bitcoin/src/test/coins_tests.cpp
2017-01-04 14:56:17 -05:00

876 lines
39 KiB
C++

// Copyright (c) 2014-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "coins.h"
#include "script/standard.h"
#include "uint256.h"
#include "undo.h"
#include "utilstrencodings.h"
#include "test/test_bitcoin.h"
#include "test/test_random.h"
#include "validation.h"
#include "consensus/validation.h"
#include <vector>
#include <map>
#include <boost/test/unit_test.hpp>
bool ApplyTxInUndo(const CTxInUndo& undo, CCoinsViewCache& view, const COutPoint& out);
void UpdateCoins(const CTransaction& tx, CCoinsViewCache& inputs, CTxUndo &txundo, int nHeight);
namespace
{
class CCoinsViewTest : public CCoinsView
{
uint256 hashBestBlock_;
std::map<uint256, CCoins> map_;
public:
bool GetCoins(const uint256& txid, CCoins& coins) const
{
std::map<uint256, CCoins>::const_iterator it = map_.find(txid);
if (it == map_.end()) {
return false;
}
coins = it->second;
if (coins.IsPruned() && insecure_rand() % 2 == 0) {
// Randomly return false in case of an empty entry.
return false;
}
return true;
}
bool HaveCoins(const uint256& txid) const
{
CCoins coins;
return GetCoins(txid, coins);
}
uint256 GetBestBlock() const { return hashBestBlock_; }
bool BatchWrite(CCoinsMap& mapCoins, const uint256& hashBlock)
{
for (CCoinsMap::iterator it = mapCoins.begin(); it != mapCoins.end(); ) {
if (it->second.flags & CCoinsCacheEntry::DIRTY) {
// Same optimization used in CCoinsViewDB is to only write dirty entries.
map_[it->first] = it->second.coins;
if (it->second.coins.IsPruned() && insecure_rand() % 3 == 0) {
// Randomly delete empty entries on write.
map_.erase(it->first);
}
}
mapCoins.erase(it++);
}
if (!hashBlock.IsNull())
hashBestBlock_ = hashBlock;
return true;
}
};
class CCoinsViewCacheTest : public CCoinsViewCache
{
public:
CCoinsViewCacheTest(CCoinsView* base) : CCoinsViewCache(base) {}
void SelfTest() const
{
// Manually recompute the dynamic usage of the whole data, and compare it.
size_t ret = memusage::DynamicUsage(cacheCoins);
for (CCoinsMap::iterator it = cacheCoins.begin(); it != cacheCoins.end(); it++) {
ret += it->second.coins.DynamicMemoryUsage();
}
BOOST_CHECK_EQUAL(DynamicMemoryUsage(), ret);
}
CCoinsMap& map() { return cacheCoins; }
size_t& usage() { return cachedCoinsUsage; }
};
}
BOOST_FIXTURE_TEST_SUITE(coins_tests, BasicTestingSetup)
static const unsigned int NUM_SIMULATION_ITERATIONS = 40000;
// This is a large randomized insert/remove simulation test on a variable-size
// stack of caches on top of CCoinsViewTest.
//
// It will randomly create/update/delete CCoins entries to a tip of caches, with
// txids picked from a limited list of random 256-bit hashes. Occasionally, a
// new tip is added to the stack of caches, or the tip is flushed and removed.
//
// During the process, booleans are kept to make sure that the randomized
// operation hits all branches.
BOOST_AUTO_TEST_CASE(coins_cache_simulation_test)
{
// Various coverage trackers.
bool removed_all_caches = false;
bool reached_4_caches = false;
bool added_an_entry = false;
bool removed_an_entry = false;
bool updated_an_entry = false;
bool found_an_entry = false;
bool missed_an_entry = false;
// A simple map to track what we expect the cache stack to represent.
std::map<uint256, CCoins> result;
// The cache stack.
CCoinsViewTest base; // A CCoinsViewTest at the bottom.
std::vector<CCoinsViewCacheTest*> stack; // A stack of CCoinsViewCaches on top.
stack.push_back(new CCoinsViewCacheTest(&base)); // Start with one cache.
// Use a limited set of random transaction ids, so we do test overwriting entries.
std::vector<uint256> txids;
txids.resize(NUM_SIMULATION_ITERATIONS / 8);
for (unsigned int i = 0; i < txids.size(); i++) {
txids[i] = GetRandHash();
}
for (unsigned int i = 0; i < NUM_SIMULATION_ITERATIONS; i++) {
// Do a random modification.
{
uint256 txid = txids[insecure_rand() % txids.size()]; // txid we're going to modify in this iteration.
CCoins& coins = result[txid];
CCoinsModifier entry = stack.back()->ModifyCoins(txid);
BOOST_CHECK(coins == *entry);
if (insecure_rand() % 5 == 0 || coins.IsPruned()) {
if (coins.IsPruned()) {
added_an_entry = true;
} else {
updated_an_entry = true;
}
coins.nVersion = insecure_rand();
coins.vout.resize(1);
coins.vout[0].nValue = insecure_rand();
*entry = coins;
} else {
coins.Clear();
entry->Clear();
removed_an_entry = true;
}
}
// Once every 1000 iterations and at the end, verify the full cache.
if (insecure_rand() % 1000 == 1 || i == NUM_SIMULATION_ITERATIONS - 1) {
for (std::map<uint256, CCoins>::iterator it = result.begin(); it != result.end(); it++) {
const CCoins* coins = stack.back()->AccessCoins(it->first);
if (coins) {
BOOST_CHECK(*coins == it->second);
found_an_entry = true;
} else {
BOOST_CHECK(it->second.IsPruned());
missed_an_entry = true;
}
}
BOOST_FOREACH(const CCoinsViewCacheTest *test, stack) {
test->SelfTest();
}
}
if (insecure_rand() % 100 == 0) {
// Every 100 iterations, flush an intermediate cache
if (stack.size() > 1 && insecure_rand() % 2 == 0) {
unsigned int flushIndex = insecure_rand() % (stack.size() - 1);
stack[flushIndex]->Flush();
}
}
if (insecure_rand() % 100 == 0) {
// Every 100 iterations, change the cache stack.
