mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-04-29 14:59:39 -04:00
This abstracts out the finding of the connected component that includes a given element from FindConnectedComponent (which just finds any connected component). Use this in the txgraph fuzz test, which was effectively reimplementing this logic. At the same time, improve its performance by replacing a vector with a set.
1228 lines
49 KiB
C++
1228 lines
49 KiB
C++
// Copyright (c) The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include <cluster_linearize.h>
|
|
#include <random.h>
|
|
#include <serialize.h>
|
|
#include <streams.h>
|
|
#include <test/fuzz/fuzz.h>
|
|
#include <test/fuzz/FuzzedDataProvider.h>
|
|
#include <test/util/cluster_linearize.h>
|
|
#include <util/bitset.h>
|
|
#include <util/feefrac.h>
|
|
|
|
#include <algorithm>
|
|
#include <stdint.h>
|
|
#include <vector>
|
|
#include <utility>
|
|
|
|
using namespace cluster_linearize;
|
|
|
|
namespace {
|
|
|
|
/** A simple finder class for candidate sets.
|
|
*
|
|
* This class matches SearchCandidateFinder in interface and behavior, though with fewer
|
|
* optimizations.
|
|
*/
|
|
template<typename SetType>
|
|
class SimpleCandidateFinder
|
|
{
|
|
/** Internal dependency graph. */
|
|
const DepGraph<SetType>& m_depgraph;
|
|
/** Which transaction are left to include. */
|
|
SetType m_todo;
|
|
|
|
public:
|
|
/** Construct an SimpleCandidateFinder for a given graph. */
|
|
SimpleCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND) noexcept :
|
|
m_depgraph(depgraph), m_todo{depgraph.Positions()} {}
|
|
|
|
/** Remove a set of transactions from the set of to-be-linearized ones. */
|
|
void MarkDone(SetType select) noexcept { m_todo -= select; }
|
|
|
|
/** Determine whether unlinearized transactions remain. */
|
|
bool AllDone() const noexcept { return m_todo.None(); }
|
|
|
|
/** Find a candidate set using at most max_iterations iterations, and the number of iterations
|
|
* actually performed. If that number is less than max_iterations, then the result is optimal.
|
|
*
|
|
* Complexity: O(N * M), where M is the number of connected topological subsets of the cluster.
|
|
* That number is bounded by M <= 2^(N-1).
|
|
*/
|
|
std::pair<SetInfo<SetType>, uint64_t> FindCandidateSet(uint64_t max_iterations) const noexcept
|
|
{
|
|
uint64_t iterations_left = max_iterations;
|
|
// Queue of work units. Each consists of:
|
|
// - inc: set of transactions definitely included
|
|
// - und: set of transactions that can be added to inc still
|
|
std::vector<std::pair<SetType, SetType>> queue;
|
|
// Initially we have just one queue element, with the entire graph in und.
|
|
queue.emplace_back(SetType{}, m_todo);
|
|
// Best solution so far.
|
|
SetInfo best(m_depgraph, m_todo);
|
|
// Process the queue.
|
|
while (!queue.empty() && iterations_left) {
|
|
--iterations_left;
|
|
// Pop top element of the queue.
|
|
auto [inc, und] = queue.back();
|
|
queue.pop_back();
|
|
// Look for a transaction to consider adding/removing.
|
|
bool inc_none = inc.None();
|
|
for (auto split : und) {
|
|
// If inc is empty, consider any split transaction. Otherwise only consider
|
|
// transactions that share ancestry with inc so far (which means only connected
|
|
// sets will be considered).
|
|
if (inc_none || inc.Overlaps(m_depgraph.Ancestors(split))) {
|
|
// Add a queue entry with split included.
|
|
SetInfo new_inc(m_depgraph, inc | (m_todo & m_depgraph.Ancestors(split)));
|
|
queue.emplace_back(new_inc.transactions, und - new_inc.transactions);
|
|
// Add a queue entry with split excluded.
|
|
queue.emplace_back(inc, und - m_depgraph.Descendants(split));
|
|
// Update statistics to account for the candidate new_inc.
|
|
if (new_inc.feerate > best.feerate) best = new_inc;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return {std::move(best), max_iterations - iterations_left};
|
|
}
|
|
};
|
|
|
|
/** A very simple finder class for optimal candidate sets, which tries every subset.
|
|
*
|
|
* It is even simpler than SimpleCandidateFinder, and is primarily included here to test the
|
|
* correctness of SimpleCandidateFinder, which is then used to test the correctness of
|
|
* SearchCandidateFinder.
|
|
*/
|
|
template<typename SetType>
|
|
class ExhaustiveCandidateFinder
|
|
{
|
|
/** Internal dependency graph. */
|
|
const DepGraph<SetType>& m_depgraph;
|
|
/** Which transaction are left to include. */
|
|
SetType m_todo;
|
|
|
|
public:
|
|
/** Construct an ExhaustiveCandidateFinder for a given graph. */
|
|
ExhaustiveCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND) noexcept :
|
|
m_depgraph(depgraph), m_todo{depgraph.Positions()} {}
|
|
|
|
/** Remove a set of transactions from the set of to-be-linearized ones. */
|
|
void MarkDone(SetType select) noexcept { m_todo -= select; }
|
|
|
|
/** Determine whether unlinearized transactions remain. */
|
|
bool AllDone() const noexcept { return m_todo.None(); }
|
|
|
|
/** Find the optimal remaining candidate set.
|
|
*
|
|
* Complexity: O(N * 2^N).
|
|
*/
|
|
SetInfo<SetType> FindCandidateSet() const noexcept
|
|
{
|
|
// Best solution so far.
|
|
SetInfo<SetType> best{m_todo, m_depgraph.FeeRate(m_todo)};
|
|
// The number of combinations to try.
|
|
uint64_t limit = (uint64_t{1} << m_todo.Count()) - 1;
|
|
// Try the transitive closure of every non-empty subset of m_todo.
|
|
for (uint64_t x = 1; x < limit; ++x) {
|
|
// If bit number b is set in x, then the remaining ancestors of the b'th remaining
|
|
// transaction in m_todo are included.
|
|
SetType txn;
|
|
auto x_shifted{x};
|
|
for (auto i : m_todo) {
|
|
if (x_shifted & 1) txn |= m_depgraph.Ancestors(i);
|
|
x_shifted >>= 1;
|
|
}
|
|
SetInfo cur(m_depgraph, txn & m_todo);
|
|
if (cur.feerate > best.feerate) best = cur;
|
|
}
|
|
return best;
|
|
}
|
|
};
|
|
|
|
/** A simple linearization algorithm.
|
|
*
|
|
* This matches Linearize() in interface and behavior, though with fewer optimizations, lacking
|
|
* the ability to pass in an existing linearization, and using just SimpleCandidateFinder rather
|
|
* than AncestorCandidateFinder and SearchCandidateFinder.
