mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-26 11:13:23 -03:00
535 lines
19 KiB
C++
535 lines
19 KiB
C++
#include <stdint.h>
|
|
#include <string>
|
|
#include <stdio.h>
|
|
#include <gmpxx.h>
|
|
#include <assert.h>
|
|
|
|
// #define VERIFY_MAGNITUDE 1
|
|
|
|
namespace secp256k1 {
|
|
|
|
|
|
/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F,
|
|
* represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular,
|
|
* each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element
|
|
* is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations
|
|
* accept any input with magnitude at most M, and have different rules for propagating magnitude to their
|
|
* output.
|
|
*/
|
|
class FieldElem {
|
|
private:
|
|
// X = sum(i=0..4, elem[i]*2^52)
|
|
uint64_t n[5];
|
|
#ifdef VERIFY_MAGNITUDE
|
|
int magnitude;
|
|
#endif
|
|
|
|
|
|
public:
|
|
|
|
/** Creates a constant field element. Magnitude=1 */
|
|
FieldElem(int x = 0) {
|
|
n[0] = x;
|
|
n[1] = n[2] = n[3] = n[4] = 0;
|
|
#ifdef VERIFY_MAGNITUDE
|
|
magnitude = 1;
|
|
#endif
|
|
}
|
|
|
|
/** Normalizes the internal representation entries. Magnitude=1 */
|
|
void Normalize() {
|
|
uint64_t c;
|
|
if (n[0] > 0xFFFFFFFFFFFFFULL || n[1] > 0xFFFFFFFFFFFFFULL || n[2] > 0xFFFFFFFFFFFFFULL || n[3] > 0xFFFFFFFFFFFFFULL || n[4] > 0xFFFFFFFFFFFFULL) {
|
|
c = n[0];
|
|
uint64_t t0 = c & 0xFFFFFFFFFFFFFULL;
|
|
c = (c >> 52) + n[1];
|
|
uint64_t t1 = c & 0xFFFFFFFFFFFFFULL;
|
|
c = (c >> 52) + n[2];
|
|
uint64_t t2 = c & 0xFFFFFFFFFFFFFULL;
|
|
c = (c >> 52) + n[3];
|
|
uint64_t t3 = c & 0xFFFFFFFFFFFFFULL;
|
|
c = (c >> 52) + n[4];
|
|
uint64_t t4 = c & 0x0FFFFFFFFFFFFULL;
|
|
c >>= 48;
|
|
if (c) {
|
|
c = c * 0x1000003D1ULL + t0;
|
|
t0 = c & 0xFFFFFFFFFFFFFULL;
|
|
c = (c >> 52) + t1;
|
|
t1 = c & 0xFFFFFFFFFFFFFULL;
|
|
c = (c >> 52) + t2;
|
|
t2 = c & 0xFFFFFFFFFFFFFULL;
|
|
c = (c >> 52) + t3;
|
|
t3 = c & 0xFFFFFFFFFFFFFULL;
|
|
c = (c >> 52) + t4;
|
|
t4 = c & 0x0FFFFFFFFFFFFULL;
|
|
c >>= 48;
|
|
}
|
|
n[0] = t0; n[1] = t1; n[2] = t2; n[3] = t3; n[4] = t4;
|
|
}
|
|
if (n[4] == 0xFFFFFFFFFFFFULL && n[3] == 0xFFFFFFFFFFFFFULL && n[2] == 0xFFFFFFFFFFFFFULL && n[1] == 0xFFFFFFFFFFFFF && n[0] >= 0xFFFFEFFFFFC2FULL) {
|
|
n[4] = 0;
|
|
n[3] = 0;
|
|
n[2] = 0;
|
|
n[1] = 0;
|
|
n[0] -= 0xFFFFEFFFFFC2FULL;
|
|
}
|
|
#ifdef VERIFY_MAGNITUDE
|
|
magnitude = 1;
|
|
#endif
|
|
}
|
|
|
|
bool IsZero() {
|
|
Normalize();
|
|
return n[0] == 0 && n[1] == 0 && n[2] == 0 && n[3] == 0 && n[4] == 0;
|
|
}
|
|
|
|
bool friend operator==(FieldElem &a, FieldElem &b) {
|
|
a.Normalize();
|
|
b.Normalize();
|
|
return a.n[0] == b.n[0] && a.n[1] == b.n[1] && a.n[2] == b.n[2] && a.n[3] == b.n[3] && a.n[4] == b.n[4];
|
|
}
|
|
|
|
void Get(uint64_t *out) {
|
|
Normalize();
|
|
out[0] = n[0] | (n[1] << 52);
|
|
out[1] = (n[1] >> 12) | (n[2] << 40);
|
|
out[2] = (n[2] >> 24) | (n[3] << 28);
|
|
out[3] = (n[3] >> 36) | (n[4] << 16);
|
|
}
|
|
|
|
void Set(const uint64_t *in) {
|
|
n[0] = in[0] & 0xFFFFFFFFFFFFFULL;
|
|
