bitcoin/test/functional/mempool_accept.py
Peter Todd cd7872ca54
Remove arbitrary limits on OP_Return (datacarrier) outputs
Also removes the code to enforce those limits, including the
`-datacarrier` and `-datacarriersize` config options.

These limits are easily bypassed by both direct submission to miner
mempools (e.g. MARA Slipstream), and forks of Bitcoin Core that do not
enforce them (e.g. Libre Relay). Secondly, protocols are bypassing them
by simply publishing data in other ways, such as unspendable outputs and
scriptsigs.

The *form* of datacarrier outputs remains standardized: a single
OP_Return followed by zero or more data pushes; non-data opcodes remain
non-standard.
2025-04-27 21:07:16 +00:00

457 lines
21 KiB
Python
Executable file

#!/usr/bin/env python3
# Copyright (c) 2017-2022 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test mempool acceptance of raw transactions."""
from copy import deepcopy
from decimal import Decimal
import math
from test_framework.test_framework import BitcoinTestFramework
from test_framework.messages import (
MAX_BIP125_RBF_SEQUENCE,
COIN,
COutPoint,
CTransaction,
CTxIn,
CTxInWitness,
CTxOut,
MAX_BLOCK_WEIGHT,
WITNESS_SCALE_FACTOR,
MAX_MONEY,
SEQUENCE_FINAL,
tx_from_hex,
)
from test_framework.script import (
CScript,
OP_0,
OP_HASH160,
OP_RETURN,
OP_TRUE,
SIGHASH_ALL,
sign_input_legacy,
)
from test_framework.script_util import (
DUMMY_MIN_OP_RETURN_SCRIPT,
keys_to_multisig_script,
MIN_PADDING,
MIN_STANDARD_TX_NONWITNESS_SIZE,
PAY_TO_ANCHOR,
script_to_p2sh_script,
script_to_p2wsh_script,
)
from test_framework.util import (
assert_equal,
assert_greater_than,
assert_raises_rpc_error,
sync_txindex,
)
from test_framework.wallet import MiniWallet
from test_framework.wallet_util import generate_keypair
class MempoolAcceptanceTest(BitcoinTestFramework):
def set_test_params(self):
self.num_nodes = 1
self.extra_args = [[
'-txindex','-permitbaremultisig=0',
]] * self.num_nodes
self.supports_cli = False
def check_mempool_result(self, result_expected, *args, **kwargs):
"""Wrapper to check result of testmempoolaccept on node_0's mempool"""
result_test = self.nodes[0].testmempoolaccept(*args, **kwargs)
for r in result_test:
# Skip these checks for now
r.pop('wtxid')
if "fees" in r:
r["fees"].pop("effective-feerate")
r["fees"].pop("effective-includes")
if "reject-details" in r:
r.pop("reject-details")
assert_equal(result_expected, result_test)
assert_equal(self.nodes[0].getmempoolinfo()['size'], self.mempool_size) # Must not change mempool state
def run_test(self):
node = self.nodes[0]
self.wallet = MiniWallet(node)
self.log.info('Start with empty mempool, and 200 blocks')
self.mempool_size = 0
assert_equal(node.getblockcount(), 200)
assert_equal(node.getmempoolinfo()['size'], self.mempool_size)
self.log.info('Should not accept garbage to testmempoolaccept')
assert_raises_rpc_error(-3, 'JSON value of type string is not of expected type array', lambda: node.testmempoolaccept(rawtxs='ff00baar'))
assert_raises_rpc_error(-8, 'Array must contain between 1 and 25 transactions.', lambda: node.testmempoolaccept(rawtxs=['ff22']*26))
assert_raises_rpc_error(-8, 'Array must contain between 1 and 25 transactions.', lambda: node.testmempoolaccept(rawtxs=[]))
assert_raises_rpc_error(-22, 'TX decode failed', lambda: node.testmempoolaccept(rawtxs=['ff00baar']))
self.log.info('A transaction already in the blockchain')
tx = self.wallet.create_self_transfer()['tx'] # Pick a random coin(base) to spend
tx.vout.append(deepcopy(tx.vout[0]))
tx.vout[0].nValue = int(0.3 * COIN)
tx.vout[1].nValue = int(49 * COIN)
raw_tx_in_block = tx.serialize().hex()
