bitcoin/src/wallet/sqlite.cpp
fanquake a62231bca6
Merge bitcoin/bitcoin#26690: wallet: Refactor database cursor into its own object with proper return codes
4aebd832a4 db: Change DatabaseCursor::Next to return status enum (Andrew Chow)
d79e8dcf29 wallet: Have cursor users use DatabaseCursor directly (Andrew Chow)
7a198bba0a wallet: Introduce DatabaseCursor RAII class for managing cursor (Andrew Chow)
69efbc011b Move SafeDbt out of BerkeleyBatch (Andrew Chow)

Pull request description:

  Instead of having database cursors be tied to a particular `DatabaseBatch` object and requiring its setup and teardown be separate functions in that batch, we can have cursors be separate RAII classes. This makes it easier to create and destroy cursors as well as having cursors that have slightly different behaviors.

  Additionally, since reading data from a cursor is a tri-state, this PR changes the return value of the `Next` function (formerly `ReadAtCursor`) to return an Enum rather than the current system of 2 booleans. This greatly simplifies and unifies the code that deals with cursors as now there is no confusion as to what the function returns when there are no records left to be read.

  Extracted from #24914

ACKs for top commit:
  furszy:
    diff ACK 4aebd83
  theStack:
    Code-review ACK 4aebd832a4

Tree-SHA512: 5d0be56a18de5b08c777dd5a73ba5a6ef1e696fdb07d1dca952a88ded07887b7c5c04342f9a76feb2f6fe24a45dc31f094f1f5d9500e6bdf4a44f4edb66dcaa1
2023-01-23 17:56:16 +00:00

571 lines
21 KiB
C++

// Copyright (c) 2020-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <wallet/sqlite.h>
#include <chainparams.h>
#include <crypto/common.h>
#include <logging.h>
#include <sync.h>
#include <util/strencodings.h>
#include <util/system.h>
#include <util/translation.h>
#include <wallet/db.h>
#include <sqlite3.h>
#include <stdint.h>
#include <optional>
#include <utility>
#include <vector>
namespace wallet {
static constexpr int32_t WALLET_SCHEMA_VERSION = 0;
static GlobalMutex g_sqlite_mutex;
static int g_sqlite_count GUARDED_BY(g_sqlite_mutex) = 0;
static void ErrorLogCallback(void* arg, int code, const char* msg)
{
// From sqlite3_config() documentation for the SQLITE_CONFIG_LOG option:
// "The void pointer that is the second argument to SQLITE_CONFIG_LOG is passed through as
// the first parameter to the application-defined logger function whenever that function is
// invoked."
// Assert that this is the case:
assert(arg == nullptr);
LogPrintf("SQLite Error. Code: %d. Message: %s\n", code, msg);
}
static bool BindBlobToStatement(sqlite3_stmt* stmt,
int index,
Span<const std::byte> blob,
const std::string& description)
{
int res = sqlite3_bind_blob(stmt, index, blob.data(), blob.size(), SQLITE_STATIC);
if (res != SQLITE_OK) {
LogPrintf("Unable to bind %s to statement: %s\n", description, sqlite3_errstr(res));
sqlite3_clear_bindings(stmt);
sqlite3_reset(stmt);
return false;
}
return true;
}
static std::optional<int> ReadPragmaInteger(sqlite3* db, const std::string& key, const std::string& description, bilingual_str& error)
{
std::string stmt_text = strprintf("PRAGMA %s", key);
