bitcoin/src/coins.cpp
0xb10c 411c6cfc6c
tracing: only prepare tracepoint args if attached
Before this commit, we would always prepare tracepoint arguments
regardless of the tracepoint being used or not. While we already made
sure not to include expensive arguments in our tracepoints, this
commit introduces gating to make sure the arguments are only prepared
if the tracepoints are actually used. This is a win-win improvement
to our tracing framework. For users not interested in tracing, the
overhead is reduced to a cheap 'greater than 0' compare. As the
semaphore-gating technique used here is available in bpftrace, bcc,
and libbpf, users interested in tracing don't have to change their
tracing scripts while profiting from potential future tracepoints
passing slightly more expensive arguments. An example are mempool
tracepoints that pass serialized transactions. We've avoided the
serialization in the past as it was too expensive.

Under the hood, the semaphore-gating works by placing a 2-byte
semaphore in the '.probes' ELF section. The address of the semaphore
is contained in the ELF note providing the tracepoint information
(`readelf -n ./src/bitcoind | grep NT_STAPSDT`). Tracing toolkits
like bpftrace, bcc, and libbpf increase the semaphore at the address
upon attaching to the tracepoint. We only prepare the arguments and
reach the tracepoint if the semaphore is greater than zero. The
semaphore is decreased when detaching from the tracepoint.

This also extends the "Adding a new tracepoint" documentation to
include information about the semaphores and updated step-by-step
instructions on how to add a new tracepoint.
2024-10-28 14:27:47 +01:00

394 lines
16 KiB
C++

// Copyright (c) 2012-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <coins.h>
#include <consensus/consensus.h>
#include <logging.h>
#include <random.h>
#include <util/trace.h>
TRACEPOINT_SEMAPHORE(utxocache, add);
TRACEPOINT_SEMAPHORE(utxocache, spent);
TRACEPOINT_SEMAPHORE(utxocache, uncache);
std::optional<Coin> CCoinsView::GetCoin(const COutPoint& outpoint) const { return std::nullopt; }
uint256 CCoinsView::GetBestBlock() const { return uint256(); }
std::vector<uint256> CCoinsView::GetHeadBlocks() const { return std::vector<uint256>(); }
bool CCoinsView::BatchWrite(CoinsViewCacheCursor& cursor, const uint256 &hashBlock) { return false; }
std::unique_ptr<CCoinsViewCursor> CCoinsView::Cursor() const { return nullptr; }
bool CCoinsView::HaveCoin(const COutPoint &outpoint) const
{
return GetCoin(outpoint).has_value();
}
CCoinsViewBacked::CCoinsViewBacked(CCoinsView *viewIn) : base(viewIn) { }
std::optional<Coin> CCoinsViewBacked::GetCoin(const COutPoint& outpoint) const { return base->GetCoin(outpoint); }
bool CCoinsViewBacked::HaveCoin(const COutPoint &outpoint) const { return base->HaveCoin(outpoint); }
uint256 CCoinsViewBacked::GetBestBlock() const { return base->GetBestBlock(); }
std::vector<uint256> CCoinsViewBacked::GetHeadBlocks() const { return base->GetHeadBlocks(); }
void CCoinsViewBacked::SetBackend(CCoinsView &viewIn) { base = &viewIn; }
bool CCoinsViewBacked::BatchWrite(CoinsViewCacheCursor& cursor, const uint256 &hashBlock) { return base->BatchWrite(cursor, hashBlock); }
std::unique_ptr<CCoinsViewCursor> CCoinsViewBacked::Cursor() const { return base->Cursor(); }
size_t CCoinsViewBacked::EstimateSize() const { return base->EstimateSize(); }
CCoinsViewCache::CCoinsViewCache(CCoinsView* baseIn, bool deterministic) :
CCoinsViewBacked(baseIn), m_deterministic(deterministic),
cacheCoins(0, SaltedOutpointHasher(/*deterministic=*/deterministic), CCoinsMap::key_equal{}, &m_cache_coins_memory_resource)
{
m_sentinel.second.SelfRef(m_sentinel);
}
size_t CCoinsViewCache::DynamicMemoryUsage() const {
return memusage::DynamicUsage(cacheCoins) + cachedCoinsUsage;
}
CCoinsMap::iterator CCoinsViewCache::FetchCoin(const COutPoint &outpoint) const {
const auto [ret, inserted] = cacheCoins.try_emplace(outpoint);
if (inserted) {
if (auto coin{base->GetCoin(outpoint)}) {
ret->second.coin = std::move(*coin);
cachedCoinsUsage += ret->second.coin.DynamicMemoryUsage();
if (ret->second.coin.IsSpent()) { // TODO GetCoin cannot return spent coins
// The parent only has an empty entry for this outpoint; we can consider our version as fresh.
