bitcoin/test/functional/test_framework/wallet.py
Sebastian Falbesoner ce024b1c0e test: MiniWallet: force P2PK signature to have fixed size (71 bytes)
In order to enable exact fee calculation for transactions that spend
P2PK outputs in the MiniWallet, we enforce the created signatures to
have a fixed length (>49.89% probability) by default. With that it is
easier to check the created transactions vsize and avoid flaky tests
that would appear whenever the signatures R- or S-values are smaller
(due to leading zero bytes).

Note that to get the total scriptSig size one has to add another
2 bytes, as there is also the OP_PUSHx instruction on the front and
the sighash type byte on the back, leading to a final scriptSig size
of 73 bytes.
2021-06-08 19:38:17 +02:00

179 lines
7.9 KiB
Python

#!/usr/bin/env python3
# Copyright (c) 2020 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""A limited-functionality wallet, which may replace a real wallet in tests"""
from decimal import Decimal
from enum import Enum
from typing import Optional
from test_framework.address import ADDRESS_BCRT1_P2WSH_OP_TRUE
from test_framework.key import ECKey
from test_framework.messages import (
COIN,
COutPoint,
CTransaction,
CTxIn,
CTxInWitness,
CTxOut,
)
from test_framework.script import (
CScript,
LegacySignatureHash,
OP_CHECKSIG,
OP_TRUE,
OP_NOP,
SIGHASH_ALL,
)
from test_framework.util import (
assert_equal,
hex_str_to_bytes,
satoshi_round,
)
class MiniWalletMode(Enum):
"""Determines the transaction type the MiniWallet is creating and spending.
For most purposes, the default mode ADDRESS_OP_TRUE should be sufficient;
it simply uses a fixed bech32 P2WSH address whose coins are spent with a
witness stack of OP_TRUE, i.e. following an anyone-can-spend policy.
However, if the transactions need to be modified by the user (e.g. prepending
scriptSig for testing opcodes that are activated by a soft-fork), or the txs
should contain an actual signature, the raw modes RAW_OP_TRUE and RAW_P2PK
can be useful. Summary of modes:
| output | | tx is | can modify | needs
mode | description | address | standard | scriptSig | signing
----------------+-------------------+-----------+----------+------------+----------
ADDRESS_OP_TRUE | anyone-can-spend | bech32 | yes | no | no
RAW_OP_TRUE | anyone-can-spend | - (raw) | no | yes | no
RAW_P2PK | pay-to-public-key | - (raw) | yes | yes | yes
"""
ADDRESS_OP_TRUE = 1
RAW_OP_TRUE = 2
RAW_P2PK = 3
class MiniWallet:
def __init__(self, test_node, *, mode=MiniWalletMode.ADDRESS_OP_TRUE):
self._test_node = test_node
self._utxos = []
self._priv_key = None
self._address = None
assert isinstance(mode, MiniWalletMode)
if mode == MiniWalletMode.RAW_OP_TRUE:
self._scriptPubKey = bytes(CScript([OP_TRUE]))
elif mode == MiniWalletMode.RAW_P2PK:
# use simple deterministic private key (k=1)
self._priv_key = ECKey()
self._priv_key.set((1).to_bytes(32, 'big'), True)
pub_key = self._priv_key.get_pubkey()
self._scriptPubKey = bytes(CScript([pub_key.get_bytes(), OP_CHECKSIG]))
elif mode == MiniWalletMode.ADDRESS_OP_TRUE:
self._address = ADDRESS_BCRT1_P2WSH_OP_TRUE
self._scriptPubKey = hex_str_to_bytes(self._test_node.validateaddress(self._address)['scriptPubKey'])
def scan_blocks(self, *, start=1, num):
"""Scan the blocks for self._address outputs and add them to self._utxos"""
for i in range(start, start + num):
block = self._test_node.getblock(blockhash=self._test_node.getblockhash(i), verbosity=2)
for tx in block['tx']:
self.scan_tx(tx)
def scan_tx(self, tx):
"""Scan the tx for self._scriptPubKey outputs and add them to self._utxos"""
for out in tx['vout']:
if out['scriptPubKey']['hex'] == self._scriptPubKey.hex():
self._utxos.append({'txid': tx['txid'], 'vout': out['n'], 'value': out['value']})
