mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-27 03:33:27 -03:00
7143d43884
29029df5c7
[doc] v3 signaling in mempool-replacements.md (glozow)e643ea795e
[fuzz] v3 transactions and sigop-adjusted vsize (glozow)1fd16b5c62
[functional test] v3 transaction submission (glozow)27c8786ba9
test framework: Add and use option for tx-version in MiniWallet methods (MarcoFalke)9a1fea55b2
[policy/validation] allow v3 transactions with certain restrictions (glozow)eb8d5a2e7d
[policy] add v3 policy rules (glozow)9a29d470fb
[rpc] return full string for package_msg and package-error (glozow)158623b8e0
[refactor] change Workspace::m_conflicts and adjacent funcs/structs to use Txid (glozow) Pull request description: See #27463 for overall package relay tracking. Delving Bitcoin discussion thread: https://delvingbitcoin.org/t/v3-transaction-policy-for-anti-pinning/340 Delving Bitcoin discussion for LN usage: https://delvingbitcoin.org/t/lightning-transactions-with-v3-and-ephemeral-anchors/418 Rationale: - There are various pinning problems with RBF and our general ancestor/descendant limits. These policies help mitigate many pinning attacks and make package RBF feasible (see #28984 which implements package RBF on top of this). I would focus the most here on Rule 3 pinning. [1][2] - Switching to a cluster-based mempool (see #27677 and #28676) requires the removal of CPFP carve out, which applications depend on. V3 + package RBF + ephemeral anchors + 1-parent-1-child package relay provides an intermediate solution. V3 policy is for "Priority Transactions." [3][4] It allows users to opt in to more restrictive topological limits for shared transactions, in exchange for the more robust fee-bumping abilities that offers. Even though we don't have cluster limits, we are able to treat these transactions as having as having a maximum cluster size of 2. Immediate benefits: - You can presign a transaction with 0 fees (not just 1sat/vB!) and add a fee-bump later. - Rule 3 pinning is reduced by a significant amount, since the attacker can only attach a maximum of 1000vB to your shared transaction. This also enables some other cool things (again see #27463 for overall roadmap): - Ephemeral Anchors - Package RBF for these 1-parent-1-child packages. That means e.g. a commitment tx + child can replace another commitment tx using the child's fees. - We can transition to a "single anchor" universe without worrying about package limit pinning. So current users of CPFP carve out would have something else to use. - We can switch to a cluster-based mempool [5] (#27677 #28676), which removes CPFP carve out [6]. [1]: Original mailing list post and discussion about RBF pinning problems https://gist.github.com/glozow/25d9662c52453bd08b4b4b1d3783b9ff, https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2022-January/019817.html [2]: A FAQ is "we need this for cluster mempool, but is this still necessary afterwards?" There are some pinning issues that are fixed here and not fully fixed in cluster mempool, so we will still want this or something similar afterward. [3]: Mailing list post for v3 https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2022-September/020937.html [4]: Original PR #25038 also contains a lot of the discussion [5]: https://delvingbitcoin.org/t/an-overview-of-the-cluster-mempool-proposal/393/7 [6]: https://delvingbitcoin.org/t/an-overview-of-the-cluster-mempool-proposal/393#the-cpfp-carveout-rule-can-no-longer-be-supported-12 ACKs for top commit: sdaftuar: ACK29029df5c7
achow101: ACK29029df5c7
instagibbs: ACK29029df5c7
modulo that Tree-SHA512: 9664b078890cfdca2a146439f8835c9d9ab483f43b30af8c7cd6962f09aa557fb1ce7689d5e130a2ec142235dbc8f21213881baa75241c5881660f9008d68450
1237 lines
50 KiB
C++
1237 lines
50 KiB
C++
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
|
// Copyright (c) 2009-2022 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include <txmempool.h>
|
|
|
|
#include <chain.h>
|
|
#include <coins.h>
|
|
#include <common/system.h>
|
|
#include <consensus/consensus.h>
|
|
#include <consensus/tx_verify.h>
|
|
#include <consensus/validation.h>
|
|
#include <logging.h>
|
|
#include <policy/policy.h>
|
|
#include <policy/settings.h>
|
|
#include <random.h>
|
|
#include <reverse_iterator.h>
|
|
#include <util/check.h>
|
|
#include <util/moneystr.h>
|
|
#include <util/overflow.h>
|
|
#include <util/result.h>
|
|
#include <util/time.h>
|
|
#include <util/trace.h>
|
|
#include <util/translation.h>
|
|
#include <validationinterface.h>
|
|
|
|
#include <cmath>
|
|
#include <numeric>
|
|
#include <optional>
|
|
#include <string_view>
|
|
#include <utility>
|
|
|
|
bool TestLockPointValidity(CChain& active_chain, const LockPoints& lp)
|
|
{
|
|
AssertLockHeld(cs_main);
|
|
// If there are relative lock times then the maxInputBlock will be set
|
|
// If there are no relative lock times, the LockPoints don't depend on the chain
|
|
if (lp.maxInputBlock) {
|
|
// Check whether active_chain is an extension of the block at which the LockPoints
|
|
// calculation was valid. If not LockPoints are no longer valid
|
|
if (!active_chain.Contains(lp.maxInputBlock)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// LockPoints still valid
|
|
return true;
|
|
}
|
|
|
|
void CTxMemPool::UpdateForDescendants(txiter updateIt, cacheMap& cachedDescendants,
|
|
const std::set<uint256>& setExclude, std::set<uint256>& descendants_to_remove)
|
|
{
|
|
CTxMemPoolEntry::Children stageEntries, descendants;
|
|
stageEntries = updateIt->GetMemPoolChildrenConst();
|
|
|
|
while (!stageEntries.empty()) {
|
|
const CTxMemPoolEntry& descendant = *stageEntries.begin();
|
|
descendants.insert(descendant);
|
|
stageEntries.erase(descendant);
|
|
const CTxMemPoolEntry::Children& children = descendant.GetMemPoolChildrenConst();
|
|
for (const CTxMemPoolEntry& childEntry : children) {
|
|
cacheMap::iterator cacheIt = cachedDescendants.find(mapTx.iterator_to(childEntry));
|
|
if (cacheIt != cachedDescendants.end()) {
|
|
// We've already calculated this one, just add the entries for this set
|
|
// but don't traverse again.
|
|
for (txiter cacheEntry : cacheIt->second) {
|
|
descendants.insert(*cacheEntry);
|
|
}
|
|
} else if (!descendants.count(childEntry)) {
|
|
// Schedule for later processing
|
|
stageEntries.insert(childEntry);
|
|
}
|
|
}
|
|
}
|
|
// descendants now contains all in-mempool descendants of updateIt.
|
|
// Update and add to cached descendant map
|
|
int32_t modifySize = 0;
|
|
CAmount modifyFee = 0;
|
|
int64_t modifyCount = 0;
|
|
for (const CTxMemPoolEntry& descendant : descendants) {
|
|
if (!setExclude.count(descendant.GetTx().GetHash())) {
|
|
modifySize += descendant.GetTxSize();
|
|
modifyFee += descendant.GetModifiedFee();
|
|
modifyCount++;
|
|
cachedDescendants[updateIt].insert(mapTx.iterator_to(descendant));
|
|
// Update ancestor state for each descendant
|
|
mapTx.modify(mapTx.iterator_to(descendant), [=](CTxMemPoolEntry& e) {
|
|
e.UpdateAncestorState(updateIt->GetTxSize(), updateIt->GetModifiedFee(), 1, updateIt->GetSigOpCost());
|
|
});
|
|
// Don't directly remove the transaction here -- doing so would
|
|
// invalidate iterators in cachedDescendants. Mark it for removal
|
|
// by inserting into descendants_to_remove.
|
|
if (descendant.GetCountWithAncestors() > uint64_t(m_limits.ancestor_count) || descendant.GetSizeWithAncestors() > m_limits.ancestor_size_vbytes) {
|
|
descendants_to_remove.insert(descendant.GetTx().GetHash());
|
|
}
|
|
}
|
|
}
|
|
mapTx.modify(updateIt, [=](CTxMemPoolEntry& e) { e.UpdateDescendantState(modifySize, modifyFee, modifyCount); });
|
|
}
|
|
|
|
void CTxMemPool::UpdateTransactionsFromBlock(const std::vector<uint256>& vHashesToUpdate)
|
|
{
|
|
AssertLockHeld(cs);
|
|
// For each entry in vHashesToUpdate, store the set of in-mempool, but not
|
|
// in-vHashesToUpdate transactions, so that we don't have to recalculate
|
|
// descendants when we come across a previously seen entry.