txid_in_block = self.wallet.sendrawtransaction(from_node=node, tx_hex=raw_tx_in_block)
self.generate(node, 1)
self.mempool_size = 0
# Also check feerate. 1BTC/kvB fails
assert_raises_rpc_error(-8, "Fee rates larger than or equal to 1BTC/kvB are not accepted", lambda: self.check_mempool_result(
result_expected=None,
rawtxs=[raw_tx_in_block],
maxfeerate=1,
))
# Check negative feerate
assert_raises_rpc_error(-3, "Amount out of range", lambda: self.check_mempool_result(
result_expected=None,
rawtxs=[raw_tx_in_block],
maxfeerate=-0.01,
))
# ... 0.99 passes
self.check_mempool_result(
result_expected=[{'txid': txid_in_block, 'allowed': False, 'reject-reason': 'txn-already-known'}],
rawtxs=[raw_tx_in_block],
maxfeerate=0.99,
)
self.log.info('A transaction not in the mempool')
fee = Decimal('0.000007')
utxo_to_spend = self.wallet.get_utxo(txid=txid_in_block) # use 0.3 BTC UTXO
tx = self.wallet.create_self_transfer(utxo_to_spend=utxo_to_spend, sequence=MAX_BIP125_RBF_SEQUENCE)['tx']
tx.vout[0].nValue = int((Decimal('0.3') - fee) * COIN)
raw_tx_0 = tx.serialize().hex()
txid_0 = tx.rehash()
self.check_mempool_result(
result_expected=[{'txid': txid_0, 'allowed': True, 'vsize': tx.get_vsize(), 'fees': {'base': fee}}],
rawtxs=[raw_tx_0],
)
self.log.info('A final transaction not in the mempool')
output_amount = Decimal('0.025')
tx = self.wallet.create_self_transfer(
sequence=SEQUENCE_FINAL,
locktime=node.getblockcount() + 2000, # Can be anything
)['tx']
tx.vout[0].nValue = int(output_amount * COIN)
raw_tx_final = tx.serialize().hex()
tx = tx_from_hex(raw_tx_final)
fee_expected = Decimal('50.0') - output_amount
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': True, 'vsize': tx.get_vsize(), 'fees': {'base': fee_expected}}],
rawtxs=[tx.serialize().hex()],
maxfeerate=0,
)
node.sendrawtransaction(hexstring=raw_tx_final, maxfeerate=0)
self.mempool_size += 1
self.log.info('A transaction in the mempool')
node.sendrawtransaction(hexstring=raw_tx_0)
self.mempool_size += 1
self.check_mempool_result(
result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': 'txn-already-in-mempool'}],
rawtxs=[raw_tx_0],
)
self.log.info('A transaction that replaces a mempool transaction')
tx = tx_from_hex(raw_tx_0)
tx.vout[0].nValue -= int(fee * COIN) # Double the fee
raw_tx_0 = tx.serialize().hex()
txid_0 = tx.rehash()
self.check_mempool_result(
result_expected=[{'txid': txid_0, 'allowed': True, 'vsize': tx.get_vsize(), 'fees': {'base': (2 * fee)}}],
rawtxs=[raw_tx_0],
)
node.sendrawtransaction(hexstring=tx.serialize().hex(), maxfeerate=0)
self.log.info('A transaction with missing inputs, that never existed')
tx = tx_from_hex(raw_tx_0)
tx.vin[0].prevout = COutPoint(hash=int('ff' * 32, 16), n=14)
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'missing-inputs'}],
rawtxs=[tx.serialize().hex()],
)
self.log.info('A transaction with missing inputs, that existed once in the past')
tx = tx_from_hex(raw_tx_0)
tx.vin[0].prevout.n = 1 # Set vout to 1, to spend the other outpoint (49 coins) of the in-chain-tx we want to double spend
raw_tx_1 = tx.serialize().hex()
txid_1 = node.sendrawtransaction(hexstring=raw_tx_1, maxfeerate=0)
# Now spend both to "clearly hide" the outputs, ie. remove the coins from the utxo set by spending them
tx = self.wallet.create_self_transfer()['tx']
tx.vin.append(deepcopy(tx.vin[0]))
tx.wit.vtxinwit.append(deepcopy(tx.wit.vtxinwit[0]))
tx.vin[0].prevout = COutPoint(hash=int(txid_0, 16), n=0)
tx.vin[1].prevout = COutPoint(hash=int(txid_1, 16), n=0)
tx.vout[0].nValue = int(0.1 * COIN)
raw_tx_spend_both = tx.serialize().hex()
txid_spend_both = self.wallet.sendrawtransaction(from_node=node, tx_hex=raw_tx_spend_both)