sqlite3_stmt* pragma_read_stmt{nullptr};
int ret = sqlite3_prepare_v2(db, stmt_text.c_str(), -1, &pragma_read_stmt, nullptr);
if (ret != SQLITE_OK) {
sqlite3_finalize(pragma_read_stmt);
error = Untranslated(strprintf("SQLiteDatabase: Failed to prepare the statement to fetch %s: %s", description, sqlite3_errstr(ret)));
return std::nullopt;
}
ret = sqlite3_step(pragma_read_stmt);
if (ret != SQLITE_ROW) {
sqlite3_finalize(pragma_read_stmt);
error = Untranslated(strprintf("SQLiteDatabase: Failed to fetch %s: %s", description, sqlite3_errstr(ret)));
return std::nullopt;
}
int result = sqlite3_column_int(pragma_read_stmt, 0);
sqlite3_finalize(pragma_read_stmt);
return result;
}
static void SetPragma(sqlite3* db, const std::string& key, const std::string& value, const std::string& err_msg)
{
std::string stmt_text = strprintf("PRAGMA %s = %s", key, value);
int ret = sqlite3_exec(db, stmt_text.c_str(), nullptr, nullptr, nullptr);
if (ret != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: %s: %s\n", err_msg, sqlite3_errstr(ret)));
}
}
SQLiteDatabase::SQLiteDatabase(const fs::path& dir_path, const fs::path& file_path, const DatabaseOptions& options, bool mock)
: WalletDatabase(), m_mock(mock), m_dir_path(fs::PathToString(dir_path)), m_file_path(fs::PathToString(file_path)), m_use_unsafe_sync(options.use_unsafe_sync)
{
{
LOCK(g_sqlite_mutex);
LogPrintf("Using SQLite Version %s\n", SQLiteDatabaseVersion());
LogPrintf("Using wallet %s\n", m_dir_path);
if (++g_sqlite_count == 1) {
// Setup logging
int ret = sqlite3_config(SQLITE_CONFIG_LOG, ErrorLogCallback, nullptr);
if (ret != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to setup error log: %s\n", sqlite3_errstr(ret)));
}
// Force serialized threading mode
ret = sqlite3_config(SQLITE_CONFIG_SERIALIZED);
if (ret != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to configure serialized threading mode: %s\n", sqlite3_errstr(ret)));
}
}
int ret = sqlite3_initialize(); // This is a no-op if sqlite3 is already initialized
if (ret != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to initialize SQLite: %s\n", sqlite3_errstr(ret)));
}
}
try {
Open();
} catch (const std::runtime_error&) {
// If open fails, cleanup this object and rethrow the exception
Cleanup();
throw;
}
}
void SQLiteBatch::SetupSQLStatements()
{
const std::vector<std::pair<sqlite3_stmt**, const char*>> statements{
{&m_read_stmt, "SELECT value FROM main WHERE key = ?"},
{&m_insert_stmt, "INSERT INTO main VALUES(?, ?)"},
{&m_overwrite_stmt, "INSERT or REPLACE into main values(?, ?)"},
{&m_delete_stmt, "DELETE FROM main WHERE key = ?"},
};
for (const auto& [stmt_prepared, stmt_text] : statements) {
if (*stmt_prepared == nullptr) {
int res = sqlite3_prepare_v2(m_database.m_db, stmt_text, -1, stmt_prepared, nullptr);
if (res != SQLITE_OK) {
throw std::runtime_error(strprintf(
"SQLiteDatabase: Failed to setup SQL statements: %s\n", sqlite3_errstr(res)));
}
}
}
}
SQLiteDatabase::~SQLiteDatabase()
{
Cleanup();
}
void SQLiteDatabase::Cleanup() noexcept
{
Close();
LOCK(g_sqlite_mutex);
if (--g_sqlite_count == 0) {
int ret = sqlite3_shutdown();
if (ret != SQLITE_OK) {