|
|
*/
|
|
template<typename SetType>
|
|
std::pair<std::vector<DepGraphIndex>, bool> SimpleLinearize(const DepGraph<SetType>& depgraph, uint64_t max_iterations)
|
|
{
|
|
std::vector<DepGraphIndex> linearization;
|
|
SimpleCandidateFinder finder(depgraph);
|
|
SetType todo = depgraph.Positions();
|
|
bool optimal = true;
|
|
while (todo.Any()) {
|
|
auto [candidate, iterations_done] = finder.FindCandidateSet(max_iterations);
|
|
if (iterations_done == max_iterations) optimal = false;
|
|
depgraph.AppendTopo(linearization, candidate.transactions);
|
|
todo -= candidate.transactions;
|
|
finder.MarkDone(candidate.transactions);
|
|
max_iterations -= iterations_done;
|
|
}
|
|
return {std::move(linearization), optimal};
|
|
}
|
|
|
|
/** Stitch connected components together in a DepGraph, guaranteeing its corresponding cluster is connected. */
|
|
template<typename BS>
|
|
void MakeConnected(DepGraph<BS>& depgraph)
|
|
{
|
|
auto todo = depgraph.Positions();
|
|
auto comp = depgraph.FindConnectedComponent(todo);
|
|
Assume(depgraph.IsConnected(comp));
|
|
todo -= comp;
|
|
while (todo.Any()) {
|
|
auto nextcomp = depgraph.FindConnectedComponent(todo);
|
|
Assume(depgraph.IsConnected(nextcomp));
|
|
depgraph.AddDependencies(BS::Singleton(comp.Last()), nextcomp.First());
|
|
todo -= nextcomp;
|
|
comp = nextcomp;
|
|
}
|
|
}
|
|
|
|
/** Given a dependency graph, and a todo set, read a topological subset of todo from reader. */
|
|
template<typename SetType>
|
|
SetType ReadTopologicalSet(const DepGraph<SetType>& depgraph, const SetType& todo, SpanReader& reader)
|
|
{
|
|
uint64_t mask{0};
|
|
try {
|
|
reader >> VARINT(mask);
|
|
} catch(const std::ios_base::failure&) {}
|
|
SetType ret;
|
|
for (auto i : todo) {
|
|
if (!ret[i]) {
|
|
if (mask & 1) ret |= depgraph.Ancestors(i);
|
|
mask >>= 1;
|
|
}
|
|
}
|
|
return ret & todo;
|
|
}
|
|
|
|
/** Given a dependency graph, construct any valid linearization for it, reading from a SpanReader. */
|
|
template<typename BS>
|
|
std::vector<DepGraphIndex> ReadLinearization(const DepGraph<BS>& depgraph, SpanReader& reader)
|
|
{
|
|
std::vector<DepGraphIndex> linearization;
|
|
TestBitSet todo = depgraph.Positions();
|
|
// In every iteration one topologically-valid transaction is appended to linearization.
|
|
while (todo.Any()) {
|
|
// Compute the set of transactions with no not-yet-included ancestors.
|
|
TestBitSet potential_next;
|
|
for (auto j : todo) {
|
|
if ((depgraph.Ancestors(j) & todo) == TestBitSet::Singleton(j)) {
|
|
potential_next.Set(j);
|
|
}
|
|
}
|
|
// There must always be one (otherwise there is a cycle in the graph).
|
|
assert(potential_next.Any());
|
|
// Read a number from reader, and interpret it as index into potential_next.
|
|
uint64_t idx{0};
|
|
try {
|
|
reader >> VARINT(idx);
|
|
} catch (const std::ios_base::failure&) {}
|
|
idx %= potential_next.Count();
|
|
// Find out which transaction that corresponds to.
|
|
for (auto j : potential_next) {
|
|
if (idx == 0) {
|
|
// When found, add it to linearization and remove it from todo.
|
|
linearization.push_back(j);
|
|
assert(todo[j]);
|
|
todo.Reset(j);
|
|
break;
|
|
}
|
|
--idx;
|
|
}
|
|
}
|
|
return linearization;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
FUZZ_TARGET(clusterlin_depgraph_sim)
|
|
{
|
|
// Simulation test to verify the full behavior of DepGraph.
|
|
|
|
FuzzedDataProvider provider(buffer.data(), buffer.size());
|
|
|
|
/** Real DepGraph being tested. */
|
|
DepGraph<TestBitSet> real;
|
|
/** Simulated DepGraph (sim[i] is std::nullopt if position i does not exist; otherwise,
|
|
* sim[i]->first is its individual feerate, and sim[i]->second is its set of ancestors. */
|
|
std::array<std::optional<std::pair<FeeFrac, TestBitSet>>, TestBitSet::Size()> sim;
|
|
/** The number of non-nullopt position in sim. */
|
|
DepGraphIndex num_tx_sim{0};
|
|
|
|
/** Read a valid index of a transaction from the provider. */
|
|
auto idx_fn = [&]() {
|
|
auto offset = provider.ConsumeIntegralInRange<DepGraphIndex>(0, num_tx_sim - 1);
|
|
for (DepGraphIndex i = 0; i < sim.size(); ++i) {
|
|
if (!sim[i].has_value()) continue;
|
|
if (offset == 0) return i;
|
|
--offset;
|
|
}
|
|
assert(false);
|
|
return DepGraphIndex(-1);
|
|
};
|
|
|
|
/** Read a valid subset of the transactions from the provider. */
|
|
auto subset_fn = [&]() {
|
|
auto range = (uint64_t{1} << num_tx_sim) - 1;
|
|
const auto mask = provider.ConsumeIntegralInRange<uint64_t>(0, range);
|
|
auto mask_shifted = mask;
|
|
TestBitSet subset;
|
|
for (DepGraphIndex i = 0; i < sim.size(); ++i) {
|
|
if (!sim[i].has_value()) continue;
|
|
if (mask_shifted & 1) {
|
|
subset.Set(i);
|
|
}
|
|
mask_shifted >>= 1;
|
|
}
|
|
assert(mask_shifted == 0);
|
|
return subset;
|
|
};
|
|
|
|
/** Read any set of transactions from the provider (including unused positions). */
|
|
auto set_fn = [&]() {
|
|
auto range = (uint64_t{1} << sim.size()) - 1;
|
|
const auto mask = provider.ConsumeIntegralInRange<uint64_t>(0, range);
|
|
TestBitSet set;
|
|
for (DepGraphIndex i = 0; i < sim.size(); ++i) {
|
|
if ((mask >> i) & 1) {
|
|
set.Set(i);
|
|
}
|
|
}
|
|
return set;
|
|
};
|
|
|
|
/** Propagate ancestor information in sim. */
|
|
auto anc_update_fn = [&]() {
|
|
while (true) {
|
|
bool updates{false};
|
|
for (DepGraphIndex chl = 0; chl < sim.size(); ++chl) {
|
|
if (!sim[chl].has_value()) continue;
|
|
for (auto par : sim[chl]->second) {
|
|
if (!sim[chl]->second.IsSupersetOf(sim[par]->second)) {
|
|
sim[chl]->second |= sim[par]->second;
|
|
updates = true;
|
|
}
|
|
}
|
|
}
|
|
if (!updates) break;
|
|
}
|
|
};
|
|
|
|
/** Compare the state of transaction i in the simulation with the real one. */
|
|
auto check_fn = [&](DepGraphIndex i) {
|
|
// Compare used positions.
