bitcoin/src/bench/bench.cpp
Matt Corallo 0b1b9148cd Remove countMaskInv caching in bench framework
We were saving a div by caching the inverse as a float, but this
ended up requiring a int -> float -> int conversion, which takes
almost as much time as the difference between float mul and div.

There are lots of other more pressing issues with the bench
framework which probably require simply removing the adaptive
iteration count stuff anyway.
2017-09-11 15:51:36 -04:00

104 lines
3.5 KiB
C++

// Copyright (c) 2015-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "bench.h"
#include "perf.h"
#include <assert.h>
#include <iostream>
#include <iomanip>
#include <sys/time.h>
benchmark::BenchRunner::BenchmarkMap &benchmark::BenchRunner::benchmarks() {
static std::map<std::string, benchmark::BenchFunction> benchmarks_map;
return benchmarks_map;
}
static double gettimedouble(void) {
struct timeval tv;
gettimeofday(&tv, nullptr);
return tv.tv_usec * 0.000001 + tv.tv_sec;
}
benchmark::BenchRunner::BenchRunner(std::string name, benchmark::BenchFunction func)
{
benchmarks().insert(std::make_pair(name, func));
}
void
benchmark::BenchRunner::RunAll(double elapsedTimeForOne)
{
perf_init();
std::cout << "#Benchmark" << "," << "count" << "," << "min" << "," << "max" << "," << "average" << ","
<< "min_cycles" << "," << "max_cycles" << "," << "average_cycles" << "\n";
for (const auto &p: benchmarks()) {
State state(p.first, elapsedTimeForOne);
p.second(state);
}
perf_fini();
}
bool benchmark::State::KeepRunning()
{
if (count & countMask) {
++count;
return true;
}
double now;
uint64_t nowCycles;
if (count == 0) {
lastTime = beginTime = now = gettimedouble();
lastCycles = beginCycles = nowCycles = perf_cpucycles();
}
else {
now = gettimedouble();
double elapsed = now - lastTime;
double elapsedOne = elapsed / (countMask + 1);
if (elapsedOne < minTime) minTime = elapsedOne;
if (elapsedOne > maxTime) maxTime = elapsedOne;
// We only use relative values, so don't have to handle 64-bit wrap-around specially
nowCycles = perf_cpucycles();
uint64_t elapsedOneCycles = (nowCycles - lastCycles) / (countMask + 1);
if (elapsedOneCycles < minCycles) minCycles = elapsedOneCycles;
if (elapsedOneCycles > maxCycles) maxCycles = elapsedOneCycles;
if (elapsed*128 < maxElapsed) {
// If the execution was much too fast (1/128th of maxElapsed), increase the count mask by 8x and restart timing.
// The restart avoids including the overhead of this code in the measurement.
countMask = ((countMask<<3)|7) & ((1LL<<60)-1);
count = 0;
minTime = std::numeric_limits<double>::max();
maxTime = std::numeric_limits<double>::min();
minCycles = std::numeric_limits<uint64_t>::max();
maxCycles = std::numeric_limits<uint64_t>::min();
return true;
}
if (elapsed*16 < maxElapsed) {
uint64_t newCountMask = ((countMask<<1)|1) & ((1LL<<60)-1);
if ((count & newCountMask)==0) {
countMask = newCountMask;
}
}
}
lastTime = now;
lastCycles = nowCycles;
++count;
if (now - beginTime < maxElapsed) return true; // Keep going
--count;
assert(count != 0 && "count == 0 => (now == 0 && beginTime == 0) => return above");
// Output results
double average = (now-beginTime)/count;
int64_t averageCycles = (nowCycles-beginCycles)/count;
std::cout << std::fixed << std::setprecision(15) << name << "," << count << "," << minTime << "," << maxTime << "," << average << ","
<< minCycles << "," << maxCycles << "," << averageCycles << "\n";
std::cout.copyfmt(std::ios(nullptr));
return false;
}