n[1] = ((in[0] >> 52) | (in[1] << 12)) & 0xFFFFFFFFFFFFFULL;
|
|
n[2] = ((in[1] >> 40) | (in[2] << 24)) & 0xFFFFFFFFFFFFFULL;
|
|
n[3] = ((in[2] >> 28) | (in[3] << 36)) & 0xFFFFFFFFFFFFFULL;
|
|
n[4] = (in[3] >> 16);
|
|
#ifdef VERIFY_MAGNITUDE
|
|
magnitude = 1;
|
|
#endif
|
|
}
|
|
|
|
/** Set a FieldElem to be the negative of another. Increases magnitude by one. */
|
|
void SetNeg(const FieldElem &a, int magnitudeIn) {
|
|
#ifdef VERIFY_MAGNITUDE
|
|
assert(a.magnitude <= magnitudeIn);
|
|
magnitude = magnitudeIn + 1;
|
|
#endif
|
|
n[0] = 0xFFFFEFFFFFC2FULL * (magnitudeIn + 1) - a.n[0];
|
|
n[1] = 0xFFFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[1];
|
|
n[2] = 0xFFFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[2];
|
|
n[3] = 0xFFFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[3];
|
|
n[4] = 0x0FFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[4];
|
|
}
|
|
|
|
/** Multiplies this FieldElem with an integer constant. Magnitude is multiplied by v */
|
|
void operator*=(int v) {
|
|
#ifdef VERIFY_MAGNITUDE
|
|
magnitude *= v;
|
|
#endif
|
|
n[0] *= v;
|
|
n[1] *= v;
|
|
n[2] *= v;
|
|
n[3] *= v;
|
|
n[4] *= v;
|
|
}
|
|
|
|
void operator+=(const FieldElem &a) {
|
|
#ifdef VERIFY_MAGNITUDE
|
|
magnitude += a.magnitude;
|
|
#endif
|
|
n[0] += a.n[0];
|
|
n[1] += a.n[1];
|
|
n[2] += a.n[2];
|
|
n[3] += a.n[3];
|
|
n[4] += a.n[4];
|
|
}
|
|
|
|
/** Set this FieldElem to be the multiplication of two others. Magnitude=1 */
|
|
void SetMult(const FieldElem &a, const FieldElem &b) {
|
|
#ifdef VERIFY_MAGNITUDE
|
|
assert(a.magnitude <= 8);
|
|
assert(b.magnitude <= 8);
|
|
#endif
|
|
__int128 c = (__int128)a.n[0] * b.n[0];
|
|
uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0FFFFFFFFFFFFFE0
|
|
c = c + (__int128)a.n[0] * b.n[1] +
|
|
(__int128)a.n[1] * b.n[0];
|
|
uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 20000000000000BF
|
|
c = c + (__int128)a.n[0] * b.n[2] +
|
|
(__int128)a.n[1] * b.n[1] +
|
|
(__int128)a.n[2] * b.n[0];
|
|
uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 30000000000001A0
|
|
c = c + (__int128)a.n[0] * b.n[3] +
|
|
(__int128)a.n[1] * b.n[2] +
|
|
(__int128)a.n[2] * b.n[1] +
|
|
(__int128)a.n[3] * b.n[0];
|
|
uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 4000000000000280
|
|
c = c + (__int128)a.n[0] * b.n[4] +
|
|
(__int128)a.n[1] * b.n[3] +
|
|
(__int128)a.n[2] * b.n[2] +
|
|
(__int128)a.n[3] * b.n[1] +
|
|
(__int128)a.n[4] * b.n[0];
|
|
uint64_t t4 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 320000000000037E
|
|
c = c + (__int128)a.n[1] * b.n[4] +
|
|
(__int128)a.n[2] * b.n[3] +
|
|
(__int128)a.n[3] * b.n[2] +
|
|
(__int128)a.n[4] * b.n[1];
|
|
uint64_t t5 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 22000000000002BE
|
|
c = c + (__int128)a.n[2] * b.n[4] +
|
|
(__int128)a.n[3] * b.n[3] +
|
|
(__int128)a.n[4] * b.n[2];
|
|
uint64_t t6 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 12000000000001DE
|
|
c = c + (__int128)a.n[3] * b.n[4] +
|
|
(__int128)a.n[4] * b.n[3];
|
|