ret->second.AddFlags(CCoinsCacheEntry::FRESH, *ret, m_sentinel);
}
} else {
cacheCoins.erase(ret);
return cacheCoins.end();
}
}
return ret;
}
std::optional<Coin> CCoinsViewCache::GetCoin(const COutPoint& outpoint) const
{
if (auto it{FetchCoin(outpoint)}; it != cacheCoins.end() && !it->second.coin.IsSpent()) return it->second.coin;
return std::nullopt;
}
void CCoinsViewCache::AddCoin(const COutPoint &outpoint, Coin&& coin, bool possible_overwrite) {
assert(!coin.IsSpent());
if (coin.out.scriptPubKey.IsUnspendable()) return;
CCoinsMap::iterator it;
bool inserted;
std::tie(it, inserted) = cacheCoins.emplace(std::piecewise_construct, std::forward_as_tuple(outpoint), std::tuple<>());
bool fresh = false;
if (!inserted) {
cachedCoinsUsage -= it->second.coin.DynamicMemoryUsage();
}
if (!possible_overwrite) {
if (!it->second.coin.IsSpent()) {
throw std::logic_error("Attempted to overwrite an unspent coin (when possible_overwrite is false)");
}
// If the coin exists in this cache as a spent coin and is DIRTY, then
// its spentness hasn't been flushed to the parent cache. We're
// re-adding the coin to this cache now but we can't mark it as FRESH.
// If we mark it FRESH and then spend it before the cache is flushed
// we would remove it from this cache and would never flush spentness
// to the parent cache.
//
// Re-adding a spent coin can happen in the case of a re-org (the coin
// is 'spent' when the block adding it is disconnected and then
// re-added when it is also added in a newly connected block).
//
// If the coin doesn't exist in the current cache, or is spent but not
// DIRTY, then it can be marked FRESH.
fresh = !it->second.IsDirty();
}
it->second.coin = std::move(coin);
it->second.AddFlags(CCoinsCacheEntry::DIRTY | (fresh ? CCoinsCacheEntry::FRESH : 0), *it, m_sentinel);
cachedCoinsUsage += it->second.coin.DynamicMemoryUsage();
TRACEPOINT(utxocache, add,
outpoint.hash.data(),
(uint32_t)outpoint.n,
(uint32_t)it->second.coin.nHeight,
(int64_t)it->second.coin.out.nValue,
(bool)it->second.coin.IsCoinBase());
}
void CCoinsViewCache::EmplaceCoinInternalDANGER(COutPoint&& outpoint, Coin&& coin) {
cachedCoinsUsage += coin.DynamicMemoryUsage();
auto [it, inserted] = cacheCoins.emplace(
std::piecewise_construct,
std::forward_as_tuple(std::move(outpoint)),
std::forward_as_tuple(std::move(coin)));
if (inserted) {
it->second.AddFlags(CCoinsCacheEntry::DIRTY, *it, m_sentinel);
}
}
void AddCoins(CCoinsViewCache& cache, const CTransaction &tx, int nHeight, bool check_for_overwrite) {
bool fCoinbase = tx.IsCoinBase();
const Txid& txid = tx.GetHash();
for (size_t i = 0; i < tx.vout.size(); ++i) {
bool overwrite = check_for_overwrite ? cache.HaveCoin(COutPoint(txid, i)) : fCoinbase;
// Coinbase transactions can always be overwritten, in order to correctly
// deal with the pre-BIP30 occurrences of duplicate coinbase transactions.