|
|
cacheMap mapMemPoolDescendantsToUpdate;
|
|
|
|
// Use a set for lookups into vHashesToUpdate (these entries are already
|
|
// accounted for in the state of their ancestors)
|
|
std::set<uint256> setAlreadyIncluded(vHashesToUpdate.begin(), vHashesToUpdate.end());
|
|
|
|
std::set<uint256> descendants_to_remove;
|
|
|
|
// Iterate in reverse, so that whenever we are looking at a transaction
|
|
// we are sure that all in-mempool descendants have already been processed.
|
|
// This maximizes the benefit of the descendant cache and guarantees that
|
|
// CTxMemPoolEntry::m_children will be updated, an assumption made in
|
|
// UpdateForDescendants.
|
|
for (const uint256 &hash : reverse_iterate(vHashesToUpdate)) {
|
|
// calculate children from mapNextTx
|
|
txiter it = mapTx.find(hash);
|
|
if (it == mapTx.end()) {
|
|
continue;
|
|
}
|
|
auto iter = mapNextTx.lower_bound(COutPoint(Txid::FromUint256(hash), 0));
|
|
// First calculate the children, and update CTxMemPoolEntry::m_children to
|
|
// include them, and update their CTxMemPoolEntry::m_parents to include this tx.
|
|
// we cache the in-mempool children to avoid duplicate updates
|
|
{
|
|
WITH_FRESH_EPOCH(m_epoch);
|
|
for (; iter != mapNextTx.end() && iter->first->hash == hash; ++iter) {
|
|
const uint256 &childHash = iter->second->GetHash();
|
|
txiter childIter = mapTx.find(childHash);
|
|
assert(childIter != mapTx.end());
|
|
// We can skip updating entries we've encountered before or that
|
|
// are in the block (which are already accounted for).
|
|
if (!visited(childIter) && !setAlreadyIncluded.count(childHash)) {
|
|
UpdateChild(it, childIter, true);
|
|
UpdateParent(childIter, it, true);
|
|
}
|
|
}
|
|
} // release epoch guard for UpdateForDescendants
|
|
UpdateForDescendants(it, mapMemPoolDescendantsToUpdate, setAlreadyIncluded, descendants_to_remove);
|
|
}
|
|
|
|
for (const auto& txid : descendants_to_remove) {
|
|
// This txid may have been removed already in a prior call to removeRecursive.
|
|
// Therefore we ensure it is not yet removed already.
|
|
if (const std::optional<txiter> txiter = GetIter(txid)) {
|
|
removeRecursive((*txiter)->GetTx(), MemPoolRemovalReason::SIZELIMIT);
|
|
}
|
|
}
|
|
}
|
|
|
|
util::Result<CTxMemPool::setEntries> CTxMemPool::CalculateAncestorsAndCheckLimits(
|
|
int64_t entry_size,
|
|
size_t entry_count,
|
|
CTxMemPoolEntry::Parents& staged_ancestors,
|
|
const Limits& limits) const
|
|
{
|
|
int64_t totalSizeWithAncestors = entry_size;
|
|
setEntries ancestors;
|
|
|
|
while (!staged_ancestors.empty()) {
|
|
const CTxMemPoolEntry& stage = staged_ancestors.begin()->get();
|
|
txiter stageit = mapTx.iterator_to(stage);
|
|
|
|
ancestors.insert(stageit);
|
|
staged_ancestors.erase(stage);
|
|
totalSizeWithAncestors += stageit->GetTxSize();
|
|
|
|
if (stageit->GetSizeWithDescendants() + entry_size > limits.descendant_size_vbytes) {
|
|
return util::Error{Untranslated(strprintf("exceeds descendant size limit for tx %s [limit: %u]", stageit->GetTx().GetHash().ToString(), limits.descendant_size_vbytes))};
|
|
} else if (stageit->GetCountWithDescendants() + entry_count > static_cast<uint64_t>(limits.descendant_count)) {
|
|
return util::Error{Untranslated(strprintf("too many descendants for tx %s [limit: %u]", stageit->GetTx().GetHash().ToString(), limits.descendant_count))};
|
|
} else if (totalSizeWithAncestors > limits.ancestor_size_vbytes) {
|
|
return util::Error{Untranslated(strprintf("exceeds ancestor size limit [limit: %u]", limits.ancestor_size_vbytes))};
|
|
}
|
|
|
|
const CTxMemPoolEntry::Parents& parents = stageit->GetMemPoolParentsConst();
|
|
for (const CTxMemPoolEntry& parent : parents) {
|
|
txiter parent_it = mapTx.iterator_to(parent);
|
|
|
|
// If this is a new ancestor, add it.
|
|
if (ancestors.count(parent_it) == 0) {
|
|
staged_ancestors.insert(parent);
|
|
}
|
|
if (staged_ancestors.size() + ancestors.size() + entry_count > static_cast<uint64_t>(limits.ancestor_count)) {
|
|
return util::Error{Untranslated(strprintf("too many unconfirmed ancestors [limit: %u]", limits.ancestor_count))};
|
|
}
|
|
}
|
|
}
|
|
|
|
return ancestors;
|
|
}
|
|
|
|
util::Result<void> CTxMemPool::CheckPackageLimits(const Package& package,
|
|
const int64_t total_vsize) const
|
|
{
|
|
size_t pack_count = package.size();
|
|
|
|
// Package itself is busting mempool limits; should be rejected even if no staged_ancestors exist
|
|
if (pack_count > static_cast<uint64_t>(m_limits.ancestor_count)) {
|
|
return util::Error{Untranslated(strprintf("package count %u exceeds ancestor count limit [limit: %u]", pack_count, m_limits.ancestor_count))};
|
|
} else if (pack_count > static_cast<uint64_t>(m_limits.descendant_count)) {
|
|
return util::Error{Untranslated(strprintf("package count %u exceeds descendant count limit [limit: %u]", pack_count, m_limits.descendant_count))};
|
|
} else if (total_vsize > m_limits.ancestor_size_vbytes) {
|
|
return util::Error{Untranslated(strprintf("package size %u exceeds ancestor size limit [limit: %u]", total_vsize, m_limits.ancestor_size_vbytes))};
|
|
} else if (total_vsize > m_limits.descendant_size_vbytes) {
|
|
return util::Error{Untranslated(strprintf("package size %u exceeds descendant size limit [limit: %u]", total_vsize, m_limits.descendant_size_vbytes))};
|
|
}
|
|
|
|
CTxMemPoolEntry::Parents staged_ancestors;
|
|
for (const auto& tx : package) {
|
|
for (const auto& input : tx->vin) {
|
|
std::optional<txiter> piter = GetIter(input.prevout.hash);
|
|
if (piter) {
|
|
staged_ancestors.insert(**piter);
|
|
if (staged_ancestors.size() + package.size() > static_cast<uint64_t>(m_limits.ancestor_count)) {
|
|
return util::Error{Untranslated(strprintf("too many unconfirmed parents [limit: %u]", m_limits.ancestor_count))};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// When multiple transactions are passed in, the ancestors and descendants of all transactions
|
|
// considered together must be within limits even if they are not interdependent. This may be
|
|
// stricter than the limits for each individual transaction.
|
|
const auto ancestors{CalculateAncestorsAndCheckLimits(total_vsize, package.size(),
|
|
staged_ancestors, m_limits)};
|
|
// It's possible to overestimate the ancestor/descendant totals.
|
|
if (!ancestors.has_value()) return util::Error{Untranslated("possibly " + util::ErrorString(ancestors).original)};
|
|
return {};
|
|
}
|
|
|
|
util::Result<CTxMemPool::setEntries> CTxMemPool::CalculateMemPoolAncestors(
|
|
const CTxMemPoolEntry &entry,
|
|
const Limits& limits,
|
|
bool fSearchForParents /* = true */) const
|
|
{
|
|
CTxMemPoolEntry::Parents staged_ancestors;
|
|
const CTransaction &tx = entry.GetTx();
|
|
|
|
if (fSearchForParents) {
|
|
// Get parents of this transaction that are in the mempool
|
|
// GetMemPoolParents() is only valid for entries in the mempool, so we
|
|
// iterate mapTx to find parents.