if (stack.size() > 0 && insecure_rand() % 2 == 0) {
//Remove the top cache
stack.back()->Flush();
delete stack.back();
stack.pop_back();
}
if (stack.size() == 0 || (stack.size() < 4 && insecure_rand() % 2)) {
//Add a new cache
CCoinsView* tip = &base;
if (stack.size() > 0) {
tip = stack.back();
} else {
removed_all_caches = true;
}
stack.push_back(new CCoinsViewCacheTest(tip));
if (stack.size() == 4) {
reached_4_caches = true;
}
}
}
}
// Clean up the stack.
while (stack.size() > 0) {
delete stack.back();
stack.pop_back();
}
// Verify coverage.
BOOST_CHECK(removed_all_caches);
BOOST_CHECK(reached_4_caches);
BOOST_CHECK(added_an_entry);
BOOST_CHECK(removed_an_entry);
BOOST_CHECK(updated_an_entry);
BOOST_CHECK(found_an_entry);
BOOST_CHECK(missed_an_entry);
}
typedef std::tuple<CTransaction,CTxUndo,CCoins> TxData;
// Store of all necessary tx and undo data for next test
std::map<uint256, TxData> alltxs;
TxData &FindRandomFrom(const std::set<uint256> &txidset) {
assert(txidset.size());
std::set<uint256>::iterator txIt = txidset.lower_bound(GetRandHash());
if (txIt == txidset.end()) {
txIt = txidset.begin();
}
std::map<uint256, TxData>::iterator txdit = alltxs.find(*txIt);
assert(txdit != alltxs.end());
return txdit->second;
}
// This test is similar to the previous test
// except the emphasis is on testing the functionality of UpdateCoins
// random txs are created and UpdateCoins is used to update the cache stack
// In particular it is tested that spending a duplicate coinbase tx
// has the expected effect (the other duplicate is overwitten at all cache levels)
BOOST_AUTO_TEST_CASE(updatecoins_simulation_test)
{
bool spent_a_duplicate_coinbase = false;
// A simple map to track what we expect the cache stack to represent.
std::map<uint256, CCoins> result;
// The cache stack.
CCoinsViewTest base; // A CCoinsViewTest at the bottom.
std::vector<CCoinsViewCacheTest*> stack; // A stack of CCoinsViewCaches on top.
stack.push_back(new CCoinsViewCacheTest(&base)); // Start with one cache.
// Track the txids we've used in various sets
std::set<uint256> coinbaseids;
std::set<uint256> disconnectedids;
std::set<uint256> duplicateids;
std::set<uint256> utxoset;
for (unsigned int i = 0; i < NUM_SIMULATION_ITERATIONS; i++) {
uint32_t randiter = insecure_rand();
// 19/20 txs add a new transaction
if (randiter % 20 < 19) {
CMutableTransaction tx;
tx.vin.resize(1);
tx.vout.resize(1);
tx.vout[0].nValue = i; //Keep txs unique unless intended to duplicate
unsigned int height = insecure_rand();
CCoins oldcoins;
// 2/20 times create a new coinbase
if (randiter % 20 < 2 || coinbaseids.size() < 10) {
// 1/10 of those times create a duplicate coinbase
if (insecure_rand() % 10 == 0 && coinbaseids.size()) {
TxData &txd = FindRandomFrom(coinbaseids);
// Reuse the exact same coinbase
tx = std::get<0>(txd);
// shouldn't be available for reconnection if its been duplicated
disconnectedids.erase(tx.GetHash());
duplicateids.insert(tx.GetHash());
}
else {
coinbaseids.insert(tx.GetHash());
}
assert(CTransaction(tx).IsCoinBase());
}
// 17/20 times reconnect previous or add a regular tx
else {
uint256 prevouthash;
// 1/20 times reconnect a previously disconnected tx
if (randiter % 20 == 2 && disconnectedids.size()) {
TxData &txd = FindRandomFrom(disconnectedids);
tx = std::get<0>(txd);
prevouthash = tx.vin[0].prevout.hash;
if (!CTransaction(tx).IsCoinBase() && !utxoset.count(prevouthash)) {
disconnectedids.erase(tx.GetHash());
continue;
}
// If this tx is already IN the UTXO, then it must be a coinbase, and it must be a duplicate
if (utxoset.count(tx.GetHash())) {
assert(CTransaction(tx).IsCoinBase());
assert(duplicateids.count(tx.GetHash()));
}
disconnectedids.erase(tx.GetHash());
}
// 16/20 times create a regular tx
else {
TxData &txd = FindRandomFrom(utxoset);
prevouthash = std::get<0>(txd).GetHash();
// Construct the tx to spend the coins of prevouthash
tx.vin[0].prevout.hash = prevouthash;
tx.vin[0].prevout.n = 0;
assert(!CTransaction(tx).IsCoinBase());
}
// In this simple test coins only have two states, spent or unspent, save the unspent state to restore
oldcoins = result[prevouthash];
// Update the expected result of prevouthash to know these coins are spent
result[prevouthash].Clear();
utxoset.erase(prevouthash);
// The test is designed to ensure spending a duplicate coinbase will work properly
// if that ever happens and not resurrect the previously overwritten coinbase
if (duplicateids.count(prevouthash))
spent_a_duplicate_coinbase = true;
}
// Update the expected result to know about the new output coins
result[tx.GetHash()].FromTx(tx, height);
// Call UpdateCoins on the top cache
CTxUndo undo;
UpdateCoins(tx, *(stack.back()), undo, height);
// Update the utxo set for future spends
utxoset.insert(tx.GetHash());
// Track this tx and undo info to use later
alltxs.insert(std::make_pair(tx.GetHash(),std::make_tuple(tx,undo,oldcoins)));
}
//1/20 times undo a previous transaction
else if (utxoset.size()) {
TxData &txd = FindRandomFrom(utxoset);
CTransaction &tx = std::get<0>(txd);
CTxUndo &undo = std::get<1>(txd);
CCoins &origcoins = std::get<2>(txd);
uint256 undohash = tx.GetHash();
// Update the expected result
// Remove new outputs
result[undohash].Clear();
// If not coinbase restore prevout
if (!tx.IsCoinBase()) {
result[tx.vin[0].prevout.hash] = origcoins;
}
// Disconnect the tx from the current UTXO
// See code in DisconnectBlock
// remove outputs
{
CCoinsModifier outs = stack.back()->ModifyCoins(undohash);
outs->Clear();
}
// restore inputs
if (!tx.IsCoinBase()) {
const COutPoint &out = tx.vin[0].prevout;
const CTxInUndo &undoin = undo.vprevout[0];
ApplyTxInUndo(undoin, *(stack.back()), out);
}
// Store as a candidate for reconnection
disconnectedids.insert(undohash);
// Update the utxoset
utxoset.erase(undohash);
if (!tx.IsCoinBase())
utxoset.insert(tx.vin[0].prevout.hash);
}
// Once every 1000 iterations and at the end, verify the full cache.
