mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-15 14:22:37 -03:00
442 lines
25 KiB
C++
442 lines
25 KiB
C++
// Copyright (c) 2014-2015 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include "crypto/aes.h"
|
|
#include "crypto/ripemd160.h"
|
|
#include "crypto/sha1.h"
|
|
#include "crypto/sha256.h"
|
|
#include "crypto/sha512.h"
|
|
#include "crypto/hmac_sha256.h"
|
|
#include "crypto/hmac_sha512.h"
|
|
#include "utilstrencodings.h"
|
|
#include "test/test_bitcoin.h"
|
|
#include "test/test_random.h"
|
|
|
|
#include <vector>
|
|
|
|
#include <boost/assign/list_of.hpp>
|
|
#include <boost/test/unit_test.hpp>
|
|
#include <openssl/aes.h>
|
|
#include <openssl/evp.h>
|
|
|
|
BOOST_FIXTURE_TEST_SUITE(crypto_tests, BasicTestingSetup)
|
|
|
|
template<typename Hasher, typename In, typename Out>
|
|
void TestVector(const Hasher &h, const In &in, const Out &out) {
|
|
Out hash;
|
|
BOOST_CHECK(out.size() == h.OUTPUT_SIZE);
|
|
hash.resize(out.size());
|
|
{
|
|
// Test that writing the whole input string at once works.
|
|
Hasher(h).Write((unsigned char*)&in[0], in.size()).Finalize(&hash[0]);
|
|
BOOST_CHECK(hash == out);
|
|
}
|
|
for (int i=0; i<32; i++) {
|
|
// Test that writing the string broken up in random pieces works.
|
|
Hasher hasher(h);
|
|
size_t pos = 0;
|
|
while (pos < in.size()) {
|
|
size_t len = insecure_rand() % ((in.size() - pos + 1) / 2 + 1);
|
|
hasher.Write((unsigned char*)&in[pos], len);
|
|
pos += len;
|
|
if (pos > 0 && pos + 2 * out.size() > in.size() && pos < in.size()) {
|
|
// Test that writing the rest at once to a copy of a hasher works.
|
|
Hasher(hasher).Write((unsigned char*)&in[pos], in.size() - pos).Finalize(&hash[0]);
|
|
BOOST_CHECK(hash == out);
|
|
}
|
|
}
|
|
hasher.Finalize(&hash[0]);
|
|
BOOST_CHECK(hash == out);
|
|
}
|
|
}
|
|
|
|
void TestSHA1(const std::string &in, const std::string &hexout) { TestVector(CSHA1(), in, ParseHex(hexout));}
|
|
void TestSHA256(const std::string &in, const std::string &hexout) { TestVector(CSHA256(), in, ParseHex(hexout));}
|
|
void TestSHA512(const std::string &in, const std::string &hexout) { TestVector(CSHA512(), in, ParseHex(hexout));}
|
|
void TestRIPEMD160(const std::string &in, const std::string &hexout) { TestVector(CRIPEMD160(), in, ParseHex(hexout));}
|
|
|
|
void TestHMACSHA256(const std::string &hexkey, const std::string &hexin, const std::string &hexout) {
|
|
std::vector<unsigned char> key = ParseHex(hexkey);
|
|
TestVector(CHMAC_SHA256(&key[0], key.size()), ParseHex(hexin), ParseHex(hexout));
|
|
}
|
|
|
|
void TestHMACSHA512(const std::string &hexkey, const std::string &hexin, const std::string &hexout) {
|
|
std::vector<unsigned char> key = ParseHex(hexkey);
|
|
TestVector(CHMAC_SHA512(&key[0], key.size()), ParseHex(hexin), ParseHex(hexout));
|
|
}
|
|
|
|
void TestAES128(const std::string &hexkey, const std::string &hexin, const std::string &hexout)
|
|
{
|
|
std::vector<unsigned char> key = ParseHex(hexkey);
|
|
std::vector<unsigned char> in = ParseHex(hexin);
|
|
std::vector<unsigned char> correctout = ParseHex(hexout);
|
|
std::vector<unsigned char> buf, buf2;
|
|
|
|
assert(key.size() == 16);
|
|
assert(in.size() == 16);
|
|
assert(correctout.size() == 16);
|
|
AES128Encrypt enc(&key[0]);
|
|
buf.resize(correctout.size());
|
|
buf2.resize(correctout.size());