cache.AddCoin(COutPoint(txid, i), Coin(tx.vout[i], nHeight, fCoinbase), overwrite);
}
}
bool CCoinsViewCache::SpendCoin(const COutPoint &outpoint, Coin* moveout) {
CCoinsMap::iterator it = FetchCoin(outpoint);
if (it == cacheCoins.end()) return false;
cachedCoinsUsage -= it->second.coin.DynamicMemoryUsage();
TRACEPOINT(utxocache, spent,
outpoint.hash.data(),
(uint32_t)outpoint.n,
(uint32_t)it->second.coin.nHeight,
(int64_t)it->second.coin.out.nValue,
(bool)it->second.coin.IsCoinBase());
if (moveout) {
*moveout = std::move(it->second.coin);
}
if (it->second.IsFresh()) {
cacheCoins.erase(it);
} else {
it->second.AddFlags(CCoinsCacheEntry::DIRTY, *it, m_sentinel);
it->second.coin.Clear();
}
return true;
}
static const Coin coinEmpty;
const Coin& CCoinsViewCache::AccessCoin(const COutPoint &outpoint) const {
CCoinsMap::const_iterator it = FetchCoin(outpoint);
if (it == cacheCoins.end()) {
return coinEmpty;
} else {
return it->second.coin;
}
}
bool CCoinsViewCache::HaveCoin(const COutPoint &outpoint) const {
CCoinsMap::const_iterator it = FetchCoin(outpoint);
return (it != cacheCoins.end() && !it->second.coin.IsSpent());
}
bool CCoinsViewCache::HaveCoinInCache(const COutPoint &outpoint) const {
CCoinsMap::const_iterator it = cacheCoins.find(outpoint);
return (it != cacheCoins.end() && !it->second.coin.IsSpent());
}
uint256 CCoinsViewCache::GetBestBlock() const {
if (hashBlock.IsNull())
hashBlock = base->GetBestBlock();
return hashBlock;
}
void CCoinsViewCache::SetBestBlock(const uint256 &hashBlockIn) {
hashBlock = hashBlockIn;
}
bool CCoinsViewCache::BatchWrite(CoinsViewCacheCursor& cursor, const uint256 &hashBlockIn) {
for (auto it{cursor.Begin()}; it != cursor.End(); it = cursor.NextAndMaybeErase(*it)) {
// Ignore non-dirty entries (optimization).
if (!it->second.IsDirty()) {
continue;
}
CCoinsMap::iterator itUs = cacheCoins.find(it->first);
if (itUs == cacheCoins.end()) {
// The parent cache does not have an entry, while the child cache does.
// We can ignore it if it's both spent and FRESH in the child
if (!(it->second.IsFresh() && it->second.coin.IsSpent())) {
// Create the coin in the parent cache, move the data up
// and mark it as dirty.
itUs = cacheCoins.try_emplace(it->first).first;
CCoinsCacheEntry& entry{itUs->second};
if (cursor.WillErase(*it)) {
// Since this entry will be erased,
// we can move the coin into us instead of copying it
entry.coin = std::move(it->second.coin);
} else {
entry.coin = it->second.coin;
}
cachedCoinsUsage += entry.coin.DynamicMemoryUsage();
entry.AddFlags(CCoinsCacheEntry::DIRTY, *itUs, m_sentinel);
// We can mark it FRESH in the parent if it was FRESH in the child
// Otherwise it might have just been flushed from the parent's cache
// and already exist in the grandparent
if (it->second.IsFresh()) {
entry.AddFlags(CCoinsCacheEntry::FRESH, *itUs, m_sentinel);
}
}
} else {
// Found the entry in the parent cache
if (it->second.IsFresh() && !itUs->second.coin.IsSpent()) {
// The coin was marked FRESH in the child cache, but the coin
// exists in the parent cache. If this ever happens, it means
// the FRESH flag was misapplied and there is a logic error in
// the calling code.
throw std::logic_error("FRESH flag misapplied to coin that exists in parent cache");
}
if (itUs->second.IsFresh() && it->second.coin.IsSpent()) {
// The grandparent cache does not have an entry, and the coin
// has been spent. We can just delete it from the parent cache.
cachedCoinsUsage -= itUs->second.coin.DynamicMemoryUsage();
cacheCoins.erase(itUs);
} else {
// A normal modification.
cachedCoinsUsage -= itUs->second.coin.DynamicMemoryUsage();
if (cursor.WillErase(*it)) {
// Since this entry will be erased,
// we can move the coin into us instead of copying it
itUs->second.coin = std::move(it->second.coin);
} else {
itUs->second.coin = it->second.coin;
}
cachedCoinsUsage += itUs->second.coin.DynamicMemoryUsage();
itUs->second.AddFlags(CCoinsCacheEntry::DIRTY, *itUs, m_sentinel);
// NOTE: It isn't safe to mark the coin as FRESH in the parent
// cache. If it already existed and was spent in the parent
// cache then marking it FRESH would prevent that spentness
// from being flushed to the grandparent.
