bitcoin/src/bench/crypto_hash.cpp
2023-09-20 21:12:00 +01:00

283 lines
8.8 KiB
C++

// Copyright (c) 2016-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <bench/bench.h>
#include <crypto/muhash.h>
#include <crypto/ripemd160.h>
#include <crypto/sha1.h>
#include <crypto/sha256.h>
#include <crypto/sha3.h>
#include <crypto/sha512.h>
#include <crypto/siphash.h>
#include <hash.h>
#include <random.h>
#include <tinyformat.h>
#include <uint256.h>
/* Number of bytes to hash per iteration */
static const uint64_t BUFFER_SIZE = 1000*1000;
static void BenchRIPEMD160(benchmark::Bench& bench)
{
uint8_t hash[CRIPEMD160::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
bench.batch(in.size()).unit("byte").run([&] {
CRIPEMD160().Write(in.data(), in.size()).Finalize(hash);
});
}
static void SHA1(benchmark::Bench& bench)
{
uint8_t hash[CSHA1::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
bench.batch(in.size()).unit("byte").run([&] {
CSHA1().Write(in.data(), in.size()).Finalize(hash);
});
}
static void SHA256_STANDARD(benchmark::Bench& bench)
{
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::STANDARD)));
uint8_t hash[CSHA256::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
bench.batch(in.size()).unit("byte").run([&] {
CSHA256().Write(in.data(), in.size()).Finalize(hash);
});
SHA256AutoDetect();
}
static void SHA256_SSE4(benchmark::Bench& bench)
{
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4)));
uint8_t hash[CSHA256::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
bench.batch(in.size()).unit("byte").run([&] {
CSHA256().Write(in.data(), in.size()).Finalize(hash);
});
SHA256AutoDetect();
}
static void SHA256_AVX2(benchmark::Bench& bench)
{
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_AVX2)));
uint8_t hash[CSHA256::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
bench.batch(in.size()).unit("byte").run([&] {
CSHA256().Write(in.data(), in.size()).Finalize(hash);
});
SHA256AutoDetect();
}
static void SHA256_SHANI(benchmark::Bench& bench)
{
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_SHANI)));
uint8_t hash[CSHA256::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
bench.batch(in.size()).unit("byte").run([&] {
CSHA256().Write(in.data(), in.size()).Finalize(hash);
});
SHA256AutoDetect();
}
static void SHA3_256_1M(benchmark::Bench& bench)
{
uint8_t hash[SHA3_256::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
bench.batch(in.size()).unit("byte").run([&] {
SHA3_256().Write(in).Finalize(hash);
});
}
static void SHA256_32b_STANDARD(benchmark::Bench& bench)
{
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::STANDARD)));
std::vector<uint8_t> in(32,0);
bench.batch(in.size()).unit("byte").run([&] {
CSHA256()
.Write(in.data(), in.size())
.Finalize(in.data());
});
SHA256AutoDetect();
}
static void SHA256_32b_SSE4(benchmark::Bench& bench)
{
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4)));
std::vector<uint8_t> in(32,0);
bench.batch(in.size()).unit("byte").run([&] {
CSHA256()
.Write(in.data(), in.size())
.Finalize(in.data());
});
SHA256AutoDetect();
}
static void SHA256_32b_AVX2(benchmark::Bench& bench)
{
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_AVX2)));
std::vector<uint8_t> in(32,0);
bench.batch(in.size()).unit("byte").run([&] {
CSHA256()
.Write(in.data(), in.size())
.Finalize(in.data());
});
SHA256AutoDetect();
}
static void SHA256_32b_SHANI(benchmark::Bench& bench)
{
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_SHANI)));
std::vector<uint8_t> in(32,0);
bench.batch(in.size()).unit("byte").run([&] {
CSHA256()
.Write(in.data(), in.size())
.Finalize(in.data());
});
SHA256AutoDetect();
}
static void SHA256D64_1024_STANDARD(benchmark::Bench& bench)
{
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::STANDARD)));