|
|
enc.Encrypt(&buf[0], &in[0]);
|
|
BOOST_CHECK_EQUAL(HexStr(buf), HexStr(correctout));
|
|
AES128Decrypt dec(&key[0]);
|
|
dec.Decrypt(&buf2[0], &buf[0]);
|
|
BOOST_CHECK_EQUAL(HexStr(buf2), HexStr(in));
|
|
}
|
|
|
|
void TestAES256(const std::string &hexkey, const std::string &hexin, const std::string &hexout)
|
|
{
|
|
std::vector<unsigned char> key = ParseHex(hexkey);
|
|
std::vector<unsigned char> in = ParseHex(hexin);
|
|
std::vector<unsigned char> correctout = ParseHex(hexout);
|
|
std::vector<unsigned char> buf;
|
|
|
|
assert(key.size() == 32);
|
|
assert(in.size() == 16);
|
|
assert(correctout.size() == 16);
|
|
AES256Encrypt enc(&key[0]);
|
|
buf.resize(correctout.size());
|
|
enc.Encrypt(&buf[0], &in[0]);
|
|
BOOST_CHECK(buf == correctout);
|
|
AES256Decrypt dec(&key[0]);
|
|
dec.Decrypt(&buf[0], &buf[0]);
|
|
BOOST_CHECK(buf == in);
|
|
}
|
|
|
|
void TestAES128CBC(const std::string &hexkey, const std::string &hexiv, bool pad, const std::string &hexin, const std::string &hexout)
|
|
{
|
|
std::vector<unsigned char> key = ParseHex(hexkey);
|
|
std::vector<unsigned char> iv = ParseHex(hexiv);
|
|
std::vector<unsigned char> in = ParseHex(hexin);
|
|
std::vector<unsigned char> correctout = ParseHex(hexout);
|
|
std::vector<unsigned char> realout(in.size() + AES_BLOCKSIZE);
|
|
|
|
// Encrypt the plaintext and verify that it equals the cipher
|
|
AES128CBCEncrypt enc(&key[0], &iv[0], pad);
|
|
int size = enc.Encrypt(&in[0], in.size(), &realout[0]);
|
|
realout.resize(size);
|
|
BOOST_CHECK(realout.size() == correctout.size());
|
|
BOOST_CHECK_MESSAGE(realout == correctout, HexStr(realout) + std::string(" != ") + hexout);
|
|
|
|
// Decrypt the cipher and verify that it equals the plaintext
|
|
std::vector<unsigned char> decrypted(correctout.size());
|
|
AES128CBCDecrypt dec(&key[0], &iv[0], pad);
|
|
size = dec.Decrypt(&correctout[0], correctout.size(), &decrypted[0]);
|
|
decrypted.resize(size);
|
|
BOOST_CHECK(decrypted.size() == in.size());
|
|
BOOST_CHECK_MESSAGE(decrypted == in, HexStr(decrypted) + std::string(" != ") + hexin);
|
|
|
|
// Encrypt and re-decrypt substrings of the plaintext and verify that they equal each-other
|
|
for(std::vector<unsigned char>::iterator i(in.begin()); i != in.end(); ++i)
|
|
{
|
|
std::vector<unsigned char> sub(i, in.end());
|
|
std::vector<unsigned char> subout(sub.size() + AES_BLOCKSIZE);
|
|
int _size = enc.Encrypt(&sub[0], sub.size(), &subout[0]);
|
|
if (_size != 0)
|
|
{
|
|
subout.resize(_size);
|
|
std::vector<unsigned char> subdecrypted(subout.size());
|
|
_size = dec.Decrypt(&subout[0], subout.size(), &subdecrypted[0]);
|
|
subdecrypted.resize(_size);
|
|
BOOST_CHECK(decrypted.size() == in.size());
|
|
BOOST_CHECK_MESSAGE(subdecrypted == sub, HexStr(subdecrypted) + std::string(" != ") + HexStr(sub));
|
|
}
|
|
}
|
|
}
|
|
|
|
void TestAES256CBC(const std::string &hexkey, const std::string &hexiv, bool pad, const std::string &hexin, const std::string &hexout)
|
|
{
|
|
std::vector<unsigned char> key = ParseHex(hexkey);
|
|
std::vector<unsigned char> iv = ParseHex(hexiv);
|
|
std::vector<unsigned char> in = ParseHex(hexin);
|
|
std::vector<unsigned char> correctout = ParseHex(hexout);
|
|
std::vector<unsigned char> realout(in.size() + AES_BLOCKSIZE);
|
|
|
|