|
|
for (unsigned int i = 0; i < tx.vin.size(); i++) {
|
|
std::optional<txiter> piter = GetIter(tx.vin[i].prevout.hash);
|
|
if (piter) {
|
|
staged_ancestors.insert(**piter);
|
|
if (staged_ancestors.size() + 1 > static_cast<uint64_t>(limits.ancestor_count)) {
|
|
return util::Error{Untranslated(strprintf("too many unconfirmed parents [limit: %u]", limits.ancestor_count))};
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// If we're not searching for parents, we require this to already be an
|
|
// entry in the mempool and use the entry's cached parents.
|
|
txiter it = mapTx.iterator_to(entry);
|
|
staged_ancestors = it->GetMemPoolParentsConst();
|
|
}
|
|
|
|
return CalculateAncestorsAndCheckLimits(entry.GetTxSize(), /*entry_count=*/1, staged_ancestors,
|
|
limits);
|
|
}
|
|
|
|
CTxMemPool::setEntries CTxMemPool::AssumeCalculateMemPoolAncestors(
|
|
std::string_view calling_fn_name,
|
|
const CTxMemPoolEntry &entry,
|
|
const Limits& limits,
|
|
bool fSearchForParents /* = true */) const
|
|
{
|
|
auto result{CalculateMemPoolAncestors(entry, limits, fSearchForParents)};
|
|
if (!Assume(result)) {
|
|
LogPrintLevel(BCLog::MEMPOOL, BCLog::Level::Error, "%s: CalculateMemPoolAncestors failed unexpectedly, continuing with empty ancestor set (%s)\n",
|
|
calling_fn_name, util::ErrorString(result).original);
|
|
}
|
|
return std::move(result).value_or(CTxMemPool::setEntries{});
|
|
}
|
|
|
|
void CTxMemPool::UpdateAncestorsOf(bool add, txiter it, setEntries &setAncestors)
|
|
{
|
|
const CTxMemPoolEntry::Parents& parents = it->GetMemPoolParentsConst();
|
|
// add or remove this tx as a child of each parent
|
|
for (const CTxMemPoolEntry& parent : parents) {
|
|
UpdateChild(mapTx.iterator_to(parent), it, add);
|
|
}
|
|
const int32_t updateCount = (add ? 1 : -1);
|
|
const int32_t updateSize{updateCount * it->GetTxSize()};
|
|
const CAmount updateFee = updateCount * it->GetModifiedFee();
|
|
for (txiter ancestorIt : setAncestors) {
|
|
mapTx.modify(ancestorIt, [=](CTxMemPoolEntry& e) { e.UpdateDescendantState(updateSize, updateFee, updateCount); });
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::UpdateEntryForAncestors(txiter it, const setEntries &setAncestors)
|
|
{
|
|
int64_t updateCount = setAncestors.size();
|
|
int64_t updateSize = 0;
|
|
CAmount updateFee = 0;
|
|
int64_t updateSigOpsCost = 0;
|
|
for (txiter ancestorIt : setAncestors) {
|
|
updateSize += ancestorIt->GetTxSize();
|
|
updateFee += ancestorIt->GetModifiedFee();
|
|
updateSigOpsCost += ancestorIt->GetSigOpCost();
|
|
}
|
|
mapTx.modify(it, [=](CTxMemPoolEntry& e){ e.UpdateAncestorState(updateSize, updateFee, updateCount, updateSigOpsCost); });
|
|
}
|
|
|
|
void CTxMemPool::UpdateChildrenForRemoval(txiter it)
|
|
{
|
|
const CTxMemPoolEntry::Children& children = it->GetMemPoolChildrenConst();
|
|
for (const CTxMemPoolEntry& updateIt : children) {
|
|
UpdateParent(mapTx.iterator_to(updateIt), it, false);
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::UpdateForRemoveFromMempool(const setEntries &entriesToRemove, bool updateDescendants)
|
|
{
|
|
// For each entry, walk back all ancestors and decrement size associated with this
|
|
// transaction
|
|
if (updateDescendants) {
|
|
// updateDescendants should be true whenever we're not recursively
|
|
// removing a tx and all its descendants, eg when a transaction is
|
|
// confirmed in a block.
|
|
// Here we only update statistics and not data in CTxMemPool::Parents
|
|
// and CTxMemPoolEntry::Children (which we need to preserve until we're
|
|
// finished with all operations that need to traverse the mempool).
|
|
for (txiter removeIt : entriesToRemove) {
|
|
setEntries setDescendants;
|
|
CalculateDescendants(removeIt, setDescendants);
|
|
setDescendants.erase(removeIt); // don't update state for self
|
|
int32_t modifySize = -removeIt->GetTxSize();
|
|
CAmount modifyFee = -removeIt->GetModifiedFee();
|
|
int modifySigOps = -removeIt->GetSigOpCost();
|
|
for (txiter dit : setDescendants) {
|
|
mapTx.modify(dit, [=](CTxMemPoolEntry& e){ e.UpdateAncestorState(modifySize, modifyFee, -1, modifySigOps); });
|
|
}
|
|
}
|
|
}
|
|
for (txiter removeIt : entriesToRemove) {
|
|
const CTxMemPoolEntry &entry = *removeIt;
|
|
// Since this is a tx that is already in the mempool, we can call CMPA
|
|
// with fSearchForParents = false. If the mempool is in a consistent
|
|
// state, then using true or false should both be correct, though false
|
|
// should be a bit faster.
|
|
// However, if we happen to be in the middle of processing a reorg, then
|
|
// the mempool can be in an inconsistent state. In this case, the set
|
|
// of ancestors reachable via GetMemPoolParents()/GetMemPoolChildren()
|
|
// will be the same as the set of ancestors whose packages include this
|
|
// transaction, because when we add a new transaction to the mempool in
|
|
// addUnchecked(), we assume it has no children, and in the case of a
|
|
// reorg where that assumption is false, the in-mempool children aren't
|
|
// linked to the in-block tx's until UpdateTransactionsFromBlock() is
|
|
// called.
|
|
// So if we're being called during a reorg, ie before
|
|
// UpdateTransactionsFromBlock() has been called, then
|
|
// GetMemPoolParents()/GetMemPoolChildren() will differ from the set of
|
|
// mempool parents we'd calculate by searching, and it's important that
|
|
// we use the cached notion of ancestor transactions as the set of
|
|
// things to update for removal.
|
|
auto ancestors{AssumeCalculateMemPoolAncestors(__func__, entry, Limits::NoLimits(), /*fSearchForParents=*/false)};
|
|
// Note that UpdateAncestorsOf severs the child links that point to
|
|
// removeIt in the entries for the parents of removeIt.
|
|
UpdateAncestorsOf(false, removeIt, ancestors);
|
|
}
|
|
// After updating all the ancestor sizes, we can now sever the link between each
|
|
// transaction being removed and any mempool children (ie, update CTxMemPoolEntry::m_parents
|
|
// for each direct child of a transaction being removed).