self.generate(node, 1)
self.mempool_size = 0
# Now see if we can add the coins back to the utxo set by sending the exact txs again
self.check_mempool_result(
result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': 'missing-inputs'}],
rawtxs=[raw_tx_0],
)
self.check_mempool_result(
result_expected=[{'txid': txid_1, 'allowed': False, 'reject-reason': 'missing-inputs'}],
rawtxs=[raw_tx_1],
)
self.log.info('Create a "reference" tx for later use')
utxo_to_spend = self.wallet.get_utxo(txid=txid_spend_both)
tx = self.wallet.create_self_transfer(utxo_to_spend=utxo_to_spend, sequence=SEQUENCE_FINAL)['tx']
tx.vout[0].nValue = int(0.05 * COIN)
raw_tx_reference = tx.serialize().hex()
# Reference tx should be valid on itself
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': True, 'vsize': tx.get_vsize(), 'fees': { 'base': Decimal('0.1') - Decimal('0.05')}}],
rawtxs=[tx.serialize().hex()],
maxfeerate=0,
)
self.log.info('A transaction with no outputs')
tx = tx_from_hex(raw_tx_reference)
tx.vout = []
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-vout-empty'}],
rawtxs=[tx.serialize().hex()],
)
self.log.info('A really large transaction')
tx = tx_from_hex(raw_tx_reference)
tx.vin = [tx.vin[0]] * math.ceil((MAX_BLOCK_WEIGHT // WITNESS_SCALE_FACTOR) / len(tx.vin[0].serialize()))
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-oversize'}],
rawtxs=[tx.serialize().hex()],
)
self.log.info('A transaction with negative output value')
tx = tx_from_hex(raw_tx_reference)
tx.vout[0].nValue *= -1
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-vout-negative'}],
rawtxs=[tx.serialize().hex()],
)
# The following two validations prevent overflow of the output amounts (see CVE-2010-5139).
self.log.info('A transaction with too large output value')
tx = tx_from_hex(raw_tx_reference)
tx.vout[0].nValue = MAX_MONEY + 1
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-vout-toolarge'}],
rawtxs=[tx.serialize().hex()],
)
self.log.info('A transaction with too large sum of output values')
tx = tx_from_hex(raw_tx_reference)
tx.vout = [tx.vout[0]] * 2
tx.vout[0].nValue = MAX_MONEY
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-txouttotal-toolarge'}],
rawtxs=[tx.serialize().hex()],
)
self.log.info('A transaction with duplicate inputs')
tx = tx_from_hex(raw_tx_reference)
tx.vin = [tx.vin[0]] * 2
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-inputs-duplicate'}],
rawtxs=[tx.serialize().hex()],
)
self.log.info('A non-coinbase transaction with coinbase-like outpoint')
tx = tx_from_hex(raw_tx_reference)
tx.vin.append(CTxIn(COutPoint(hash=0, n=0xffffffff)))
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-prevout-null'}],
rawtxs=[tx.serialize().hex()],
)
self.log.info('A coinbase transaction')
# Pick the input of the first tx we created, so it has to be a coinbase tx
sync_txindex(self, node)
raw_tx_coinbase_spent = node.getrawtransaction(txid=node.decoderawtransaction(hexstring=raw_tx_in_block)['vin'][0]['txid'])
tx = tx_from_hex(raw_tx_coinbase_spent)
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'coinbase'}],
rawtxs=[tx.serialize().hex()],
)
self.log.info('Some nonstandard transactions')
tx = tx_from_hex(raw_tx_reference)
tx.version = 4 # A version currently non-standard
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'version'}],
rawtxs=[tx.serialize().hex()],
)
tx = tx_from_hex(raw_tx_reference)
tx.vout[0].scriptPubKey = CScript([OP_0]) # Some non-standard script
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'scriptpubkey'}],
rawtxs=[tx.serialize().hex()],
)
tx = tx_from_hex(raw_tx_reference)