def sign_tx(self, tx, fixed_length=True):
"""Sign tx that has been created by MiniWallet in P2PK mode"""
assert self._priv_key is not None
(sighash, err) = LegacySignatureHash(CScript(self._scriptPubKey), tx, 0, SIGHASH_ALL)
assert err is None
# for exact fee calculation, create only signatures with fixed size by default (>49.89% probability):
# 65 bytes: high-R val (33 bytes) + low-S val (32 bytes)
# with the DER header/skeleton data of 6 bytes added, this leads to a target size of 71 bytes
der_sig = b''
while not len(der_sig) == 71:
der_sig = self._priv_key.sign_ecdsa(sighash)
if not fixed_length:
break
tx.vin[0].scriptSig = CScript([der_sig + bytes(bytearray([SIGHASH_ALL]))])
def generate(self, num_blocks):
"""Generate blocks with coinbase outputs to the internal address, and append the outputs to the internal list"""
blocks = self._test_node.generatetodescriptor(num_blocks, f'raw({self._scriptPubKey.hex()})')
for b in blocks:
cb_tx = self._test_node.getblock(blockhash=b, verbosity=2)['tx'][0]
self._utxos.append({'txid': cb_tx['txid'], 'vout': 0, 'value': cb_tx['vout'][0]['value']})
return blocks
def get_address(self):
return self._address
def get_utxo(self, *, txid: Optional[str]='', mark_as_spent=True):
"""
Returns a utxo and marks it as spent (pops it from the internal list)
Args:
txid: get the first utxo we find from a specific transaction
Note: Can be used to get the change output immediately after a send_self_transfer
"""
index = -1 # by default the last utxo
if txid:
utxo = next(filter(lambda utxo: txid == utxo['txid'], self._utxos))
index = self._utxos.index(utxo)
if mark_as_spent:
return self._utxos.pop(index)
else:
return self._utxos[index]
def send_self_transfer(self, *, fee_rate=Decimal("0.003"), from_node, utxo_to_spend=None, locktime=0):
"""Create and send a tx with the specified fee_rate. Fee may be exact or at most one satoshi higher than needed."""
tx = self.create_self_transfer(fee_rate=fee_rate, from_node=from_node, utxo_to_spend=utxo_to_spend)
self.sendrawtransaction(from_node=from_node, tx_hex=tx['hex'])
return tx
def create_self_transfer(self, *, fee_rate=Decimal("0.003"), from_node, utxo_to_spend=None, mempool_valid=True, locktime=0):
"""Create and return a tx with the specified fee_rate. Fee may be exact or at most one satoshi higher than needed."""
self._utxos = sorted(self._utxos, key=lambda k: k['value'])
utxo_to_spend = utxo_to_spend or self._utxos.pop() # Pick the largest utxo (if none provided) and hope it covers the fee
vsize = Decimal(96)
send_value = satoshi_round(utxo_to_spend['value'] - fee_rate * (vsize / 1000))
fee = utxo_to_spend['value'] - send_value
assert send_value > 0
tx = CTransaction()
tx.vin = [CTxIn(COutPoint(int(utxo_to_spend['txid'], 16), utxo_to_spend['vout']))]
tx.vout = [CTxOut(int(send_value * COIN), self._scriptPubKey)]
tx.nLockTime = locktime
if not self._address:
# raw script
if self._priv_key is not None:
# P2PK, need to sign
self.sign_tx(tx)
else:
# anyone-can-spend
tx.vin[0].scriptSig = CScript([OP_NOP] * 35) # pad to identical size
else:
tx.wit.vtxinwit = [CTxInWitness()]
tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([OP_TRUE])]
tx_hex = tx.serialize().hex()
tx_info = from_node.testmempoolaccept([tx_hex])[0]
assert_equal(mempool_valid, tx_info['allowed'])
if mempool_valid:
# TODO: for P2PK, vsize is not constant due to varying scriptSig length,
# so only check this for anyone-can-spend outputs right now
if self._priv_key is None:
assert_equal(tx_info['vsize'], vsize)
assert_equal(tx_info['fees']['base'], fee)
return {'txid': tx_info['txid'], 'wtxid': tx_info['wtxid'], 'hex': tx_hex, 'tx': tx}
def sendrawtransaction(self, *, from_node, tx_hex):
from_node.sendrawtransaction(tx_hex)
self.scan_tx(from_node.decoderawtransaction(tx_hex))