// Encrypt the plaintext and verify that it equals the cipher
|
|
AES256CBCEncrypt enc(&key[0], &iv[0], pad);
|
|
int size = enc.Encrypt(&in[0], in.size(), &realout[0]);
|
|
realout.resize(size);
|
|
BOOST_CHECK(realout.size() == correctout.size());
|
|
BOOST_CHECK_MESSAGE(realout == correctout, HexStr(realout) + std::string(" != ") + hexout);
|
|
|
|
// Decrypt the cipher and verify that it equals the plaintext
|
|
std::vector<unsigned char> decrypted(correctout.size());
|
|
AES256CBCDecrypt dec(&key[0], &iv[0], pad);
|
|
size = dec.Decrypt(&correctout[0], correctout.size(), &decrypted[0]);
|
|
decrypted.resize(size);
|
|
BOOST_CHECK(decrypted.size() == in.size());
|
|
BOOST_CHECK_MESSAGE(decrypted == in, HexStr(decrypted) + std::string(" != ") + hexin);
|
|
|
|
// Encrypt and re-decrypt substrings of the plaintext and verify that they equal each-other
|
|
for(std::vector<unsigned char>::iterator i(in.begin()); i != in.end(); ++i)
|
|
{
|
|
std::vector<unsigned char> sub(i, in.end());
|
|
std::vector<unsigned char> subout(sub.size() + AES_BLOCKSIZE);
|
|
int _size = enc.Encrypt(&sub[0], sub.size(), &subout[0]);
|
|
if (_size != 0)
|
|
{
|
|
subout.resize(_size);
|
|
std::vector<unsigned char> subdecrypted(subout.size());
|
|
_size = dec.Decrypt(&subout[0], subout.size(), &subdecrypted[0]);
|
|
subdecrypted.resize(_size);
|
|
BOOST_CHECK(decrypted.size() == in.size());
|
|
BOOST_CHECK_MESSAGE(subdecrypted == sub, HexStr(subdecrypted) + std::string(" != ") + HexStr(sub));
|
|
}
|
|
}
|
|
}
|
|
|
|
std::string LongTestString(void) {
|
|
std::string ret;
|
|
for (int i=0; i<200000; i++) {
|
|
ret += (unsigned char)(i);
|
|
ret += (unsigned char)(i >> 4);
|
|
ret += (unsigned char)(i >> 8);
|
|
ret += (unsigned char)(i >> 12);
|
|
ret += (unsigned char)(i >> 16);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
const std::string test1 = LongTestString();
|
|
|
|
BOOST_AUTO_TEST_CASE(ripemd160_testvectors) {
|
|
TestRIPEMD160("", "9c1185a5c5e9fc54612808977ee8f548b2258d31");
|
|
TestRIPEMD160("abc", "8eb208f7e05d987a9b044a8e98c6b087f15a0bfc");
|
|
TestRIPEMD160("message digest", "5d0689ef49d2fae572b881b123a85ffa21595f36");
|
|
TestRIPEMD160("secure hash algorithm", "20397528223b6a5f4cbc2808aba0464e645544f9");
|
|
TestRIPEMD160("RIPEMD160 is considered to be safe", "a7d78608c7af8a8e728778e81576870734122b66");
|
|
TestRIPEMD160("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
|
|
"12a053384a9c0c88e405a06c27dcf49ada62eb2b");
|
|
TestRIPEMD160("For this sample, this 63-byte string will be used as input data",
|
|
"de90dbfee14b63fb5abf27c2ad4a82aaa5f27a11");
|
|
TestRIPEMD160("This is exactly 64 bytes long, not counting the terminating byte",
|
|
"eda31d51d3a623b81e19eb02e24ff65d27d67b37");
|
|
TestRIPEMD160(std::string(1000000, 'a'), "52783243c1697bdbe16d37f97f68f08325dc1528");
|
|
TestRIPEMD160(test1, "464243587bd146ea835cdf57bdae582f25ec45f1");
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(sha1_testvectors) {
|
|
TestSHA1("", "da39a3ee5e6b4b0d3255bfef95601890afd80709");
|
|
TestSHA1("abc", "a9993e364706816aba3e25717850c26c9cd0d89d");
|
|
TestSHA1("message digest", "c12252ceda8be8994d5fa0290a47231c1d16aae3");
|
|
TestSHA1("secure hash algorithm", "d4d6d2f0ebe317513bbd8d967d89bac5819c2f60");
|
|
TestSHA1("SHA1 is considered to be safe", "f2b6650569ad3a8720348dd6ea6c497dee3a842a");