LogPrintf("SQLiteDatabase: Failed to shutdown SQLite: %s\n", sqlite3_errstr(ret));
}
}
}
bool SQLiteDatabase::Verify(bilingual_str& error)
{
assert(m_db);
// Check the application ID matches our network magic
auto read_result = ReadPragmaInteger(m_db, "application_id", "the application id", error);
if (!read_result.has_value()) return false;
uint32_t app_id = static_cast<uint32_t>(read_result.value());
uint32_t net_magic = ReadBE32(Params().MessageStart());
if (app_id != net_magic) {
error = strprintf(_("SQLiteDatabase: Unexpected application id. Expected %u, got %u"), net_magic, app_id);
return false;
}
// Check our schema version
read_result = ReadPragmaInteger(m_db, "user_version", "sqlite wallet schema version", error);
if (!read_result.has_value()) return false;
int32_t user_ver = read_result.value();
if (user_ver != WALLET_SCHEMA_VERSION) {
error = strprintf(_("SQLiteDatabase: Unknown sqlite wallet schema version %d. Only version %d is supported"), user_ver, WALLET_SCHEMA_VERSION);
return false;
}
sqlite3_stmt* stmt{nullptr};
int ret = sqlite3_prepare_v2(m_db, "PRAGMA integrity_check", -1, &stmt, nullptr);
if (ret != SQLITE_OK) {
sqlite3_finalize(stmt);
error = strprintf(_("SQLiteDatabase: Failed to prepare statement to verify database: %s"), sqlite3_errstr(ret));
return false;
}
while (true) {
ret = sqlite3_step(stmt);
if (ret == SQLITE_DONE) {
break;
}
if (ret != SQLITE_ROW) {
error = strprintf(_("SQLiteDatabase: Failed to execute statement to verify database: %s"), sqlite3_errstr(ret));
break;
}
const char* msg = (const char*)sqlite3_column_text(stmt, 0);
if (!msg) {
error = strprintf(_("SQLiteDatabase: Failed to read database verification error: %s"), sqlite3_errstr(ret));
break;
}
std::string str_msg(msg);
if (str_msg == "ok") {
continue;
}
if (error.empty()) {
error = _("Failed to verify database") + Untranslated("\n");
}
error += Untranslated(strprintf("%s\n", str_msg));
}
sqlite3_finalize(stmt);
return error.empty();
}
void SQLiteDatabase::Open()
{
int flags = SQLITE_OPEN_FULLMUTEX | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE;
if (m_mock) {
flags |= SQLITE_OPEN_MEMORY; // In memory database for mock db
}
if (m_db == nullptr) {
if (!m_mock) {
TryCreateDirectories(fs::PathFromString(m_dir_path));
}
int ret = sqlite3_open_v2(m_file_path.c_str(), &m_db, flags, nullptr);
if (ret != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to open database: %s\n", sqlite3_errstr(ret)));
}
ret = sqlite3_extended_result_codes(m_db, 1);
if (ret != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to enable extended result codes: %s\n", sqlite3_errstr(ret)));
}
}
if (sqlite3_db_readonly(m_db, "main") != 0) {
throw std::runtime_error("SQLiteDatabase: Database opened in readonly mode but read-write permissions are needed");
}
// Acquire an exclusive lock on the database
// First change the locking mode to exclusive
SetPragma(m_db, "locking_mode", "exclusive", "Unable to change database locking mode to exclusive");
// Now begin a transaction to acquire the exclusive lock. This lock won't be released until we close because of the exclusive locking mode.
