
|
|
return;
|
|
}
|
|
|
|
CNodeState *nodestate = State(pfrom.GetId());
|
|
const CBlockIndex* pindex = nullptr;
|
|
if (locator.IsNull())
|
|
{
|
|
// If locator is null, return the hashStop block
|
|
pindex = m_chainman.m_blockman.LookupBlockIndex(hashStop);
|
|
if (!pindex) {
|
|
return;
|
|
}
|
|
|
|
if (!BlockRequestAllowed(pindex)) {
|
|
LogPrint(BCLog::NET, "%s: ignoring request from peer=%i for old block header that isn't in the main chain\n", __func__, pfrom.GetId());
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Find the last block the caller has in the main chain
|
|
pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
|
|
if (pindex)
|
|
pindex = m_chainman.ActiveChain().Next(pindex);
|
|
}
|
|
|
|
// we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end
|
|
std::vector<CBlock> vHeaders;
|
|
int nLimit = MAX_HEADERS_RESULTS;
|
|
LogPrint(BCLog::NET, "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom.GetId());
|
|
for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
|
|
{
|
|
vHeaders.push_back(pindex->GetBlockHeader());
|
|
if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
|
|
break;
|
|
}
|
|
// pindex can be nullptr either if we sent m_chainman.ActiveChain().Tip() OR
|
|
// if our peer has m_chainman.ActiveChain().Tip() (and thus we are sending an empty
|
|
// headers message). In both cases it's safe to update
|
|
// pindexBestHeaderSent to be our tip.
|
|
//
|
|
// It is important that we simply reset the BestHeaderSent value here,
|
|
// and not max(BestHeaderSent, newHeaderSent). We might have announced
|
|
// the currently-being-connected tip using a compact block, which
|
|
// resulted in the peer sending a headers request, which we respond to
|
|
// without the new block. By resetting the BestHeaderSent, we ensure we
|
|
// will re-announce the new block via headers (or compact blocks again)
|
|
// in the SendMessages logic.
|
|
nodestate->pindexBestHeaderSent = pindex ? pindex : m_chainman.ActiveChain().Tip();
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::HEADERS, vHeaders));
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::TX) {
|
|
if (RejectIncomingTxs(pfrom)) {
|
|
LogPrint(BCLog::NET, "transaction sent in violation of protocol peer=%d\n", pfrom.GetId());
|
|
pfrom.fDisconnect = true;
|
|
return;
|
|
}
|
|
|
|
// Stop processing the transaction early if we are still in IBD since we don't
|
|
// have enough information to validate it yet. Sending unsolicited transactions
|
|
// is not considered a protocol violation, so don't punish the peer.
|
|
if (m_chainman.ActiveChainstate().IsInitialBlockDownload()) return;
|
|
|
|
CTransactionRef ptx;
|
|
vRecv >> ptx;
|
|
const CTransaction& tx = *ptx;
|
|
|
|
const uint256& txid = ptx->GetHash();
|
|
const uint256& wtxid = ptx->GetWitnessHash();
|
|
|
|
const uint256& hash = peer->m_wtxid_relay ? wtxid : txid;
|
|
AddKnownTx(*peer, hash);
|
|
if (peer->m_wtxid_relay && txid != wtxid) {
|
|
// Insert txid into m_tx_inventory_known_filter, even for
|
|
// wtxidrelay peers. This prevents re-adding of
|
|
// unconfirmed parents to the recently_announced
|
|
// filter, when a child tx is requested. See
|
|
// ProcessGetData().
|
|
AddKnownTx(*peer, txid);
|
|
}
|
|
|
|
LOCK2(cs_main, g_cs_orphans);
|
|
|
|
m_txrequest.ReceivedResponse(pfrom.GetId(), txid);
|
|
if (tx.HasWitness()) m_txrequest.ReceivedResponse(pfrom.GetId(), wtxid);
|
|
|
|
// We do the AlreadyHaveTx() check using wtxid, rather than txid - in the
|
|
// absence of witness malleation, this is strictly better, because the
|
|
// recent rejects filter may contain the wtxid but rarely contains
|
|
// the txid of a segwit transaction that has been rejected.
|
|
// In the presence of witness malleation, it's possible that by only
|
|
// doing the check with wtxid, we could overlook a transaction which
|
|
// was confirmed with a different witness, or exists in our mempool
|
|
// with a different witness, but this has limited downside:
|
|
// mempool validation does its own lookup of whether we have the txid
|
|
// already; and an adversary can already relay us old transactions
|
|
// (older than our recency filter) if trying to DoS us, without any need
|
|
// for witness malleation.
|
|
if (AlreadyHaveTx(GenTxid::Wtxid(wtxid))) {
|
|
if (pfrom.HasPermission(NetPermissionFlags::ForceRelay)) {
|
|
// Always relay transactions received from peers with forcerelay
|
|
// permission, even if they were already in the mempool, allowing
|
|
// the node to function as a gateway for nodes hidden behind it.
|
|
if (!m_mempool.exists(GenTxid::Txid(tx.GetHash()))) {
|
|
LogPrintf("Not relaying non-mempool transaction %s from forcerelay peer=%d\n", tx.GetHash().ToString(), pfrom.GetId());
|
|
} else {
|
|
LogPrintf("Force relaying tx %s from peer=%d\n", tx.GetHash().ToString(), pfrom.GetId());
|
|
RelayTransaction(tx.GetHash(), tx.GetWitnessHash());
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
const MempoolAcceptResult result = m_chainman.ProcessTransaction(ptx);
|
|
const TxValidationState& state = result.m_state;
|
|
|
|
if (result.m_result_type == MempoolAcceptResult::ResultType::VALID) {
|
|
// As this version of the transaction was acceptable, we can forget about any
|
|
// requests for it.
|
|
m_txrequest.ForgetTxHash(tx.GetHash());
|
|
m_txrequest.ForgetTxHash(tx.GetWitnessHash());
|
|
RelayTransaction(tx.GetHash(), tx.GetWitnessHash());
|
|
m_orphanage.AddChildrenToWorkSet(tx, peer->m_orphan_work_set);
|
|
|
|
pfrom.m_last_tx_time = GetTime<std::chrono::seconds>();
|
|
|
|
LogPrint(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s (poolsz %u txn, %u kB)\n",
|
|
pfrom.GetId(),
|
|
tx.GetHash().ToString(),
|
|
m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000);
|
|
|
|
for (const CTransactionRef& removedTx : result.m_replaced_transactions.value()) {
|
|
AddToCompactExtraTransactions(removedTx);
|
|
}
|
|
|
|
// Recursively process any orphan transactions that depended on this one
|
|
ProcessOrphanTx(peer->m_orphan_work_set);
|
|
}
|
|
else if (state.GetResult() == TxValidationResult::TX_MISSING_INPUTS)
|
|
{
|
|
bool fRejectedParents = false; // It may be the case that the orphans parents have all been rejected
|
|
|
|
// Deduplicate parent txids, so that we don't have to loop over
|
|
// the same parent txid more than once down below.
|
|
std::vector<uint256> unique_parents;
|
|
unique_parents.reserve(tx.vin.size());
|
|
for (const CTxIn& txin : tx.vin) {
|
|
// We start with all parents, and then remove duplicates below.
|
|
unique_parents.push_back(txin.prevout.hash);
|
|
}
|
|
std::sort(unique_parents.begin(), unique_parents.end());
|
|
unique_parents.erase(std::unique(unique_parents.begin(), unique_parents.end()), unique_parents.end());
|
|
for (const uint256& parent_txid : unique_parents) {
|
|
if (m_recent_rejects.contains(parent_txid)) {
|
|
fRejectedParents = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!fRejectedParents) {
|
|
const auto current_time{GetTime<std::chrono::microseconds>()};
|
|
|
|
for (const uint256& parent_txid : unique_parents) {
|
|
// Here, we only have the txid (and not wtxid) of the
|
|
// inputs, so we only request in txid mode, even for
|
|
// wtxidrelay peers.
|
|
// Eventually we should replace this with an improved
|
|
// protocol for getting all unconfirmed parents.
|
|
const auto gtxid{GenTxid::Txid(parent_txid)};
|
|
AddKnownTx(*peer, parent_txid);
|
|
if (!AlreadyHaveTx(gtxid)) AddTxAnnouncement(pfrom, gtxid, current_time);
|
|
}
|
|
|
|
if (m_orphanage.AddTx(ptx, pfrom.GetId())) {
|
|
AddToCompactExtraTransactions(ptx);
|
|
}
|
|
|
|
// Once added to the orphan pool, a tx is considered AlreadyHave, and we shouldn't request it anymore.
|
|
m_txrequest.ForgetTxHash(tx.GetHash());
|
|
m_txrequest.ForgetTxHash(tx.GetWitnessHash());
|
|
|
|
// DoS prevention: do not allow m_orphanage to grow unbounded (see CVE-2012-3789)
|
|
unsigned int nMaxOrphanTx = (unsigned int)std::max((int64_t)0, gArgs.GetIntArg("-maxorphantx", DEFAULT_MAX_ORPHAN_TRANSACTIONS));
|
|
m_orphanage.LimitOrphans(nMaxOrphanTx);
|
|
} else {
|
|
LogPrint(BCLog::MEMPOOL, "not keeping orphan with rejected parents %s\n",tx.GetHash().ToString());
|
|
// We will continue to reject this tx since it has rejected
|
|
// parents so avoid re-requesting it from other peers.
|
|
// Here we add both the txid and the wtxid, as we know that
|
|
// regardless of what witness is provided, we will not accept
|
|
// this, so we don't need to allow for redownload of this txid
|
|
// from any of our non-wtxidrelay peers.
|
|
m_recent_rejects.insert(tx.GetHash());
|
|
m_recent_rejects.insert(tx.GetWitnessHash());
|
|
m_txrequest.ForgetTxHash(tx.GetHash());
|
|
m_txrequest.ForgetTxHash(tx.GetWitnessHash());
|
|
}
|
|
} else {
|
|
if (state.GetResult() != TxValidationResult::TX_WITNESS_STRIPPED) {
|
|
// We can add the wtxid of this transaction to our reject filter.
|
|
// Do not add txids of witness transactions or witness-stripped
|
|
// transactions to the filter, as they can have been malleated;
|
|
// adding such txids to the reject filter would potentially
|
|
// interfere with relay of valid transactions from peers that
|
|
// do not support wtxid-based relay. See
|
|
// https://github.com/bitcoin/bitcoin/issues/8279 for details.
|
|
// We can remove this restriction (and always add wtxids to
|
|
// the filter even for witness stripped transactions) once
|
|
// wtxid-based relay is broadly deployed.
|
|
// See also comments in https://github.com/bitcoin/bitcoin/pull/18044#discussion_r443419034
|
|
// for concerns around weakening security of unupgraded nodes
|
|
// if we start doing this too early.
|
|
m_recent_rejects.insert(tx.GetWitnessHash());
|
|
m_txrequest.ForgetTxHash(tx.GetWitnessHash());
|
|
// If the transaction failed for TX_INPUTS_NOT_STANDARD,
|
|
// then we know that the witness was irrelevant to the policy
|
|
// failure, since this check depends only on the txid
|
|
// (the scriptPubKey being spent is covered by the txid).
|
|
// Add the txid to the reject filter to prevent repeated
|
|
// processing of this transaction in the event that child
|
|
// transactions are later received (resulting in
|
|
// parent-fetching by txid via the orphan-handling logic).