|
|
assert(real.Positions()[i] == sim[i].has_value());
|
|
if (sim[i].has_value()) {
|
|
// Compare feerate.
|
|
assert(real.FeeRate(i) == sim[i]->first);
|
|
// Compare ancestors (note that SanityCheck verifies correspondence between ancestors
|
|
// and descendants, so we can restrict ourselves to ancestors here).
|
|
assert(real.Ancestors(i) == sim[i]->second);
|
|
}
|
|
};
|
|
|
|
LIMITED_WHILE(provider.remaining_bytes() > 0, 1000) {
|
|
uint8_t command = provider.ConsumeIntegral<uint8_t>();
|
|
if (num_tx_sim == 0 || ((command % 3) <= 0 && num_tx_sim < TestBitSet::Size())) {
|
|
// AddTransaction.
|
|
auto fee = provider.ConsumeIntegralInRange<int64_t>(-0x8000000000000, 0x7ffffffffffff);
|
|
auto size = provider.ConsumeIntegralInRange<int32_t>(1, 0x3fffff);
|
|
FeeFrac feerate{fee, size};
|
|
// Apply to DepGraph.
|
|
auto idx = real.AddTransaction(feerate);
|
|
// Verify that the returned index is correct.
|
|
assert(!sim[idx].has_value());
|
|
for (DepGraphIndex i = 0; i < TestBitSet::Size(); ++i) {
|
|
if (!sim[i].has_value()) {
|
|
assert(idx == i);
|
|
break;
|
|
}
|
|
}
|
|
// Update sim.
|
|
sim[idx] = {feerate, TestBitSet::Singleton(idx)};
|
|
++num_tx_sim;
|
|
continue;
|
|
}
|
|
if ((command % 3) <= 1 && num_tx_sim > 0) {
|
|
// AddDependencies.
|
|
DepGraphIndex child = idx_fn();
|
|
auto parents = subset_fn();
|
|
// Apply to DepGraph.
|
|
real.AddDependencies(parents, child);
|
|
// Apply to sim.
|
|
sim[child]->second |= parents;
|
|
continue;
|
|
}
|
|
if (num_tx_sim > 0) {
|
|
// Remove transactions.
|
|
auto del = set_fn();
|
|
// Propagate all ancestry information before deleting anything in the simulation (as
|
|
// intermediary transactions may be deleted which impact connectivity).
|
|
anc_update_fn();
|
|
// Compare the state of the transactions being deleted.
|
|
for (auto i : del) check_fn(i);
|
|
// Apply to DepGraph.
|
|
real.RemoveTransactions(del);
|
|
// Apply to sim.
|
|
for (DepGraphIndex i = 0; i < sim.size(); ++i) {
|
|
if (sim[i].has_value()) {
|
|
if (del[i]) {
|
|
--num_tx_sim;
|
|
sim[i] = std::nullopt;
|
|
} else {
|
|
sim[i]->second -= del;
|
|
}
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
// This should be unreachable (one of the 3 above actions should always be possible).
|
|
assert(false);
|
|
}
|
|
|
|
// Compare the real obtained depgraph against the simulation.
|
|
anc_update_fn();
|
|
for (DepGraphIndex i = 0; i < sim.size(); ++i) check_fn(i);
|
|
assert(real.TxCount() == num_tx_sim);
|
|
// Sanity check the result (which includes round-tripping serialization, if applicable).
|
|
SanityCheck(real);
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_depgraph_serialization)
|
|
{
|
|
// Verify that any deserialized depgraph is acyclic and roundtrips to an identical depgraph.
|
|
|
|
// Construct a graph by deserializing.
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
DepGraphIndex par_code{0}, chl_code{0};
|
|
try {
|
|
reader >> Using<DepGraphFormatter>(depgraph) >> VARINT(par_code) >> VARINT(chl_code);
|
|
} catch (const std::ios_base::failure&) {}
|
|
SanityCheck(depgraph);
|
|
|
|
// Verify the graph is a DAG.
|
|
assert(depgraph.IsAcyclic());
|
|
|
|
// Introduce a cycle, and then test that IsAcyclic returns false.
|
|
if (depgraph.TxCount() < 2) return;
|
|
DepGraphIndex par(0), chl(0);
|
|
// Pick any transaction of depgraph as parent.
|
|
par_code %= depgraph.TxCount();
|
|
for (auto i : depgraph.Positions()) {
|
|
if (par_code == 0) {
|
|
par = i;
|
|
break;
|
|
}
|
|
--par_code;
|
|
}
|
|
// Pick any ancestor of par (excluding itself) as child, if any.
|
|
auto ancestors = depgraph.Ancestors(par) - TestBitSet::Singleton(par);
|
|
if (ancestors.None()) return;
|
|
chl_code %= ancestors.Count();
|
|
for (auto i : ancestors) {
|
|
if (chl_code == 0) {
|
|
chl = i;
|
|
break;
|
|
}
|
|
--chl_code;
|
|
}
|
|
// Add the cycle-introducing dependency.
|
|
depgraph.AddDependencies(TestBitSet::Singleton(par), chl);
|
|
// Check that we now detect a cycle.
|
|
assert(!depgraph.IsAcyclic());
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_components)
|
|
{
|
|
// Verify the behavior of DepGraphs's FindConnectedComponent and IsConnected functions.
|
|
|
|
// Construct a depgraph.
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
std::vector<DepGraphIndex> linearization;
|
|
try {
|
|
reader >> Using<DepGraphFormatter>(depgraph);
|
|
} catch (const std::ios_base::failure&) {}
|
|
|
|
TestBitSet todo = depgraph.Positions();
|
|
while (todo.Any()) {
|
|
// Pick a transaction in todo, or nothing.
|
|
std::optional<DepGraphIndex> picked;
|
|
{
|
|
uint64_t picked_num{0};
|
|
try {
|
|
reader >> VARINT(picked_num);
|
|
} catch (const std::ios_base::failure&) {}
|
|
if (picked_num < todo.Size() && todo[picked_num]) {
|
|
picked = picked_num;
|
|
}
|
|
}
|
|
|
|
// Find a connected component inside todo, including picked if any.
|
|
auto component = picked ? depgraph.GetConnectedComponent(todo, *picked)
|
|
: depgraph.FindConnectedComponent(todo);
|
|
|
|
// The component must be a subset of todo and non-empty.
|
|
assert(component.IsSubsetOf(todo));
|
|
assert(component.Any());
|
|
|
|
// If picked was provided, the component must include it.
|
|
if (picked) assert(component[*picked]);
|
|
|
|
// If todo is the entire graph, and the entire graph is connected, then the component must
|
|
// be the entire graph.
|
|
if (todo == depgraph.Positions()) {
|
|
assert((component == todo) == depgraph.IsConnected());
|
|
}
|
|
|
|
// If subset is connected, then component must match subset.
