mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-15 06:12:37 -03:00
252 lines
7.4 KiB
C
252 lines
7.4 KiB
C
// Copyright (c) 2013 Pieter Wuille
|
|
// Distributed under the MIT/X11 software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#ifndef _SECP256K1_FIELD_REPR_IMPL_H_
|
|
#define _SECP256K1_FIELD_REPR_IMPL_H_
|
|
|
|
#if defined HAVE_CONFIG_H
|
|
#include "libsecp256k1-config.h"
|
|
#endif
|
|
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include "util.h"
|
|
#include "num.h"
|
|
#include "field.h"
|
|
|
|
#if defined(USE_FIELD_5X52_ASM)
|
|
#include "field_5x52_asm_impl.h"
|
|
#elif defined(USE_FIELD_5X52_INT128)
|
|
#include "field_5x52_int128_impl.h"
|
|
#else
|
|
#error "Please select field_5x52 implementation"
|
|
#endif
|
|
|
|
/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F,
|
|
* represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular,
|
|
* each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element
|
|
* is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations
|
|
* accept any input with magnitude at most M, and have different rules for propagating magnitude to their
|
|
* output.
|
|
*/
|
|
|
|
void static secp256k1_fe_inner_start(void) {}
|
|
void static secp256k1_fe_inner_stop(void) {}
|
|
|
|
#ifdef VERIFY
|
|
void static secp256k1_fe_verify(const secp256k1_fe_t *a) {
|
|
const uint64_t *d = a->n;
|
|
int m = a->normalized ? 1 : 2 * a->magnitude, r = 1;
|
|
r &= (d[0] <= 0xFFFFFFFFFFFFFULL * m);
|
|
r &= (d[1] <= 0xFFFFFFFFFFFFFULL * m);
|
|
r &= (d[2] <= 0xFFFFFFFFFFFFFULL * m);
|
|
r &= (d[3] <= 0xFFFFFFFFFFFFFULL * m);
|
|
r &= (d[4] <= 0x0FFFFFFFFFFFFULL * m);
|
|
if (a->normalized) {
|
|
r &= (m == 1);
|
|
if (r && (d[4] == 0x0FFFFFFFFFFFFULL) && ((d[3] & d[2] & d[1]) == 0xFFFFFFFFFFFFFULL)) {
|
|
r &= (d[0] < 0xFFFFEFFFFFC2FULL);
|
|
}
|
|
}
|
|
VERIFY_CHECK(r == 1);
|
|
}
|
|
#else
|
|
void static secp256k1_fe_verify(const secp256k1_fe_t *a) {}
|
|
#endif
|
|
|
|
void static secp256k1_fe_normalize(secp256k1_fe_t *r) {
|
|
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
|
|
|
|
// Reduce t4 at the start so there will be at most a single carry from the first pass
|
|
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
|
|
uint64_t m;
|
|
|
|
// The first pass ensures the magnitude is 1, ...
|
|
t0 += x * 0x1000003D1ULL;
|
|
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
|
|
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
|
|
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
|
|
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
|
|
|
|
// ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element)
|
|
VERIFY_CHECK(t4 >> 49 == 0);
|
|
|
|
// At most a single final reduction is needed; check if the value is >= the field characteristic
|
|
x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
|
|
& (t0 >= 0xFFFFEFFFFFC2FULL));
|
|
|
|
// Apply the final reduction (for constant-time behaviour, we do it always)
|
|
t0 += x * 0x1000003D1ULL;
|
|
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
|
|
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
|
|
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
|
|
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
|
|
|
|
// If t4 didn't carry to bit 48 already, then it should have after any final reduction
|
|
VERIFY_CHECK(t4 >> 48 == x);
|
|
|
|
// Mask off the possible multiple of 2^256 from the final reduction
|
|
t4 &= 0x0FFFFFFFFFFFFULL;
|
|
|
|
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
|
|
|
|
#ifdef VERIFY
|
|
r->magnitude = 1;
|
|
r->normalized = 1;
|
|
secp256k1_fe_verify(r);
|
|
#endif
|
|
}
|
|
|
|
void static inline secp256k1_fe_set_int(secp256k1_fe_t *r, int a) {
|
|
r->n[0] = a;
|
|
r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
|
|
#ifdef VERIFY
|
|
r->magnitude = 1;
|
|
r->normalized = 1;
|
|
secp256k1_fe_verify(r);
|
|
#endif
|
|
}
|
|
|
|
// TODO: not constant time!
|
|
int static inline secp256k1_fe_is_zero(const secp256k1_fe_t *a) {
|
|
#ifdef VERIFY
|
|
VERIFY_CHECK(a->normalized);
|
|
secp256k1_fe_verify(a);
|
|
#endif
|
|
return (a->n[0] == 0 && a->n[1] == 0 && a->n[2] == 0 && a->n[3] == 0 && a->n[4] == 0);
|
|
}
|
|
|
|
int static inline secp256k1_fe_is_odd(const secp256k1_fe_t *a) {
|
|
#ifdef VERIFY
|
|
VERIFY_CHECK(a->normalized);
|
|
secp256k1_fe_verify(a);
|
|
#endif
|
|
return a->n[0] & 1;
|
|
}
|
|
|
|
void static inline secp256k1_fe_clear(secp256k1_fe_t *a) {
|
|
#ifdef VERIFY
|
|
a->magnitude = 0;
|
|
a->normalized = 0;
|
|
#endif
|
|
for (int i=0; i<5; i++) {
|
|
a->n[i] = 0;
|
|
}
|
|
}
|
|
|
|
// TODO: not constant time!