|
|
for (txiter removeIt : entriesToRemove) {
|
|
UpdateChildrenForRemoval(removeIt);
|
|
}
|
|
}
|
|
|
|
void CTxMemPoolEntry::UpdateDescendantState(int32_t modifySize, CAmount modifyFee, int64_t modifyCount)
|
|
{
|
|
nSizeWithDescendants += modifySize;
|
|
assert(nSizeWithDescendants > 0);
|
|
nModFeesWithDescendants = SaturatingAdd(nModFeesWithDescendants, modifyFee);
|
|
m_count_with_descendants += modifyCount;
|
|
assert(m_count_with_descendants > 0);
|
|
}
|
|
|
|
void CTxMemPoolEntry::UpdateAncestorState(int32_t modifySize, CAmount modifyFee, int64_t modifyCount, int64_t modifySigOps)
|
|
{
|
|
nSizeWithAncestors += modifySize;
|
|
assert(nSizeWithAncestors > 0);
|
|
nModFeesWithAncestors = SaturatingAdd(nModFeesWithAncestors, modifyFee);
|
|
m_count_with_ancestors += modifyCount;
|
|
assert(m_count_with_ancestors > 0);
|
|
nSigOpCostWithAncestors += modifySigOps;
|
|
assert(int(nSigOpCostWithAncestors) >= 0);
|
|
}
|
|
|
|
CTxMemPool::CTxMemPool(const Options& opts)
|
|
: m_check_ratio{opts.check_ratio},
|
|
m_max_size_bytes{opts.max_size_bytes},
|
|
m_expiry{opts.expiry},
|
|
m_incremental_relay_feerate{opts.incremental_relay_feerate},
|
|
m_min_relay_feerate{opts.min_relay_feerate},
|
|
m_dust_relay_feerate{opts.dust_relay_feerate},
|
|
m_permit_bare_multisig{opts.permit_bare_multisig},
|
|
m_max_datacarrier_bytes{opts.max_datacarrier_bytes},
|
|
m_require_standard{opts.require_standard},
|
|
m_full_rbf{opts.full_rbf},
|
|
m_persist_v1_dat{opts.persist_v1_dat},
|
|
m_limits{opts.limits}
|
|
{
|
|
}
|
|
|
|
bool CTxMemPool::isSpent(const COutPoint& outpoint) const
|
|
{
|
|
LOCK(cs);
|
|
return mapNextTx.count(outpoint);
|
|
}
|
|
|
|
unsigned int CTxMemPool::GetTransactionsUpdated() const
|
|
{
|
|
return nTransactionsUpdated;
|
|
}
|
|
|
|
void CTxMemPool::AddTransactionsUpdated(unsigned int n)
|
|
{
|
|
nTransactionsUpdated += n;
|
|
}
|
|
|
|
void CTxMemPool::addUnchecked(const CTxMemPoolEntry &entry, setEntries &setAncestors)
|
|
{
|
|
// Add to memory pool without checking anything.
|
|
// Used by AcceptToMemoryPool(), which DOES do
|
|
// all the appropriate checks.
|
|
indexed_transaction_set::iterator newit = mapTx.emplace(CTxMemPoolEntry::ExplicitCopy, entry).first;
|
|
|
|
// Update transaction for any feeDelta created by PrioritiseTransaction
|
|
CAmount delta{0};
|
|
ApplyDelta(entry.GetTx().GetHash(), delta);
|
|
// The following call to UpdateModifiedFee assumes no previous fee modifications
|
|
Assume(entry.GetFee() == entry.GetModifiedFee());
|
|
if (delta) {
|
|
mapTx.modify(newit, [&delta](CTxMemPoolEntry& e) { e.UpdateModifiedFee(delta); });
|
|
}
|
|
|
|
// Update cachedInnerUsage to include contained transaction's usage.
|
|
// (When we update the entry for in-mempool parents, memory usage will be
|
|
// further updated.)
|
|
cachedInnerUsage += entry.DynamicMemoryUsage();
|
|
|
|
const CTransaction& tx = newit->GetTx();
|
|
std::set<Txid> setParentTransactions;
|
|
for (unsigned int i = 0; i < tx.vin.size(); i++) {
|
|
mapNextTx.insert(std::make_pair(&tx.vin[i].prevout, &tx));
|
|
setParentTransactions.insert(tx.vin[i].prevout.hash);
|
|
}
|
|
// Don't bother worrying about child transactions of this one.
|
|
// Normal case of a new transaction arriving is that there can't be any
|
|
// children, because such children would be orphans.
|
|
// An exception to that is if a transaction enters that used to be in a block.
|
|
// In that case, our disconnect block logic will call UpdateTransactionsFromBlock
|
|
// to clean up the mess we're leaving here.
|
|
|
|
// Update ancestors with information about this tx
|
|
for (const auto& pit : GetIterSet(setParentTransactions)) {
|
|
UpdateParent(newit, pit, true);
|
|
}
|
|
UpdateAncestorsOf(true, newit, setAncestors);
|
|
UpdateEntryForAncestors(newit, setAncestors);
|
|
|
|
nTransactionsUpdated++;
|
|
totalTxSize += entry.GetTxSize();
|
|
m_total_fee += entry.GetFee();
|
|
|
|
txns_randomized.emplace_back(newit->GetSharedTx());
|
|
newit->idx_randomized = txns_randomized.size() - 1;
|
|
|
|
TRACE3(mempool, added,
|
|
entry.GetTx().GetHash().data(),
|
|
entry.GetTxSize(),
|
|
entry.GetFee()
|
|
);
|
|
}
|
|
|
|
void CTxMemPool::removeUnchecked(txiter it, MemPoolRemovalReason reason)
|
|
{
|
|
// We increment mempool sequence value no matter removal reason
|
|
// even if not directly reported below.
|
|
uint64_t mempool_sequence = GetAndIncrementSequence();
|
|
|
|
if (reason != MemPoolRemovalReason::BLOCK) {
|
|
// Notify clients that a transaction has been removed from the mempool
|
|
// for any reason except being included in a block. Clients interested
|
|
// in transactions included in blocks can subscribe to the BlockConnected
|
|
// notification.
|
|
GetMainSignals().TransactionRemovedFromMempool(it->GetSharedTx(), reason, mempool_sequence);
|
|
}
|
|
TRACE5(mempool, removed,
|
|
it->GetTx().GetHash().data(),
|
|
RemovalReasonToString(reason).c_str(),
|
|
it->GetTxSize(),
|
|
it->GetFee(),
|
|
std::chrono::duration_cast<std::chrono::duration<std::uint64_t>>(it->GetTime()).count()
|
|
);
|
|
|
|
for (const CTxIn& txin : it->GetTx().vin)
|
|
mapNextTx.erase(txin.prevout);
|
|
|
|
RemoveUnbroadcastTx(it->GetTx().GetHash(), true /* add logging because unchecked */);
|
|
|
|
if (txns_randomized.size() > 1) {
|
|
// Update idx_randomized of the to-be-moved entry.
|
|
Assert(GetEntry(txns_randomized.back()->GetHash()))->idx_randomized = it->idx_randomized;
|
|
// Remove entry from txns_randomized by replacing it with the back and deleting the back.
|
|
txns_randomized[it->idx_randomized] = std::move(txns_randomized.back());
|
|
txns_randomized.pop_back();
|
|
if (txns_randomized.size() * 2 < txns_randomized.capacity())
|
|
txns_randomized.shrink_to_fit();
|
|
} else
|
|
txns_randomized.clear();
|
|
|
|
totalTxSize -= it->GetTxSize();
|
|
m_total_fee -= it->GetFee();
|
|
cachedInnerUsage -= it->DynamicMemoryUsage();
|
|
cachedInnerUsage -= memusage::DynamicUsage(it->GetMemPoolParentsConst()) + memusage::DynamicUsage(it->GetMemPoolChildrenConst());
|
|
mapTx.erase(it);
|
|
nTransactionsUpdated++;
|
|
}
|
|
|
|
// Calculates descendants of entry that are not already in setDescendants, and adds to
|
|
// setDescendants. Assumes entryit is already a tx in the mempool and CTxMemPoolEntry::m_children
|
|
// is correct for tx and all descendants.
|
|
// Also assumes that if an entry is in setDescendants already, then all
|
|
// in-mempool descendants of it are already in setDescendants as well, so that we
|
|
// can save time by not iterating over those entries.
|
|
void CTxMemPool::CalculateDescendants(txiter entryit, setEntries& setDescendants) const
|
|
{
|
|
setEntries stage;
|
|
if (setDescendants.count(entryit) == 0) {
|
|
stage.insert(entryit);
|
|
}
|
|
// Traverse down the children of entry, only adding children that are not
|
|
// accounted for in setDescendants already (because those children have either
|
|
// already been walked, or will be walked in this iteration).