if (insecure_rand() % 1000 == 1 || i == NUM_SIMULATION_ITERATIONS - 1) {
for (std::map<uint256, CCoins>::iterator it = result.begin(); it != result.end(); it++) {
const CCoins* coins = stack.back()->AccessCoins(it->first);
if (coins) {
BOOST_CHECK(*coins == it->second);
} else {
BOOST_CHECK(it->second.IsPruned());
}
}
}
if (insecure_rand() % 100 == 0) {
// Every 100 iterations, flush an intermediate cache
if (stack.size() > 1 && insecure_rand() % 2 == 0) {
unsigned int flushIndex = insecure_rand() % (stack.size() - 1);
stack[flushIndex]->Flush();
}
}
if (insecure_rand() % 100 == 0) {
// Every 100 iterations, change the cache stack.
if (stack.size() > 0 && insecure_rand() % 2 == 0) {
stack.back()->Flush();
delete stack.back();
stack.pop_back();
}
if (stack.size() == 0 || (stack.size() < 4 && insecure_rand() % 2)) {
CCoinsView* tip = &base;
if (stack.size() > 0) {
tip = stack.back();
}
stack.push_back(new CCoinsViewCacheTest(tip));
}
}
}
// Clean up the stack.
while (stack.size() > 0) {
delete stack.back();
stack.pop_back();
}
// Verify coverage.
BOOST_CHECK(spent_a_duplicate_coinbase);
}
BOOST_AUTO_TEST_CASE(ccoins_serialization)
{
// Good example
CDataStream ss1(ParseHex("0104835800816115944e077fe7c803cfa57f29b36bf87c1d358bb85e"), SER_DISK, CLIENT_VERSION);
CCoins cc1;
ss1 >> cc1;
BOOST_CHECK_EQUAL(cc1.nVersion, 1);
BOOST_CHECK_EQUAL(cc1.fCoinBase, false);
BOOST_CHECK_EQUAL(cc1.nHeight, 203998);
BOOST_CHECK_EQUAL(cc1.vout.size(), 2);
BOOST_CHECK_EQUAL(cc1.IsAvailable(0), false);
BOOST_CHECK_EQUAL(cc1.IsAvailable(1), true);
BOOST_CHECK_EQUAL(cc1.vout[1].nValue, 60000000000ULL);
BOOST_CHECK_EQUAL(HexStr(cc1.vout[1].scriptPubKey), HexStr(GetScriptForDestination(CKeyID(uint160(ParseHex("816115944e077fe7c803cfa57f29b36bf87c1d35"))))));
// Good example
CDataStream ss2(ParseHex("0109044086ef97d5790061b01caab50f1b8e9c50a5057eb43c2d9563a4eebbd123008c988f1a4a4de2161e0f50aac7f17e7f9555caa486af3b"), SER_DISK, CLIENT_VERSION);
CCoins cc2;
ss2 >> cc2;
BOOST_CHECK_EQUAL(cc2.nVersion, 1);
BOOST_CHECK_EQUAL(cc2.fCoinBase, true);
BOOST_CHECK_EQUAL(cc2.nHeight, 120891);
BOOST_CHECK_EQUAL(cc2.vout.size(), 17);
for (int i = 0; i < 17; i++) {
BOOST_CHECK_EQUAL(cc2.IsAvailable(i), i == 4 || i == 16);
}
BOOST_CHECK_EQUAL(cc2.vout[4].nValue, 234925952);
BOOST_CHECK_EQUAL(HexStr(cc2.vout[4].scriptPubKey), HexStr(GetScriptForDestination(CKeyID(uint160(ParseHex("61b01caab50f1b8e9c50a5057eb43c2d9563a4ee"))))));
BOOST_CHECK_EQUAL(cc2.vout[16].nValue, 110397);
BOOST_CHECK_EQUAL(HexStr(cc2.vout[16].scriptPubKey), HexStr(GetScriptForDestination(CKeyID(uint160(ParseHex("8c988f1a4a4de2161e0f50aac7f17e7f9555caa4"))))));
// Smallest possible example
CDataStream ssx(SER_DISK, CLIENT_VERSION);
BOOST_CHECK_EQUAL(HexStr(ssx.begin(), ssx.end()), "");
CDataStream ss3(ParseHex("0002000600"), SER_DISK, CLIENT_VERSION);
CCoins cc3;
ss3 >> cc3;
BOOST_CHECK_EQUAL(cc3.nVersion, 0);
BOOST_CHECK_EQUAL(cc3.fCoinBase, false);
BOOST_CHECK_EQUAL(cc3.nHeight, 0);
BOOST_CHECK_EQUAL(cc3.vout.size(), 1);
BOOST_CHECK_EQUAL(cc3.IsAvailable(0), true);
BOOST_CHECK_EQUAL(cc3.vout[0].nValue, 0);
BOOST_CHECK_EQUAL(cc3.vout[0].scriptPubKey.size(), 0);
// scriptPubKey that ends beyond the end of the stream
CDataStream ss4(ParseHex("0002000800"), SER_DISK, CLIENT_VERSION);
try {
CCoins cc4;