|
|
TestSHA1("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
|
|
"84983e441c3bd26ebaae4aa1f95129e5e54670f1");
|
|
TestSHA1("For this sample, this 63-byte string will be used as input data",
|
|
"4f0ea5cd0585a23d028abdc1a6684e5a8094dc49");
|
|
TestSHA1("This is exactly 64 bytes long, not counting the terminating byte",
|
|
"fb679f23e7d1ce053313e66e127ab1b444397057");
|
|
TestSHA1(std::string(1000000, 'a'), "34aa973cd4c4daa4f61eeb2bdbad27316534016f");
|
|
TestSHA1(test1, "b7755760681cbfd971451668f32af5774f4656b5");
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(sha256_testvectors) {
|
|
TestSHA256("", "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855");
|
|
TestSHA256("abc", "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad");
|
|
TestSHA256("message digest",
|
|
"f7846f55cf23e14eebeab5b4e1550cad5b509e3348fbc4efa3a1413d393cb650");
|
|
TestSHA256("secure hash algorithm",
|
|
"f30ceb2bb2829e79e4ca9753d35a8ecc00262d164cc077080295381cbd643f0d");
|
|
TestSHA256("SHA256 is considered to be safe",
|
|
"6819d915c73f4d1e77e4e1b52d1fa0f9cf9beaead3939f15874bd988e2a23630");
|
|
TestSHA256("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
|
|
"248d6a61d20638b8e5c026930c3e6039a33ce45964ff2167f6ecedd419db06c1");
|
|
TestSHA256("For this sample, this 63-byte string will be used as input data",
|
|
"f08a78cbbaee082b052ae0708f32fa1e50c5c421aa772ba5dbb406a2ea6be342");
|
|
TestSHA256("This is exactly 64 bytes long, not counting the terminating byte",
|
|
"ab64eff7e88e2e46165e29f2bce41826bd4c7b3552f6b382a9e7d3af47c245f8");
|
|
TestSHA256("As Bitcoin relies on 80 byte header hashes, we want to have an example for that.",
|
|
"7406e8de7d6e4fffc573daef05aefb8806e7790f55eab5576f31349743cca743");
|
|
TestSHA256(std::string(1000000, 'a'),
|
|
"cdc76e5c9914fb9281a1c7e284d73e67f1809a48a497200e046d39ccc7112cd0");
|
|
TestSHA256(test1, "a316d55510b49662420f49d145d42fb83f31ef8dc016aa4e32df049991a91e26");
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(sha512_testvectors) {
|
|
TestSHA512("",
|
|
"cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a921d36ce9ce"
|
|
"47d0d13c5d85f2b0ff8318d2877eec2f63b931bd47417a81a538327af927da3e");
|
|
TestSHA512("abc",
|
|
"ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a"
|
|
"2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f");
|
|
TestSHA512("message digest",
|
|
"107dbf389d9e9f71a3a95f6c055b9251bc5268c2be16d6c13492ea45b0199f33"
|
|
"09e16455ab1e96118e8a905d5597b72038ddb372a89826046de66687bb420e7c");
|
|
TestSHA512("secure hash algorithm",
|
|
"7746d91f3de30c68cec0dd693120a7e8b04d8073cb699bdce1a3f64127bca7a3"
|
|
"d5db502e814bb63c063a7a5043b2df87c61133395f4ad1edca7fcf4b30c3236e");
|
|
TestSHA512("SHA512 is considered to be safe",
|
|
"099e6468d889e1c79092a89ae925a9499b5408e01b66cb5b0a3bd0dfa51a9964"
|
|
"6b4a3901caab1318189f74cd8cf2e941829012f2449df52067d3dd5b978456c2");
|
|
TestSHA512("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
|
|
"204a8fc6dda82f0a0ced7beb8e08a41657c16ef468b228a8279be331a703c335"
|
|
"96fd15c13b1b07f9aa1d3bea57789ca031ad85c7a71dd70354ec631238ca3445");
|
|
TestSHA512("For this sample, this 63-byte string will be used as input data",
|
|
"b3de4afbc516d2478fe9b518d063bda6c8dd65fc38402dd81d1eb7364e72fb6e"
|
|
"6663cf6d2771c8f5a6da09601712fb3d2a36c6ffea3e28b0818b05b0a8660766");