|
|
while (!stage.empty()) {
|
|
txiter it = *stage.begin();
|
|
setDescendants.insert(it);
|
|
stage.erase(it);
|
|
|
|
const CTxMemPoolEntry::Children& children = it->GetMemPoolChildrenConst();
|
|
for (const CTxMemPoolEntry& child : children) {
|
|
txiter childiter = mapTx.iterator_to(child);
|
|
if (!setDescendants.count(childiter)) {
|
|
stage.insert(childiter);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::removeRecursive(const CTransaction &origTx, MemPoolRemovalReason reason)
|
|
{
|
|
// Remove transaction from memory pool
|
|
AssertLockHeld(cs);
|
|
setEntries txToRemove;
|
|
txiter origit = mapTx.find(origTx.GetHash());
|
|
if (origit != mapTx.end()) {
|
|
txToRemove.insert(origit);
|
|
} else {
|
|
// When recursively removing but origTx isn't in the mempool
|
|
// be sure to remove any children that are in the pool. This can
|
|
// happen during chain re-orgs if origTx isn't re-accepted into
|
|
// the mempool for any reason.
|
|
for (unsigned int i = 0; i < origTx.vout.size(); i++) {
|
|
auto it = mapNextTx.find(COutPoint(origTx.GetHash(), i));
|
|
if (it == mapNextTx.end())
|
|
continue;
|
|
txiter nextit = mapTx.find(it->second->GetHash());
|
|
assert(nextit != mapTx.end());
|
|
txToRemove.insert(nextit);
|
|
}
|
|
}
|
|
setEntries setAllRemoves;
|
|
for (txiter it : txToRemove) {
|
|
CalculateDescendants(it, setAllRemoves);
|
|
}
|
|
|
|
RemoveStaged(setAllRemoves, false, reason);
|
|
}
|
|
|
|
void CTxMemPool::removeForReorg(CChain& chain, std::function<bool(txiter)> check_final_and_mature)
|
|
{
|
|
// Remove transactions spending a coinbase which are now immature and no-longer-final transactions
|
|
AssertLockHeld(cs);
|
|
AssertLockHeld(::cs_main);
|
|
|
|
setEntries txToRemove;
|
|
for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) {
|
|
if (check_final_and_mature(it)) txToRemove.insert(it);
|
|
}
|
|
setEntries setAllRemoves;
|
|
for (txiter it : txToRemove) {
|
|
CalculateDescendants(it, setAllRemoves);
|
|
}
|
|
RemoveStaged(setAllRemoves, false, MemPoolRemovalReason::REORG);
|
|
for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) {
|
|
assert(TestLockPointValidity(chain, it->GetLockPoints()));
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::removeConflicts(const CTransaction &tx)
|
|
{
|
|
// Remove transactions which depend on inputs of tx, recursively
|
|
AssertLockHeld(cs);
|
|
for (const CTxIn &txin : tx.vin) {
|
|
auto it = mapNextTx.find(txin.prevout);
|
|
if (it != mapNextTx.end()) {
|
|
const CTransaction &txConflict = *it->second;
|
|
if (txConflict != tx)
|
|
{
|
|
ClearPrioritisation(txConflict.GetHash());
|
|
removeRecursive(txConflict, MemPoolRemovalReason::CONFLICT);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Called when a block is connected. Removes from mempool.
|
|
*/
|
|
void CTxMemPool::removeForBlock(const std::vector<CTransactionRef>& vtx, unsigned int nBlockHeight)
|
|
{
|
|
AssertLockHeld(cs);
|
|
std::vector<RemovedMempoolTransactionInfo> txs_removed_for_block;
|
|
txs_removed_for_block.reserve(vtx.size());
|
|
for (const auto& tx : vtx)
|
|
{
|
|
txiter it = mapTx.find(tx->GetHash());
|
|
if (it != mapTx.end()) {
|
|
setEntries stage;
|
|
stage.insert(it);
|
|
txs_removed_for_block.emplace_back(*it);
|
|
RemoveStaged(stage, true, MemPoolRemovalReason::BLOCK);
|
|
}
|
|
removeConflicts(*tx);
|
|
ClearPrioritisation(tx->GetHash());
|
|
}
|
|
GetMainSignals().MempoolTransactionsRemovedForBlock(txs_removed_for_block, nBlockHeight);
|
|
lastRollingFeeUpdate = GetTime();
|
|
blockSinceLastRollingFeeBump = true;
|
|
}
|
|
|
|
void CTxMemPool::check(const CCoinsViewCache& active_coins_tip, int64_t spendheight) const
|
|
{
|
|
if (m_check_ratio == 0) return;
|
|
|
|
if (GetRand(m_check_ratio) >= 1) return;
|
|
|
|
AssertLockHeld(::cs_main);
|
|
LOCK(cs);
|
|
LogPrint(BCLog::MEMPOOL, "Checking mempool with %u transactions and %u inputs\n", (unsigned int)mapTx.size(), (unsigned int)mapNextTx.size());
|
|
|
|
uint64_t checkTotal = 0;
|
|
CAmount check_total_fee{0};
|
|
uint64_t innerUsage = 0;
|
|
uint64_t prev_ancestor_count{0};
|
|
|
|
CCoinsViewCache mempoolDuplicate(const_cast<CCoinsViewCache*>(&active_coins_tip));
|
|
|
|
for (const auto& it : GetSortedDepthAndScore()) {
|
|
checkTotal += it->GetTxSize();
|
|
check_total_fee += it->GetFee();
|
|
innerUsage += it->DynamicMemoryUsage();
|
|
const CTransaction& tx = it->GetTx();
|
|
innerUsage += memusage::DynamicUsage(it->GetMemPoolParentsConst()) + memusage::DynamicUsage(it->GetMemPoolChildrenConst());
|
|
CTxMemPoolEntry::Parents setParentCheck;
|
|
for (const CTxIn &txin : tx.vin) {
|
|
// Check that every mempool transaction's inputs refer to available coins, or other mempool tx's.
|
|
indexed_transaction_set::const_iterator it2 = mapTx.find(txin.prevout.hash);
|
|
if (it2 != mapTx.end()) {
|
|
const CTransaction& tx2 = it2->GetTx();
|
|
assert(tx2.vout.size() > txin.prevout.n && !tx2.vout[txin.prevout.n].IsNull());
|
|
setParentCheck.insert(*it2);
|
|
}
|
|
// We are iterating through the mempool entries sorted in order by ancestor count.
|
|
// All parents must have been checked before their children and their coins added to
|
|
// the mempoolDuplicate coins cache.
|
|
assert(mempoolDuplicate.HaveCoin(txin.prevout));
|
|
// Check whether its inputs are marked in mapNextTx.
|
|
auto it3 = mapNextTx.find(txin.prevout);
|
|
assert(it3 != mapNextTx.end());
|
|
assert(it3->first == &txin.prevout);
|
|
assert(it3->second == &tx);
|
|
}
|
|
auto comp = [](const CTxMemPoolEntry& a, const CTxMemPoolEntry& b) -> bool {
|
|
return a.GetTx().GetHash() == b.GetTx().GetHash();
|
|
};
|
|
assert(setParentCheck.size() == it->GetMemPoolParentsConst().size());
|
|
assert(std::equal(setParentCheck.begin(), setParentCheck.end(), it->GetMemPoolParentsConst().begin(), comp));
|
|
// Verify ancestor state is correct.
|
|
auto ancestors{AssumeCalculateMemPoolAncestors(__func__, *it, Limits::NoLimits())};
|
|
uint64_t nCountCheck = ancestors.size() + 1;
|
|
int32_t nSizeCheck = it->GetTxSize();
|
|
CAmount nFeesCheck = it->GetModifiedFee();
|
|
int64_t nSigOpCheck = it->GetSigOpCost();
|
|
|
|
for (txiter ancestorIt : ancestors) {
|
|
nSizeCheck += ancestorIt->GetTxSize();
|
|
nFeesCheck += ancestorIt->GetModifiedFee();
|
|
nSigOpCheck += ancestorIt->GetSigOpCost();
|
|
}
|
|
|
|
assert(it->GetCountWithAncestors() == nCountCheck);
|
|
assert(it->GetSizeWithAncestors() == nSizeCheck);
|
|
assert(it->GetSigOpCostWithAncestors() == nSigOpCheck);
|
|
assert(it->GetModFeesWithAncestors() == nFeesCheck);
|
|
// Sanity check: we are walking in ascending ancestor count order.