|
|
if (state.GetResult() == TxValidationResult::TX_INPUTS_NOT_STANDARD && tx.GetWitnessHash() != tx.GetHash()) {
|
|
m_recent_rejects.insert(tx.GetHash());
|
|
m_txrequest.ForgetTxHash(tx.GetHash());
|
|
}
|
|
if (RecursiveDynamicUsage(*ptx) < 100000) {
|
|
AddToCompactExtraTransactions(ptx);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If a tx has been detected by m_recent_rejects, we will have reached
|
|
// this point and the tx will have been ignored. Because we haven't
|
|
// submitted the tx to our mempool, we won't have computed a DoS
|
|
// score for it or determined exactly why we consider it invalid.
|
|
//
|
|
// This means we won't penalize any peer subsequently relaying a DoSy
|
|
// tx (even if we penalized the first peer who gave it to us) because
|
|
// we have to account for m_recent_rejects showing false positives. In
|
|
// other words, we shouldn't penalize a peer if we aren't *sure* they
|
|
// submitted a DoSy tx.
|
|
//
|
|
// Note that m_recent_rejects doesn't just record DoSy or invalid
|
|
// transactions, but any tx not accepted by the mempool, which may be
|
|
// due to node policy (vs. consensus). So we can't blanket penalize a
|
|
// peer simply for relaying a tx that our m_recent_rejects has caught,
|
|
// regardless of false positives.
|
|
|
|
if (state.IsInvalid()) {
|
|
LogPrint(BCLog::MEMPOOLREJ, "%s from peer=%d was not accepted: %s\n", tx.GetHash().ToString(),
|
|
pfrom.GetId(),
|
|
state.ToString());
|
|
MaybePunishNodeForTx(pfrom.GetId(), state);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::CMPCTBLOCK)
|
|
{
|
|
// Ignore cmpctblock received while importing
|
|
if (fImporting || fReindex) {
|
|
LogPrint(BCLog::NET, "Unexpected cmpctblock message received from peer %d\n", pfrom.GetId());
|
|
return;
|
|
}
|
|
|
|
CBlockHeaderAndShortTxIDs cmpctblock;
|
|
vRecv >> cmpctblock;
|
|
|
|
bool received_new_header = false;
|
|
|
|
{
|
|
LOCK(cs_main);
|
|
|
|
const CBlockIndex* prev_block = m_chainman.m_blockman.LookupBlockIndex(cmpctblock.header.hashPrevBlock);
|
|
if (!prev_block) {
|
|
// Doesn't connect (or is genesis), instead of DoSing in AcceptBlockHeader, request deeper headers
|
|
if (!m_chainman.ActiveChainstate().IsInitialBlockDownload()) {
|
|
MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer);
|
|
}
|
|
return;
|
|
} else if (prev_block->nChainWork + CalculateHeadersWork({cmpctblock.header}) < GetAntiDoSWorkThreshold()) {
|
|
// If we get a low-work header in a compact block, we can ignore it.
|
|
LogPrint(BCLog::NET, "Ignoring low-work compact block from peer %d\n", pfrom.GetId());
|
|
return;
|
|
}
|
|
|
|
if (!m_chainman.m_blockman.LookupBlockIndex(cmpctblock.header.GetHash())) {
|
|
received_new_header = true;
|
|
}
|
|
}
|
|
|
|
const CBlockIndex *pindex = nullptr;
|
|
BlockValidationState state;
|
|
if (!m_chainman.ProcessNewBlockHeaders({cmpctblock.header}, /*min_pow_checked=*/true, state, &pindex)) {
|
|
if (state.IsInvalid()) {
|
|
MaybePunishNodeForBlock(pfrom.GetId(), state, /*via_compact_block=*/true, "invalid header via cmpctblock");
|
|
return;
|
|
}
|
|
}
|
|
|
|
// When we succeed in decoding a block's txids from a cmpctblock
|
|
// message we typically jump to the BLOCKTXN handling code, with a
|
|
// dummy (empty) BLOCKTXN message, to re-use the logic there in
|
|
// completing processing of the putative block (without cs_main).
|
|
bool fProcessBLOCKTXN = false;
|
|
CDataStream blockTxnMsg(SER_NETWORK, PROTOCOL_VERSION);
|
|
|
|
// If we end up treating this as a plain headers message, call that as well
|
|
// without cs_main.
|
|
bool fRevertToHeaderProcessing = false;
|
|
|
|
// Keep a CBlock for "optimistic" compactblock reconstructions (see
|
|
// below)
|
|
std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
|
|
bool fBlockReconstructed = false;
|
|
|
|
{
|
|
LOCK2(cs_main, g_cs_orphans);
|
|
// If AcceptBlockHeader returned true, it set pindex
|
|
assert(pindex);
|
|
UpdateBlockAvailability(pfrom.GetId(), pindex->GetBlockHash());
|
|
|
|
CNodeState *nodestate = State(pfrom.GetId());
|
|
|
|
// If this was a new header with more work than our tip, update the
|
|
// peer's last block announcement time
|
|
if (received_new_header && pindex->nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
|
|
nodestate->m_last_block_announcement = GetTime();
|
|
}
|
|
|
|
std::map<uint256, std::pair<NodeId, std::list<QueuedBlock>::iterator> >::iterator blockInFlightIt = mapBlocksInFlight.find(pindex->GetBlockHash());
|
|
bool fAlreadyInFlight = blockInFlightIt != mapBlocksInFlight.end();
|
|
|
|
if (pindex->nStatus & BLOCK_HAVE_DATA) // Nothing to do here
|
|
return;
|
|
|
|
if (pindex->nChainWork <= m_chainman.ActiveChain().Tip()->nChainWork || // We know something better
|
|
pindex->nTx != 0) { // We had this block at some point, but pruned it
|
|
if (fAlreadyInFlight) {
|
|
// We requested this block for some reason, but our mempool will probably be useless
|
|
// so we just grab the block via normal getdata
|
|
std::vector<CInv> vInv(1);
|
|
vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), cmpctblock.header.GetHash());
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv));
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If we're not close to tip yet, give up and let parallel block fetch work its magic
|
|
if (!fAlreadyInFlight && !CanDirectFetch()) {
|
|
return;
|
|
}
|
|
|
|
// We want to be a bit conservative just to be extra careful about DoS
|
|
// possibilities in compact block processing...
|
|
if (pindex->nHeight <= m_chainman.ActiveChain().Height() + 2) {
|
|
if ((!fAlreadyInFlight && nodestate->nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) ||
|
|
(fAlreadyInFlight && blockInFlightIt->second.first == pfrom.GetId())) {
|
|
std::list<QueuedBlock>::iterator* queuedBlockIt = nullptr;
|
|
if (!BlockRequested(pfrom.GetId(), *pindex, &queuedBlockIt)) {
|
|
if (!(*queuedBlockIt)->partialBlock)
|
|
(*queuedBlockIt)->partialBlock.reset(new PartiallyDownloadedBlock(&m_mempool));
|
|
else {
|
|
// The block was already in flight using compact blocks from the same peer
|
|
LogPrint(BCLog::NET, "Peer sent us compact block we were already syncing!\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
PartiallyDownloadedBlock& partialBlock = *(*queuedBlockIt)->partialBlock;
|
|
ReadStatus status = partialBlock.InitData(cmpctblock, vExtraTxnForCompact);
|
|
if (status == READ_STATUS_INVALID) {
|
|
RemoveBlockRequest(pindex->GetBlockHash()); // Reset in-flight state in case Misbehaving does not result in a disconnect
|
|
Misbehaving(*peer, 100, "invalid compact block");
|
|
return;
|
|
} else if (status == READ_STATUS_FAILED) {
|
|
// Duplicate txindexes, the block is now in-flight, so just request it
|
|
std::vector<CInv> vInv(1);
|
|
vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), cmpctblock.header.GetHash());
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv));
|
|
return;
|
|
}
|
|
|
|
BlockTransactionsRequest req;
|
|
for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) {
|
|
if (!partialBlock.IsTxAvailable(i))
|
|
req.indexes.push_back(i);
|
|
}
|
|
if (req.indexes.empty()) {
|
|
// Dirty hack to jump to BLOCKTXN code (TODO: move message handling into their own functions)
|
|
BlockTransactions txn;
|
|
txn.blockhash = cmpctblock.header.GetHash();
|
|
blockTxnMsg << txn;
|
|
fProcessBLOCKTXN = true;
|
|
} else {
|
|
req.blockhash = pindex->GetBlockHash();
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETBLOCKTXN, req));
|
|
}
|
|
} else {
|
|
// This block is either already in flight from a different
|
|
// peer, or this peer has too many blocks outstanding to
|
|
// download from.
|
|
// Optimistically try to reconstruct anyway since we might be
|
|
// able to without any round trips.
|
|
PartiallyDownloadedBlock tempBlock(&m_mempool);
|
|
ReadStatus status = tempBlock.InitData(cmpctblock, vExtraTxnForCompact);
|
|
if (status != READ_STATUS_OK) {
|
|
// TODO: don't ignore failures
|
|
return;
|
|
}
|
|
std::vector<CTransactionRef> dummy;
|
|
status = tempBlock.FillBlock(*pblock, dummy);
|
|
if (status == READ_STATUS_OK) {
|
|
fBlockReconstructed = true;
|
|
}
|
|
}
|
|
} else {
|
|
if (fAlreadyInFlight) {
|
|
// We requested this block, but its far into the future, so our
|
|
// mempool will probably be useless - request the block normally
|
|
std::vector<CInv> vInv(1);
|
|
vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), cmpctblock.header.GetHash());
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv));
|
|
return;
|
|
} else {
|
|
// If this was an announce-cmpctblock, we want the same treatment as a header message
|
|
fRevertToHeaderProcessing = true;
|
|
}
|
|
}
|
|
} // cs_main
|
|
|
|
if (fProcessBLOCKTXN) {
|
|
return ProcessMessage(pfrom, NetMsgType::BLOCKTXN, blockTxnMsg, time_received, interruptMsgProc);
|
|
}
|
|
|
|
if (fRevertToHeaderProcessing) {
|
|
// Headers received from HB compact block peers are permitted to be
|
|
// relayed before full validation (see BIP 152), so we don't want to disconnect
|
|
// the peer if the header turns out to be for an invalid block.
|
|
// Note that if a peer tries to build on an invalid chain, that
|
|
// will be detected and the peer will be disconnected/discouraged.
|
|
return ProcessHeadersMessage(pfrom, *peer, {cmpctblock.header}, /*via_compact_block=*/true);
|
|
}
|
|
|
|
if (fBlockReconstructed) {
|
|
// If we got here, we were able to optimistically reconstruct a
|
|
// block that is in flight from some other peer.
|
|
{
|
|
LOCK(cs_main);
|
|
mapBlockSource.emplace(pblock->GetHash(), std::make_pair(pfrom.GetId(), false));
|
|
}
|
|
// Setting force_processing to true means that we bypass some of
|
|
// our anti-DoS protections in AcceptBlock, which filters
|
|
// unrequested blocks that might be trying to waste our resources
|
|
// (eg disk space). Because we only try to reconstruct blocks when
|
|
// we're close to caught up (via the CanDirectFetch() requirement
|
|
// above, combined with the behavior of not requesting blocks until
|
|
// we have a chain with at least nMinimumChainWork), and we ignore
|
|
// compact blocks with less work than our tip, it is safe to treat
|
|
// reconstructed compact blocks as having been requested.
|
|
ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
|
|
LOCK(cs_main); // hold cs_main for CBlockIndex::IsValid()
|
|
if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS)) {
|
|
// Clear download state for this block, which is in
|
|
// process from some other peer. We do this after calling
|
|
// ProcessNewBlock so that a malleated cmpctblock announcement
|
|
// can't be used to interfere with block relay.