|
|
assert((component == todo) == depgraph.IsConnected(todo));
|
|
|
|
// The component cannot have any ancestors or descendants outside of component but in todo.
|
|
for (auto i : component) {
|
|
assert((depgraph.Ancestors(i) & todo).IsSubsetOf(component));
|
|
assert((depgraph.Descendants(i) & todo).IsSubsetOf(component));
|
|
}
|
|
|
|
// Starting from any component element, we must be able to reach every element.
|
|
for (auto i : component) {
|
|
// Start with just i as reachable.
|
|
TestBitSet reachable = TestBitSet::Singleton(i);
|
|
// Add in-todo descendants and ancestors to reachable until it does not change anymore.
|
|
while (true) {
|
|
TestBitSet new_reachable = reachable;
|
|
for (auto j : new_reachable) {
|
|
new_reachable |= depgraph.Ancestors(j) & todo;
|
|
new_reachable |= depgraph.Descendants(j) & todo;
|
|
}
|
|
if (new_reachable == reachable) break;
|
|
reachable = new_reachable;
|
|
}
|
|
// Verify that the result is the entire component.
|
|
assert(component == reachable);
|
|
}
|
|
|
|
// Construct an arbitrary subset of todo.
|
|
uint64_t subset_bits{0};
|
|
try {
|
|
reader >> VARINT(subset_bits);
|
|
} catch (const std::ios_base::failure&) {}
|
|
TestBitSet subset;
|
|
for (DepGraphIndex i : depgraph.Positions()) {
|
|
if (todo[i]) {
|
|
if (subset_bits & 1) subset.Set(i);
|
|
subset_bits >>= 1;
|
|
}
|
|
}
|
|
// Which must be non-empty.
|
|
if (subset.None()) subset = TestBitSet::Singleton(todo.First());
|
|
// Remove it from todo.
|
|
todo -= subset;
|
|
}
|
|
|
|
// No components can be found in an empty subset.
|
|
assert(depgraph.FindConnectedComponent(todo).None());
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_make_connected)
|
|
{
|
|
// Verify that MakeConnected makes graphs connected.
|
|
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
try {
|
|
reader >> Using<DepGraphFormatter>(depgraph);
|
|
} catch (const std::ios_base::failure&) {}
|
|
MakeConnected(depgraph);
|
|
SanityCheck(depgraph);
|
|
assert(depgraph.IsConnected());
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_chunking)
|
|
{
|
|
// Verify the correctness of the ChunkLinearization function.
|
|
|
|
// Construct a graph by deserializing.
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
try {
|
|
reader >> Using<DepGraphFormatter>(depgraph);
|
|
} catch (const std::ios_base::failure&) {}
|
|
|
|
// Read a valid linearization for depgraph.
|
|
auto linearization = ReadLinearization(depgraph, reader);
|
|
|
|
// Invoke the chunking function.
|
|
auto chunking = ChunkLinearization(depgraph, linearization);
|
|
|
|
// Verify that chunk feerates are monotonically non-increasing.
|
|
for (size_t i = 1; i < chunking.size(); ++i) {
|
|
assert(!(chunking[i] >> chunking[i - 1]));
|
|
}
|
|
|
|
// Naively recompute the chunks (each is the highest-feerate prefix of what remains).
|
|
auto todo = depgraph.Positions();
|
|
for (const auto& chunk_feerate : chunking) {
|
|
assert(todo.Any());
|
|
SetInfo<TestBitSet> accumulator, best;
|
|
for (DepGraphIndex idx : linearization) {
|
|
if (todo[idx]) {
|
|
accumulator.Set(depgraph, idx);
|
|
if (best.feerate.IsEmpty() || accumulator.feerate >> best.feerate) {
|
|
best = accumulator;
|
|
}
|
|
}
|
|
}
|
|
assert(chunk_feerate == best.feerate);
|
|
assert(best.transactions.IsSubsetOf(todo));
|
|
todo -= best.transactions;
|
|
}
|
|
assert(todo.None());
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_ancestor_finder)
|
|
{
|
|
// Verify that AncestorCandidateFinder works as expected.
|
|
|
|
// Retrieve a depgraph from the fuzz input.
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
try {
|
|
reader >> Using<DepGraphFormatter>(depgraph);
|
|
} catch (const std::ios_base::failure&) {}
|
|
|
|
AncestorCandidateFinder anc_finder(depgraph);
|
|
auto todo = depgraph.Positions();
|
|
while (todo.Any()) {
|
|
// Call the ancestor finder's FindCandidateSet for what remains of the graph.
|
|
assert(!anc_finder.AllDone());
|
|
assert(todo.Count() == anc_finder.NumRemaining());
|
|
auto best_anc = anc_finder.FindCandidateSet();
|
|
// Sanity check the result.
|
|
assert(best_anc.transactions.Any());
|
|
assert(best_anc.transactions.IsSubsetOf(todo));
|
|
assert(depgraph.FeeRate(best_anc.transactions) == best_anc.feerate);
|
|
assert(depgraph.IsConnected(best_anc.transactions));
|
|
// Check that it is topologically valid.
|
|
for (auto i : best_anc.transactions) {
|
|
assert((depgraph.Ancestors(i) & todo).IsSubsetOf(best_anc.transactions));
|
|
}
|
|
|
|
// Compute all remaining ancestor sets.
|
|
std::optional<SetInfo<TestBitSet>> real_best_anc;
|
|
for (auto i : todo) {
|
|
SetInfo info(depgraph, todo & depgraph.Ancestors(i));
|
|
if (!real_best_anc.has_value() || info.feerate > real_best_anc->feerate) {
|
|
real_best_anc = info;
|
|
}
|
|
}
|
|
// The set returned by anc_finder must equal the real best ancestor sets.
|
|
assert(real_best_anc.has_value());
|
|
assert(*real_best_anc == best_anc);
|
|
|
|
// Find a topologically valid subset of transactions to remove from the graph.
|
|
auto del_set = ReadTopologicalSet(depgraph, todo, reader);
|
|
// If we did not find anything, use best_anc itself, because we should remove something.
|
|
if (del_set.None()) del_set = best_anc.transactions;
|
|
todo -= del_set;
|
|
anc_finder.MarkDone(del_set);
|
|
}
|
|
assert(anc_finder.AllDone());
|
|
assert(anc_finder.NumRemaining() == 0);
|
|
}
|
|
|
|
static constexpr auto MAX_SIMPLE_ITERATIONS = 300000;
|
|
|
|
FUZZ_TARGET(clusterlin_search_finder)
|
|
{
|
|
// Verify that SearchCandidateFinder works as expected by sanity checking the results
|
|
// and comparing with the results from SimpleCandidateFinder, ExhaustiveCandidateFinder, and
|
|
// AncestorCandidateFinder.
|
|
|
|
// Retrieve an RNG seed, a depgraph, and whether to make it connected, from the fuzz input.