_, pubkey = generate_keypair()
tx.vout[0].scriptPubKey = keys_to_multisig_script([pubkey] * 3, k=2) # Some bare multisig script (2-of-3)
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bare-multisig'}],
rawtxs=[tx.serialize().hex()],
)
tx = tx_from_hex(raw_tx_reference)
tx.vin[0].scriptSig = CScript([OP_HASH160]) # Some not-pushonly scriptSig
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'scriptsig-not-pushonly'}],
rawtxs=[tx.serialize().hex()],
)
tx = tx_from_hex(raw_tx_reference)
tx.vin[0].scriptSig = CScript([b'a' * 1648]) # Some too large scriptSig (>1650 bytes)
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'scriptsig-size'}],
rawtxs=[tx.serialize().hex()],
)
tx = tx_from_hex(raw_tx_reference)
output_p2sh_burn = CTxOut(nValue=540, scriptPubKey=script_to_p2sh_script(b'burn'))
num_scripts = 100000 // len(output_p2sh_burn.serialize()) # Use enough outputs to make the tx too large for our policy
tx.vout = [output_p2sh_burn] * num_scripts
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'tx-size'}],
rawtxs=[tx.serialize().hex()],
)
tx = tx_from_hex(raw_tx_reference)
tx.vout[0] = output_p2sh_burn
tx.vout[0].nValue -= 1 # Make output smaller, such that it is dust for our policy
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'dust'}],
rawtxs=[tx.serialize().hex()],
)
self.log.info('A timelocked transaction')
tx = tx_from_hex(raw_tx_reference)
tx.vin[0].nSequence -= 1 # Should be non-max, so locktime is not ignored
tx.nLockTime = node.getblockcount() + 1
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'non-final'}],
rawtxs=[tx.serialize().hex()],
)
self.log.info('A transaction that is locked by BIP68 sequence logic')
tx = tx_from_hex(raw_tx_reference)
tx.vin[0].nSequence = 2 # We could include it in the second block mined from now, but not the very next one
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'non-BIP68-final'}],
rawtxs=[tx.serialize().hex()],
maxfeerate=0,
)
# Prep for tiny-tx tests with wsh(OP_TRUE) output
seed_tx = self.wallet.send_to(from_node=node, scriptPubKey=script_to_p2wsh_script(CScript([OP_TRUE])), amount=COIN)
self.generate(node, 1)
self.log.info('A tiny transaction(in non-witness bytes) that is disallowed')
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(int(seed_tx["txid"], 16), seed_tx["sent_vout"]), b"", SEQUENCE_FINAL))
tx.wit.vtxinwit = [CTxInWitness()]
tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([OP_TRUE])]
tx.vout.append(CTxOut(0, CScript([OP_RETURN] + ([OP_0] * (MIN_PADDING - 2)))))
# Note it's only non-witness size that matters!
assert_equal(len(tx.serialize_without_witness()), 64)
assert_equal(MIN_STANDARD_TX_NONWITNESS_SIZE - 1, 64)
assert_greater_than(len(tx.serialize()), 64)
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'tx-size-small'}],
rawtxs=[tx.serialize().hex()],
maxfeerate=0,
)
self.log.info('Minimally-small transaction(in non-witness bytes) that is allowed')
tx.vout[0] = CTxOut(COIN - 1000, DUMMY_MIN_OP_RETURN_SCRIPT)
assert_equal(len(tx.serialize_without_witness()), MIN_STANDARD_TX_NONWITNESS_SIZE)
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': True, 'vsize': tx.get_vsize(), 'fees': { 'base': Decimal('0.00001000')}}],
rawtxs=[tx.serialize().hex()],
maxfeerate=0,
)
self.log.info('OP_1 <0x4e73> is able to be created and spent')
anchor_value = 10000
create_anchor_tx = self.wallet.send_to(from_node=node, scriptPubKey=PAY_TO_ANCHOR, amount=anchor_value)
self.generate(node, 1)
# First spend has non-empty witness, will be rejected to prevent third party wtxid malleability
anchor_nonempty_wit_spend = CTransaction()