uint64_t t7 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 02000000000000FE
|
|
c = c + (__int128)a.n[4] * b.n[4];
|
|
uint64_t t8 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 001000000000001E
|
|
uint64_t t9 = c;
|
|
c = t0 + (__int128)t5 * 0x1000003D10ULL;
|
|
t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
|
c = c + t1 + (__int128)t6 * 0x1000003D10ULL;
|
|
t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
|
c = c + t2 + (__int128)t7 * 0x1000003D10ULL;
|
|
n[2] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
|
c = c + t3 + (__int128)t8 * 0x1000003D10ULL;
|
|
n[3] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
|
c = c + t4 + (__int128)t9 * 0x1000003D10ULL;
|
|
n[4] = c & 0x0FFFFFFFFFFFFULL; c = c >> 48; // c max 000001000003D110
|
|
c = t0 + (__int128)c * 0x1000003D1ULL;
|
|
n[0] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 1000008
|
|
n[1] = t1 + c;
|
|
#ifdef VERIFY_MAGNITUDE
|
|
magnitude = 1;
|
|
#endif
|
|
}
|
|
|
|
/** Set this FieldElem to be the square of another. Magnitude=1 */
|
|
void SetSquare(const FieldElem &a) {
|
|
#ifdef VERIFY_MAGNITUDE
|
|
assert(a.magnitude <= 8);
|
|
#endif
|
|
__int128 c = (__int128)a.n[0] * a.n[0];
|
|
uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0FFFFFFFFFFFFFE0
|
|
c = c + (__int128)(a.n[0]*2) * a.n[1];
|
|
uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 20000000000000BF
|
|
c = c + (__int128)(a.n[0]*2) * a.n[2] +
|
|
(__int128)a.n[1] * a.n[1];
|
|
uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 30000000000001A0
|
|
c = c + (__int128)(a.n[0]*2) * a.n[3] +
|
|
(__int128)(a.n[1]*2) * a.n[2];
|
|
uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 4000000000000280
|
|
c = c + (__int128)(a.n[0]*2) * a.n[4] +
|
|
(__int128)(a.n[1]*2) * a.n[3] +
|
|
(__int128)a.n[2] * a.n[2];
|
|
uint64_t t4 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 320000000000037E
|
|
c = c + (__int128)(a.n[1]*2) * a.n[4] +
|
|
(__int128)(a.n[2]*2) * a.n[3];
|
|
uint64_t t5 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 22000000000002BE
|
|
c = c + (__int128)(a.n[2]*2) * a.n[4] +
|
|
(__int128)a.n[3] * a.n[3];
|
|
uint64_t t6 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 12000000000001DE
|
|
c = c + (__int128)(a.n[3]*2) * a.n[4];
|
|
uint64_t t7 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 02000000000000FE
|
|
c = c + (__int128)a.n[4] * a.n[4];
|
|
uint64_t t8 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 001000000000001E
|
|
uint64_t t9 = c;
|
|
c = t0 + (__int128)t5 * 0x1000003D10ULL;
|
|
t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
|
c = c + t1 + (__int128)t6 * 0x1000003D10ULL;
|
|
t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
|
c = c + t2 + (__int128)t7 * 0x1000003D10ULL;
|
|
n[2] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
|
c = c + t3 + (__int128)t8 * 0x1000003D10ULL;
|
|
n[3] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
|
c = c + t4 + (__int128)t9 * 0x1000003D10ULL;
|
|
n[4] = c & 0x0FFFFFFFFFFFFULL; c = c >> 48; // c max 000001000003D110