ss4 >> cc4;
BOOST_CHECK_MESSAGE(false, "We should have thrown");
} catch (const std::ios_base::failure& e) {
}
// Very large scriptPubKey (3*10^9 bytes) past the end of the stream
CDataStream tmp(SER_DISK, CLIENT_VERSION);
uint64_t x = 3000000000ULL;
tmp << VARINT(x);
BOOST_CHECK_EQUAL(HexStr(tmp.begin(), tmp.end()), "8a95c0bb00");
CDataStream ss5(ParseHex("0002008a95c0bb0000"), SER_DISK, CLIENT_VERSION);
try {
CCoins cc5;
ss5 >> cc5;
BOOST_CHECK_MESSAGE(false, "We should have thrown");
} catch (const std::ios_base::failure& e) {
}
}
const static uint256 TXID;
const static CAmount PRUNED = -1;
const static CAmount ABSENT = -2;
const static CAmount FAIL = -3;
const static CAmount VALUE1 = 100;
const static CAmount VALUE2 = 200;
const static CAmount VALUE3 = 300;
const static char DIRTY = CCoinsCacheEntry::DIRTY;
const static char FRESH = CCoinsCacheEntry::FRESH;
const static char NO_ENTRY = -1;
const static auto FLAGS = {char(0), FRESH, DIRTY, char(DIRTY | FRESH)};
const static auto CLEAN_FLAGS = {char(0), FRESH};
const static auto ABSENT_FLAGS = {NO_ENTRY};
void SetCoinsValue(CAmount value, CCoins& coins)
{
assert(value != ABSENT);
coins.Clear();
assert(coins.IsPruned());
if (value != PRUNED) {
coins.vout.emplace_back();
coins.vout.back().nValue = value;
assert(!coins.IsPruned());
}
}
size_t InsertCoinsMapEntry(CCoinsMap& map, CAmount value, char flags)
{
if (value == ABSENT) {
assert(flags == NO_ENTRY);
return 0;
}
assert(flags != NO_ENTRY);
CCoinsCacheEntry entry;
entry.flags = flags;
SetCoinsValue(value, entry.coins);
auto inserted = map.emplace(TXID, std::move(entry));
assert(inserted.second);
return inserted.first->second.coins.DynamicMemoryUsage();
}
void GetCoinsMapEntry(const CCoinsMap& map, CAmount& value, char& flags)
{
auto it = map.find(TXID);
if (it == map.end()) {
value = ABSENT;
flags = NO_ENTRY;
} else {
if (it->second.coins.IsPruned()) {
assert(it->second.coins.vout.size() == 0);
value = PRUNED;
} else {
assert(it->second.coins.vout.size() == 1);
value = it->second.coins.vout[0].nValue;
}
flags = it->second.flags;
assert(flags != NO_ENTRY);
}
}
void WriteCoinsViewEntry(CCoinsView& view, CAmount value, char flags)
{
CCoinsMap map;
InsertCoinsMapEntry(map, value, flags);
view.BatchWrite(map, {});
}
class SingleEntryCacheTest
{
public:
SingleEntryCacheTest(CAmount base_value, CAmount cache_value, char cache_flags)
{
WriteCoinsViewEntry(base, base_value, base_value == ABSENT ? NO_ENTRY : DIRTY);
cache.usage() += InsertCoinsMapEntry(cache.map(), cache_value, cache_flags);
}
CCoinsView root;
CCoinsViewCacheTest base{&root};
CCoinsViewCacheTest cache{&base};
};
void CheckAccessCoins(CAmount base_value, CAmount cache_value, CAmount expected_value, char cache_flags, char expected_flags)
{
SingleEntryCacheTest test(base_value, cache_value, cache_flags);
test.cache.AccessCoins(TXID);
test.cache.SelfTest();
CAmount result_value;
char result_flags;
GetCoinsMapEntry(test.cache.map(), result_value, result_flags);
BOOST_CHECK_EQUAL(result_value, expected_value);
BOOST_CHECK_EQUAL(result_flags, expected_flags);
}
BOOST_AUTO_TEST_CASE(ccoins_access)
{
/* Check AccessCoin behavior, requesting a coin from a cache view layered on
* top of a base view, and checking the resulting entry in the cache after
* the access.