|
|
assert(prev_ancestor_count <= it->GetCountWithAncestors());
|
|
prev_ancestor_count = it->GetCountWithAncestors();
|
|
|
|
// Check children against mapNextTx
|
|
CTxMemPoolEntry::Children setChildrenCheck;
|
|
auto iter = mapNextTx.lower_bound(COutPoint(it->GetTx().GetHash(), 0));
|
|
int32_t child_sizes{0};
|
|
for (; iter != mapNextTx.end() && iter->first->hash == it->GetTx().GetHash(); ++iter) {
|
|
txiter childit = mapTx.find(iter->second->GetHash());
|
|
assert(childit != mapTx.end()); // mapNextTx points to in-mempool transactions
|
|
if (setChildrenCheck.insert(*childit).second) {
|
|
child_sizes += childit->GetTxSize();
|
|
}
|
|
}
|
|
assert(setChildrenCheck.size() == it->GetMemPoolChildrenConst().size());
|
|
assert(std::equal(setChildrenCheck.begin(), setChildrenCheck.end(), it->GetMemPoolChildrenConst().begin(), comp));
|
|
// Also check to make sure size is greater than sum with immediate children.
|
|
// just a sanity check, not definitive that this calc is correct...
|
|
assert(it->GetSizeWithDescendants() >= child_sizes + it->GetTxSize());
|
|
|
|
TxValidationState dummy_state; // Not used. CheckTxInputs() should always pass
|
|
CAmount txfee = 0;
|
|
assert(!tx.IsCoinBase());
|
|
assert(Consensus::CheckTxInputs(tx, dummy_state, mempoolDuplicate, spendheight, txfee));
|
|
for (const auto& input: tx.vin) mempoolDuplicate.SpendCoin(input.prevout);
|
|
AddCoins(mempoolDuplicate, tx, std::numeric_limits<int>::max());
|
|
}
|
|
for (auto it = mapNextTx.cbegin(); it != mapNextTx.cend(); it++) {
|
|
uint256 hash = it->second->GetHash();
|
|
indexed_transaction_set::const_iterator it2 = mapTx.find(hash);
|
|
const CTransaction& tx = it2->GetTx();
|
|
assert(it2 != mapTx.end());
|
|
assert(&tx == it->second);
|
|
}
|
|
|
|
assert(totalTxSize == checkTotal);
|
|
assert(m_total_fee == check_total_fee);
|
|
assert(innerUsage == cachedInnerUsage);
|
|
}
|
|
|
|
bool CTxMemPool::CompareDepthAndScore(const uint256& hasha, const uint256& hashb, bool wtxid)
|
|
{
|
|
/* Return `true` if hasha should be considered sooner than hashb. Namely when:
|
|
* a is not in the mempool, but b is
|
|
* both are in the mempool and a has fewer ancestors than b
|
|
* both are in the mempool and a has a higher score than b
|
|
*/
|
|
LOCK(cs);
|
|
indexed_transaction_set::const_iterator j = wtxid ? get_iter_from_wtxid(hashb) : mapTx.find(hashb);
|
|
if (j == mapTx.end()) return false;
|
|
indexed_transaction_set::const_iterator i = wtxid ? get_iter_from_wtxid(hasha) : mapTx.find(hasha);
|
|
if (i == mapTx.end()) return true;
|
|
uint64_t counta = i->GetCountWithAncestors();
|
|
uint64_t countb = j->GetCountWithAncestors();
|
|
if (counta == countb) {
|
|
return CompareTxMemPoolEntryByScore()(*i, *j);
|
|
}
|
|
return counta < countb;
|
|
}
|
|
|
|
namespace {
|
|
class DepthAndScoreComparator
|
|
{
|
|
public:
|
|
bool operator()(const CTxMemPool::indexed_transaction_set::const_iterator& a, const CTxMemPool::indexed_transaction_set::const_iterator& b)
|
|
{
|
|
uint64_t counta = a->GetCountWithAncestors();
|
|
uint64_t countb = b->GetCountWithAncestors();
|
|
if (counta == countb) {
|
|
return CompareTxMemPoolEntryByScore()(*a, *b);
|
|
}
|
|
return counta < countb;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::vector<CTxMemPool::indexed_transaction_set::const_iterator> CTxMemPool::GetSortedDepthAndScore() const
|
|
{
|
|
std::vector<indexed_transaction_set::const_iterator> iters;
|
|
AssertLockHeld(cs);
|
|
|
|
iters.reserve(mapTx.size());
|
|
|
|
for (indexed_transaction_set::iterator mi = mapTx.begin(); mi != mapTx.end(); ++mi) {
|
|
iters.push_back(mi);
|
|
}
|
|
std::sort(iters.begin(), iters.end(), DepthAndScoreComparator());
|
|
return iters;
|
|
}
|
|
|
|
static TxMempoolInfo GetInfo(CTxMemPool::indexed_transaction_set::const_iterator it) {
|
|
return TxMempoolInfo{it->GetSharedTx(), it->GetTime(), it->GetFee(), it->GetTxSize(), it->GetModifiedFee() - it->GetFee()};
|
|
}
|
|
|
|
std::vector<CTxMemPoolEntryRef> CTxMemPool::entryAll() const
|
|
{
|
|
AssertLockHeld(cs);
|
|
|
|
std::vector<CTxMemPoolEntryRef> ret;
|
|
ret.reserve(mapTx.size());
|
|
for (const auto& it : GetSortedDepthAndScore()) {
|
|
ret.emplace_back(*it);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
std::vector<TxMempoolInfo> CTxMemPool::infoAll() const
|
|
{
|
|
LOCK(cs);
|
|
auto iters = GetSortedDepthAndScore();
|
|
|
|
std::vector<TxMempoolInfo> ret;
|
|
ret.reserve(mapTx.size());
|
|
for (auto it : iters) {
|
|
ret.push_back(GetInfo(it));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
const CTxMemPoolEntry* CTxMemPool::GetEntry(const Txid& txid) const
|
|
{
|
|
AssertLockHeld(cs);
|
|
const auto i = mapTx.find(txid);
|
|
return i == mapTx.end() ? nullptr : &(*i);
|
|
}
|
|
|
|
CTransactionRef CTxMemPool::get(const uint256& hash) const
|
|
{
|
|
LOCK(cs);
|
|
indexed_transaction_set::const_iterator i = mapTx.find(hash);
|
|
if (i == mapTx.end())
|
|
return nullptr;
|
|
return i->GetSharedTx();
|
|
}
|
|
|
|
TxMempoolInfo CTxMemPool::info(const GenTxid& gtxid) const
|
|
{
|
|
LOCK(cs);
|
|
indexed_transaction_set::const_iterator i = (gtxid.IsWtxid() ? get_iter_from_wtxid(gtxid.GetHash()) : mapTx.find(gtxid.GetHash()));
|
|
if (i == mapTx.end())
|
|
return TxMempoolInfo();
|
|
return GetInfo(i);
|
|
}
|
|
|
|
TxMempoolInfo CTxMemPool::info_for_relay(const GenTxid& gtxid, uint64_t last_sequence) const
|
|
{
|
|
LOCK(cs);
|
|
indexed_transaction_set::const_iterator i = (gtxid.IsWtxid() ? get_iter_from_wtxid(gtxid.GetHash()) : mapTx.find(gtxid.GetHash()));
|
|