|
|
TestSHA512("This is exactly 64 bytes long, not counting the terminating byte",
|
|
"70aefeaa0e7ac4f8fe17532d7185a289bee3b428d950c14fa8b713ca09814a38"
|
|
"7d245870e007a80ad97c369d193e41701aa07f3221d15f0e65a1ff970cedf030");
|
|
TestSHA512("abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmno"
|
|
"ijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu",
|
|
"8e959b75dae313da8cf4f72814fc143f8f7779c6eb9f7fa17299aeadb6889018"
|
|
"501d289e4900f7e4331b99dec4b5433ac7d329eeb6dd26545e96e55b874be909");
|
|
TestSHA512(std::string(1000000, 'a'),
|
|
"e718483d0ce769644e2e42c7bc15b4638e1f98b13b2044285632a803afa973eb"
|
|
"de0ff244877ea60a4cb0432ce577c31beb009c5c2c49aa2e4eadb217ad8cc09b");
|
|
TestSHA512(test1,
|
|
"40cac46c147e6131c5193dd5f34e9d8bb4951395f27b08c558c65ff4ba2de594"
|
|
"37de8c3ef5459d76a52cedc02dc499a3c9ed9dedbfb3281afd9653b8a112fafc");
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(hmac_sha256_testvectors) {
|
|
// test cases 1, 2, 3, 4, 6 and 7 of RFC 4231
|
|
TestHMACSHA256("0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
|
|
"4869205468657265",
|
|
"b0344c61d8db38535ca8afceaf0bf12b881dc200c9833da726e9376c2e32cff7");
|
|
TestHMACSHA256("4a656665",
|
|
"7768617420646f2079612077616e7420666f72206e6f7468696e673f",
|
|
"5bdcc146bf60754e6a042426089575c75a003f089d2739839dec58b964ec3843");
|
|
TestHMACSHA256("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
|
|
"dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd"
|
|
"dddddddddddddddddddddddddddddddddddd",
|
|
"773ea91e36800e46854db8ebd09181a72959098b3ef8c122d9635514ced565fe");
|
|
TestHMACSHA256("0102030405060708090a0b0c0d0e0f10111213141516171819",
|
|
"cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd"
|
|
"cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd",
|
|
"82558a389a443c0ea4cc819899f2083a85f0faa3e578f8077a2e3ff46729665b");
|
|
TestHMACSHA256("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
|
"aaaaaa",
|
|
"54657374205573696e67204c6172676572205468616e20426c6f636b2d53697a"
|
|
"65204b6579202d2048617368204b6579204669727374",
|
|
"60e431591ee0b67f0d8a26aacbf5b77f8e0bc6213728c5140546040f0ee37f54");
|
|
TestHMACSHA256("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
|
"aaaaaa",
|
|
"5468697320697320612074657374207573696e672061206c6172676572207468"
|
|
"616e20626c6f636b2d73697a65206b657920616e642061206c61726765722074"
|
|
"68616e20626c6f636b2d73697a6520646174612e20546865206b6579206e6565"
|
|
"647320746f20626520686173686564206265666f7265206265696e6720757365"
|
|
"642062792074686520484d414320616c676f726974686d2e",
|
|
"9b09ffa71b942fcb27635fbcd5b0e944bfdc63644f0713938a7f51535c3a35e2");
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(hmac_sha512_testvectors) {
|
|
// test cases 1, 2, 3, 4, 6 and 7 of RFC 4231
|
|
TestHMACSHA512("0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
|
|
"4869205468657265",
|
|
"87aa7cdea5ef619d4ff0b4241a1d6cb02379f4e2ce4ec2787ad0b30545e17cde"
|
|
"daa833b7d6b8a702038b274eaea3f4e4be9d914eeb61f1702e696c203a126854");
|
|
TestHMACSHA512("4a656665",
|
|
"7768617420646f2079612077616e7420666f72206e6f7468696e673f",
|
|
"164b7a7bfcf819e2e395fbe73b56e0a387bd64222e831fd610270cd7ea250554"
|
|
"9758bf75c05a994a6d034f65f8f0e6fdcaeab1a34d4a6b4b636e070a38bce737");
|
|
TestHMACSHA512("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