int ret = sqlite3_exec(m_db, "BEGIN EXCLUSIVE TRANSACTION", nullptr, nullptr, nullptr);
if (ret != SQLITE_OK) {
throw std::runtime_error("SQLiteDatabase: Unable to obtain an exclusive lock on the database, is it being used by another instance of " PACKAGE_NAME "?\n");
}
ret = sqlite3_exec(m_db, "COMMIT", nullptr, nullptr, nullptr);
if (ret != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Unable to end exclusive lock transaction: %s\n", sqlite3_errstr(ret)));
}
// Enable fullfsync for the platforms that use it
SetPragma(m_db, "fullfsync", "true", "Failed to enable fullfsync");
if (m_use_unsafe_sync) {
// Use normal synchronous mode for the journal
LogPrintf("WARNING SQLite is configured to not wait for data to be flushed to disk. Data loss and corruption may occur.\n");
SetPragma(m_db, "synchronous", "OFF", "Failed to set synchronous mode to OFF");
}
// Make the table for our key-value pairs
// First check that the main table exists
sqlite3_stmt* check_main_stmt{nullptr};
ret = sqlite3_prepare_v2(m_db, "SELECT name FROM sqlite_master WHERE type='table' AND name='main'", -1, &check_main_stmt, nullptr);
if (ret != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to prepare statement to check table existence: %s\n", sqlite3_errstr(ret)));
}
ret = sqlite3_step(check_main_stmt);
if (sqlite3_finalize(check_main_stmt) != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to finalize statement checking table existence: %s\n", sqlite3_errstr(ret)));
}
bool table_exists;
if (ret == SQLITE_DONE) {
table_exists = false;
} else if (ret == SQLITE_ROW) {
table_exists = true;
} else {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to execute statement to check table existence: %s\n", sqlite3_errstr(ret)));
}
// Do the db setup things because the table doesn't exist only when we are creating a new wallet
if (!table_exists) {
ret = sqlite3_exec(m_db, "CREATE TABLE main(key BLOB PRIMARY KEY NOT NULL, value BLOB NOT NULL)", nullptr, nullptr, nullptr);
if (ret != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to create new database: %s\n", sqlite3_errstr(ret)));
}
// Set the application id
uint32_t app_id = ReadBE32(Params().MessageStart());
SetPragma(m_db, "application_id", strprintf("%d", static_cast<int32_t>(app_id)),
"Failed to set the application id");
// Set the user version
SetPragma(m_db, "user_version", strprintf("%d", WALLET_SCHEMA_VERSION),
"Failed to set the wallet schema version");
}
}
bool SQLiteDatabase::Rewrite(const char* skip)
{
// Rewrite the database using the VACUUM command: https://sqlite.org/lang_vacuum.html
int ret = sqlite3_exec(m_db, "VACUUM", nullptr, nullptr, nullptr);
return ret == SQLITE_OK;
}
bool SQLiteDatabase::Backup(const std::string& dest) const
{
sqlite3* db_copy;
int res = sqlite3_open(dest.c_str(), &db_copy);
if (res != SQLITE_OK) {
sqlite3_close(db_copy);
return false;
}
sqlite3_backup* backup = sqlite3_backup_init(db_copy, "main", m_db, "main");
if (!backup) {
LogPrintf("%s: Unable to begin backup: %s\n", __func__, sqlite3_errmsg(m_db));
sqlite3_close(db_copy);
return false;
}
// Specifying -1 will copy all of the pages
res = sqlite3_backup_step(backup, -1);
if (res != SQLITE_DONE) {
LogPrintf("%s: Unable to backup: %s\n", __func__, sqlite3_errstr(res));
sqlite3_backup_finish(backup);
sqlite3_close(db_copy);
return false;
}
res = sqlite3_backup_finish(backup);
sqlite3_close(db_copy);
return res == SQLITE_OK;
}
void SQLiteDatabase::Close()
{