|
|
RemoveBlockRequest(pblock->GetHash());
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::BLOCKTXN)
|
|
{
|
|
// Ignore blocktxn received while importing
|
|
if (fImporting || fReindex) {
|
|
LogPrint(BCLog::NET, "Unexpected blocktxn message received from peer %d\n", pfrom.GetId());
|
|
return;
|
|
}
|
|
|
|
BlockTransactions resp;
|
|
vRecv >> resp;
|
|
|
|
std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
|
|
bool fBlockRead = false;
|
|
{
|
|
LOCK(cs_main);
|
|
|
|
std::map<uint256, std::pair<NodeId, std::list<QueuedBlock>::iterator> >::iterator it = mapBlocksInFlight.find(resp.blockhash);
|
|
if (it == mapBlocksInFlight.end() || !it->second.second->partialBlock ||
|
|
it->second.first != pfrom.GetId()) {
|
|
LogPrint(BCLog::NET, "Peer %d sent us block transactions for block we weren't expecting\n", pfrom.GetId());
|
|
return;
|
|
}
|
|
|
|
PartiallyDownloadedBlock& partialBlock = *it->second.second->partialBlock;
|
|
ReadStatus status = partialBlock.FillBlock(*pblock, resp.txn);
|
|
if (status == READ_STATUS_INVALID) {
|
|
RemoveBlockRequest(resp.blockhash); // Reset in-flight state in case Misbehaving does not result in a disconnect
|
|
Misbehaving(*peer, 100, "invalid compact block/non-matching block transactions");
|
|
return;
|
|
} else if (status == READ_STATUS_FAILED) {
|
|
// Might have collided, fall back to getdata now :(
|
|
std::vector<CInv> invs;
|
|
invs.push_back(CInv(MSG_BLOCK | GetFetchFlags(*peer), resp.blockhash));
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETDATA, invs));
|
|
} else {
|
|
// Block is either okay, or possibly we received
|
|
// READ_STATUS_CHECKBLOCK_FAILED.
|
|
// Note that CheckBlock can only fail for one of a few reasons:
|
|
// 1. bad-proof-of-work (impossible here, because we've already
|
|
// accepted the header)
|
|
// 2. merkleroot doesn't match the transactions given (already
|
|
// caught in FillBlock with READ_STATUS_FAILED, so
|
|
// impossible here)
|
|
// 3. the block is otherwise invalid (eg invalid coinbase,
|
|
// block is too big, too many legacy sigops, etc).
|
|
// So if CheckBlock failed, #3 is the only possibility.
|
|
// Under BIP 152, we don't discourage the peer unless proof of work is
|
|
// invalid (we don't require all the stateless checks to have
|
|
// been run). This is handled below, so just treat this as
|
|
// though the block was successfully read, and rely on the
|
|
// handling in ProcessNewBlock to ensure the block index is
|
|
// updated, etc.
|
|
RemoveBlockRequest(resp.blockhash); // it is now an empty pointer
|
|
fBlockRead = true;
|
|
// mapBlockSource is used for potentially punishing peers and
|
|
// updating which peers send us compact blocks, so the race
|
|
// between here and cs_main in ProcessNewBlock is fine.
|
|
// BIP 152 permits peers to relay compact blocks after validating
|
|
// the header only; we should not punish peers if the block turns
|
|
// out to be invalid.
|
|
mapBlockSource.emplace(resp.blockhash, std::make_pair(pfrom.GetId(), false));
|
|
}
|
|
} // Don't hold cs_main when we call into ProcessNewBlock
|
|
if (fBlockRead) {
|
|
// Since we requested this block (it was in mapBlocksInFlight), force it to be processed,
|
|
// even if it would not be a candidate for new tip (missing previous block, chain not long enough, etc)
|
|
// This bypasses some anti-DoS logic in AcceptBlock (eg to prevent
|
|
// disk-space attacks), but this should be safe due to the
|
|
// protections in the compact block handler -- see related comment
|
|
// in compact block optimistic reconstruction handling.
|
|
ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::HEADERS)
|
|
{
|
|
// Ignore headers received while importing
|
|
if (fImporting || fReindex) {
|
|
LogPrint(BCLog::NET, "Unexpected headers message received from peer %d\n", pfrom.GetId());
|
|
return;
|
|
}
|
|
|
|
// Assume that this is in response to any outstanding getheaders
|
|
// request we may have sent, and clear out the time of our last request
|
|
peer->m_last_getheaders_timestamp = {};
|
|
|
|
std::vector<CBlockHeader> headers;
|
|
|
|
// Bypass the normal CBlock deserialization, as we don't want to risk deserializing 2000 full blocks.
|
|
unsigned int nCount = ReadCompactSize(vRecv);
|
|
if (nCount > MAX_HEADERS_RESULTS) {
|
|
Misbehaving(*peer, 20, strprintf("headers message size = %u", nCount));
|
|
return;
|
|
}
|
|
headers.resize(nCount);
|
|
for (unsigned int n = 0; n < nCount; n++) {
|
|
vRecv >> headers[n];
|
|
ReadCompactSize(vRecv); // ignore tx count; assume it is 0.
|
|
}
|
|
|
|
ProcessHeadersMessage(pfrom, *peer, std::move(headers), /*via_compact_block=*/false);
|
|
|
|
// Check if the headers presync progress needs to be reported to validation.
|
|
// This needs to be done without holding the m_headers_presync_mutex lock.
|
|
if (m_headers_presync_should_signal.exchange(false)) {
|
|
HeadersPresyncStats stats;
|
|
{
|
|
LOCK(m_headers_presync_mutex);
|
|
auto it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
|
|
if (it != m_headers_presync_stats.end()) stats = it->second;
|
|
}
|
|
if (stats.second) {
|
|
m_chainman.ReportHeadersPresync(stats.first, stats.second->first, stats.second->second);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::BLOCK)
|
|
{
|
|
// Ignore block received while importing
|
|
if (fImporting || fReindex) {
|
|
LogPrint(BCLog::NET, "Unexpected block message received from peer %d\n", pfrom.GetId());
|
|
return;
|
|
}
|
|
|
|
std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
|
|
vRecv >> *pblock;
|
|
|
|
LogPrint(BCLog::NET, "received block %s peer=%d\n", pblock->GetHash().ToString(), pfrom.GetId());
|
|
|
|
bool forceProcessing = false;
|
|
const uint256 hash(pblock->GetHash());
|
|
bool min_pow_checked = false;
|
|
{
|
|
LOCK(cs_main);
|
|
// Always process the block if we requested it, since we may
|
|
// need it even when it's not a candidate for a new best tip.
|
|
forceProcessing = IsBlockRequested(hash);
|
|
RemoveBlockRequest(hash);
|
|
// mapBlockSource is only used for punishing peers and setting
|
|
// which peers send us compact blocks, so the race between here and
|
|
// cs_main in ProcessNewBlock is fine.
|
|
mapBlockSource.emplace(hash, std::make_pair(pfrom.GetId(), true));
|
|
|
|
// Check work on this block against our anti-dos thresholds.
|
|
const CBlockIndex* prev_block = m_chainman.m_blockman.LookupBlockIndex(pblock->hashPrevBlock);
|
|
if (prev_block && prev_block->nChainWork + CalculateHeadersWork({pblock->GetBlockHeader()}) >= GetAntiDoSWorkThreshold()) {
|
|
min_pow_checked = true;
|
|
}
|
|
}
|
|
ProcessBlock(pfrom, pblock, forceProcessing, min_pow_checked);
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::GETADDR) {
|
|
// This asymmetric behavior for inbound and outbound connections was introduced
|
|
// to prevent a fingerprinting attack: an attacker can send specific fake addresses
|
|
// to users' AddrMan and later request them by sending getaddr messages.
|
|
// Making nodes which are behind NAT and can only make outgoing connections ignore
|
|
// the getaddr message mitigates the attack.
|
|
if (!pfrom.IsInboundConn()) {
|
|
LogPrint(BCLog::NET, "Ignoring \"getaddr\" from %s connection. peer=%d\n", pfrom.ConnectionTypeAsString(), pfrom.GetId());
|
|
return;
|
|
}
|
|
|
|
// Since this must be an inbound connection, SetupAddressRelay will
|
|
// never fail.
|
|
Assume(SetupAddressRelay(pfrom, *peer));
|
|
|
|
// Only send one GetAddr response per connection to reduce resource waste
|
|
// and discourage addr stamping of INV announcements.
|
|
if (peer->m_getaddr_recvd) {
|
|
LogPrint(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n", pfrom.GetId());
|
|
return;
|
|
}
|
|
peer->m_getaddr_recvd = true;
|
|
|
|
peer->m_addrs_to_send.clear();
|
|
std::vector<CAddress> vAddr;
|
|
if (pfrom.HasPermission(NetPermissionFlags::Addr)) {
|
|
vAddr = m_connman.GetAddresses(MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND, /*network=*/std::nullopt);
|
|
} else {
|
|
vAddr = m_connman.GetAddresses(pfrom, MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND);
|
|
}
|
|
FastRandomContext insecure_rand;
|
|
for (const CAddress &addr : vAddr) {
|
|
PushAddress(*peer, addr, insecure_rand);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::MEMPOOL) {
|
|
if (!(peer->m_our_services & NODE_BLOOM) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
|
|
{
|
|
if (!pfrom.HasPermission(NetPermissionFlags::NoBan))
|
|
{
|
|
LogPrint(BCLog::NET, "mempool request with bloom filters disabled, disconnect peer=%d\n", pfrom.GetId());
|
|
pfrom.fDisconnect = true;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (m_connman.OutboundTargetReached(false) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
|
|
{
|
|
if (!pfrom.HasPermission(NetPermissionFlags::NoBan))
|
|
{
|
|
LogPrint(BCLog::NET, "mempool request with bandwidth limit reached, disconnect peer=%d\n", pfrom.GetId());
|
|
pfrom.fDisconnect = true;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
|
|
LOCK(tx_relay->m_tx_inventory_mutex);
|
|
tx_relay->m_send_mempool = true;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::PING) {
|
|
if (pfrom.GetCommonVersion() > BIP0031_VERSION) {
|
|
uint64_t nonce = 0;
|
|
vRecv >> nonce;
|
|
// Echo the message back with the nonce. This allows for two useful features:
|
|
//
|
|
// 1) A remote node can quickly check if the connection is operational
|
|
// 2) Remote nodes can measure the latency of the network thread. If this node
|
|
// is overloaded it won't respond to pings quickly and the remote node can
|
|
// avoid sending us more work, like chain download requests.
|
|
//
|
|
// The nonce stops the remote getting confused between different pings: without
|
|
// it, if the remote node sends a ping once per second and this node takes 5
|
|
// seconds to respond to each, the 5th ping the remote sends would appear to
|
|
// return very quickly.