|
|
"dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd"
|
|
"dddddddddddddddddddddddddddddddddddd",
|
|
"fa73b0089d56a284efb0f0756c890be9b1b5dbdd8ee81a3655f83e33b2279d39"
|
|
"bf3e848279a722c806b485a47e67c807b946a337bee8942674278859e13292fb");
|
|
TestHMACSHA512("0102030405060708090a0b0c0d0e0f10111213141516171819",
|
|
"cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd"
|
|
"cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd",
|
|
"b0ba465637458c6990e5a8c5f61d4af7e576d97ff94b872de76f8050361ee3db"
|
|
"a91ca5c11aa25eb4d679275cc5788063a5f19741120c4f2de2adebeb10a298dd");
|
|
TestHMACSHA512("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
|
"aaaaaa",
|
|
"54657374205573696e67204c6172676572205468616e20426c6f636b2d53697a"
|
|
"65204b6579202d2048617368204b6579204669727374",
|
|
"80b24263c7c1a3ebb71493c1dd7be8b49b46d1f41b4aeec1121b013783f8f352"
|
|
"6b56d037e05f2598bd0fd2215d6a1e5295e64f73f63f0aec8b915a985d786598");
|
|
TestHMACSHA512("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
|
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
|
"aaaaaa",
|
|
"5468697320697320612074657374207573696e672061206c6172676572207468"
|
|
"616e20626c6f636b2d73697a65206b657920616e642061206c61726765722074"
|
|
"68616e20626c6f636b2d73697a6520646174612e20546865206b6579206e6565"
|
|
"647320746f20626520686173686564206265666f7265206265696e6720757365"
|
|
"642062792074686520484d414320616c676f726974686d2e",
|
|
"e37b6a775dc87dbaa4dfa9f96e5e3ffddebd71f8867289865df5a32d20cdc944"
|
|
"b6022cac3c4982b10d5eeb55c3e4de15134676fb6de0446065c97440fa8c6a58");
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(aes_testvectors) {
|
|
// AES test vectors from FIPS 197.
|
|
TestAES128("000102030405060708090a0b0c0d0e0f", "00112233445566778899aabbccddeeff", "69c4e0d86a7b0430d8cdb78070b4c55a");
|
|
TestAES256("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f", "00112233445566778899aabbccddeeff", "8ea2b7ca516745bfeafc49904b496089");
|
|
|
|
// AES-ECB test vectors from NIST sp800-38a.
|
|
TestAES128("2b7e151628aed2a6abf7158809cf4f3c", "6bc1bee22e409f96e93d7e117393172a", "3ad77bb40d7a3660a89ecaf32466ef97");
|
|
TestAES128("2b7e151628aed2a6abf7158809cf4f3c", "ae2d8a571e03ac9c9eb76fac45af8e51", "f5d3d58503b9699de785895a96fdbaaf");
|
|
TestAES128("2b7e151628aed2a6abf7158809cf4f3c", "30c81c46a35ce411e5fbc1191a0a52ef", "43b1cd7f598ece23881b00e3ed030688");
|
|
TestAES128("2b7e151628aed2a6abf7158809cf4f3c", "f69f2445df4f9b17ad2b417be66c3710", "7b0c785e27e8ad3f8223207104725dd4");
|
|
TestAES256("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", "6bc1bee22e409f96e93d7e117393172a", "f3eed1bdb5d2a03c064b5a7e3db181f8");
|
|
TestAES256("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", "ae2d8a571e03ac9c9eb76fac45af8e51", "591ccb10d410ed26dc5ba74a31362870");
|
|
TestAES256("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", "30c81c46a35ce411e5fbc1191a0a52ef", "b6ed21b99ca6f4f9f153e7b1beafed1d");
|
|
TestAES256("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", "f69f2445df4f9b17ad2b417be66c3710", "23304b7a39f9f3ff067d8d8f9e24ecc7");
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(aes_cbc_testvectors) {
|
|
|
|
// NIST AES CBC 128-bit encryption test-vectors
|
|
TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "000102030405060708090A0B0C0D0E0F", false, \