std::vector<uint8_t> in(64 * 1024, 0);
bench.batch(in.size()).unit("byte").run([&] {
SHA256D64(in.data(), in.data(), 1024);
});
SHA256AutoDetect();
}
static void SHA256D64_1024_SSE4(benchmark::Bench& bench)
{
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4)));
std::vector<uint8_t> in(64 * 1024, 0);
bench.batch(in.size()).unit("byte").run([&] {
SHA256D64(in.data(), in.data(), 1024);
});
SHA256AutoDetect();
}
static void SHA256D64_1024_AVX2(benchmark::Bench& bench)
{
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_AVX2)));
std::vector<uint8_t> in(64 * 1024, 0);
bench.batch(in.size()).unit("byte").run([&] {
SHA256D64(in.data(), in.data(), 1024);
});
SHA256AutoDetect();
}
static void SHA256D64_1024_SHANI(benchmark::Bench& bench)
{
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_SHANI)));
std::vector<uint8_t> in(64 * 1024, 0);
bench.batch(in.size()).unit("byte").run([&] {
SHA256D64(in.data(), in.data(), 1024);
});
SHA256AutoDetect();
}
static void SHA512(benchmark::Bench& bench)
{
uint8_t hash[CSHA512::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
bench.batch(in.size()).unit("byte").run([&] {
CSHA512().Write(in.data(), in.size()).Finalize(hash);
});
}
static void SipHash_32b(benchmark::Bench& bench)
{
uint256 x;
uint64_t k1 = 0;
bench.run([&] {
*((uint64_t*)x.begin()) = SipHashUint256(0, ++k1, x);
});
}
static void FastRandom_32bit(benchmark::Bench& bench)
{
FastRandomContext rng(true);
bench.run([&] {
rng.rand32();
});
}
static void FastRandom_1bit(benchmark::Bench& bench)
{
FastRandomContext rng(true);
bench.run([&] {
rng.randbool();
});
}
static void MuHash(benchmark::Bench& bench)
{
MuHash3072 acc;
unsigned char key[32] = {0};
uint32_t i = 0;
bench.run([&] {
key[0] = ++i & 0xFF;
acc *= MuHash3072(key);
});
}
static void MuHashMul(benchmark::Bench& bench)
{
MuHash3072 acc;
FastRandomContext rng(true);
MuHash3072 muhash{rng.randbytes(32)};
bench.run([&] {
acc *= muhash;
});
}
static void MuHashDiv(benchmark::Bench& bench)
{
MuHash3072 acc;
FastRandomContext rng(true);
MuHash3072 muhash{rng.randbytes(32)};
bench.run([&] {
acc /= muhash;
});
}
static void MuHashPrecompute(benchmark::Bench& bench)
{
MuHash3072 acc;
FastRandomContext rng(true);
std::vector<unsigned char> key{rng.randbytes(32)};
bench.run([&] {
MuHash3072{key};
});
}
BENCHMARK(BenchRIPEMD160, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA1, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256_STANDARD, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256_SSE4, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256_AVX2, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256_SHANI, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA512, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA3_256_1M, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256_32b_STANDARD, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256_32b_SSE4, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256_32b_AVX2, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256_32b_SHANI, benchmark::PriorityLevel::HIGH);
BENCHMARK(SipHash_32b, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256D64_1024_STANDARD, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256D64_1024_SSE4, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256D64_1024_AVX2, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256D64_1024_SHANI, benchmark::PriorityLevel::HIGH);
BENCHMARK(FastRandom_32bit, benchmark::PriorityLevel::HIGH);
BENCHMARK(FastRandom_1bit, benchmark::PriorityLevel::HIGH);
BENCHMARK(MuHash, benchmark::PriorityLevel::HIGH);
BENCHMARK(MuHashMul, benchmark::PriorityLevel::HIGH);
BENCHMARK(MuHashDiv, benchmark::PriorityLevel::HIGH);
BENCHMARK(MuHashPrecompute, benchmark::PriorityLevel::HIGH);