}
}
}
hashBlock = hashBlockIn;
return true;
}
bool CCoinsViewCache::Flush() {
auto cursor{CoinsViewCacheCursor(cachedCoinsUsage, m_sentinel, cacheCoins, /*will_erase=*/true)};
bool fOk = base->BatchWrite(cursor, hashBlock);
if (fOk) {
cacheCoins.clear();
ReallocateCache();
}
cachedCoinsUsage = 0;
return fOk;
}
bool CCoinsViewCache::Sync()
{
auto cursor{CoinsViewCacheCursor(cachedCoinsUsage, m_sentinel, cacheCoins, /*will_erase=*/false)};
bool fOk = base->BatchWrite(cursor, hashBlock);
if (fOk) {
if (m_sentinel.second.Next() != &m_sentinel) {
/* BatchWrite must clear flags of all entries */
throw std::logic_error("Not all unspent flagged entries were cleared");
}
}
return fOk;
}
void CCoinsViewCache::Uncache(const COutPoint& hash)
{
CCoinsMap::iterator it = cacheCoins.find(hash);
if (it != cacheCoins.end() && !it->second.IsDirty() && !it->second.IsFresh()) {
cachedCoinsUsage -= it->second.coin.DynamicMemoryUsage();
TRACEPOINT(utxocache, uncache,
hash.hash.data(),
(uint32_t)hash.n,
(uint32_t)it->second.coin.nHeight,
(int64_t)it->second.coin.out.nValue,
(bool)it->second.coin.IsCoinBase());
cacheCoins.erase(it);
}
}
unsigned int CCoinsViewCache::GetCacheSize() const {
return cacheCoins.size();
}
bool CCoinsViewCache::HaveInputs(const CTransaction& tx) const
{
if (!tx.IsCoinBase()) {
for (unsigned int i = 0; i < tx.vin.size(); i++) {
if (!HaveCoin(tx.vin[i].prevout)) {
return false;
}
}
}
return true;
}
void CCoinsViewCache::ReallocateCache()
{
// Cache should be empty when we're calling this.
assert(cacheCoins.size() == 0);
cacheCoins.~CCoinsMap();
m_cache_coins_memory_resource.~CCoinsMapMemoryResource();
::new (&m_cache_coins_memory_resource) CCoinsMapMemoryResource{};
::new (&cacheCoins) CCoinsMap{0, SaltedOutpointHasher{/*deterministic=*/m_deterministic}, CCoinsMap::key_equal{}, &m_cache_coins_memory_resource};
}
void CCoinsViewCache::SanityCheck() const
{
size_t recomputed_usage = 0;
size_t count_flagged = 0;
for (const auto& [_, entry] : cacheCoins) {
unsigned attr = 0;
if (entry.IsDirty()) attr |= 1;
if (entry.IsFresh()) attr |= 2;
if (entry.coin.IsSpent()) attr |= 4;
// Only 5 combinations are possible.
assert(attr != 2 && attr != 4 && attr != 7);
// Recompute cachedCoinsUsage.
recomputed_usage += entry.coin.DynamicMemoryUsage();
// Count the number of entries we expect in the linked list.
if (entry.IsDirty() || entry.IsFresh()) ++count_flagged;
}
// Iterate over the linked list of flagged entries.
size_t count_linked = 0;
for (auto it = m_sentinel.second.Next(); it != &m_sentinel; it = it->second.Next()) {
// Verify linked list integrity.
assert(it->second.Next()->second.Prev() == it);
assert(it->second.Prev()->second.Next() == it);
// Verify they are actually flagged.
assert(it->second.IsDirty() || it->second.IsFresh());
// Count the number of entries actually in the list.
++count_linked;
}
assert(count_linked == count_flagged);
assert(recomputed_usage == cachedCoinsUsage);
}
static const size_t MIN_TRANSACTION_OUTPUT_WEIGHT = WITNESS_SCALE_FACTOR * ::GetSerializeSize(CTxOut());
static const size_t MAX_OUTPUTS_PER_BLOCK = MAX_BLOCK_WEIGHT / MIN_TRANSACTION_OUTPUT_WEIGHT;
const Coin& AccessByTxid(const CCoinsViewCache& view, const Txid& txid)
{
COutPoint iter(txid, 0);
while (iter.n < MAX_OUTPUTS_PER_BLOCK) {
const Coin& alternate = view.AccessCoin(iter);
if (!alternate.IsSpent()) return alternate;
++iter.n;
}
return coinEmpty;
}
template <typename ReturnType, typename Func>
static ReturnType ExecuteBackedWrapper(Func func, const std::vector<std::function<void()>>& err_callbacks)
{
try {
return func();
} catch(const std::runtime_error& e) {
for (const auto& f : err_callbacks) {
f();
}
LogError("Error reading from database: %s\n", e.what());
// Starting the shutdown sequence and returning false to the caller would be
// interpreted as 'entry not found' (as opposed to unable to read data), and
// could lead to invalid interpretation. Just exit immediately, as we can't
// continue anyway, and all writes should be atomic.
std::abort();
}
}
std::optional<Coin> CCoinsViewErrorCatcher::GetCoin(const COutPoint& outpoint) const
{
return ExecuteBackedWrapper<std::optional<Coin>>([&]() { return CCoinsViewBacked::GetCoin(outpoint); }, m_err_callbacks);
}
bool CCoinsViewErrorCatcher::HaveCoin(const COutPoint& outpoint) const
{
return ExecuteBackedWrapper<bool>([&]() { return CCoinsViewBacked::HaveCoin(outpoint); }, m_err_callbacks);
}