*
* Base Cache Result Cache Result
* Value Value Value Flags Flags
*/
CheckAccessCoins(ABSENT, ABSENT, ABSENT, NO_ENTRY , NO_ENTRY );
CheckAccessCoins(ABSENT, PRUNED, PRUNED, 0 , 0 );
CheckAccessCoins(ABSENT, PRUNED, PRUNED, FRESH , FRESH );
CheckAccessCoins(ABSENT, PRUNED, PRUNED, DIRTY , DIRTY );
CheckAccessCoins(ABSENT, PRUNED, PRUNED, DIRTY|FRESH, DIRTY|FRESH);
CheckAccessCoins(ABSENT, VALUE2, VALUE2, 0 , 0 );
CheckAccessCoins(ABSENT, VALUE2, VALUE2, FRESH , FRESH );
CheckAccessCoins(ABSENT, VALUE2, VALUE2, DIRTY , DIRTY );
CheckAccessCoins(ABSENT, VALUE2, VALUE2, DIRTY|FRESH, DIRTY|FRESH);
CheckAccessCoins(PRUNED, ABSENT, PRUNED, NO_ENTRY , FRESH );
CheckAccessCoins(PRUNED, PRUNED, PRUNED, 0 , 0 );
CheckAccessCoins(PRUNED, PRUNED, PRUNED, FRESH , FRESH );
CheckAccessCoins(PRUNED, PRUNED, PRUNED, DIRTY , DIRTY );
CheckAccessCoins(PRUNED, PRUNED, PRUNED, DIRTY|FRESH, DIRTY|FRESH);
CheckAccessCoins(PRUNED, VALUE2, VALUE2, 0 , 0 );
CheckAccessCoins(PRUNED, VALUE2, VALUE2, FRESH , FRESH );
CheckAccessCoins(PRUNED, VALUE2, VALUE2, DIRTY , DIRTY );
CheckAccessCoins(PRUNED, VALUE2, VALUE2, DIRTY|FRESH, DIRTY|FRESH);
CheckAccessCoins(VALUE1, ABSENT, VALUE1, NO_ENTRY , 0 );
CheckAccessCoins(VALUE1, PRUNED, PRUNED, 0 , 0 );
CheckAccessCoins(VALUE1, PRUNED, PRUNED, FRESH , FRESH );
CheckAccessCoins(VALUE1, PRUNED, PRUNED, DIRTY , DIRTY );
CheckAccessCoins(VALUE1, PRUNED, PRUNED, DIRTY|FRESH, DIRTY|FRESH);
CheckAccessCoins(VALUE1, VALUE2, VALUE2, 0 , 0 );
CheckAccessCoins(VALUE1, VALUE2, VALUE2, FRESH , FRESH );
CheckAccessCoins(VALUE1, VALUE2, VALUE2, DIRTY , DIRTY );
CheckAccessCoins(VALUE1, VALUE2, VALUE2, DIRTY|FRESH, DIRTY|FRESH);
}
void CheckModifyCoins(CAmount base_value, CAmount cache_value, CAmount modify_value, CAmount expected_value, char cache_flags, char expected_flags)
{
SingleEntryCacheTest test(base_value, cache_value, cache_flags);
SetCoinsValue(modify_value, *test.cache.ModifyCoins(TXID));
test.cache.SelfTest();
CAmount result_value;
char result_flags;
GetCoinsMapEntry(test.cache.map(), result_value, result_flags);
BOOST_CHECK_EQUAL(result_value, expected_value);
BOOST_CHECK_EQUAL(result_flags, expected_flags);
};
BOOST_AUTO_TEST_CASE(ccoins_modify)
{
/* Check ModifyCoin behavior, requesting a coin from a cache view layered on
* top of a base view, writing a modification to the coin, and then checking
* the resulting entry in the cache after the modification.
*
* Base Cache Write Result Cache Result
* Value Value Value Value Flags Flags
*/
CheckModifyCoins(ABSENT, ABSENT, PRUNED, ABSENT, NO_ENTRY , NO_ENTRY );
CheckModifyCoins(ABSENT, ABSENT, VALUE3, VALUE3, NO_ENTRY , DIRTY|FRESH);
CheckModifyCoins(ABSENT, PRUNED, PRUNED, PRUNED, 0 , DIRTY );
CheckModifyCoins(ABSENT, PRUNED, PRUNED, ABSENT, FRESH , NO_ENTRY );
CheckModifyCoins(ABSENT, PRUNED, PRUNED, PRUNED, DIRTY , DIRTY );
CheckModifyCoins(ABSENT, PRUNED, PRUNED, ABSENT, DIRTY|FRESH, NO_ENTRY );
CheckModifyCoins(ABSENT, PRUNED, VALUE3, VALUE3, 0 , DIRTY );
CheckModifyCoins(ABSENT, PRUNED, VALUE3, VALUE3, FRESH , DIRTY|FRESH);
CheckModifyCoins(ABSENT, PRUNED, VALUE3, VALUE3, DIRTY , DIRTY );
CheckModifyCoins(ABSENT, PRUNED, VALUE3, VALUE3, DIRTY|FRESH, DIRTY|FRESH);
CheckModifyCoins(ABSENT, VALUE2, PRUNED, PRUNED, 0 , DIRTY );
CheckModifyCoins(ABSENT, VALUE2, PRUNED, ABSENT, FRESH , NO_ENTRY );
CheckModifyCoins(ABSENT, VALUE2, PRUNED, PRUNED, DIRTY , DIRTY );
CheckModifyCoins(ABSENT, VALUE2, PRUNED, ABSENT, DIRTY|FRESH, NO_ENTRY );
CheckModifyCoins(ABSENT, VALUE2, VALUE3, VALUE3, 0 , DIRTY );
CheckModifyCoins(ABSENT, VALUE2, VALUE3, VALUE3, FRESH , DIRTY|FRESH);
CheckModifyCoins(ABSENT, VALUE2, VALUE3, VALUE3, DIRTY , DIRTY );
CheckModifyCoins(ABSENT, VALUE2, VALUE3, VALUE3, DIRTY|FRESH, DIRTY|FRESH);
CheckModifyCoins(PRUNED, ABSENT, PRUNED, ABSENT, NO_ENTRY , NO_ENTRY );