|
|
int static inline secp256k1_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
|
|
#ifdef VERIFY
|
|
VERIFY_CHECK(a->normalized);
|
|
VERIFY_CHECK(b->normalized);
|
|
secp256k1_fe_verify(a);
|
|
secp256k1_fe_verify(b);
|
|
#endif
|
|
return (a->n[0] == b->n[0] && a->n[1] == b->n[1] && a->n[2] == b->n[2] && a->n[3] == b->n[3] && a->n[4] == b->n[4]);
|
|
}
|
|
|
|
void static secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) {
|
|
r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
|
|
for (int i=0; i<32; i++) {
|
|
for (int j=0; j<2; j++) {
|
|
int limb = (8*i+4*j)/52;
|
|
int shift = (8*i+4*j)%52;
|
|
r->n[limb] |= (uint64_t)((a[31-i] >> (4*j)) & 0xF) << shift;
|
|
}
|
|
}
|
|
#ifdef VERIFY
|
|
r->magnitude = 1;
|
|
r->normalized = 1;
|
|
secp256k1_fe_verify(r);
|
|
#endif
|
|
}
|
|
|
|
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
|
|
void static secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) {
|
|
#ifdef VERIFY
|
|
VERIFY_CHECK(a->normalized);
|
|
secp256k1_fe_verify(a);
|
|
#endif
|
|
for (int i=0; i<32; i++) {
|
|
int c = 0;
|
|
for (int j=0; j<2; j++) {
|
|
int limb = (8*i+4*j)/52;
|
|
int shift = (8*i+4*j)%52;
|
|
c |= ((a->n[limb] >> shift) & 0xF) << (4 * j);
|
|
}
|
|
r[31-i] = c;
|
|
}
|
|
}
|
|
|
|
void static inline secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m) {
|
|
#ifdef VERIFY
|
|
VERIFY_CHECK(a->magnitude <= m);
|
|
secp256k1_fe_verify(a);
|
|
#endif
|
|
r->n[0] = 0xFFFFEFFFFFC2FULL * (m + 1) - a->n[0];
|
|
r->n[1] = 0xFFFFFFFFFFFFFULL * (m + 1) - a->n[1];
|
|
r->n[2] = 0xFFFFFFFFFFFFFULL * (m + 1) - a->n[2];
|
|
r->n[3] = 0xFFFFFFFFFFFFFULL * (m + 1) - a->n[3];
|
|
r->n[4] = 0x0FFFFFFFFFFFFULL * (m + 1) - a->n[4];
|
|
#ifdef VERIFY
|
|
r->magnitude = m + 1;
|
|
r->normalized = 0;
|
|
secp256k1_fe_verify(r);
|
|
#endif
|
|
}
|
|
|
|
void static inline secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) {
|
|
r->n[0] *= a;
|
|
r->n[1] *= a;
|
|
r->n[2] *= a;
|
|
r->n[3] *= a;
|
|
r->n[4] *= a;
|
|
#ifdef VERIFY
|
|
r->magnitude *= a;
|
|
r->normalized = 0;
|
|
secp256k1_fe_verify(r);
|
|
#endif
|
|
}
|
|
|
|
void static inline secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
|
|
r->n[0] += a->n[0];
|
|
r->n[1] += a->n[1];
|
|
r->n[2] += a->n[2];
|
|
r->n[3] += a->n[3];
|
|
r->n[4] += a->n[4];
|
|
#ifdef VERIFY
|
|
r->magnitude += a->magnitude;
|
|
r->normalized = 0;
|
|
secp256k1_fe_verify(r);
|
|
secp256k1_fe_verify(a);
|
|
#endif
|
|
}
|
|
|
|
void static secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
|
|
#ifdef VERIFY
|
|
VERIFY_CHECK(a->magnitude <= 8);
|
|
VERIFY_CHECK(b->magnitude <= 8);
|
|
secp256k1_fe_verify(a);
|
|
secp256k1_fe_verify(b);
|
|
#endif
|
|
secp256k1_fe_mul_inner(a->n, b->n, r->n);
|
|
#ifdef VERIFY
|
|
r->magnitude = 1;
|
|
r->normalized = 0;
|
|
secp256k1_fe_verify(r);
|
|
#endif
|
|
}
|
|
|
|
void static secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
|
|
#ifdef VERIFY
|
|
VERIFY_CHECK(a->magnitude <= 8);
|
|
#endif
|
|
secp256k1_fe_sqr_inner(a->n, r->n);
|
|
#ifdef VERIFY
|
|
r->magnitude = 1;
|
|
r->normalized = 0;
|
|
#endif
|
|
}
|
|
|
|
#endif
|