if (i != mapTx.end() && i->GetSequence() < last_sequence) {
|
|
return GetInfo(i);
|
|
} else {
|
|
return TxMempoolInfo();
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::PrioritiseTransaction(const uint256& hash, const CAmount& nFeeDelta)
|
|
{
|
|
{
|
|
LOCK(cs);
|
|
CAmount &delta = mapDeltas[hash];
|
|
delta = SaturatingAdd(delta, nFeeDelta);
|
|
txiter it = mapTx.find(hash);
|
|
if (it != mapTx.end()) {
|
|
mapTx.modify(it, [&nFeeDelta](CTxMemPoolEntry& e) { e.UpdateModifiedFee(nFeeDelta); });
|
|
// Now update all ancestors' modified fees with descendants
|
|
auto ancestors{AssumeCalculateMemPoolAncestors(__func__, *it, Limits::NoLimits(), /*fSearchForParents=*/false)};
|
|
for (txiter ancestorIt : ancestors) {
|
|
mapTx.modify(ancestorIt, [=](CTxMemPoolEntry& e){ e.UpdateDescendantState(0, nFeeDelta, 0);});
|
|
}
|
|
// Now update all descendants' modified fees with ancestors
|
|
setEntries setDescendants;
|
|
CalculateDescendants(it, setDescendants);
|
|
setDescendants.erase(it);
|
|
for (txiter descendantIt : setDescendants) {
|
|
mapTx.modify(descendantIt, [=](CTxMemPoolEntry& e){ e.UpdateAncestorState(0, nFeeDelta, 0, 0); });
|
|
}
|
|
++nTransactionsUpdated;
|
|
}
|
|
if (delta == 0) {
|
|
mapDeltas.erase(hash);
|
|
LogPrintf("PrioritiseTransaction: %s (%sin mempool) delta cleared\n", hash.ToString(), it == mapTx.end() ? "not " : "");
|
|
} else {
|
|
LogPrintf("PrioritiseTransaction: %s (%sin mempool) fee += %s, new delta=%s\n",
|
|
hash.ToString(),
|
|
it == mapTx.end() ? "not " : "",
|
|
FormatMoney(nFeeDelta),
|
|
FormatMoney(delta));
|
|
}
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::ApplyDelta(const uint256& hash, CAmount &nFeeDelta) const
|
|
{
|
|
AssertLockHeld(cs);
|
|
std::map<uint256, CAmount>::const_iterator pos = mapDeltas.find(hash);
|
|
if (pos == mapDeltas.end())
|
|
return;
|
|
const CAmount &delta = pos->second;
|
|
nFeeDelta += delta;
|
|
}
|
|
|
|
void CTxMemPool::ClearPrioritisation(const uint256& hash)
|
|
{
|
|
AssertLockHeld(cs);
|
|
mapDeltas.erase(hash);
|
|
}
|
|
|
|
std::vector<CTxMemPool::delta_info> CTxMemPool::GetPrioritisedTransactions() const
|
|
{
|
|
AssertLockNotHeld(cs);
|
|
LOCK(cs);
|
|
std::vector<delta_info> result;
|
|
result.reserve(mapDeltas.size());
|
|
for (const auto& [txid, delta] : mapDeltas) {
|
|
const auto iter{mapTx.find(txid)};
|
|
const bool in_mempool{iter != mapTx.end()};
|
|
std::optional<CAmount> modified_fee;
|
|
if (in_mempool) modified_fee = iter->GetModifiedFee();
|
|
result.emplace_back(delta_info{in_mempool, delta, modified_fee, txid});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
const CTransaction* CTxMemPool::GetConflictTx(const COutPoint& prevout) const
|
|
{
|
|
const auto it = mapNextTx.find(prevout);
|
|
return it == mapNextTx.end() ? nullptr : it->second;
|
|
}
|
|
|
|
std::optional<CTxMemPool::txiter> CTxMemPool::GetIter(const uint256& txid) const
|
|
{
|
|
auto it = mapTx.find(txid);
|
|
if (it != mapTx.end()) return it;
|
|
return std::nullopt;
|
|
}
|
|
|
|
CTxMemPool::setEntries CTxMemPool::GetIterSet(const std::set<Txid>& hashes) const
|
|
{
|
|
CTxMemPool::setEntries ret;
|
|
for (const auto& h : hashes) {
|
|
const auto mi = GetIter(h);
|
|
if (mi) ret.insert(*mi);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
std::vector<CTxMemPool::txiter> CTxMemPool::GetIterVec(const std::vector<uint256>& txids) const
|
|
{
|
|
AssertLockHeld(cs);
|
|
std::vector<txiter> ret;
|
|
ret.reserve(txids.size());
|
|
for (const auto& txid : txids) {
|
|
const auto it{GetIter(txid)};
|
|
if (!it) return {};
|
|
ret.push_back(*it);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
bool CTxMemPool::HasNoInputsOf(const CTransaction &tx) const
|
|
{
|
|
for (unsigned int i = 0; i < tx.vin.size(); i++)
|
|
if (exists(GenTxid::Txid(tx.vin[i].prevout.hash)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
CCoinsViewMemPool::CCoinsViewMemPool(CCoinsView* baseIn, const CTxMemPool& mempoolIn) : CCoinsViewBacked(baseIn), mempool(mempoolIn) { }
|
|
|
|
bool CCoinsViewMemPool::GetCoin(const COutPoint &outpoint, Coin &coin) const {
|
|
// Check to see if the inputs are made available by another tx in the package.
|
|
// These Coins would not be available in the underlying CoinsView.
|
|
if (auto it = m_temp_added.find(outpoint); it != m_temp_added.end()) {
|
|
coin = it->second;
|
|
return true;
|
|
}
|
|
|
|
// If an entry in the mempool exists, always return that one, as it's guaranteed to never
|
|
// conflict with the underlying cache, and it cannot have pruned entries (as it contains full)
|
|
// transactions. First checking the underlying cache risks returning a pruned entry instead.
|
|
CTransactionRef ptx = mempool.get(outpoint.hash);
|
|
if (ptx) {
|
|
if (outpoint.n < ptx->vout.size()) {
|
|
coin = Coin(ptx->vout[outpoint.n], MEMPOOL_HEIGHT, false);
|
|
m_non_base_coins.emplace(outpoint);
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
return base->GetCoin(outpoint, coin);
|
|
}
|
|
|
|
void CCoinsViewMemPool::PackageAddTransaction(const CTransactionRef& tx)
|
|
{
|
|
for (unsigned int n = 0; n < tx->vout.size(); ++n) {
|
|
m_temp_added.emplace(COutPoint(tx->GetHash(), n), Coin(tx->vout[n], MEMPOOL_HEIGHT, false));
|
|
m_non_base_coins.emplace(tx->GetHash(), n);
|
|
}
|
|
}
|
|
void CCoinsViewMemPool::Reset()
|
|
{
|
|
m_temp_added.clear();
|
|
m_non_base_coins.clear();
|
|
}
|
|
|
|
size_t CTxMemPool::DynamicMemoryUsage() const {
|
|
LOCK(cs);
|
|
// Estimate the overhead of mapTx to be 15 pointers + an allocation, as no exact formula for boost::multi_index_contained is implemented.