CheckModifyCoins(PRUNED, ABSENT, VALUE3, VALUE3, NO_ENTRY , DIRTY|FRESH);
CheckModifyCoins(PRUNED, PRUNED, PRUNED, PRUNED, 0 , DIRTY );
CheckModifyCoins(PRUNED, PRUNED, PRUNED, ABSENT, FRESH , NO_ENTRY );
CheckModifyCoins(PRUNED, PRUNED, PRUNED, PRUNED, DIRTY , DIRTY );
CheckModifyCoins(PRUNED, PRUNED, PRUNED, ABSENT, DIRTY|FRESH, NO_ENTRY );
CheckModifyCoins(PRUNED, PRUNED, VALUE3, VALUE3, 0 , DIRTY );
CheckModifyCoins(PRUNED, PRUNED, VALUE3, VALUE3, FRESH , DIRTY|FRESH);
CheckModifyCoins(PRUNED, PRUNED, VALUE3, VALUE3, DIRTY , DIRTY );
CheckModifyCoins(PRUNED, PRUNED, VALUE3, VALUE3, DIRTY|FRESH, DIRTY|FRESH);
CheckModifyCoins(PRUNED, VALUE2, PRUNED, PRUNED, 0 , DIRTY );
CheckModifyCoins(PRUNED, VALUE2, PRUNED, ABSENT, FRESH , NO_ENTRY );
CheckModifyCoins(PRUNED, VALUE2, PRUNED, PRUNED, DIRTY , DIRTY );
CheckModifyCoins(PRUNED, VALUE2, PRUNED, ABSENT, DIRTY|FRESH, NO_ENTRY );
CheckModifyCoins(PRUNED, VALUE2, VALUE3, VALUE3, 0 , DIRTY );
CheckModifyCoins(PRUNED, VALUE2, VALUE3, VALUE3, FRESH , DIRTY|FRESH);
CheckModifyCoins(PRUNED, VALUE2, VALUE3, VALUE3, DIRTY , DIRTY );
CheckModifyCoins(PRUNED, VALUE2, VALUE3, VALUE3, DIRTY|FRESH, DIRTY|FRESH);
CheckModifyCoins(VALUE1, ABSENT, PRUNED, PRUNED, NO_ENTRY , DIRTY );
CheckModifyCoins(VALUE1, ABSENT, VALUE3, VALUE3, NO_ENTRY , DIRTY );
CheckModifyCoins(VALUE1, PRUNED, PRUNED, PRUNED, 0 , DIRTY );
CheckModifyCoins(VALUE1, PRUNED, PRUNED, ABSENT, FRESH , NO_ENTRY );
CheckModifyCoins(VALUE1, PRUNED, PRUNED, PRUNED, DIRTY , DIRTY );
CheckModifyCoins(VALUE1, PRUNED, PRUNED, ABSENT, DIRTY|FRESH, NO_ENTRY );
CheckModifyCoins(VALUE1, PRUNED, VALUE3, VALUE3, 0 , DIRTY );
CheckModifyCoins(VALUE1, PRUNED, VALUE3, VALUE3, FRESH , DIRTY|FRESH);
CheckModifyCoins(VALUE1, PRUNED, VALUE3, VALUE3, DIRTY , DIRTY );
CheckModifyCoins(VALUE1, PRUNED, VALUE3, VALUE3, DIRTY|FRESH, DIRTY|FRESH);
CheckModifyCoins(VALUE1, VALUE2, PRUNED, PRUNED, 0 , DIRTY );
CheckModifyCoins(VALUE1, VALUE2, PRUNED, ABSENT, FRESH , NO_ENTRY );
CheckModifyCoins(VALUE1, VALUE2, PRUNED, PRUNED, DIRTY , DIRTY );
CheckModifyCoins(VALUE1, VALUE2, PRUNED, ABSENT, DIRTY|FRESH, NO_ENTRY );
CheckModifyCoins(VALUE1, VALUE2, VALUE3, VALUE3, 0 , DIRTY );
CheckModifyCoins(VALUE1, VALUE2, VALUE3, VALUE3, FRESH , DIRTY|FRESH);
CheckModifyCoins(VALUE1, VALUE2, VALUE3, VALUE3, DIRTY , DIRTY );
CheckModifyCoins(VALUE1, VALUE2, VALUE3, VALUE3, DIRTY|FRESH, DIRTY|FRESH);
}
void CheckModifyNewCoinsBase(CAmount base_value, CAmount cache_value, CAmount modify_value, CAmount expected_value, char cache_flags, char expected_flags, bool coinbase)
{
SingleEntryCacheTest test(base_value, cache_value, cache_flags);
CAmount result_value;
char result_flags;
try {
SetCoinsValue(modify_value, *test.cache.ModifyNewCoins(TXID, coinbase));
GetCoinsMapEntry(test.cache.map(), result_value, result_flags);
} catch (std::logic_error& e) {
result_value = FAIL;
result_flags = NO_ENTRY;
}
BOOST_CHECK_EQUAL(result_value, expected_value);
BOOST_CHECK_EQUAL(result_flags, expected_flags);
}
// Simple wrapper for CheckModifyNewCoinsBase function above that loops through
// different possible base_values, making sure each one gives the same results.
// This wrapper lets the modify_new test below be shorter and less repetitive,
// while still verifying that the CoinsViewCache::ModifyNewCoins implementation
// ignores base values.
template <typename... Args>
void CheckModifyNewCoins(Args&&... args)
{
for (CAmount base_value : {ABSENT, PRUNED, VALUE1})
CheckModifyNewCoinsBase(base_value, std::forward<Args>(args)...);
}
BOOST_AUTO_TEST_CASE(ccoins_modify_new)
{
/* Check ModifyNewCoin behavior, requesting a new coin from a cache view,
* writing a modification to the coin, and then checking the resulting
* entry in the cache after the modification. Verify behavior with the
* with the ModifyNewCoin coinbase argument set to false, and to true.