|
|
m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::PONG, nonce));
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::PONG) {
|
|
const auto ping_end = time_received;
|
|
uint64_t nonce = 0;
|
|
size_t nAvail = vRecv.in_avail();
|
|
bool bPingFinished = false;
|
|
std::string sProblem;
|
|
|
|
if (nAvail >= sizeof(nonce)) {
|
|
vRecv >> nonce;
|
|
|
|
// Only process pong message if there is an outstanding ping (old ping without nonce should never pong)
|
|
if (peer->m_ping_nonce_sent != 0) {
|
|
if (nonce == peer->m_ping_nonce_sent) {
|
|
// Matching pong received, this ping is no longer outstanding
|
|
bPingFinished = true;
|
|
const auto ping_time = ping_end - peer->m_ping_start.load();
|
|
if (ping_time.count() >= 0) {
|
|
// Let connman know about this successful ping-pong
|
|
pfrom.PongReceived(ping_time);
|
|
} else {
|
|
// This should never happen
|
|
sProblem = "Timing mishap";
|
|
}
|
|
} else {
|
|
// Nonce mismatches are normal when pings are overlapping
|
|
sProblem = "Nonce mismatch";
|
|
if (nonce == 0) {
|
|
// This is most likely a bug in another implementation somewhere; cancel this ping
|
|
bPingFinished = true;
|
|
sProblem = "Nonce zero";
|
|
}
|
|
}
|
|
} else {
|
|
sProblem = "Unsolicited pong without ping";
|
|
}
|
|
} else {
|
|
// This is most likely a bug in another implementation somewhere; cancel this ping
|
|
bPingFinished = true;
|
|
sProblem = "Short payload";
|
|
}
|
|
|
|
if (!(sProblem.empty())) {
|
|
LogPrint(BCLog::NET, "pong peer=%d: %s, %x expected, %x received, %u bytes\n",
|
|
pfrom.GetId(),
|
|
sProblem,
|
|
peer->m_ping_nonce_sent,
|
|
nonce,
|
|
nAvail);
|
|
}
|
|
if (bPingFinished) {
|
|
peer->m_ping_nonce_sent = 0;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::FILTERLOAD) {
|
|
if (!(peer->m_our_services & NODE_BLOOM)) {
|
|
LogPrint(BCLog::NET, "filterload received despite not offering bloom services from peer=%d; disconnecting\n", pfrom.GetId());
|
|
pfrom.fDisconnect = true;
|
|
return;
|
|
}
|
|
CBloomFilter filter;
|
|
vRecv >> filter;
|
|
|
|
if (!filter.IsWithinSizeConstraints())
|
|
{
|
|
// There is no excuse for sending a too-large filter
|
|
Misbehaving(*peer, 100, "too-large bloom filter");
|
|
} else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
|
|
{
|
|
LOCK(tx_relay->m_bloom_filter_mutex);
|
|
tx_relay->m_bloom_filter.reset(new CBloomFilter(filter));
|
|
tx_relay->m_relay_txs = true;
|
|
}
|
|
pfrom.m_bloom_filter_loaded = true;
|
|
pfrom.m_relays_txs = true;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::FILTERADD) {
|
|
if (!(peer->m_our_services & NODE_BLOOM)) {
|
|
LogPrint(BCLog::NET, "filteradd received despite not offering bloom services from peer=%d; disconnecting\n", pfrom.GetId());
|
|
pfrom.fDisconnect = true;
|
|
return;
|
|
}
|
|
std::vector<unsigned char> vData;
|
|
vRecv >> vData;
|
|
|
|
// Nodes must NEVER send a data item > 520 bytes (the max size for a script data object,
|
|
// and thus, the maximum size any matched object can have) in a filteradd message
|
|
bool bad = false;
|
|
if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) {
|
|
bad = true;
|
|
} else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
|
|
LOCK(tx_relay->m_bloom_filter_mutex);
|
|
if (tx_relay->m_bloom_filter) {
|
|
tx_relay->m_bloom_filter->insert(vData);
|
|
} else {
|
|
bad = true;
|
|
}
|
|
}
|
|
if (bad) {
|
|
Misbehaving(*peer, 100, "bad filteradd message");
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::FILTERCLEAR) {
|
|
if (!(peer->m_our_services & NODE_BLOOM)) {
|
|
LogPrint(BCLog::NET, "filterclear received despite not offering bloom services from peer=%d; disconnecting\n", pfrom.GetId());
|
|
pfrom.fDisconnect = true;
|
|
return;
|
|
}
|
|
auto tx_relay = peer->GetTxRelay();
|
|
if (!tx_relay) return;
|
|
|
|
{
|
|
LOCK(tx_relay->m_bloom_filter_mutex);
|
|
tx_relay->m_bloom_filter = nullptr;
|
|
tx_relay->m_relay_txs = true;
|
|
}
|
|
pfrom.m_bloom_filter_loaded = false;
|
|
pfrom.m_relays_txs = true;
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::FEEFILTER) {
|
|
CAmount newFeeFilter = 0;
|
|
vRecv >> newFeeFilter;
|
|
if (MoneyRange(newFeeFilter)) {
|
|
if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
|
|
tx_relay->m_fee_filter_received = newFeeFilter;
|
|
}
|
|
LogPrint(BCLog::NET, "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom.GetId());
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::GETCFILTERS) {
|
|
ProcessGetCFilters(pfrom, *peer, vRecv);
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::GETCFHEADERS) {
|
|
ProcessGetCFHeaders(pfrom, *peer, vRecv);
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::GETCFCHECKPT) {
|
|
ProcessGetCFCheckPt(pfrom, *peer, vRecv);
|
|
return;
|
|
}
|
|
|
|
if (msg_type == NetMsgType::NOTFOUND) {
|
|
std::vector<CInv> vInv;
|
|
vRecv >> vInv;
|
|
if (vInv.size() <= MAX_PEER_TX_ANNOUNCEMENTS + MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
|
|
LOCK(::cs_main);
|
|
for (CInv &inv : vInv) {
|
|
if (inv.IsGenTxMsg()) {
|
|
// If we receive a NOTFOUND message for a tx we requested, mark the announcement for it as
|
|
// completed in TxRequestTracker.
|
|
m_txrequest.ReceivedResponse(pfrom.GetId(), inv.hash);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Ignore unknown commands for extensibility
|
|
LogPrint(BCLog::NET, "Unknown command \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
|
|
return;
|
|
}
|
|
|
|
bool PeerManagerImpl::MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer)
|
|
{
|
|
{
|
|
LOCK(peer.m_misbehavior_mutex);
|
|
|
|
// There's nothing to do if the m_should_discourage flag isn't set
|
|
if (!peer.m_should_discourage) return false;
|
|
|
|
peer.m_should_discourage = false;
|
|
} // peer.m_misbehavior_mutex
|
|
|
|
if (pnode.HasPermission(NetPermissionFlags::NoBan)) {
|
|
// We never disconnect or discourage peers for bad behavior if they have NetPermissionFlags::NoBan permission
|
|
LogPrintf("Warning: not punishing noban peer %d!\n", peer.m_id);
|
|
return false;
|
|
}
|
|
|
|
if (pnode.IsManualConn()) {
|
|
// We never disconnect or discourage manual peers for bad behavior
|
|
LogPrintf("Warning: not punishing manually connected peer %d!\n", peer.m_id);
|
|
return false;
|
|
}
|
|
|
|
if (pnode.addr.IsLocal()) {
|
|
// We disconnect local peers for bad behavior but don't discourage (since that would discourage
|
|
// all peers on the same local address)
|
|
LogPrint(BCLog::NET, "Warning: disconnecting but not discouraging %s peer %d!\n",
|
|
pnode.m_inbound_onion ? "inbound onion" : "local", peer.m_id);
|
|
pnode.fDisconnect = true;
|
|
return true;
|
|
}
|
|
|
|
// Normal case: Disconnect the peer and discourage all nodes sharing the address
|
|
LogPrint(BCLog::NET, "Disconnecting and discouraging peer %d!\n", peer.m_id);
|
|
if (m_banman) m_banman->Discourage(pnode.addr);
|
|
m_connman.DisconnectNode(pnode.addr);
|
|
return true;
|
|
}
|
|
|
|
bool PeerManagerImpl::ProcessMessages(CNode* pfrom, std::atomic<bool>& interruptMsgProc)
|
|
{
|
|
AssertLockHeld(g_msgproc_mutex);
|
|
|
|
bool fMoreWork = false;
|
|
|
|
PeerRef peer = GetPeerRef(pfrom->GetId());
|
|
if (peer == nullptr) return false;
|
|
|
|
{
|
|
LOCK(peer->m_getdata_requests_mutex);
|
|
if (!peer->m_getdata_requests.empty()) {
|
|
ProcessGetData(*pfrom, *peer, interruptMsgProc);
|
|
}
|
|
}
|
|
|
|
{
|
|
LOCK2(cs_main, g_cs_orphans);
|
|
if (!peer->m_orphan_work_set.empty()) {
|
|
ProcessOrphanTx(peer->m_orphan_work_set);
|
|
}
|
|
}
|
|
|
|
if (pfrom->fDisconnect)
|
|
return false;
|
|
|
|
// this maintains the order of responses
|
|
// and prevents m_getdata_requests to grow unbounded
|
|
{
|
|
LOCK(peer->m_getdata_requests_mutex);
|
|
if (!peer->m_getdata_requests.empty()) return true;
|
|
}
|
|
|
|
{
|
|
LOCK(g_cs_orphans);
|
|
if (!peer->m_orphan_work_set.empty()) return true;
|
|
}
|
|
|
|
// Don't bother if send buffer is too full to respond anyway
|
|
if (pfrom->fPauseSend) return false;
|
|
|
|
std::list<CNetMessage> msgs;
|
|
{
|
|
LOCK(pfrom->cs_vProcessMsg);
|
|
if (pfrom->vProcessMsg.empty()) return false;
|
|
// Just take one message
|
|
msgs.splice(msgs.begin(), pfrom->vProcessMsg, pfrom->vProcessMsg.begin());
|
|
pfrom->nProcessQueueSize -= msgs.front().m_raw_message_size;
|
|
pfrom->fPauseRecv = pfrom->nProcessQueueSize > m_connman.GetReceiveFloodSize();
|
|
fMoreWork = !pfrom->vProcessMsg.empty();
|
|
}
|
|
CNetMessage& msg(msgs.front());
|
|
|
|
TRACE6(net, inbound_message,
|
|
pfrom->GetId(),
|
|
pfrom->m_addr_name.c_str(),
|
|
pfrom->ConnectionTypeAsString().c_str(),
|
|
msg.m_type.c_str(),
|
|
msg.m_recv.size(),
|
|
msg.m_recv.data()
|
|
);
|
|
|
|
if (gArgs.GetBoolArg("-capturemessages", false)) {
|
|
CaptureMessage(pfrom->addr, msg.m_type, MakeUCharSpan(msg.m_recv), /*is_incoming=*/true);
|
|
}
|
|
|
|
msg.SetVersion(pfrom->GetCommonVersion());
|
|
|
|
try {
|
|
ProcessMessage(*pfrom, msg.m_type, msg.m_recv, msg.m_time, interruptMsgProc);
|
|
if (interruptMsgProc) return false;
|
|
{
|
|
LOCK(peer->m_getdata_requests_mutex);
|
|
if (!peer->m_getdata_requests.empty()) fMoreWork = true;
|
|
}
|
|
} catch (const std::exception& e) {
|
|
LogPrint(BCLog::NET, "%s(%s, %u bytes): Exception '%s' (%s) caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size, e.what(), typeid(e).name());
|
|
} catch (...) {
|
|
LogPrint(BCLog::NET, "%s(%s, %u bytes): Unknown exception caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size);
|
|
}
|
|
|
|
return fMoreWork;
|
|
}
|
|
|
|
void PeerManagerImpl::ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds)
|
|
{
|
|
AssertLockHeld(cs_main);
|
|
|
|
CNodeState &state = *State(pto.GetId());
|
|
const CNetMsgMaker msgMaker(pto.GetCommonVersion());
|
|
|
|
if (!state.m_chain_sync.m_protect && pto.IsOutboundOrBlockRelayConn() && state.fSyncStarted) {
|
|
// This is an outbound peer subject to disconnection if they don't
|
|
// announce a block with as much work as the current tip within
|
|
// CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if
|
|
// their chain has more work than ours, we should sync to it,
|
|
// unless it's invalid, in which case we should find that out and
|
|
// disconnect from them elsewhere).