|
|
return memusage::MallocUsage(sizeof(CTxMemPoolEntry) + 15 * sizeof(void*)) * mapTx.size() + memusage::DynamicUsage(mapNextTx) + memusage::DynamicUsage(mapDeltas) + memusage::DynamicUsage(txns_randomized) + cachedInnerUsage;
|
|
}
|
|
|
|
void CTxMemPool::RemoveUnbroadcastTx(const uint256& txid, const bool unchecked) {
|
|
LOCK(cs);
|
|
|
|
if (m_unbroadcast_txids.erase(txid))
|
|
{
|
|
LogPrint(BCLog::MEMPOOL, "Removed %i from set of unbroadcast txns%s\n", txid.GetHex(), (unchecked ? " before confirmation that txn was sent out" : ""));
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::RemoveStaged(setEntries &stage, bool updateDescendants, MemPoolRemovalReason reason) {
|
|
AssertLockHeld(cs);
|
|
UpdateForRemoveFromMempool(stage, updateDescendants);
|
|
for (txiter it : stage) {
|
|
removeUnchecked(it, reason);
|
|
}
|
|
}
|
|
|
|
int CTxMemPool::Expire(std::chrono::seconds time)
|
|
{
|
|
AssertLockHeld(cs);
|
|
indexed_transaction_set::index<entry_time>::type::iterator it = mapTx.get<entry_time>().begin();
|
|
setEntries toremove;
|
|
while (it != mapTx.get<entry_time>().end() && it->GetTime() < time) {
|
|
toremove.insert(mapTx.project<0>(it));
|
|
it++;
|
|
}
|
|
setEntries stage;
|
|
for (txiter removeit : toremove) {
|
|
CalculateDescendants(removeit, stage);
|
|
}
|
|
RemoveStaged(stage, false, MemPoolRemovalReason::EXPIRY);
|
|
return stage.size();
|
|
}
|
|
|
|
void CTxMemPool::addUnchecked(const CTxMemPoolEntry &entry)
|
|
{
|
|
auto ancestors{AssumeCalculateMemPoolAncestors(__func__, entry, Limits::NoLimits())};
|
|
return addUnchecked(entry, ancestors);
|
|
}
|
|
|
|
void CTxMemPool::UpdateChild(txiter entry, txiter child, bool add)
|
|
{
|
|
AssertLockHeld(cs);
|
|
CTxMemPoolEntry::Children s;
|
|
if (add && entry->GetMemPoolChildren().insert(*child).second) {
|
|
cachedInnerUsage += memusage::IncrementalDynamicUsage(s);
|
|
} else if (!add && entry->GetMemPoolChildren().erase(*child)) {
|
|
cachedInnerUsage -= memusage::IncrementalDynamicUsage(s);
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::UpdateParent(txiter entry, txiter parent, bool add)
|
|
{
|
|
AssertLockHeld(cs);
|
|
CTxMemPoolEntry::Parents s;
|
|
if (add && entry->GetMemPoolParents().insert(*parent).second) {
|
|
cachedInnerUsage += memusage::IncrementalDynamicUsage(s);
|
|
} else if (!add && entry->GetMemPoolParents().erase(*parent)) {
|
|
cachedInnerUsage -= memusage::IncrementalDynamicUsage(s);
|
|
}
|
|
}
|
|
|
|
CFeeRate CTxMemPool::GetMinFee(size_t sizelimit) const {
|
|
LOCK(cs);
|
|
if (!blockSinceLastRollingFeeBump || rollingMinimumFeeRate == 0)
|
|
return CFeeRate(llround(rollingMinimumFeeRate));
|
|
|
|
int64_t time = GetTime();
|
|
if (time > lastRollingFeeUpdate + 10) {
|
|
double halflife = ROLLING_FEE_HALFLIFE;
|
|
if (DynamicMemoryUsage() < sizelimit / 4)
|
|
halflife /= 4;
|
|
else if (DynamicMemoryUsage() < sizelimit / 2)
|
|
halflife /= 2;
|
|
|
|
rollingMinimumFeeRate = rollingMinimumFeeRate / pow(2.0, (time - lastRollingFeeUpdate) / halflife);
|
|
lastRollingFeeUpdate = time;
|
|
|
|
if (rollingMinimumFeeRate < (double)m_incremental_relay_feerate.GetFeePerK() / 2) {
|
|
rollingMinimumFeeRate = 0;
|
|
return CFeeRate(0);
|
|
}
|
|
}
|
|
return std::max(CFeeRate(llround(rollingMinimumFeeRate)), m_incremental_relay_feerate);
|
|
}
|
|
|
|
void CTxMemPool::trackPackageRemoved(const CFeeRate& rate) {
|
|
AssertLockHeld(cs);
|
|
if (rate.GetFeePerK() > rollingMinimumFeeRate) {
|
|
rollingMinimumFeeRate = rate.GetFeePerK();
|
|
blockSinceLastRollingFeeBump = false;
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::TrimToSize(size_t sizelimit, std::vector<COutPoint>* pvNoSpendsRemaining) {
|
|
AssertLockHeld(cs);
|
|
|
|
unsigned nTxnRemoved = 0;
|
|
CFeeRate maxFeeRateRemoved(0);
|
|
while (!mapTx.empty() && DynamicMemoryUsage() > sizelimit) {
|
|
indexed_transaction_set::index<descendant_score>::type::iterator it = mapTx.get<descendant_score>().begin();
|
|
|
|
// We set the new mempool min fee to the feerate of the removed set, plus the
|
|
// "minimum reasonable fee rate" (ie some value under which we consider txn
|
|
// to have 0 fee). This way, we don't allow txn to enter mempool with feerate
|
|
// equal to txn which were removed with no block in between.
|
|
CFeeRate removed(it->GetModFeesWithDescendants(), it->GetSizeWithDescendants());
|
|
removed += m_incremental_relay_feerate;
|
|
trackPackageRemoved(removed);
|
|
maxFeeRateRemoved = std::max(maxFeeRateRemoved, removed);
|
|
|
|
setEntries stage;
|
|
CalculateDescendants(mapTx.project<0>(it), stage);
|
|
nTxnRemoved += stage.size();
|
|
|
|
std::vector<CTransaction> txn;
|
|
if (pvNoSpendsRemaining) {
|
|
txn.reserve(stage.size());
|
|
for (txiter iter : stage)
|
|
txn.push_back(iter->GetTx());
|
|
}
|
|
RemoveStaged(stage, false, MemPoolRemovalReason::SIZELIMIT);
|
|
if (pvNoSpendsRemaining) {
|
|
for (const CTransaction& tx : txn) {
|
|
for (const CTxIn& txin : tx.vin) {
|
|
if (exists(GenTxid::Txid(txin.prevout.hash))) continue;
|
|
pvNoSpendsRemaining->push_back(txin.prevout);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (maxFeeRateRemoved > CFeeRate(0)) {
|
|
LogPrint(BCLog::MEMPOOL, "Removed %u txn, rolling minimum fee bumped to %s\n", nTxnRemoved, maxFeeRateRemoved.ToString());
|
|
}
|
|
}
|
|
|
|
uint64_t CTxMemPool::CalculateDescendantMaximum(txiter entry) const {
|
|
// find parent with highest descendant count
|
|
std::vector<txiter> candidates;
|
|
setEntries counted;
|
|
candidates.push_back(entry);
|
|
uint64_t maximum = 0;
|
|
while (candidates.size()) {
|
|
txiter candidate = candidates.back();
|
|
candidates.pop_back();
|
|
if (!counted.insert(candidate).second) continue;
|
|
const CTxMemPoolEntry::Parents& parents = candidate->GetMemPoolParentsConst();
|
|
if (parents.size() == 0) {
|
|
maximum = std::max(maximum, candidate->GetCountWithDescendants());
|
|
} else {
|
|
for (const CTxMemPoolEntry& i : parents) {
|
|
candidates.push_back(mapTx.iterator_to(i));
|
|
}
|
|
}
|
|
}
|
|
return maximum;
|
|
}
|
|
|
|
void CTxMemPool::GetTransactionAncestry(const uint256& txid, size_t& ancestors, size_t& descendants, size_t* const ancestorsize, CAmount* const ancestorfees) const {
|
|
LOCK(cs);
|
|
auto it = mapTx.find(txid);
|
|
ancestors = descendants = 0;
|
|
if (it != mapTx.end()) {
|
|
ancestors = it->GetCountWithAncestors();
|
|
if (ancestorsize) *ancestorsize = it->GetSizeWithAncestors();
|
|
if (ancestorfees) *ancestorfees = it->GetModFeesWithAncestors();
|
|
descendants = CalculateDescendantMaximum(it);
|
|
}
|
|
}
|
|
|
|
bool CTxMemPool::GetLoadTried() const
|
|
{
|
|
LOCK(cs);
|
|
return m_load_tried;
|
|
}
|
|
|
|
void CTxMemPool::SetLoadTried(bool load_tried)
|
|
{
|
|
LOCK(cs);
|
|
m_load_tried = load_tried;
|
|
}
|
|
|
|
std::vector<CTxMemPool::txiter> CTxMemPool::GatherClusters(const std::vector<uint256>& txids) const
|
|
{
|
|
AssertLockHeld(cs);
|
|
std::vector<txiter> clustered_txs{GetIterVec(txids)};
|
|
// Use epoch: visiting an entry means we have added it to the clustered_txs vector. It does not
|
|
// necessarily mean the entry has been processed.
|
|
WITH_FRESH_EPOCH(m_epoch);
|
|
for (const auto& it : clustered_txs) {
|
|
visited(it);
|
|
}
|
|
// i = index of where the list of entries to process starts
|
|
for (size_t i{0}; i < clustered_txs.size(); ++i) {
|
|
// DoS protection: if there are 500 or more entries to process, just quit.
|
|
if (clustered_txs.size() > 500) return {};
|
|
const txiter& tx_iter = clustered_txs.at(i);
|
|
for (const auto& entries : {tx_iter->GetMemPoolParentsConst(), tx_iter->GetMemPoolChildrenConst()}) {
|
|
for (const CTxMemPoolEntry& entry : entries) {
|
|
const auto entry_it = mapTx.iterator_to(entry);
|
|
if (!visited(entry_it)) {
|
|
clustered_txs.push_back(entry_it);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return clustered_txs;
|
|
}
|