|
|
"6bc1bee22e409f96e93d7e117393172a", "7649abac8119b246cee98e9b12e9197d");
|
|
TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "7649ABAC8119B246CEE98E9B12E9197D", false, \
|
|
"ae2d8a571e03ac9c9eb76fac45af8e51", "5086cb9b507219ee95db113a917678b2");
|
|
TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "5086cb9b507219ee95db113a917678b2", false, \
|
|
"30c81c46a35ce411e5fbc1191a0a52ef", "73bed6b8e3c1743b7116e69e22229516");
|
|
TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "73bed6b8e3c1743b7116e69e22229516", false, \
|
|
"f69f2445df4f9b17ad2b417be66c3710", "3ff1caa1681fac09120eca307586e1a7");
|
|
|
|
// The same vectors with padding enabled
|
|
TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "000102030405060708090A0B0C0D0E0F", true, \
|
|
"6bc1bee22e409f96e93d7e117393172a", "7649abac8119b246cee98e9b12e9197d8964e0b149c10b7b682e6e39aaeb731c");
|
|
TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "7649ABAC8119B246CEE98E9B12E9197D", true, \
|
|
"ae2d8a571e03ac9c9eb76fac45af8e51", "5086cb9b507219ee95db113a917678b255e21d7100b988ffec32feeafaf23538");
|
|
TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "5086cb9b507219ee95db113a917678b2", true, \
|
|
"30c81c46a35ce411e5fbc1191a0a52ef", "73bed6b8e3c1743b7116e69e22229516f6eccda327bf8e5ec43718b0039adceb");
|
|
TestAES128CBC("2b7e151628aed2a6abf7158809cf4f3c", "73bed6b8e3c1743b7116e69e22229516", true, \
|
|
"f69f2445df4f9b17ad2b417be66c3710", "3ff1caa1681fac09120eca307586e1a78cb82807230e1321d3fae00d18cc2012");
|
|
|
|
// NIST AES CBC 256-bit encryption test-vectors
|
|
TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \
|
|
"000102030405060708090A0B0C0D0E0F", false, "6bc1bee22e409f96e93d7e117393172a", \
|
|
"f58c4c04d6e5f1ba779eabfb5f7bfbd6");
|
|
TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \
|
|
"F58C4C04D6E5F1BA779EABFB5F7BFBD6", false, "ae2d8a571e03ac9c9eb76fac45af8e51", \
|
|
"9cfc4e967edb808d679f777bc6702c7d");
|
|
TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \
|
|
"9CFC4E967EDB808D679F777BC6702C7D", false, "30c81c46a35ce411e5fbc1191a0a52ef",
|
|
"39f23369a9d9bacfa530e26304231461");
|
|
TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \
|
|
"39F23369A9D9BACFA530E26304231461", false, "f69f2445df4f9b17ad2b417be66c3710", \
|
|
"b2eb05e2c39be9fcda6c19078c6a9d1b");
|
|
|
|
// The same vectors with padding enabled
|
|
TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \
|
|
"000102030405060708090A0B0C0D0E0F", true, "6bc1bee22e409f96e93d7e117393172a", \
|
|
"f58c4c04d6e5f1ba779eabfb5f7bfbd6485a5c81519cf378fa36d42b8547edc0");
|
|
TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \
|
|
"F58C4C04D6E5F1BA779EABFB5F7BFBD6", true, "ae2d8a571e03ac9c9eb76fac45af8e51", \
|
|
"9cfc4e967edb808d679f777bc6702c7d3a3aa5e0213db1a9901f9036cf5102d2");
|
|
TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \
|
|
"9CFC4E967EDB808D679F777BC6702C7D", true, "30c81c46a35ce411e5fbc1191a0a52ef",
|
|
"39f23369a9d9bacfa530e263042314612f8da707643c90a6f732b3de1d3f5cee");
|
|
TestAES256CBC("603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", \
|
|
"39F23369A9D9BACFA530E26304231461", true, "f69f2445df4f9b17ad2b417be66c3710", \
|
|
"b2eb05e2c39be9fcda6c19078c6a9d1b3f461796d6b0d6b2e0c2a72b4d80e644");
|
|
}
|
|
|
|
BOOST_AUTO_TEST_SUITE_END()
|