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
uint64_t rng_seed{0};
|
|
uint8_t make_connected{1};
|
|
try {
|
|
reader >> Using<DepGraphFormatter>(depgraph) >> rng_seed >> make_connected;
|
|
} catch (const std::ios_base::failure&) {}
|
|
// The most complicated graphs are connected ones (other ones just split up). Optionally force
|
|
// the graph to be connected.
|
|
if (make_connected) MakeConnected(depgraph);
|
|
|
|
// Instantiate ALL the candidate finders.
|
|
SearchCandidateFinder src_finder(depgraph, rng_seed);
|
|
SimpleCandidateFinder smp_finder(depgraph);
|
|
ExhaustiveCandidateFinder exh_finder(depgraph);
|
|
AncestorCandidateFinder anc_finder(depgraph);
|
|
|
|
auto todo = depgraph.Positions();
|
|
while (todo.Any()) {
|
|
assert(!src_finder.AllDone());
|
|
assert(!smp_finder.AllDone());
|
|
assert(!exh_finder.AllDone());
|
|
assert(!anc_finder.AllDone());
|
|
assert(anc_finder.NumRemaining() == todo.Count());
|
|
|
|
// For each iteration, read an iteration count limit from the fuzz input.
|
|
uint64_t max_iterations = 1;
|
|
try {
|
|
reader >> VARINT(max_iterations);
|
|
} catch (const std::ios_base::failure&) {}
|
|
max_iterations &= 0xfffff;
|
|
|
|
// Read an initial subset from the fuzz input.
|
|
SetInfo init_best(depgraph, ReadTopologicalSet(depgraph, todo, reader));
|
|
|
|
// Call the search finder's FindCandidateSet for what remains of the graph.
|
|
auto [found, iterations_done] = src_finder.FindCandidateSet(max_iterations, init_best);
|
|
|
|
// Sanity check the result.
|
|
assert(iterations_done <= max_iterations);
|
|
assert(found.transactions.Any());
|
|
assert(found.transactions.IsSubsetOf(todo));
|
|
assert(depgraph.FeeRate(found.transactions) == found.feerate);
|
|
if (!init_best.feerate.IsEmpty()) assert(found.feerate >= init_best.feerate);
|
|
// Check that it is topologically valid.
|
|
for (auto i : found.transactions) {
|
|
assert(found.transactions.IsSupersetOf(depgraph.Ancestors(i) & todo));
|
|
}
|
|
|
|
// At most 2^(N-1) iterations can be required: the maximum number of non-empty topological
|
|
// subsets a (connected) cluster with N transactions can have. Even when the cluster is no
|
|
// longer connected after removing certain transactions, this holds, because the connected
|
|
// components are searched separately.
|
|
assert(iterations_done <= (uint64_t{1} << (todo.Count() - 1)));
|
|
// Additionally, test that no more than sqrt(2^N)+1 iterations are required. This is just
|
|
// an empirical bound that seems to hold, without proof. Still, add a test for it so we
|
|
// can learn about counterexamples if they exist.
|
|
if (iterations_done >= 1 && todo.Count() <= 63) {
|
|
Assume((iterations_done - 1) * (iterations_done - 1) <= uint64_t{1} << todo.Count());
|
|
}
|
|
|
|
// Perform quality checks only if SearchCandidateFinder claims an optimal result.
|
|
if (iterations_done < max_iterations) {
|
|
// Optimal sets are always connected.
|
|
assert(depgraph.IsConnected(found.transactions));
|
|
|
|
// Compare with SimpleCandidateFinder.
|
|
auto [simple, simple_iters] = smp_finder.FindCandidateSet(MAX_SIMPLE_ITERATIONS);
|
|
assert(found.feerate >= simple.feerate);
|
|
if (simple_iters < MAX_SIMPLE_ITERATIONS) {
|
|
assert(found.feerate == simple.feerate);
|
|
}
|
|
|
|
// Compare with AncestorCandidateFinder;
|
|
auto anc = anc_finder.FindCandidateSet();
|
|
assert(found.feerate >= anc.feerate);
|
|
|
|
// Compare with ExhaustiveCandidateFinder. This quickly gets computationally expensive
|
|
// for large clusters (O(2^n)), so only do it for sufficiently small ones.
|
|
if (todo.Count() <= 12) {
|
|
auto exhaustive = exh_finder.FindCandidateSet();
|
|
assert(exhaustive.feerate == found.feerate);
|
|
// Also compare ExhaustiveCandidateFinder with SimpleCandidateFinder (this is
|
|
// primarily a test for SimpleCandidateFinder's correctness).
|
|
assert(exhaustive.feerate >= simple.feerate);
|
|
if (simple_iters < MAX_SIMPLE_ITERATIONS) {
|
|
assert(exhaustive.feerate == simple.feerate);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find a topologically valid subset of transactions to remove from the graph.
|
|
auto del_set = ReadTopologicalSet(depgraph, todo, reader);
|
|
// If we did not find anything, use found itself, because we should remove something.
|
|
if (del_set.None()) del_set = found.transactions;
|
|
todo -= del_set;
|
|
src_finder.MarkDone(del_set);
|
|
smp_finder.MarkDone(del_set);
|
|
exh_finder.MarkDone(del_set);
|
|
anc_finder.MarkDone(del_set);
|
|
}
|
|
|
|
assert(src_finder.AllDone());
|
|
assert(smp_finder.AllDone());
|
|
assert(exh_finder.AllDone());
|
|
assert(anc_finder.AllDone());
|
|
assert(anc_finder.NumRemaining() == 0);
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_linearization_chunking)
|
|
{
|
|
// Verify the behavior of LinearizationChunking.
|
|
|
|
// Retrieve a depgraph from the fuzz input.
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
try {
|
|
reader >> Using<DepGraphFormatter>(depgraph);
|
|
} catch (const std::ios_base::failure&) {}
|
|
|
|
// Retrieve a topologically-valid subset of depgraph.
|
|
auto todo = depgraph.Positions();
|
|
auto subset = SetInfo(depgraph, ReadTopologicalSet(depgraph, todo, reader));
|
|
|
|
// Retrieve a valid linearization for depgraph.
|
|
auto linearization = ReadLinearization(depgraph, reader);
|
|
|
|
// Construct a LinearizationChunking object, initially for the whole linearization.
|
|
LinearizationChunking chunking(depgraph, linearization);
|
|
|
|
// Incrementally remove transactions from the chunking object, and check various properties at
|
|
// every step.
|
|
while (todo.Any()) {
|
|
assert(chunking.NumChunksLeft() > 0);
|
|
|
|
// Construct linearization with just todo.
|
|
std::vector<DepGraphIndex> linearization_left;
|
|
for (auto i : linearization) {
|
|
if (todo[i]) linearization_left.push_back(i);
|
|
}
|
|
|
|
// Compute the chunking for linearization_left.
|
|
auto chunking_left = ChunkLinearization(depgraph, linearization_left);
|
|
|
|
// Verify that it matches the feerates of the chunks of chunking.
|
|
assert(chunking.NumChunksLeft() == chunking_left.size());
|
|
for (DepGraphIndex i = 0; i < chunking.NumChunksLeft(); ++i) {
|
|
assert(chunking.GetChunk(i).feerate == chunking_left[i]);
|
|
}
|
|
|
|
// Check consistency of chunking.