|
|
if (state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork) {
|
|
if (state.m_chain_sync.m_timeout != 0s) {
|
|
state.m_chain_sync.m_timeout = 0s;
|
|
state.m_chain_sync.m_work_header = nullptr;
|
|
state.m_chain_sync.m_sent_getheaders = false;
|
|
}
|
|
} else if (state.m_chain_sync.m_timeout == 0s || (state.m_chain_sync.m_work_header != nullptr && state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= state.m_chain_sync.m_work_header->nChainWork)) {
|
|
// Our best block known by this peer is behind our tip, and we're either noticing
|
|
// that for the first time, OR this peer was able to catch up to some earlier point
|
|
// where we checked against our tip.
|
|
// Either way, set a new timeout based on current tip.
|
|
state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT;
|
|
state.m_chain_sync.m_work_header = m_chainman.ActiveChain().Tip();
|
|
state.m_chain_sync.m_sent_getheaders = false;
|
|
} else if (state.m_chain_sync.m_timeout > 0s && time_in_seconds > state.m_chain_sync.m_timeout) {
|
|
// No evidence yet that our peer has synced to a chain with work equal to that
|
|
// of our tip, when we first detected it was behind. Send a single getheaders
|
|
// message to give the peer a chance to update us.
|
|
if (state.m_chain_sync.m_sent_getheaders) {
|
|
// They've run out of time to catch up!
|
|
LogPrintf("Disconnecting outbound peer %d for old chain, best known block = %s\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>");
|
|
pto.fDisconnect = true;
|
|
} else {
|
|
assert(state.m_chain_sync.m_work_header);
|
|
// Here, we assume that the getheaders message goes out,
|
|
// because it'll either go out or be skipped because of a
|
|
// getheaders in-flight already, in which case the peer should
|
|
// still respond to us with a sufficiently high work chain tip.
|
|
MaybeSendGetHeaders(pto,
|
|
GetLocator(state.m_chain_sync.m_work_header->pprev),
|
|
peer);
|
|
LogPrint(BCLog::NET, "sending getheaders to outbound peer=%d to verify chain work (current best known block:%s, benchmark blockhash: %s)\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", state.m_chain_sync.m_work_header->GetBlockHash().ToString());
|
|
state.m_chain_sync.m_sent_getheaders = true;
|
|
// Bump the timeout to allow a response, which could clear the timeout
|
|
// (if the response shows the peer has synced), reset the timeout (if
|
|
// the peer syncs to the required work but not to our tip), or result
|
|
// in disconnect (if we advance to the timeout and pindexBestKnownBlock
|
|
// has not sufficiently progressed)
|
|
state.m_chain_sync.m_timeout = time_in_seconds + HEADERS_RESPONSE_TIME;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void PeerManagerImpl::EvictExtraOutboundPeers(std::chrono::seconds now)
|
|
{
|
|
// If we have any extra block-relay-only peers, disconnect the youngest unless
|
|
// it's given us a block -- in which case, compare with the second-youngest, and
|
|
// out of those two, disconnect the peer who least recently gave us a block.
|
|
// The youngest block-relay-only peer would be the extra peer we connected
|
|
// to temporarily in order to sync our tip; see net.cpp.
|
|
// Note that we use higher nodeid as a measure for most recent connection.
|
|
if (m_connman.GetExtraBlockRelayCount() > 0) {
|
|
std::pair<NodeId, std::chrono::seconds> youngest_peer{-1, 0}, next_youngest_peer{-1, 0};
|
|
|
|
m_connman.ForEachNode([&](CNode* pnode) {
|
|
if (!pnode->IsBlockOnlyConn() || pnode->fDisconnect) return;
|
|
if (pnode->GetId() > youngest_peer.first) {
|
|
next_youngest_peer = youngest_peer;
|
|
youngest_peer.first = pnode->GetId();
|
|
youngest_peer.second = pnode->m_last_block_time;
|
|
}
|
|
});
|
|
NodeId to_disconnect = youngest_peer.first;
|
|
if (youngest_peer.second > next_youngest_peer.second) {
|
|
// Our newest block-relay-only peer gave us a block more recently;
|
|
// disconnect our second youngest.
|
|
to_disconnect = next_youngest_peer.first;
|
|
}
|
|
m_connman.ForNode(to_disconnect, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
|
|
AssertLockHeld(::cs_main);
|
|
// Make sure we're not getting a block right now, and that
|
|
// we've been connected long enough for this eviction to happen
|
|
// at all.
|
|
// Note that we only request blocks from a peer if we learn of a
|
|
// valid headers chain with at least as much work as our tip.
|
|
CNodeState *node_state = State(pnode->GetId());
|
|
if (node_state == nullptr ||
|
|
(now - pnode->m_connected >= MINIMUM_CONNECT_TIME && node_state->nBlocksInFlight == 0)) {
|
|
pnode->fDisconnect = true;
|
|
LogPrint(BCLog::NET, "disconnecting extra block-relay-only peer=%d (last block received at time %d)\n",
|
|
pnode->GetId(), count_seconds(pnode->m_last_block_time));
|
|
return true;
|
|
} else {
|
|
LogPrint(BCLog::NET, "keeping block-relay-only peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
|
|
pnode->GetId(), count_seconds(pnode->m_connected), node_state->nBlocksInFlight);
|
|
}
|
|
return false;
|
|
});
|
|
}
|
|
|
|
// Check whether we have too many outbound-full-relay peers
|
|
if (m_connman.GetExtraFullOutboundCount() > 0) {
|
|
// If we have more outbound-full-relay peers than we target, disconnect one.
|
|
// Pick the outbound-full-relay peer that least recently announced
|
|
// us a new block, with ties broken by choosing the more recent
|
|
// connection (higher node id)
|
|
NodeId worst_peer = -1;
|
|
int64_t oldest_block_announcement = std::numeric_limits<int64_t>::max();
|
|
|
|
m_connman.ForEachNode([&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
|
|
AssertLockHeld(::cs_main);
|
|
|
|
// Only consider outbound-full-relay peers that are not already
|
|
// marked for disconnection
|
|
if (!pnode->IsFullOutboundConn() || pnode->fDisconnect) return;
|
|
CNodeState *state = State(pnode->GetId());
|
|
if (state == nullptr) return; // shouldn't be possible, but just in case
|
|
// Don't evict our protected peers
|
|
if (state->m_chain_sync.m_protect) return;
|
|
if (state->m_last_block_announcement < oldest_block_announcement || (state->m_last_block_announcement == oldest_block_announcement && pnode->GetId() > worst_peer)) {
|
|
worst_peer = pnode->GetId();
|
|
oldest_block_announcement = state->m_last_block_announcement;
|
|
}
|
|
});
|
|
if (worst_peer != -1) {
|
|
bool disconnected = m_connman.ForNode(worst_peer, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
|
|
AssertLockHeld(::cs_main);
|
|
|
|
// Only disconnect a peer that has been connected to us for
|
|
// some reasonable fraction of our check-frequency, to give
|
|
// it time for new information to have arrived.
|
|
// Also don't disconnect any peer we're trying to download a
|
|
// block from.
|
|
CNodeState &state = *State(pnode->GetId());
|
|
if (now - pnode->m_connected > MINIMUM_CONNECT_TIME && state.nBlocksInFlight == 0) {
|
|
LogPrint(BCLog::NET, "disconnecting extra outbound peer=%d (last block announcement received at time %d)\n", pnode->GetId(), oldest_block_announcement);
|
|
pnode->fDisconnect = true;
|
|
return true;
|
|
} else {
|
|
LogPrint(BCLog::NET, "keeping outbound peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
|
|
pnode->GetId(), count_seconds(pnode->m_connected), state.nBlocksInFlight);
|
|
return false;
|
|
}
|
|
});
|
|
if (disconnected) {
|
|
// If we disconnected an extra peer, that means we successfully
|
|
// connected to at least one peer after the last time we
|
|
// detected a stale tip. Don't try any more extra peers until
|
|
// we next detect a stale tip, to limit the load we put on the
|
|
// network from these extra connections.
|
|
m_connman.SetTryNewOutboundPeer(false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void PeerManagerImpl::CheckForStaleTipAndEvictPeers()
|
|
{
|
|
LOCK(cs_main);
|
|
|
|
auto now{GetTime<std::chrono::seconds>()};
|
|
|
|
EvictExtraOutboundPeers(now);
|
|
|
|
if (now > m_stale_tip_check_time) {
|
|
// Check whether our tip is stale, and if so, allow using an extra
|
|
// outbound peer
|
|
if (!fImporting && !fReindex && m_connman.GetNetworkActive() && m_connman.GetUseAddrmanOutgoing() && TipMayBeStale()) {
|
|
LogPrintf("Potential stale tip detected, will try using extra outbound peer (last tip update: %d seconds ago)\n",
|
|
count_seconds(now - m_last_tip_update.load()));
|
|
m_connman.SetTryNewOutboundPeer(true);
|
|
} else if (m_connman.GetTryNewOutboundPeer()) {
|
|
m_connman.SetTryNewOutboundPeer(false);
|
|
}
|
|
m_stale_tip_check_time = now + STALE_CHECK_INTERVAL;
|
|
}
|
|
|
|
if (!m_initial_sync_finished && CanDirectFetch()) {
|
|
m_connman.StartExtraBlockRelayPeers();
|
|
m_initial_sync_finished = true;
|
|
}
|
|
}
|
|
|
|
void PeerManagerImpl::MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now)
|
|
{
|
|
if (m_connman.ShouldRunInactivityChecks(node_to, std::chrono::duration_cast<std::chrono::seconds>(now)) &&
|
|
peer.m_ping_nonce_sent &&
|
|
now > peer.m_ping_start.load() + TIMEOUT_INTERVAL)
|
|
{
|
|
// The ping timeout is using mocktime. To disable the check during
|
|
// testing, increase -peertimeout.
|
|
LogPrint(BCLog::NET, "ping timeout: %fs peer=%d\n", 0.000001 * count_microseconds(now - peer.m_ping_start.load()), peer.m_id);
|
|
node_to.fDisconnect = true;
|
|
return;
|
|
}
|
|
|
|
const CNetMsgMaker msgMaker(node_to.GetCommonVersion());
|
|
bool pingSend = false;
|
|
|
|
if (peer.m_ping_queued) {
|
|
// RPC ping request by user
|
|
pingSend = true;
|
|
}
|
|
|
|
if (peer.m_ping_nonce_sent == 0 && now > peer.m_ping_start.load() + PING_INTERVAL) {
|
|
// Ping automatically sent as a latency probe & keepalive.
|
|
pingSend = true;
|
|
}
|
|
|
|
if (pingSend) {
|
|
uint64_t nonce;
|
|
do {
|
|
nonce = GetRand<uint64_t>();
|
|
} while (nonce == 0);
|
|
peer.m_ping_queued = false;
|
|
peer.m_ping_start = now;
|
|
if (node_to.GetCommonVersion() > BIP0031_VERSION) {
|
|
peer.m_ping_nonce_sent = nonce;
|
|
m_connman.PushMessage(&node_to, msgMaker.Make(NetMsgType::PING, nonce));
|
|
} else {
|
|
// Peer is too old to support ping command with nonce, pong will never arrive.
