bitcoin/include/mp/type-context.h
Ryan Ofsky a2f28e4be9 Squashed 'src/ipc/libmultiprocess/' content from commit 35944ffd23fa
git-subtree-dir: src/ipc/libmultiprocess
git-subtree-split: 35944ffd23fa26652b82210351d50e896ce16c8f
2025-04-02 21:41:16 +08:00

173 lines
9.5 KiB
C++

// Copyright (c) 2025 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef MP_PROXY_TYPE_CONTEXT_H
#define MP_PROXY_TYPE_CONTEXT_H
#include <mp/proxy-io.h>
#include <mp/util.h>
namespace mp {
template <typename Output>
void CustomBuildField(TypeList<>,
Priority<1>,
ClientInvokeContext& invoke_context,
Output&& output,
typename std::enable_if<std::is_same<decltype(output.get()), Context::Builder>::value>::type* enable = nullptr)
{
auto& connection = invoke_context.connection;
auto& thread_context = invoke_context.thread_context;
// Create local Thread::Server object corresponding to the current thread
// and pass a Thread::Client reference to it in the Context.callbackThread
// field so the function being called can make callbacks to this thread.
// Also store the Thread::Client reference in the callback_threads map so
// future calls over this connection can reuse it.
auto [callback_thread, _]{SetThread(
thread_context.callback_threads, thread_context.waiter->m_mutex, &connection,
[&] { return connection.m_threads.add(kj::heap<ProxyServer<Thread>>(thread_context, std::thread{})); })};
// Call remote ThreadMap.makeThread function so server will create a
// dedicated worker thread to run function calls from this thread. Store the
// Thread::Client reference it returns in the request_threads map.
auto make_request_thread{[&]{
// This code will only run if an IPC client call is being made for the
// first time on this thread. After the first call, subsequent calls
// will use the existing request thread. This code will also never run at
// all if the current thread is a request thread created for a different
// IPC client, because in that case PassField code (below) will have set
// request_thread to point to the calling thread.
auto request = connection.m_thread_map.makeThreadRequest();
request.setName(thread_context.thread_name);
return request.send().getResult(); // Nonblocking due to capnp request pipelining.
}};
auto [request_thread, _1]{SetThread(
thread_context.request_threads, thread_context.waiter->m_mutex,
&connection, make_request_thread)};
auto context = output.init();
context.setThread(request_thread->second.m_client);
context.setCallbackThread(callback_thread->second.m_client);
}
//! PassField override for mp.Context arguments. Return asynchronously and call
//! function on other thread found in context.
template <typename Accessor, typename ServerContext, typename Fn, typename... Args>
auto PassField(Priority<1>, TypeList<>, ServerContext& server_context, const Fn& fn, Args&&... args) ->
typename std::enable_if<
std::is_same<decltype(Accessor::get(server_context.call_context.getParams())), Context::Reader>::value,
kj::Promise<typename ServerContext::CallContext>>::type
{
const auto& params = server_context.call_context.getParams();
Context::Reader context_arg = Accessor::get(params);
auto future = kj::newPromiseAndFulfiller<typename ServerContext::CallContext>();
auto& server = server_context.proxy_server;
int req = server_context.req;
auto invoke = MakeAsyncCallable(
[fulfiller = kj::mv(future.fulfiller),
call_context = kj::mv(server_context.call_context), &server, req, fn, args...]() mutable {
const auto& params = call_context.getParams();
Context::Reader context_arg = Accessor::get(params);
ServerContext server_context{server, call_context, req};
bool disconnected{false};
{
// Before invoking the function, store a reference to the
// callbackThread provided by the client in the
// thread_local.request_threads map. This way, if this
// server thread needs to execute any RPCs that call back to
// the client, they will happen on the same client thread
// that is waiting for this function, just like what would
// happen if this were a normal function call made on the
// local stack.
//
// If the request_threads map already has an entry for this
// connection, it will be left unchanged, and it indicates
// that the current thread is an RPC client thread which is
// in the middle of an RPC call, and the current RPC call is
// a nested call from the remote thread handling that RPC
// call. In this case, the callbackThread value should point
// to the same thread already in the map, so there is no
// need to update the map.
auto& thread_context = g_thread_context;
auto& request_threads = thread_context.request_threads;
auto [request_thread, inserted]{SetThread(
request_threads, thread_context.waiter->m_mutex,
server.m_context.connection,
[&] { return context_arg.getCallbackThread(); })};
// If an entry was inserted into the requests_threads map,
// remove it after calling fn.invoke. If an entry was not
// inserted, one already existed, meaning this must be a
// recursive call (IPC call calling back to the caller which
// makes another IPC call), so avoid modifying the map.
const bool erase_thread{inserted};
KJ_DEFER({
std::unique_lock<std::mutex> lock(thread_context.waiter->m_mutex);
// Call erase here with a Connection* argument instead
// of an iterator argument, because the `request_thread`
// iterator may be invalid if the connection is closed
// during this function call. More specifically, the
// iterator may be invalid because SetThread adds a
// cleanup callback to the Connection destructor that
// erases the thread from the map, and also because the
// ProxyServer<Thread> destructor calls
// request_threads.clear().
if (erase_thread) {
disconnected = !request_threads.erase(server.m_context.connection);
} else {
disconnected = !request_threads.count(server.m_context.connection);
}
});
fn.invoke(server_context, args...);
}
if (disconnected) {
// If disconnected is true, the Connection object was
// destroyed during the method call. Deal with this by
// returning without ever fulfilling the promise, which will
// cause the ProxyServer object to leak. This is not ideal,
// but fixing the leak will require nontrivial code changes
// because there is a lot of code assuming ProxyServer
// objects are destroyed before Connection objects.
return;
}
KJ_IF_MAYBE(exception, kj::runCatchingExceptions([&]() {
server.m_context.connection->m_loop.sync([&] {
auto fulfiller_dispose = kj::mv(fulfiller);
fulfiller_dispose->fulfill(kj::mv(call_context));
});
}))
{
server.m_context.connection->m_loop.sync([&]() {
auto fulfiller_dispose = kj::mv(fulfiller);
fulfiller_dispose->reject(kj::mv(*exception));
});
}
});
// Lookup Thread object specified by the client. The specified thread should
// be a local Thread::Server object, but it needs to be looked up
// asynchronously with getLocalServer().
auto thread_client = context_arg.getThread();
return server.m_context.connection->m_threads.getLocalServer(thread_client)
.then([&server, invoke, req](const kj::Maybe<Thread::Server&>& perhaps) {
// Assuming the thread object is found, pass it a pointer to the
// `invoke` lambda above which will invoke the function on that
// thread.
KJ_IF_MAYBE (thread_server, perhaps) {
const auto& thread = static_cast<ProxyServer<Thread>&>(*thread_server);
server.m_context.connection->m_loop.log()
<< "IPC server post request #" << req << " {" << thread.m_thread_context.thread_name << "}";
thread.m_thread_context.waiter->post(std::move(invoke));
} else {
server.m_context.connection->m_loop.log()
<< "IPC server error request #" << req << ", missing thread to execute request";
throw std::runtime_error("invalid thread handle");
}
})
// Wait for the invocation to finish before returning to the caller.
.then([invoke_wait = kj::mv(future.promise)]() mutable { return kj::mv(invoke_wait); });
}
} // namespace mp
#endif // MP_PROXY_TYPE_CONTEXT_H