|
|
TestBitSet combined;
|
|
for (DepGraphIndex i = 0; i < chunking.NumChunksLeft(); ++i) {
|
|
const auto& chunk_info = chunking.GetChunk(i);
|
|
// Chunks must be non-empty.
|
|
assert(chunk_info.transactions.Any());
|
|
// Chunk feerates must be monotonically non-increasing.
|
|
if (i > 0) assert(!(chunk_info.feerate >> chunking.GetChunk(i - 1).feerate));
|
|
// Chunks must be a subset of what is left of the linearization.
|
|
assert(chunk_info.transactions.IsSubsetOf(todo));
|
|
// Chunks' claimed feerates must match their transactions' aggregate feerate.
|
|
assert(depgraph.FeeRate(chunk_info.transactions) == chunk_info.feerate);
|
|
// Chunks must be the highest-feerate remaining prefix.
|
|
SetInfo<TestBitSet> accumulator, best;
|
|
for (auto j : linearization) {
|
|
if (todo[j] && !combined[j]) {
|
|
accumulator.Set(depgraph, j);
|
|
if (best.feerate.IsEmpty() || accumulator.feerate > best.feerate) {
|
|
best = accumulator;
|
|
}
|
|
}
|
|
}
|
|
assert(best.transactions == chunk_info.transactions);
|
|
assert(best.feerate == chunk_info.feerate);
|
|
// Chunks cannot overlap.
|
|
assert(!chunk_info.transactions.Overlaps(combined));
|
|
combined |= chunk_info.transactions;
|
|
// Chunks must be topological.
|
|
for (auto idx : chunk_info.transactions) {
|
|
assert((depgraph.Ancestors(idx) & todo).IsSubsetOf(combined));
|
|
}
|
|
}
|
|
assert(combined == todo);
|
|
|
|
// Verify the expected properties of LinearizationChunking::IntersectPrefixes:
|
|
auto intersect = chunking.IntersectPrefixes(subset);
|
|
// - Intersecting again doesn't change the result.
|
|
assert(chunking.IntersectPrefixes(intersect) == intersect);
|
|
// - The intersection is topological.
|
|
TestBitSet intersect_anc;
|
|
for (auto idx : intersect.transactions) {
|
|
intersect_anc |= (depgraph.Ancestors(idx) & todo);
|
|
}
|
|
assert(intersect.transactions == intersect_anc);
|
|
// - The claimed intersection feerate matches its transactions.
|
|
assert(intersect.feerate == depgraph.FeeRate(intersect.transactions));
|
|
// - The intersection may only be empty if its input is empty.
|
|
assert(intersect.transactions.Any() == subset.transactions.Any());
|
|
// - The intersection feerate must be as high as the input.
|
|
assert(intersect.feerate >= subset.feerate);
|
|
// - No non-empty intersection between the intersection and a prefix of the chunks of the
|
|
// remainder of the linearization may be better than the intersection.
|
|
TestBitSet prefix;
|
|
for (DepGraphIndex i = 0; i < chunking.NumChunksLeft(); ++i) {
|
|
prefix |= chunking.GetChunk(i).transactions;
|
|
auto reintersect = SetInfo(depgraph, prefix & intersect.transactions);
|
|
if (!reintersect.feerate.IsEmpty()) {
|
|
assert(reintersect.feerate <= intersect.feerate);
|
|
}
|
|
}
|
|
|
|
// Find a subset to remove from linearization.
|
|
auto done = ReadTopologicalSet(depgraph, todo, reader);
|
|
if (done.None()) {
|
|
// We need to remove a non-empty subset, so fall back to the unlinearized ancestors of
|
|
// the first transaction in todo if done is empty.
|
|
done = depgraph.Ancestors(todo.First()) & todo;
|
|
}
|
|
todo -= done;
|
|
chunking.MarkDone(done);
|
|
subset = SetInfo(depgraph, subset.transactions - done);
|
|
}
|
|
|
|
assert(chunking.NumChunksLeft() == 0);
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_linearize)
|
|
{
|
|
// Verify the behavior of Linearize().
|
|
|
|
// Retrieve an RNG seed, an iteration count, a depgraph, and whether to make it connected from
|
|
// the fuzz input.
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
uint64_t rng_seed{0};
|
|
uint64_t iter_count{0};
|
|
uint8_t make_connected{1};
|
|
try {
|
|
reader >> VARINT(iter_count) >> Using<DepGraphFormatter>(depgraph) >> rng_seed >> make_connected;
|
|
} catch (const std::ios_base::failure&) {}
|
|
// The most complicated graphs are connected ones (other ones just split up). Optionally force
|
|
// the graph to be connected.
|
|
if (make_connected) MakeConnected(depgraph);
|
|
|
|
// Optionally construct an old linearization for it.
|
|
std::vector<DepGraphIndex> old_linearization;
|
|
{
|
|
uint8_t have_old_linearization{0};
|
|
try {
|
|
reader >> have_old_linearization;
|
|
} catch(const std::ios_base::failure&) {}
|
|
if (have_old_linearization & 1) {
|
|
old_linearization = ReadLinearization(depgraph, reader);
|
|
SanityCheck(depgraph, old_linearization);
|
|
}
|
|
}
|
|
|
|
// Invoke Linearize().
|
|
iter_count &= 0x7ffff;
|
|
auto [linearization, optimal] = Linearize(depgraph, iter_count, rng_seed, old_linearization);
|
|
SanityCheck(depgraph, linearization);
|
|
auto chunking = ChunkLinearization(depgraph, linearization);
|
|
|
|
// Linearization must always be as good as the old one, if provided.
|
|
if (!old_linearization.empty()) {
|
|
auto old_chunking = ChunkLinearization(depgraph, old_linearization);
|
|
auto cmp = CompareChunks(chunking, old_chunking);
|
|
assert(cmp >= 0);
|
|
}
|
|
|
|
// If the iteration count is sufficiently high, an optimal linearization must be found.
|
|
// Each linearization step can use up to 2^(k-1) iterations, with steps k=1..n. That sum is
|
|
// 2^n - 1.
|
|
const uint64_t n = depgraph.TxCount();
|
|
if (n <= 19 && iter_count > (uint64_t{1} << n)) {
|
|
assert(optimal);
|
|
}
|
|
// Additionally, if the assumption of sqrt(2^k)+1 iterations per step holds, plus ceil(k/4)
|
|
// start-up cost per step, plus ceil(n^2/64) start-up cost overall, we can compute the upper
|
|
// bound for a whole linearization (summing for k=1..n) using the Python expression
|
|
// [sum((k+3)//4 + int(math.sqrt(2**k)) + 1 for k in range(1, n + 1)) + (n**2 + 63) // 64 for n in range(0, 35)]:
|
|
static constexpr uint64_t MAX_OPTIMAL_ITERS[] = {
|
|
0, 4, 8, 12, 18, 26, 37, 51, 70, 97, 133, 182, 251, 346, 480, 666, 927, 1296, 1815, 2545,
|
|
3576, 5031, 7087, 9991, 14094, 19895, 28096, 39690, 56083, 79263, 112041, 158391, 223936,
|
|
316629, 447712
|
|
};
|
|
if (n < std::size(MAX_OPTIMAL_ITERS) && iter_count >= MAX_OPTIMAL_ITERS[n]) {
|
|
Assume(optimal);
|
|
}
|
|
|
|
// If Linearize claims optimal result, run quality tests.