|
|
peer.m_ping_nonce_sent = 0;
|
|
m_connman.PushMessage(&node_to, msgMaker.Make(NetMsgType::PING));
|
|
}
|
|
}
|
|
}
|
|
|
|
void PeerManagerImpl::MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time)
|
|
{
|
|
// Nothing to do for non-address-relay peers
|
|
if (!peer.m_addr_relay_enabled) return;
|
|
|
|
LOCK(peer.m_addr_send_times_mutex);
|
|
// Periodically advertise our local address to the peer.
|
|
if (fListen && !m_chainman.ActiveChainstate().IsInitialBlockDownload() &&
|
|
peer.m_next_local_addr_send < current_time) {
|
|
// If we've sent before, clear the bloom filter for the peer, so that our
|
|
// self-announcement will actually go out.
|
|
// This might be unnecessary if the bloom filter has already rolled
|
|
// over since our last self-announcement, but there is only a small
|
|
// bandwidth cost that we can incur by doing this (which happens
|
|
// once a day on average).
|
|
if (peer.m_next_local_addr_send != 0us) {
|
|
peer.m_addr_known->reset();
|
|
}
|
|
if (std::optional<CService> local_service = GetLocalAddrForPeer(node)) {
|
|
CAddress local_addr{*local_service, peer.m_our_services, Now<NodeSeconds>()};
|
|
FastRandomContext insecure_rand;
|
|
PushAddress(peer, local_addr, insecure_rand);
|
|
}
|
|
peer.m_next_local_addr_send = GetExponentialRand(current_time, AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL);
|
|
}
|
|
|
|
// We sent an `addr` message to this peer recently. Nothing more to do.
|
|
if (current_time <= peer.m_next_addr_send) return;
|
|
|
|
peer.m_next_addr_send = GetExponentialRand(current_time, AVG_ADDRESS_BROADCAST_INTERVAL);
|
|
|
|
if (!Assume(peer.m_addrs_to_send.size() <= MAX_ADDR_TO_SEND)) {
|
|
// Should be impossible since we always check size before adding to
|
|
// m_addrs_to_send. Recover by trimming the vector.
|
|
peer.m_addrs_to_send.resize(MAX_ADDR_TO_SEND);
|
|
}
|
|
|
|
// Remove addr records that the peer already knows about, and add new
|
|
// addrs to the m_addr_known filter on the same pass.
|
|
auto addr_already_known = [&peer](const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex) {
|
|
bool ret = peer.m_addr_known->contains(addr.GetKey());
|
|
if (!ret) peer.m_addr_known->insert(addr.GetKey());
|
|
return ret;
|
|
};
|
|
peer.m_addrs_to_send.erase(std::remove_if(peer.m_addrs_to_send.begin(), peer.m_addrs_to_send.end(), addr_already_known),
|
|
peer.m_addrs_to_send.end());
|
|
|
|
// No addr messages to send
|
|
if (peer.m_addrs_to_send.empty()) return;
|
|
|
|
const char* msg_type;
|
|
int make_flags;
|
|
if (peer.m_wants_addrv2) {
|
|
msg_type = NetMsgType::ADDRV2;
|
|
make_flags = ADDRV2_FORMAT;
|
|
} else {
|
|
msg_type = NetMsgType::ADDR;
|
|
make_flags = 0;
|
|
}
|
|
m_connman.PushMessage(&node, CNetMsgMaker(node.GetCommonVersion()).Make(make_flags, msg_type, peer.m_addrs_to_send));
|
|
peer.m_addrs_to_send.clear();
|
|
|
|
// we only send the big addr message once
|
|
if (peer.m_addrs_to_send.capacity() > 40) {
|
|
peer.m_addrs_to_send.shrink_to_fit();
|
|
}
|
|
}
|
|
|
|
void PeerManagerImpl::MaybeSendSendHeaders(CNode& node, Peer& peer)
|
|
{
|
|
// Delay sending SENDHEADERS (BIP 130) until we're done with an
|
|
// initial-headers-sync with this peer. Receiving headers announcements for
|
|
// new blocks while trying to sync their headers chain is problematic,
|
|
// because of the state tracking done.
|
|
if (!peer.m_sent_sendheaders && node.GetCommonVersion() >= SENDHEADERS_VERSION) {
|
|
LOCK(cs_main);
|
|
CNodeState &state = *State(node.GetId());
|
|
if (state.pindexBestKnownBlock != nullptr &&
|
|
state.pindexBestKnownBlock->nChainWork > nMinimumChainWork) {
|
|
// Tell our peer we prefer to receive headers rather than inv's
|
|
// We send this to non-NODE NETWORK peers as well, because even
|
|
// non-NODE NETWORK peers can announce blocks (such as pruning
|
|
// nodes)
|
|
m_connman.PushMessage(&node, CNetMsgMaker(node.GetCommonVersion()).Make(NetMsgType::SENDHEADERS));
|
|
peer.m_sent_sendheaders = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
void PeerManagerImpl::MaybeSendFeefilter(CNode& pto, Peer& peer, std::chrono::microseconds current_time)
|
|
{
|
|
if (m_ignore_incoming_txs) return;
|
|
if (pto.GetCommonVersion() < FEEFILTER_VERSION) return;
|
|
// peers with the forcerelay permission should not filter txs to us
|
|
if (pto.HasPermission(NetPermissionFlags::ForceRelay)) return;
|
|
// Don't send feefilter messages to outbound block-relay-only peers since they should never announce
|
|
// transactions to us, regardless of feefilter state.
|
|
if (pto.IsBlockOnlyConn()) return;
|
|
|
|
CAmount currentFilter = m_mempool.GetMinFee().GetFeePerK();
|
|
static FeeFilterRounder g_filter_rounder{CFeeRate{DEFAULT_MIN_RELAY_TX_FEE}};
|
|
|
|
if (m_chainman.ActiveChainstate().IsInitialBlockDownload()) {
|
|
// Received tx-inv messages are discarded when the active
|
|
// chainstate is in IBD, so tell the peer to not send them.
|
|
currentFilter = MAX_MONEY;
|
|
} else {
|
|
static const CAmount MAX_FILTER{g_filter_rounder.round(MAX_MONEY)};
|
|
if (peer.m_fee_filter_sent == MAX_FILTER) {
|
|
// Send the current filter if we sent MAX_FILTER previously
|
|
// and made it out of IBD.
|
|
peer.m_next_send_feefilter = 0us;
|
|
}
|
|
}
|
|
if (current_time > peer.m_next_send_feefilter) {
|
|
CAmount filterToSend = g_filter_rounder.round(currentFilter);
|
|
// We always have a fee filter of at least the min relay fee
|
|
filterToSend = std::max(filterToSend, m_mempool.m_min_relay_feerate.GetFeePerK());
|
|
if (filterToSend != peer.m_fee_filter_sent) {
|
|
m_connman.PushMessage(&pto, CNetMsgMaker(pto.GetCommonVersion()).Make(NetMsgType::FEEFILTER, filterToSend));
|
|
peer.m_fee_filter_sent = filterToSend;
|
|
}
|
|
peer.m_next_send_feefilter = GetExponentialRand(current_time, AVG_FEEFILTER_BROADCAST_INTERVAL);
|
|
}
|
|
// If the fee filter has changed substantially and it's still more than MAX_FEEFILTER_CHANGE_DELAY
|
|
// until scheduled broadcast, then move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY.
|
|
else if (current_time + MAX_FEEFILTER_CHANGE_DELAY < peer.m_next_send_feefilter &&
|
|
(currentFilter < 3 * peer.m_fee_filter_sent / 4 || currentFilter > 4 * peer.m_fee_filter_sent / 3)) {
|
|
peer.m_next_send_feefilter = current_time + GetRandomDuration<std::chrono::microseconds>(MAX_FEEFILTER_CHANGE_DELAY);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
class CompareInvMempoolOrder
|
|
{
|
|
CTxMemPool* mp;
|
|
bool m_wtxid_relay;
|
|
public:
|
|
explicit CompareInvMempoolOrder(CTxMemPool *_mempool, bool use_wtxid)
|
|
{
|
|
mp = _mempool;
|
|
m_wtxid_relay = use_wtxid;
|
|
}
|
|
|
|
bool operator()(std::set<uint256>::iterator a, std::set<uint256>::iterator b)
|
|
{
|
|
/* As std::make_heap produces a max-heap, we want the entries with the
|
|
* fewest ancestors/highest fee to sort later. */
|
|
return mp->CompareDepthAndScore(*b, *a, m_wtxid_relay);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
bool PeerManagerImpl::RejectIncomingTxs(const CNode& peer) const
|
|
{
|
|
// block-relay-only peers may never send txs to us
|
|
if (peer.IsBlockOnlyConn()) return true;
|
|
// In -blocksonly mode, peers need the 'relay' permission to send txs to us
|
|
if (m_ignore_incoming_txs && !peer.HasPermission(NetPermissionFlags::Relay)) return true;
|
|
return false;
|
|
}
|
|
|
|
bool PeerManagerImpl::SetupAddressRelay(const CNode& node, Peer& peer)
|
|
{
|
|
// We don't participate in addr relay with outbound block-relay-only
|
|
// connections to prevent providing adversaries with the additional
|
|
// information of addr traffic to infer the link.
|
|
if (node.IsBlockOnlyConn()) return false;
|
|
|
|
if (!peer.m_addr_relay_enabled.exchange(true)) {
|
|
// First addr message we have received from the peer, initialize
|
|
// m_addr_known
|
|
peer.m_addr_known = std::make_unique<CRollingBloomFilter>(5000, 0.001);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool PeerManagerImpl::SendMessages(CNode* pto)
|
|
{
|
|
AssertLockHeld(g_msgproc_mutex);
|
|
|
|
PeerRef peer = GetPeerRef(pto->GetId());
|
|
if (!peer) return false;
|
|
const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
|
|
|
|
// We must call MaybeDiscourageAndDisconnect first, to ensure that we'll
|
|
// disconnect misbehaving peers even before the version handshake is complete.
|
|
if (MaybeDiscourageAndDisconnect(*pto, *peer)) return true;
|
|
|
|
// Don't send anything until the version handshake is complete
|
|
if (!pto->fSuccessfullyConnected || pto->fDisconnect)
|
|
return true;
|
|
|
|
// If we get here, the outgoing message serialization version is set and can't change.
|
|
const CNetMsgMaker msgMaker(pto->GetCommonVersion());
|
|
|
|
const auto current_time{GetTime<std::chrono::microseconds>()};
|
|
|
|
if (pto->IsAddrFetchConn() && current_time - pto->m_connected > 10 * AVG_ADDRESS_BROADCAST_INTERVAL) {
|
|
LogPrint(BCLog::NET, "addrfetch connection timeout; disconnecting peer=%d\n", pto->GetId());
|
|
pto->fDisconnect = true;
|
|
return true;
|
|
}
|
|
|
|
MaybeSendPing(*pto, *peer, current_time);
|
|
|
|
// MaybeSendPing may have marked peer for disconnection
|
|
if (pto->fDisconnect) return true;
|
|
|
|
MaybeSendAddr(*pto, *peer, current_time);
|
|
|
|
MaybeSendSendHeaders(*pto, *peer);
|
|
|
|
{
|
|
LOCK(cs_main);
|
|
|
|
CNodeState &state = *State(pto->GetId());
|
|
|
|
// Start block sync
|
|
if (m_chainman.m_best_header == nullptr) {
|
|
m_chainman.m_best_header = m_chainman.ActiveChain().Tip();
|
|
}
|
|
|
|
// Determine whether we might try initial headers sync or parallel
|
|
// block download from this peer -- this mostly affects behavior while
|
|
// in IBD (once out of IBD, we sync from all peers).