*
* Cache Write Result Cache Result Coinbase
* Value Value Value Flags Flags
*/
CheckModifyNewCoins(ABSENT, PRUNED, ABSENT, NO_ENTRY , NO_ENTRY , false);
CheckModifyNewCoins(ABSENT, PRUNED, PRUNED, NO_ENTRY , DIRTY , true );
CheckModifyNewCoins(ABSENT, VALUE3, VALUE3, NO_ENTRY , DIRTY|FRESH, false);
CheckModifyNewCoins(ABSENT, VALUE3, VALUE3, NO_ENTRY , DIRTY , true );
CheckModifyNewCoins(PRUNED, PRUNED, ABSENT, 0 , NO_ENTRY , false);
CheckModifyNewCoins(PRUNED, PRUNED, PRUNED, 0 , DIRTY , true );
CheckModifyNewCoins(PRUNED, PRUNED, ABSENT, FRESH , NO_ENTRY , false);
CheckModifyNewCoins(PRUNED, PRUNED, ABSENT, FRESH , NO_ENTRY , true );
CheckModifyNewCoins(PRUNED, PRUNED, PRUNED, DIRTY , DIRTY , false);
CheckModifyNewCoins(PRUNED, PRUNED, PRUNED, DIRTY , DIRTY , true );
CheckModifyNewCoins(PRUNED, PRUNED, ABSENT, DIRTY|FRESH, NO_ENTRY , false);
CheckModifyNewCoins(PRUNED, PRUNED, ABSENT, DIRTY|FRESH, NO_ENTRY , true );
CheckModifyNewCoins(PRUNED, VALUE3, VALUE3, 0 , DIRTY|FRESH, false);
CheckModifyNewCoins(PRUNED, VALUE3, VALUE3, 0 , DIRTY , true );
CheckModifyNewCoins(PRUNED, VALUE3, VALUE3, FRESH , DIRTY|FRESH, false);
CheckModifyNewCoins(PRUNED, VALUE3, VALUE3, FRESH , DIRTY|FRESH, true );
CheckModifyNewCoins(PRUNED, VALUE3, VALUE3, DIRTY , DIRTY , false);
CheckModifyNewCoins(PRUNED, VALUE3, VALUE3, DIRTY , DIRTY , true );
CheckModifyNewCoins(PRUNED, VALUE3, VALUE3, DIRTY|FRESH, DIRTY|FRESH, false);
CheckModifyNewCoins(PRUNED, VALUE3, VALUE3, DIRTY|FRESH, DIRTY|FRESH, true );
CheckModifyNewCoins(VALUE2, PRUNED, FAIL , 0 , NO_ENTRY , false);
CheckModifyNewCoins(VALUE2, PRUNED, PRUNED, 0 , DIRTY , true );
CheckModifyNewCoins(VALUE2, PRUNED, FAIL , FRESH , NO_ENTRY , false);
CheckModifyNewCoins(VALUE2, PRUNED, ABSENT, FRESH , NO_ENTRY , true );
CheckModifyNewCoins(VALUE2, PRUNED, FAIL , DIRTY , NO_ENTRY , false);
CheckModifyNewCoins(VALUE2, PRUNED, PRUNED, DIRTY , DIRTY , true );
CheckModifyNewCoins(VALUE2, PRUNED, FAIL , DIRTY|FRESH, NO_ENTRY , false);
CheckModifyNewCoins(VALUE2, PRUNED, ABSENT, DIRTY|FRESH, NO_ENTRY , true );
CheckModifyNewCoins(VALUE2, VALUE3, FAIL , 0 , NO_ENTRY , false);
CheckModifyNewCoins(VALUE2, VALUE3, VALUE3, 0 , DIRTY , true );
CheckModifyNewCoins(VALUE2, VALUE3, FAIL , FRESH , NO_ENTRY , false);
CheckModifyNewCoins(VALUE2, VALUE3, VALUE3, FRESH , DIRTY|FRESH, true );
CheckModifyNewCoins(VALUE2, VALUE3, FAIL , DIRTY , NO_ENTRY , false);
CheckModifyNewCoins(VALUE2, VALUE3, VALUE3, DIRTY , DIRTY , true );
CheckModifyNewCoins(VALUE2, VALUE3, FAIL , DIRTY|FRESH, NO_ENTRY , false);
CheckModifyNewCoins(VALUE2, VALUE3, VALUE3, DIRTY|FRESH, DIRTY|FRESH, true );
}
void CheckWriteCoins(CAmount parent_value, CAmount child_value, CAmount expected_value, char parent_flags, char child_flags, char expected_flags)
{
SingleEntryCacheTest test(ABSENT, parent_value, parent_flags);
CAmount result_value;
char result_flags;
try {
WriteCoinsViewEntry(test.cache, child_value, child_flags);
test.cache.SelfTest();
GetCoinsMapEntry(test.cache.map(), result_value, result_flags);
} catch (std::logic_error& e) {
result_value = FAIL;
result_flags = NO_ENTRY;
}
BOOST_CHECK_EQUAL(result_value, expected_value);
BOOST_CHECK_EQUAL(result_flags, expected_flags);
}
BOOST_AUTO_TEST_CASE(ccoins_write)
{
/* Check BatchWrite behavior, flushing one entry from a child cache to a
* parent cache, and checking the resulting entry in the parent cache
* after the write.