|
|
if (optimal) {
|
|
// It must be as good as SimpleLinearize.
|
|
auto [simple_linearization, simple_optimal] = SimpleLinearize(depgraph, MAX_SIMPLE_ITERATIONS);
|
|
SanityCheck(depgraph, simple_linearization);
|
|
auto simple_chunking = ChunkLinearization(depgraph, simple_linearization);
|
|
auto cmp = CompareChunks(chunking, simple_chunking);
|
|
assert(cmp >= 0);
|
|
// If SimpleLinearize finds the optimal result too, they must be equal (if not,
|
|
// SimpleLinearize is broken).
|
|
if (simple_optimal) assert(cmp == 0);
|
|
|
|
// Only for very small clusters, test every topologically-valid permutation.
|
|
if (depgraph.TxCount() <= 7) {
|
|
std::vector<DepGraphIndex> perm_linearization;
|
|
for (DepGraphIndex i : depgraph.Positions()) perm_linearization.push_back(i);
|
|
// Iterate over all valid permutations.
|
|
do {
|
|
// Determine whether perm_linearization is topological.
|
|
TestBitSet perm_done;
|
|
bool perm_is_topo{true};
|
|
for (auto i : perm_linearization) {
|
|
perm_done.Set(i);
|
|
if (!depgraph.Ancestors(i).IsSubsetOf(perm_done)) {
|
|
perm_is_topo = false;
|
|
break;
|
|
}
|
|
}
|
|
// If so, verify that the obtained linearization is as good as the permutation.
|
|
if (perm_is_topo) {
|
|
auto perm_chunking = ChunkLinearization(depgraph, perm_linearization);
|
|
auto cmp = CompareChunks(chunking, perm_chunking);
|
|
assert(cmp >= 0);
|
|
}
|
|
} while(std::next_permutation(perm_linearization.begin(), perm_linearization.end()));
|
|
}
|
|
}
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_postlinearize)
|
|
{
|
|
// Verify expected properties of PostLinearize() on arbitrary linearizations.
|
|
|
|
// Retrieve a depgraph from the fuzz input.
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
try {
|
|
reader >> Using<DepGraphFormatter>(depgraph);
|
|
} catch (const std::ios_base::failure&) {}
|
|
|
|
// Retrieve a linearization from the fuzz input.
|
|
std::vector<DepGraphIndex> linearization;
|
|
linearization = ReadLinearization(depgraph, reader);
|
|
SanityCheck(depgraph, linearization);
|
|
|
|
// Produce a post-processed version.
|
|
auto post_linearization = linearization;
|
|
PostLinearize(depgraph, post_linearization);
|
|
SanityCheck(depgraph, post_linearization);
|
|
|
|
// Compare diagrams: post-linearization cannot worsen anywhere.
|
|
auto chunking = ChunkLinearization(depgraph, linearization);
|
|
auto post_chunking = ChunkLinearization(depgraph, post_linearization);
|
|
auto cmp = CompareChunks(post_chunking, chunking);
|
|
assert(cmp >= 0);
|
|
|
|
// Run again, things can keep improving (and never get worse)
|
|
auto post_post_linearization = post_linearization;
|
|
PostLinearize(depgraph, post_post_linearization);
|
|
SanityCheck(depgraph, post_post_linearization);
|
|
auto post_post_chunking = ChunkLinearization(depgraph, post_post_linearization);
|
|
cmp = CompareChunks(post_post_chunking, post_chunking);
|
|
assert(cmp >= 0);
|
|
|
|
// The chunks that come out of postlinearizing are always connected.
|
|
LinearizationChunking linchunking(depgraph, post_linearization);
|
|
while (linchunking.NumChunksLeft()) {
|
|
assert(depgraph.IsConnected(linchunking.GetChunk(0).transactions));
|
|
linchunking.MarkDone(linchunking.GetChunk(0).transactions);
|
|
}
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_postlinearize_tree)
|
|
{
|
|
// Verify expected properties of PostLinearize() on linearizations of graphs that form either
|
|
// an upright or reverse tree structure.
|
|
|
|
// Construct a direction, RNG seed, and an arbitrary graph from the fuzz input.
|
|
SpanReader reader(buffer);
|
|
uint64_t rng_seed{0};
|
|
DepGraph<TestBitSet> depgraph_gen;
|
|
uint8_t direction{0};
|
|
try {
|
|
reader >> direction >> rng_seed >> Using<DepGraphFormatter>(depgraph_gen);
|
|
} catch (const std::ios_base::failure&) {}
|
|
|
|
// Now construct a new graph, copying the nodes, but leaving only the first parent (even
|
|
// direction) or the first child (odd direction).
|
|
DepGraph<TestBitSet> depgraph_tree;
|
|
for (DepGraphIndex i = 0; i < depgraph_gen.PositionRange(); ++i) {
|
|
if (depgraph_gen.Positions()[i]) {
|
|
depgraph_tree.AddTransaction(depgraph_gen.FeeRate(i));
|
|
} else {
|
|
// For holes, add a dummy transaction which is deleted below, so that non-hole
|
|
// transactions retain their position.
|
|
depgraph_tree.AddTransaction(FeeFrac{});
|
|
}
|
|
}
|
|
depgraph_tree.RemoveTransactions(TestBitSet::Fill(depgraph_gen.PositionRange()) - depgraph_gen.Positions());
|
|
|
|
if (direction & 1) {
|
|
for (DepGraphIndex i = 0; i < depgraph_gen.TxCount(); ++i) {
|
|
auto children = depgraph_gen.GetReducedChildren(i);
|
|
if (children.Any()) {
|
|
depgraph_tree.AddDependencies(TestBitSet::Singleton(i), children.First());
|
|
}
|
|
}
|
|
} else {
|
|
for (DepGraphIndex i = 0; i < depgraph_gen.TxCount(); ++i) {
|
|
auto parents = depgraph_gen.GetReducedParents(i);
|
|
if (parents.Any()) {
|
|
depgraph_tree.AddDependencies(TestBitSet::Singleton(parents.First()), i);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Retrieve a linearization from the fuzz input.
|
|
std::vector<DepGraphIndex> linearization;
|
|
linearization = ReadLinearization(depgraph_tree, reader);
|
|
SanityCheck(depgraph_tree, linearization);
|
|
|
|
// Produce a postlinearized version.
|
|
auto post_linearization = linearization;
|
|
PostLinearize(depgraph_tree, post_linearization);
|
|
SanityCheck(depgraph_tree, post_linearization);
|
|
|
|
// Compare diagrams.