|
|
bool sync_blocks_and_headers_from_peer = false;
|
|
if (state.fPreferredDownload) {
|
|
sync_blocks_and_headers_from_peer = true;
|
|
} else if (CanServeBlocks(*peer) && !pto->IsAddrFetchConn()) {
|
|
// Typically this is an inbound peer. If we don't have any outbound
|
|
// peers, or if we aren't downloading any blocks from such peers,
|
|
// then allow block downloads from this peer, too.
|
|
// We prefer downloading blocks from outbound peers to avoid
|
|
// putting undue load on (say) some home user who is just making
|
|
// outbound connections to the network, but if our only source of
|
|
// the latest blocks is from an inbound peer, we have to be sure to
|
|
// eventually download it (and not just wait indefinitely for an
|
|
// outbound peer to have it).
|
|
if (m_num_preferred_download_peers == 0 || mapBlocksInFlight.empty()) {
|
|
sync_blocks_and_headers_from_peer = true;
|
|
}
|
|
}
|
|
|
|
if (!state.fSyncStarted && CanServeBlocks(*peer) && !fImporting && !fReindex) {
|
|
// Only actively request headers from a single peer, unless we're close to today.
|
|
if ((nSyncStarted == 0 && sync_blocks_and_headers_from_peer) || m_chainman.m_best_header->Time() > GetAdjustedTime() - 24h) {
|
|
const CBlockIndex* pindexStart = m_chainman.m_best_header;
|
|
/* If possible, start at the block preceding the currently
|
|
best known header. This ensures that we always get a
|
|
non-empty list of headers back as long as the peer
|
|
is up-to-date. With a non-empty response, we can initialise
|
|
the peer's known best block. This wouldn't be possible
|
|
if we requested starting at m_chainman.m_best_header and
|
|
got back an empty response. */
|
|
if (pindexStart->pprev)
|
|
pindexStart = pindexStart->pprev;
|
|
if (MaybeSendGetHeaders(*pto, GetLocator(pindexStart), *peer)) {
|
|
LogPrint(BCLog::NET, "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->GetId(), peer->m_starting_height);
|
|
|
|
state.fSyncStarted = true;
|
|
state.m_headers_sync_timeout = current_time + HEADERS_DOWNLOAD_TIMEOUT_BASE +
|
|
(
|
|
// Convert HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER to microseconds before scaling
|
|
// to maintain precision
|
|
std::chrono::microseconds{HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER} *
|
|
Ticks<std::chrono::seconds>(GetAdjustedTime() - m_chainman.m_best_header->Time()) / consensusParams.nPowTargetSpacing
|
|
);
|
|
nSyncStarted++;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Try sending block announcements via headers
|
|
//
|
|
{
|
|
// If we have no more than MAX_BLOCKS_TO_ANNOUNCE in our
|
|
// list of block hashes we're relaying, and our peer wants
|
|
// headers announcements, then find the first header
|
|
// not yet known to our peer but would connect, and send.
|
|
// If no header would connect, or if we have too many
|
|
// blocks, or if the peer doesn't want headers, just
|
|
// add all to the inv queue.
|
|
LOCK(peer->m_block_inv_mutex);
|
|
std::vector<CBlock> vHeaders;
|
|
bool fRevertToInv = ((!state.fPreferHeaders &&
|
|
(!state.m_requested_hb_cmpctblocks || peer->m_blocks_for_headers_relay.size() > 1)) ||
|
|
peer->m_blocks_for_headers_relay.size() > MAX_BLOCKS_TO_ANNOUNCE);
|
|
const CBlockIndex *pBestIndex = nullptr; // last header queued for delivery
|
|
ProcessBlockAvailability(pto->GetId()); // ensure pindexBestKnownBlock is up-to-date
|
|
|
|
if (!fRevertToInv) {
|
|
bool fFoundStartingHeader = false;
|
|
// Try to find first header that our peer doesn't have, and
|
|
// then send all headers past that one. If we come across any
|
|
// headers that aren't on m_chainman.ActiveChain(), give up.
|
|
for (const uint256& hash : peer->m_blocks_for_headers_relay) {
|
|
const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
|
|
assert(pindex);
|
|
if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
|
|
// Bail out if we reorged away from this block
|
|
fRevertToInv = true;
|
|
break;
|
|
}
|
|
if (pBestIndex != nullptr && pindex->pprev != pBestIndex) {
|
|
// This means that the list of blocks to announce don't
|
|
// connect to each other.
|
|
// This shouldn't really be possible to hit during
|
|
// regular operation (because reorgs should take us to
|
|
// a chain that has some block not on the prior chain,
|
|
// which should be caught by the prior check), but one
|
|
// way this could happen is by using invalidateblock /
|
|
// reconsiderblock repeatedly on the tip, causing it to
|
|
// be added multiple times to m_blocks_for_headers_relay.
|
|
// Robustly deal with this rare situation by reverting
|
|
// to an inv.
|
|
fRevertToInv = true;
|
|
break;
|
|
}
|
|
pBestIndex = pindex;
|
|
if (fFoundStartingHeader) {
|
|
// add this to the headers message
|
|
vHeaders.push_back(pindex->GetBlockHeader());
|
|
} else if (PeerHasHeader(&state, pindex)) {
|
|
continue; // keep looking for the first new block
|
|
} else if (pindex->pprev == nullptr || PeerHasHeader(&state, pindex->pprev)) {
|
|
// Peer doesn't have this header but they do have the prior one.
|
|
// Start sending headers.
|
|
fFoundStartingHeader = true;
|
|
vHeaders.push_back(pindex->GetBlockHeader());
|
|
} else {
|
|
// Peer doesn't have this header or the prior one -- nothing will
|
|
// connect, so bail out.
|
|
fRevertToInv = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!fRevertToInv && !vHeaders.empty()) {
|
|
if (vHeaders.size() == 1 && state.m_requested_hb_cmpctblocks) {
|
|
// We only send up to 1 block as header-and-ids, as otherwise
|
|
// probably means we're doing an initial-ish-sync or they're slow
|
|
LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", __func__,
|
|
vHeaders.front().GetHash().ToString(), pto->GetId());
|
|
|
|
std::optional<CSerializedNetMsg> cached_cmpctblock_msg;
|
|
{
|
|
LOCK(m_most_recent_block_mutex);
|
|
if (m_most_recent_block_hash == pBestIndex->GetBlockHash()) {
|
|
cached_cmpctblock_msg = msgMaker.Make(NetMsgType::CMPCTBLOCK, *m_most_recent_compact_block);
|
|
}
|
|
}
|
|
if (cached_cmpctblock_msg.has_value()) {
|
|
m_connman.PushMessage(pto, std::move(cached_cmpctblock_msg.value()));
|
|
} else {
|
|
CBlock block;
|
|
bool ret = ReadBlockFromDisk(block, pBestIndex, consensusParams);
|
|
assert(ret);
|
|
CBlockHeaderAndShortTxIDs cmpctblock{block};
|
|
m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::CMPCTBLOCK, cmpctblock));
|
|
}
|
|
state.pindexBestHeaderSent = pBestIndex;
|
|
} else if (state.fPreferHeaders) {
|
|
if (vHeaders.size() > 1) {
|
|
LogPrint(BCLog::NET, "%s: %u headers, range (%s, %s), to peer=%d\n", __func__,
|
|
vHeaders.size(),
|
|
vHeaders.front().GetHash().ToString(),
|
|
vHeaders.back().GetHash().ToString(), pto->GetId());
|
|
} else {
|
|
LogPrint(BCLog::NET, "%s: sending header %s to peer=%d\n", __func__,
|
|
vHeaders.front().GetHash().ToString(), pto->GetId());
|
|
}
|
|
m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::HEADERS, vHeaders));
|
|
state.pindexBestHeaderSent = pBestIndex;
|
|
} else
|
|
fRevertToInv = true;
|
|
}
|
|
if (fRevertToInv) {
|
|
// If falling back to using an inv, just try to inv the tip.
|
|
// The last entry in m_blocks_for_headers_relay was our tip at some point
|
|
// in the past.
|
|
if (!peer->m_blocks_for_headers_relay.empty()) {
|
|
const uint256& hashToAnnounce = peer->m_blocks_for_headers_relay.back();
|
|
const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hashToAnnounce);
|
|
assert(pindex);
|
|
|
|
// Warn if we're announcing a block that is not on the main chain.
|
|
// This should be very rare and could be optimized out.
|
|
// Just log for now.
|
|
if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
|
|
LogPrint(BCLog::NET, "Announcing block %s not on main chain (tip=%s)\n",
|
|
hashToAnnounce.ToString(), m_chainman.ActiveChain().Tip()->GetBlockHash().ToString());
|
|
}
|
|
|
|
// If the peer's chain has this block, don't inv it back.
|
|
if (!PeerHasHeader(&state, pindex)) {
|
|
peer->m_blocks_for_inv_relay.push_back(hashToAnnounce);
|
|
LogPrint(BCLog::NET, "%s: sending inv peer=%d hash=%s\n", __func__,
|
|
pto->GetId(), hashToAnnounce.ToString());
|
|
}
|
|
}
|
|
}
|
|
peer->m_blocks_for_headers_relay.clear();
|
|
}
|
|
|
|
//
|
|
// Message: inventory
|
|
//
|
|
std::vector<CInv> vInv;
|
|
{
|
|
LOCK(peer->m_block_inv_mutex);
|
|
vInv.reserve(std::max<size_t>(peer->m_blocks_for_inv_relay.size(), INVENTORY_BROADCAST_MAX));
|
|
|
|
// Add blocks
|
|
for (const uint256& hash : peer->m_blocks_for_inv_relay) {
|
|
vInv.push_back(CInv(MSG_BLOCK, hash));
|
|
if (vInv.size() == MAX_INV_SZ) {
|
|
m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::INV, vInv));
|
|
vInv.clear();
|
|
}
|
|
}
|
|
peer->m_blocks_for_inv_relay.clear();
|
|
}
|
|
|
|
if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
|
|
LOCK(tx_relay->m_tx_inventory_mutex);
|
|
// Check whether periodic sends should happen
|
|
bool fSendTrickle = pto->HasPermission(NetPermissionFlags::NoBan);
|
|
if (tx_relay->m_next_inv_send_time < current_time) {
|
|
fSendTrickle = true;
|
|
if (pto->IsInboundConn()) {
|
|
tx_relay->m_next_inv_send_time = NextInvToInbounds(current_time, INBOUND_INVENTORY_BROADCAST_INTERVAL);
|
|
} else {
|
|
tx_relay->m_next_inv_send_time = GetExponentialRand(current_time, OUTBOUND_INVENTORY_BROADCAST_INTERVAL);
|
|
}
|
|
}
|
|
|
|
// Time to send but the peer has requested we not relay transactions.
|
|
if (fSendTrickle) {
|
|
LOCK(tx_relay->m_bloom_filter_mutex);
|
|
if (!tx_relay->m_relay_txs) tx_relay->m_tx_inventory_to_send.clear();
|
|
}
|
|
|
|
// Respond to BIP35 mempool requests
|
|
if (fSendTrickle && tx_relay->m_send_mempool) {
|
|
auto vtxinfo = m_mempool.infoAll();
|
|
tx_relay->m_send_mempool = false;
|
|
const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
|
|
|
|
LOCK(tx_relay->m_bloom_filter_mutex);
|
|
|
|
for (const auto& txinfo : vtxinfo) {
|
|
const uint256& hash = peer->m_wtxid_relay ? txinfo.tx->GetWitnessHash() : txinfo.tx->GetHash();
|
|
CInv inv(peer->m_wtxid_relay ? MSG_WTX : MSG_TX, hash);
|
|
tx_relay->m_tx_inventory_to_send.erase(hash);
|
|
// Don't send transactions that peers will not put into their mempool
|
|
if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
|
|
continue;
|
|
}
|
|
if (tx_relay->m_bloom_filter) {
|
|
if (!tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
|
|
}
|
|
tx_relay->m_tx_inventory_known_filter.insert(hash);
|
|
// Responses to MEMPOOL requests bypass the m_recently_announced_invs filter.