int res = sqlite3_close(m_db);
if (res != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to close database: %s\n", sqlite3_errstr(res)));
}
m_db = nullptr;
}
std::unique_ptr<DatabaseBatch> SQLiteDatabase::MakeBatch(bool flush_on_close)
{
// We ignore flush_on_close because we don't do manual flushing for SQLite
return std::make_unique<SQLiteBatch>(*this);
}
SQLiteBatch::SQLiteBatch(SQLiteDatabase& database)
: m_database(database)
{
// Make sure we have a db handle
assert(m_database.m_db);
SetupSQLStatements();
}
void SQLiteBatch::Close()
{
// If m_db is in a transaction (i.e. not in autocommit mode), then abort the transaction in progress
if (m_database.m_db && sqlite3_get_autocommit(m_database.m_db) == 0) {
if (TxnAbort()) {
LogPrintf("SQLiteBatch: Batch closed unexpectedly without the transaction being explicitly committed or aborted\n");
} else {
LogPrintf("SQLiteBatch: Batch closed and failed to abort transaction\n");
}
}
// Free all of the prepared statements
const std::vector<std::pair<sqlite3_stmt**, const char*>> statements{
{&m_read_stmt, "read"},
{&m_insert_stmt, "insert"},
{&m_overwrite_stmt, "overwrite"},
{&m_delete_stmt, "delete"},
};
for (const auto& [stmt_prepared, stmt_description] : statements) {
int res = sqlite3_finalize(*stmt_prepared);
if (res != SQLITE_OK) {
LogPrintf("SQLiteBatch: Batch closed but could not finalize %s statement: %s\n",
stmt_description, sqlite3_errstr(res));
}
*stmt_prepared = nullptr;
}
}
bool SQLiteBatch::ReadKey(CDataStream&& key, CDataStream& value)
{
if (!m_database.m_db) return false;
assert(m_read_stmt);
// Bind: leftmost parameter in statement is index 1
if (!BindBlobToStatement(m_read_stmt, 1, key, "key")) return false;
int res = sqlite3_step(m_read_stmt);
if (res != SQLITE_ROW) {
if (res != SQLITE_DONE) {
// SQLITE_DONE means "not found", don't log an error in that case.
LogPrintf("%s: Unable to execute statement: %s\n", __func__, sqlite3_errstr(res));
}
sqlite3_clear_bindings(m_read_stmt);
sqlite3_reset(m_read_stmt);
return false;
}
// Leftmost column in result is index 0
const std::byte* data{AsBytePtr(sqlite3_column_blob(m_read_stmt, 0))};
size_t data_size(sqlite3_column_bytes(m_read_stmt, 0));
value.write({data, data_size});
sqlite3_clear_bindings(m_read_stmt);
sqlite3_reset(m_read_stmt);
return true;
}
bool SQLiteBatch::WriteKey(CDataStream&& key, CDataStream&& value, bool overwrite)
{
if (!m_database.m_db) return false;
assert(m_insert_stmt && m_overwrite_stmt);
sqlite3_stmt* stmt;
if (overwrite) {
stmt = m_overwrite_stmt;
} else {
stmt = m_insert_stmt;
}
// Bind: leftmost parameter in statement is index 1
// Insert index 1 is key, 2 is value
if (!BindBlobToStatement(stmt, 1, key, "key")) return false;
if (!BindBlobToStatement(stmt, 2, value, "value")) return false;
// Execute
int res = sqlite3_step(stmt);
sqlite3_clear_bindings(stmt);
sqlite3_reset(stmt);
if (res != SQLITE_DONE) {
LogPrintf("%s: Unable to execute statement: %s\n", __func__, sqlite3_errstr(res));
}
return res == SQLITE_DONE;
}
bool SQLiteBatch::EraseKey(CDataStream&& key)
{
if (!m_database.m_db) return false;
assert(m_delete_stmt);
// Bind: leftmost parameter in statement is index 1
if (!BindBlobToStatement(m_delete_stmt, 1, key, "key")) return false;
// Execute
int res = sqlite3_step(m_delete_stmt);
sqlite3_clear_bindings(m_delete_stmt);
sqlite3_reset(m_delete_stmt);
if (res != SQLITE_DONE) {
LogPrintf("%s: Unable to execute statement: %s\n", __func__, sqlite3_errstr(res));