|
|
auto chunking = ChunkLinearization(depgraph_tree, linearization);
|
|
auto post_chunking = ChunkLinearization(depgraph_tree, post_linearization);
|
|
auto cmp = CompareChunks(post_chunking, chunking);
|
|
assert(cmp >= 0);
|
|
|
|
// Verify that post-linearizing again does not change the diagram. The result must be identical
|
|
// as post_linearization ought to be optimal already with a tree-structured graph.
|
|
auto post_post_linearization = post_linearization;
|
|
PostLinearize(depgraph_tree, post_linearization);
|
|
SanityCheck(depgraph_tree, post_linearization);
|
|
auto post_post_chunking = ChunkLinearization(depgraph_tree, post_post_linearization);
|
|
auto cmp_post = CompareChunks(post_post_chunking, post_chunking);
|
|
assert(cmp_post == 0);
|
|
|
|
// Try to find an even better linearization directly. This must not change the diagram for the
|
|
// same reason.
|
|
auto [opt_linearization, _optimal] = Linearize(depgraph_tree, 100000, rng_seed, post_linearization);
|
|
auto opt_chunking = ChunkLinearization(depgraph_tree, opt_linearization);
|
|
auto cmp_opt = CompareChunks(opt_chunking, post_chunking);
|
|
assert(cmp_opt == 0);
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_postlinearize_moved_leaf)
|
|
{
|
|
// Verify that taking an existing linearization, and moving a leaf to the back, potentially
|
|
// increasing its fee, and then post-linearizing, results in something as good as the
|
|
// original. This guarantees that in an RBF that replaces a transaction with one of the same
|
|
// size but higher fee, applying the "remove conflicts, append new transaction, postlinearize"
|
|
// process will never worsen linearization quality.
|
|
|
|
// Construct an arbitrary graph and a fee from the fuzz input.
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
int32_t fee_inc{0};
|
|
try {
|
|
uint64_t fee_inc_code;
|
|
reader >> Using<DepGraphFormatter>(depgraph) >> VARINT(fee_inc_code);
|
|
fee_inc = fee_inc_code & 0x3ffff;
|
|
} catch (const std::ios_base::failure&) {}
|
|
if (depgraph.TxCount() == 0) return;
|
|
|
|
// Retrieve two linearizations from the fuzz input.
|
|
auto lin = ReadLinearization(depgraph, reader);
|
|
auto lin_leaf = ReadLinearization(depgraph, reader);
|
|
|
|
// Construct a linearization identical to lin, but with the tail end of lin_leaf moved to the
|
|
// back.
|
|
std::vector<DepGraphIndex> lin_moved;
|
|
for (auto i : lin) {
|
|
if (i != lin_leaf.back()) lin_moved.push_back(i);
|
|
}
|
|
lin_moved.push_back(lin_leaf.back());
|
|
|
|
// Postlinearize lin_moved.
|
|
PostLinearize(depgraph, lin_moved);
|
|
SanityCheck(depgraph, lin_moved);
|
|
|
|
// Compare diagrams (applying the fee delta after computing the old one).
|
|
auto old_chunking = ChunkLinearization(depgraph, lin);
|
|
depgraph.FeeRate(lin_leaf.back()).fee += fee_inc;
|
|
auto new_chunking = ChunkLinearization(depgraph, lin_moved);
|
|
auto cmp = CompareChunks(new_chunking, old_chunking);
|
|
assert(cmp >= 0);
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_merge)
|
|
{
|
|
// Construct an arbitrary graph from the fuzz input.
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
try {
|
|
reader >> Using<DepGraphFormatter>(depgraph);
|
|
} catch (const std::ios_base::failure&) {}
|
|
|
|
// Retrieve two linearizations from the fuzz input.
|
|
auto lin1 = ReadLinearization(depgraph, reader);
|
|
auto lin2 = ReadLinearization(depgraph, reader);
|
|
|
|
// Merge the two.
|
|
auto lin_merged = MergeLinearizations(depgraph, lin1, lin2);
|
|
|
|
// Compute chunkings and compare.
|
|
auto chunking1 = ChunkLinearization(depgraph, lin1);
|
|
auto chunking2 = ChunkLinearization(depgraph, lin2);
|
|
auto chunking_merged = ChunkLinearization(depgraph, lin_merged);
|
|
auto cmp1 = CompareChunks(chunking_merged, chunking1);
|
|
assert(cmp1 >= 0);
|
|
auto cmp2 = CompareChunks(chunking_merged, chunking2);
|
|
assert(cmp2 >= 0);
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_fix_linearization)
|
|
{
|
|
// Verify expected properties of FixLinearization() on arbitrary linearizations.
|
|
|
|
// Retrieve a depgraph from the fuzz input.
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
try {
|
|
reader >> Using<DepGraphFormatter>(depgraph);
|
|
} catch (const std::ios_base::failure&) {}
|
|
|
|
// Construct an arbitrary linearization (not necessarily topological for depgraph).
|
|
std::vector<DepGraphIndex> linearization;
|
|
/** Which transactions of depgraph are yet to be included in linearization. */
|
|
TestBitSet todo = depgraph.Positions();
|
|
while (todo.Any()) {
|
|
// Read a number from the fuzz input in range [0, todo.Count()).
|
|
uint64_t val{0};
|
|
try {
|
|
reader >> VARINT(val);
|
|
} catch (const std::ios_base::failure&) {}
|
|
val %= todo.Count();
|
|
// Find the val'th element in todo, remove it from todo, and append it to linearization.
|
|
for (auto idx : todo) {
|
|
if (val == 0) {
|
|
linearization.push_back(idx);
|
|
todo.Reset(idx);
|
|
break;
|
|
}
|
|
--val;
|
|
}
|
|
}
|
|
assert(linearization.size() == depgraph.TxCount());
|
|
|
|
// Determine what prefix of linearization is topological, i.e., the position of the first entry
|
|
// in linearization which corresponds to a transaction that is not preceded by all its
|
|
// ancestors.
|
|
size_t topo_prefix = 0;
|
|
todo = depgraph.Positions();
|
|
while (topo_prefix < linearization.size()) {
|
|
DepGraphIndex idx = linearization[topo_prefix];
|
|
todo.Reset(idx);
|
|
if (todo.Overlaps(depgraph.Ancestors(idx))) break;
|
|
++topo_prefix;
|
|
}
|
|
|
|
// Then make a fixed copy of linearization.
|
|
auto linearization_fixed = linearization;
|
|
FixLinearization(depgraph, linearization_fixed);
|
|
// Sanity check it (which includes testing whether it is topological).
|
|
SanityCheck(depgraph, linearization_fixed);
|
|
|
|
// FixLinearization does not modify the topological prefix of linearization.
|
|
assert(std::equal(linearization.begin(), linearization.begin() + topo_prefix,
|
|
linearization_fixed.begin()));
|
|
// This also means that if linearization was entirely topological, FixLinearization cannot have
|
|
// modified it. This is implied by the assertion above already, but repeat it explicitly.
|
|
if (topo_prefix == linearization.size()) {
|
|
assert(linearization == linearization_fixed);
|
|
}
|
|
}
|