|
|
vInv.push_back(inv);
|
|
if (vInv.size() == MAX_INV_SZ) {
|
|
m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::INV, vInv));
|
|
vInv.clear();
|
|
}
|
|
}
|
|
tx_relay->m_last_mempool_req = std::chrono::duration_cast<std::chrono::seconds>(current_time);
|
|
}
|
|
|
|
// Determine transactions to relay
|
|
if (fSendTrickle) {
|
|
// Produce a vector with all candidates for sending
|
|
std::vector<std::set<uint256>::iterator> vInvTx;
|
|
vInvTx.reserve(tx_relay->m_tx_inventory_to_send.size());
|
|
for (std::set<uint256>::iterator it = tx_relay->m_tx_inventory_to_send.begin(); it != tx_relay->m_tx_inventory_to_send.end(); it++) {
|
|
vInvTx.push_back(it);
|
|
}
|
|
const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
|
|
// Topologically and fee-rate sort the inventory we send for privacy and priority reasons.
|
|
// A heap is used so that not all items need sorting if only a few are being sent.
|
|
CompareInvMempoolOrder compareInvMempoolOrder(&m_mempool, peer->m_wtxid_relay);
|
|
std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
|
|
// No reason to drain out at many times the network's capacity,
|
|
// especially since we have many peers and some will draw much shorter delays.
|
|
unsigned int nRelayedTransactions = 0;
|
|
LOCK(tx_relay->m_bloom_filter_mutex);
|
|
while (!vInvTx.empty() && nRelayedTransactions < INVENTORY_BROADCAST_MAX) {
|
|
// Fetch the top element from the heap
|
|
std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
|
|
std::set<uint256>::iterator it = vInvTx.back();
|
|
vInvTx.pop_back();
|
|
uint256 hash = *it;
|
|
CInv inv(peer->m_wtxid_relay ? MSG_WTX : MSG_TX, hash);
|
|
// Remove it from the to-be-sent set
|
|
tx_relay->m_tx_inventory_to_send.erase(it);
|
|
// Check if not in the filter already
|
|
if (tx_relay->m_tx_inventory_known_filter.contains(hash)) {
|
|
continue;
|
|
}
|
|
// Not in the mempool anymore? don't bother sending it.
|
|
auto txinfo = m_mempool.info(ToGenTxid(inv));
|
|
if (!txinfo.tx) {
|
|
continue;
|
|
}
|
|
auto txid = txinfo.tx->GetHash();
|
|
auto wtxid = txinfo.tx->GetWitnessHash();
|
|
// Peer told you to not send transactions at that feerate? Don't bother sending it.
|
|
if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
|
|
continue;
|
|
}
|
|
if (tx_relay->m_bloom_filter && !tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
|
|
// Send
|
|
State(pto->GetId())->m_recently_announced_invs.insert(hash);
|
|
vInv.push_back(inv);
|
|
nRelayedTransactions++;
|
|
{
|
|
// Expire old relay messages
|
|
while (!g_relay_expiration.empty() && g_relay_expiration.front().first < current_time)
|
|
{
|
|
mapRelay.erase(g_relay_expiration.front().second);
|
|
g_relay_expiration.pop_front();
|
|
}
|
|
|
|
auto ret = mapRelay.emplace(txid, std::move(txinfo.tx));
|
|
if (ret.second) {
|
|
g_relay_expiration.emplace_back(current_time + RELAY_TX_CACHE_TIME, ret.first);
|
|
}
|
|
// Add wtxid-based lookup into mapRelay as well, so that peers can request by wtxid
|
|
auto ret2 = mapRelay.emplace(wtxid, ret.first->second);
|
|
if (ret2.second) {
|
|
g_relay_expiration.emplace_back(current_time + RELAY_TX_CACHE_TIME, ret2.first);
|
|
}
|
|
}
|
|
if (vInv.size() == MAX_INV_SZ) {
|
|
m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::INV, vInv));
|
|
vInv.clear();
|
|
}
|
|
tx_relay->m_tx_inventory_known_filter.insert(hash);
|
|
if (hash != txid) {
|
|
// Insert txid into m_tx_inventory_known_filter, even for
|
|
// wtxidrelay peers. This prevents re-adding of
|
|
// unconfirmed parents to the recently_announced
|
|
// filter, when a child tx is requested. See
|
|
// ProcessGetData().
|
|
tx_relay->m_tx_inventory_known_filter.insert(txid);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!vInv.empty())
|
|
m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::INV, vInv));
|
|
|
|
// Detect whether we're stalling
|
|
if (state.m_stalling_since.count() && state.m_stalling_since < current_time - BLOCK_STALLING_TIMEOUT) {
|
|
// Stalling only triggers when the block download window cannot move. During normal steady state,
|
|
// the download window should be much larger than the to-be-downloaded set of blocks, so disconnection
|
|
// should only happen during initial block download.
|
|
LogPrintf("Peer=%d is stalling block download, disconnecting\n", pto->GetId());
|
|
pto->fDisconnect = true;
|
|
return true;
|
|
}
|
|
// In case there is a block that has been in flight from this peer for block_interval * (1 + 0.5 * N)
|
|
// (with N the number of peers from which we're downloading validated blocks), disconnect due to timeout.
|
|
// We compensate for other peers to prevent killing off peers due to our own downstream link
|
|
// being saturated. We only count validated in-flight blocks so peers can't advertise non-existing block hashes
|
|
// to unreasonably increase our timeout.
|
|
if (state.vBlocksInFlight.size() > 0) {
|
|
QueuedBlock &queuedBlock = state.vBlocksInFlight.front();
|
|
int nOtherPeersWithValidatedDownloads = m_peers_downloading_from - 1;
|
|
if (current_time > state.m_downloading_since + std::chrono::seconds{consensusParams.nPowTargetSpacing} * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) {
|
|
LogPrintf("Timeout downloading block %s from peer=%d, disconnecting\n", queuedBlock.pindex->GetBlockHash().ToString(), pto->GetId());
|
|
pto->fDisconnect = true;
|
|
return true;
|
|
}
|
|
}
|
|
// Check for headers sync timeouts
|
|
if (state.fSyncStarted && state.m_headers_sync_timeout < std::chrono::microseconds::max()) {
|
|
// Detect whether this is a stalling initial-headers-sync peer
|
|
if (m_chainman.m_best_header->Time() <= GetAdjustedTime() - 24h) {
|
|
if (current_time > state.m_headers_sync_timeout && nSyncStarted == 1 && (m_num_preferred_download_peers - state.fPreferredDownload >= 1)) {
|
|
// Disconnect a peer (without NetPermissionFlags::NoBan permission) if it is our only sync peer,
|
|
// and we have others we could be using instead.
|
|
// Note: If all our peers are inbound, then we won't
|
|
// disconnect our sync peer for stalling; we have bigger
|
|
// problems if we can't get any outbound peers.
|
|
if (!pto->HasPermission(NetPermissionFlags::NoBan)) {
|
|
LogPrintf("Timeout downloading headers from peer=%d, disconnecting\n", pto->GetId());
|
|
pto->fDisconnect = true;
|
|
return true;
|
|
} else {
|
|
LogPrintf("Timeout downloading headers from noban peer=%d, not disconnecting\n", pto->GetId());
|
|
// Reset the headers sync state so that we have a
|
|
// chance to try downloading from a different peer.
|
|
// Note: this will also result in at least one more
|
|
// getheaders message to be sent to
|
|
// this peer (eventually).
|
|
state.fSyncStarted = false;
|
|
nSyncStarted--;
|
|
state.m_headers_sync_timeout = 0us;
|
|
}
|
|
}
|
|
} else {
|
|
// After we've caught up once, reset the timeout so we can't trigger
|
|
// disconnect later.
|
|
state.m_headers_sync_timeout = std::chrono::microseconds::max();
|
|
}
|
|
}
|
|
|
|
// Check that outbound peers have reasonable chains
|
|
// GetTime() is used by this anti-DoS logic so we can test this using mocktime
|
|
ConsiderEviction(*pto, *peer, GetTime<std::chrono::seconds>());
|
|
|
|
//
|
|
// Message: getdata (blocks)
|
|
//
|
|
std::vector<CInv> vGetData;
|
|
if (CanServeBlocks(*peer) && ((sync_blocks_and_headers_from_peer && !IsLimitedPeer(*peer)) || !m_chainman.ActiveChainstate().IsInitialBlockDownload()) && state.nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
|
|
std::vector<const CBlockIndex*> vToDownload;
|
|
NodeId staller = -1;
|
|
FindNextBlocksToDownload(*peer, MAX_BLOCKS_IN_TRANSIT_PER_PEER - state.nBlocksInFlight, vToDownload, staller);
|
|
for (const CBlockIndex *pindex : vToDownload) {
|
|
uint32_t nFetchFlags = GetFetchFlags(*peer);
|
|
vGetData.push_back(CInv(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash()));
|
|
BlockRequested(pto->GetId(), *pindex);
|
|
LogPrint(BCLog::NET, "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(),
|
|
pindex->nHeight, pto->GetId());
|
|
}
|
|
if (state.nBlocksInFlight == 0 && staller != -1) {
|
|
if (State(staller)->m_stalling_since == 0us) {
|
|
State(staller)->m_stalling_since = current_time;
|
|
LogPrint(BCLog::NET, "Stall started peer=%d\n", staller);
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Message: getdata (transactions)
|
|
//
|
|
std::vector<std::pair<NodeId, GenTxid>> expired;
|
|
auto requestable = m_txrequest.GetRequestable(pto->GetId(), current_time, &expired);
|
|
for (const auto& entry : expired) {
|
|
LogPrint(BCLog::NET, "timeout of inflight %s %s from peer=%d\n", entry.second.IsWtxid() ? "wtx" : "tx",
|
|
entry.second.GetHash().ToString(), entry.first);
|
|
}
|
|
for (const GenTxid& gtxid : requestable) {
|
|
if (!AlreadyHaveTx(gtxid)) {
|
|
LogPrint(BCLog::NET, "Requesting %s %s peer=%d\n", gtxid.IsWtxid() ? "wtx" : "tx",
|
|
gtxid.GetHash().ToString(), pto->GetId());
|
|
vGetData.emplace_back(gtxid.IsWtxid() ? MSG_WTX : (MSG_TX | GetFetchFlags(*peer)), gtxid.GetHash());
|
|
if (vGetData.size() >= MAX_GETDATA_SZ) {
|
|
m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::GETDATA, vGetData));
|
|
vGetData.clear();
|
|
}
|
|
m_txrequest.RequestedTx(pto->GetId(), gtxid.GetHash(), current_time + GETDATA_TX_INTERVAL);
|
|
} else {
|
|
// We have already seen this transaction, no need to download. This is just a belt-and-suspenders, as
|
|
// this should already be called whenever a transaction becomes AlreadyHaveTx().
|
|
m_txrequest.ForgetTxHash(gtxid.GetHash());
|
|
}
|
|
}
|
|
|
|
|
|
if (!vGetData.empty())
|
|
m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::GETDATA, vGetData));
|
|
} // release cs_main
|
|
MaybeSendFeefilter(*pto, *peer, current_time);
|
|
return true;
|
|
}
|