anchor_nonempty_wit_spend.vin.append(CTxIn(COutPoint(int(create_anchor_tx["txid"], 16), create_anchor_tx["sent_vout"]), b""))
anchor_nonempty_wit_spend.vout.append(CTxOut(anchor_value - int(fee*COIN), script_to_p2wsh_script(CScript([OP_TRUE]))))
anchor_nonempty_wit_spend.wit.vtxinwit.append(CTxInWitness())
anchor_nonempty_wit_spend.wit.vtxinwit[0].scriptWitness.stack.append(b"f")
anchor_nonempty_wit_spend.rehash()
self.check_mempool_result(
result_expected=[{'txid': anchor_nonempty_wit_spend.rehash(), 'allowed': False, 'reject-reason': 'bad-witness-nonstandard'}],
rawtxs=[anchor_nonempty_wit_spend.serialize().hex()],
maxfeerate=0,
)
# but is consensus-legal
self.generateblock(node, self.wallet.get_address(), [anchor_nonempty_wit_spend.serialize().hex()])
# Without witness elements it is standard
create_anchor_tx = self.wallet.send_to(from_node=node, scriptPubKey=PAY_TO_ANCHOR, amount=anchor_value)
self.generate(node, 1)
anchor_spend = CTransaction()
anchor_spend.vin.append(CTxIn(COutPoint(int(create_anchor_tx["txid"], 16), create_anchor_tx["sent_vout"]), b""))
anchor_spend.vout.append(CTxOut(anchor_value - int(fee*COIN), script_to_p2wsh_script(CScript([OP_TRUE]))))
anchor_spend.wit.vtxinwit.append(CTxInWitness())
# It's "segwit" but txid == wtxid since there is no witness data
assert_equal(anchor_spend.rehash(), anchor_spend.getwtxid())
self.check_mempool_result(
result_expected=[{'txid': anchor_spend.rehash(), 'allowed': True, 'vsize': anchor_spend.get_vsize(), 'fees': { 'base': Decimal('0.00000700')}}],
rawtxs=[anchor_spend.serialize().hex()],
maxfeerate=0,
)
self.log.info('But cannot be spent if nested sh()')
nested_anchor_tx = self.wallet.create_self_transfer(sequence=SEQUENCE_FINAL)['tx']
nested_anchor_tx.vout[0].scriptPubKey = script_to_p2sh_script(PAY_TO_ANCHOR)
nested_anchor_tx.rehash()
self.generateblock(node, self.wallet.get_address(), [nested_anchor_tx.serialize().hex()])
nested_anchor_spend = CTransaction()
nested_anchor_spend.vin.append(CTxIn(COutPoint(nested_anchor_tx.sha256, 0), b""))
nested_anchor_spend.vin[0].scriptSig = CScript([bytes(PAY_TO_ANCHOR)])
nested_anchor_spend.vout.append(CTxOut(nested_anchor_tx.vout[0].nValue - int(fee*COIN), script_to_p2wsh_script(CScript([OP_TRUE]))))
nested_anchor_spend.rehash()
self.check_mempool_result(
result_expected=[{'txid': nested_anchor_spend.rehash(), 'allowed': False, 'reject-reason': 'non-mandatory-script-verify-flag (Witness version reserved for soft-fork upgrades)'}],
rawtxs=[nested_anchor_spend.serialize().hex()],
maxfeerate=0,
)
# but is consensus-legal
self.generateblock(node, self.wallet.get_address(), [nested_anchor_spend.serialize().hex()])
self.log.info('Spending a confirmed bare multisig is okay')
address = self.wallet.get_address()
tx = tx_from_hex(raw_tx_reference)
privkey, pubkey = generate_keypair()
tx.vout[0].scriptPubKey = keys_to_multisig_script([pubkey] * 3, k=1) # Some bare multisig script (1-of-3)
tx.rehash()
self.generateblock(node, address, [tx.serialize().hex()])
tx_spend = CTransaction()
tx_spend.vin.append(CTxIn(COutPoint(tx.sha256, 0), b""))
tx_spend.vout.append(CTxOut(tx.vout[0].nValue - int(fee*COIN), script_to_p2wsh_script(CScript([OP_TRUE]))))
tx_spend.rehash()
sign_input_legacy(tx_spend, 0, tx.vout[0].scriptPubKey, privkey, sighash_type=SIGHASH_ALL)
tx_spend.vin[0].scriptSig = bytes(CScript([OP_0])) + tx_spend.vin[0].scriptSig
self.check_mempool_result(
result_expected=[{'txid': tx_spend.rehash(), 'allowed': True, 'vsize': tx_spend.get_vsize(), 'fees': { 'base': Decimal('0.00000700')}}],
rawtxs=[tx_spend.serialize().hex()],
maxfeerate=0,
)
if __name__ == '__main__':
MempoolAcceptanceTest(__file__).main()