}
return res == SQLITE_DONE;
}
bool SQLiteBatch::HasKey(CDataStream&& key)
{
if (!m_database.m_db) return false;
assert(m_read_stmt);
// Bind: leftmost parameter in statement is index 1
if (!BindBlobToStatement(m_read_stmt, 1, key, "key")) return false;
int res = sqlite3_step(m_read_stmt);
sqlite3_clear_bindings(m_read_stmt);
sqlite3_reset(m_read_stmt);
return res == SQLITE_ROW;
}
DatabaseCursor::Status SQLiteCursor::Next(CDataStream& key, CDataStream& value)
{
int res = sqlite3_step(m_cursor_stmt);
if (res == SQLITE_DONE) {
return Status::DONE;
}
if (res != SQLITE_ROW) {
LogPrintf("%s: Unable to execute cursor step: %s\n", __func__, sqlite3_errstr(res));
return Status::FAIL;
}
// Leftmost column in result is index 0
const std::byte* key_data{AsBytePtr(sqlite3_column_blob(m_cursor_stmt, 0))};
size_t key_data_size(sqlite3_column_bytes(m_cursor_stmt, 0));
key.write({key_data, key_data_size});
const std::byte* value_data{AsBytePtr(sqlite3_column_blob(m_cursor_stmt, 1))};
size_t value_data_size(sqlite3_column_bytes(m_cursor_stmt, 1));
value.write({value_data, value_data_size});
return Status::MORE;
}
SQLiteCursor::~SQLiteCursor()
{
sqlite3_reset(m_cursor_stmt);
int res = sqlite3_finalize(m_cursor_stmt);
if (res != SQLITE_OK) {
LogPrintf("%s: cursor closed but could not finalize cursor statement: %s\n",
__func__, sqlite3_errstr(res));
}
}
std::unique_ptr<DatabaseCursor> SQLiteBatch::GetNewCursor()
{
if (!m_database.m_db) return nullptr;
auto cursor = std::make_unique<SQLiteCursor>();
const char* stmt_text = "SELECT key, value FROM main";
int res = sqlite3_prepare_v2(m_database.m_db, stmt_text, -1, &cursor->m_cursor_stmt, nullptr);
if (res != SQLITE_OK) {
throw std::runtime_error(strprintf(
"%s: Failed to setup cursor SQL statement: %s\n", __func__, sqlite3_errstr(res)));
}
return cursor;
}
bool SQLiteBatch::TxnBegin()
{
if (!m_database.m_db || sqlite3_get_autocommit(m_database.m_db) == 0) return false;
int res = sqlite3_exec(m_database.m_db, "BEGIN TRANSACTION", nullptr, nullptr, nullptr);
if (res != SQLITE_OK) {
LogPrintf("SQLiteBatch: Failed to begin the transaction\n");
}
return res == SQLITE_OK;
}
bool SQLiteBatch::TxnCommit()
{
if (!m_database.m_db || sqlite3_get_autocommit(m_database.m_db) != 0) return false;
int res = sqlite3_exec(m_database.m_db, "COMMIT TRANSACTION", nullptr, nullptr, nullptr);
if (res != SQLITE_OK) {
LogPrintf("SQLiteBatch: Failed to commit the transaction\n");
}
return res == SQLITE_OK;
}
bool SQLiteBatch::TxnAbort()
{
if (!m_database.m_db || sqlite3_get_autocommit(m_database.m_db) != 0) return false;
int res = sqlite3_exec(m_database.m_db, "ROLLBACK TRANSACTION", nullptr, nullptr, nullptr);
if (res != SQLITE_OK) {
LogPrintf("SQLiteBatch: Failed to abort the transaction\n");
}
return res == SQLITE_OK;
}
std::unique_ptr<SQLiteDatabase> MakeSQLiteDatabase(const fs::path& path, const DatabaseOptions& options, DatabaseStatus& status, bilingual_str& error)
{
try {
fs::path data_file = SQLiteDataFile(path);
auto db = std::make_unique<SQLiteDatabase>(data_file.parent_path(), data_file, options);
if (options.verify && !db->Verify(error)) {
status = DatabaseStatus::FAILED_VERIFY;
return nullptr;
}
status = DatabaseStatus::SUCCESS;
return db;
} catch (const std::runtime_error& e) {
status = DatabaseStatus::FAILED_LOAD;
error = Untranslated(e.what());
return nullptr;
}
}
std::string SQLiteDatabaseVersion()
{
return std::string(sqlite3_libversion());
}
} // namespace wallet