*
* Parent Child Result Parent Child Result
* Value Value Value Flags Flags Flags
*/
CheckWriteCoins(ABSENT, ABSENT, ABSENT, NO_ENTRY , NO_ENTRY , NO_ENTRY );
CheckWriteCoins(ABSENT, PRUNED, PRUNED, NO_ENTRY , DIRTY , DIRTY );
CheckWriteCoins(ABSENT, PRUNED, ABSENT, NO_ENTRY , DIRTY|FRESH, NO_ENTRY );
CheckWriteCoins(ABSENT, VALUE2, VALUE2, NO_ENTRY , DIRTY , DIRTY );
CheckWriteCoins(ABSENT, VALUE2, VALUE2, NO_ENTRY , DIRTY|FRESH, DIRTY|FRESH);
CheckWriteCoins(PRUNED, ABSENT, PRUNED, 0 , NO_ENTRY , 0 );
CheckWriteCoins(PRUNED, ABSENT, PRUNED, FRESH , NO_ENTRY , FRESH );
CheckWriteCoins(PRUNED, ABSENT, PRUNED, DIRTY , NO_ENTRY , DIRTY );
CheckWriteCoins(PRUNED, ABSENT, PRUNED, DIRTY|FRESH, NO_ENTRY , DIRTY|FRESH);
CheckWriteCoins(PRUNED, PRUNED, PRUNED, 0 , DIRTY , DIRTY );
CheckWriteCoins(PRUNED, PRUNED, PRUNED, 0 , DIRTY|FRESH, DIRTY );
CheckWriteCoins(PRUNED, PRUNED, ABSENT, FRESH , DIRTY , NO_ENTRY );
CheckWriteCoins(PRUNED, PRUNED, ABSENT, FRESH , DIRTY|FRESH, NO_ENTRY );
CheckWriteCoins(PRUNED, PRUNED, PRUNED, DIRTY , DIRTY , DIRTY );
CheckWriteCoins(PRUNED, PRUNED, PRUNED, DIRTY , DIRTY|FRESH, DIRTY );
CheckWriteCoins(PRUNED, PRUNED, ABSENT, DIRTY|FRESH, DIRTY , NO_ENTRY );
CheckWriteCoins(PRUNED, PRUNED, ABSENT, DIRTY|FRESH, DIRTY|FRESH, NO_ENTRY );
CheckWriteCoins(PRUNED, VALUE2, VALUE2, 0 , DIRTY , DIRTY );
CheckWriteCoins(PRUNED, VALUE2, VALUE2, 0 , DIRTY|FRESH, DIRTY );
CheckWriteCoins(PRUNED, VALUE2, VALUE2, FRESH , DIRTY , DIRTY|FRESH);
CheckWriteCoins(PRUNED, VALUE2, VALUE2, FRESH , DIRTY|FRESH, DIRTY|FRESH);
CheckWriteCoins(PRUNED, VALUE2, VALUE2, DIRTY , DIRTY , DIRTY );
CheckWriteCoins(PRUNED, VALUE2, VALUE2, DIRTY , DIRTY|FRESH, DIRTY );
CheckWriteCoins(PRUNED, VALUE2, VALUE2, DIRTY|FRESH, DIRTY , DIRTY|FRESH);
CheckWriteCoins(PRUNED, VALUE2, VALUE2, DIRTY|FRESH, DIRTY|FRESH, DIRTY|FRESH);
CheckWriteCoins(VALUE1, ABSENT, VALUE1, 0 , NO_ENTRY , 0 );
CheckWriteCoins(VALUE1, ABSENT, VALUE1, FRESH , NO_ENTRY , FRESH );
CheckWriteCoins(VALUE1, ABSENT, VALUE1, DIRTY , NO_ENTRY , DIRTY );
CheckWriteCoins(VALUE1, ABSENT, VALUE1, DIRTY|FRESH, NO_ENTRY , DIRTY|FRESH);
CheckWriteCoins(VALUE1, PRUNED, PRUNED, 0 , DIRTY , DIRTY );
CheckWriteCoins(VALUE1, PRUNED, FAIL , 0 , DIRTY|FRESH, NO_ENTRY );
CheckWriteCoins(VALUE1, PRUNED, ABSENT, FRESH , DIRTY , NO_ENTRY );
CheckWriteCoins(VALUE1, PRUNED, FAIL , FRESH , DIRTY|FRESH, NO_ENTRY );
CheckWriteCoins(VALUE1, PRUNED, PRUNED, DIRTY , DIRTY , DIRTY );
CheckWriteCoins(VALUE1, PRUNED, FAIL , DIRTY , DIRTY|FRESH, NO_ENTRY );
CheckWriteCoins(VALUE1, PRUNED, ABSENT, DIRTY|FRESH, DIRTY , NO_ENTRY );
CheckWriteCoins(VALUE1, PRUNED, FAIL , DIRTY|FRESH, DIRTY|FRESH, NO_ENTRY );
CheckWriteCoins(VALUE1, VALUE2, VALUE2, 0 , DIRTY , DIRTY );
CheckWriteCoins(VALUE1, VALUE2, FAIL , 0 , DIRTY|FRESH, NO_ENTRY );
CheckWriteCoins(VALUE1, VALUE2, VALUE2, FRESH , DIRTY , DIRTY|FRESH);
CheckWriteCoins(VALUE1, VALUE2, FAIL , FRESH , DIRTY|FRESH, NO_ENTRY );
CheckWriteCoins(VALUE1, VALUE2, VALUE2, DIRTY , DIRTY , DIRTY );
CheckWriteCoins(VALUE1, VALUE2, FAIL , DIRTY , DIRTY|FRESH, NO_ENTRY );
CheckWriteCoins(VALUE1, VALUE2, VALUE2, DIRTY|FRESH, DIRTY , DIRTY|FRESH);
CheckWriteCoins(VALUE1, VALUE2, FAIL , DIRTY|FRESH, DIRTY|FRESH, NO_ENTRY );
// The checks above omit cases where the child flags are not DIRTY, since
// they would be too repetitive (the parent cache is never updated in these
// cases). The loop below covers these cases and makes sure the parent cache
// is always left unchanged.
for (CAmount parent_value : {ABSENT, PRUNED, VALUE1})
for (CAmount child_value : {ABSENT, PRUNED, VALUE2})
for (char parent_flags : parent_value == ABSENT ? ABSENT_FLAGS : FLAGS)
for (char child_flags : child_value == ABSENT ? ABSENT_FLAGS : CLEAN_FLAGS)
CheckWriteCoins(parent_value, child_value, parent_value, parent_flags, child_flags, parent_flags);
}
BOOST_AUTO_TEST_SUITE_END()