|
|
c = t0 + (__int128)c * 0x1000003D1ULL;
|
|
n[0] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 1000008
|
|
n[1] = t1 + c;
|
|
#ifdef VERIFY_MAGNITUDE
|
|
assert(a.magnitude <= 8);
|
|
#endif
|
|
}
|
|
|
|
/** Set this to be the (modular) square root of another FieldElem. Magnitude=1 */
|
|
void SetSquareRoot(const FieldElem &a) {
|
|
// calculate a^p, with p={15,780,1022,1023}
|
|
FieldElem a2; a2.SetSquare(a);
|
|
FieldElem a3; a3.SetMult(a2,a);
|
|
FieldElem a6; a6.SetSquare(a3);
|
|
FieldElem a12; a12.SetSquare(a6);
|
|
FieldElem a15; a15.SetMult(a12,a3);
|
|
FieldElem a30; a30.SetSquare(a15);
|
|
FieldElem a60; a60.SetSquare(a30);
|
|
FieldElem a120; a120.SetSquare(a60);
|
|
FieldElem a240; a240.SetSquare(a120);
|
|
FieldElem a255; a255.SetMult(a240,a15);
|
|
FieldElem a510; a510.SetSquare(a255);
|
|
FieldElem a750; a750.SetMult(a510,a240);
|
|
FieldElem a780; a780.SetMult(a750,a30);
|
|
FieldElem a1020; a1020.SetSquare(a510);
|
|
FieldElem a1022; a1022.SetMult(a1020,a2);
|
|
FieldElem a1023; a1023.SetMult(a1022,a);
|
|
FieldElem x = a15;
|
|
for (int i=0; i<21; i++) {
|
|
for (int j=0; j<10; j++) x.SetSquare(x);
|
|
x.SetMult(x,a1023);
|
|
}
|
|
for (int j=0; j<10; j++) x.SetSquare(x);
|
|
x.SetMult(x,a1022);
|
|
for (int i=0; i<2; i++) {
|
|
for (int j=0; j<10; j++) x.SetSquare(x);
|
|
x.SetMult(x,a1023);
|
|
}
|
|
for (int j=0; j<10; j++) x.SetSquare(x);
|
|
SetMult(x,a780);
|
|
}
|
|
|
|
bool IsOdd() {
|
|
Normalize();
|
|
return n[0] & 1;
|
|
}
|
|
|
|
/** Set this to be the (modular) inverse of another FieldElem. Magnitude=1 */
|
|
void SetInverse(const FieldElem &a) {
|
|
// calculate a^p, with p={45,63,1019,1023}
|
|
FieldElem a2; a2.SetSquare(a);
|
|
FieldElem a3; a3.SetMult(a2,a);
|
|
FieldElem a4; a4.SetSquare(a);
|
|
FieldElem a5; a5.SetMult(a4,a);
|
|
FieldElem a10; a10.SetSquare(a5);
|
|
FieldElem a11; a11.SetMult(a10,a);
|
|
FieldElem a21; a21.SetMult(a11,a10);
|
|
FieldElem a42; a42.SetSquare(a21);
|
|
FieldElem a45; a45.SetMult(a42,a3);
|
|
FieldElem a63; a63.SetMult(a42,a21);
|
|
FieldElem a126; a126.SetSquare(a63);
|
|
FieldElem a252; a252.SetSquare(a126);
|
|
FieldElem a504; a504.SetSquare(a252);
|
|
FieldElem a1008; a1008.SetSquare(a504);
|
|
FieldElem a1019; a1019.SetMult(a1008,a11);
|
|
FieldElem a1023; a1023.SetMult(a1019,a4);
|
|
FieldElem x = a63;
|
|
for (int i=0; i<21; i++) {
|
|
for (int j=0; j<10; j++) x.SetSquare(x);
|
|
x.SetMult(x,a1023);
|
|
}
|
|
for (int j=0; j<10; j++) x.SetSquare(x);
|
|
x.SetMult(x,a1019);
|
|
for (int i=0; i<2; i++) {
|
|
for (int j=0; j<10; j++) x.SetSquare(x);
|
|
x.SetMult(x,a1023);
|
|
}
|
|
for (int j=0; j<10; j++) x.SetSquare(x);
|
|
SetMult(x,a45);
|
|
}
|
|
|
|
std::string ToString() {
|
|
uint64_t tmp[4];
|
|
Get(tmp);
|
|
std::string ret;
|
|
for (int i=63; i>=0; i--) {
|
|
int val = (tmp[i/16] >> ((i%16)*4)) & 0xF;
|
|
static const char *c = "0123456789ABCDEF";
|
|
ret += c[val];
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void SetHex(const std::string &str) {
|
|
uint64_t tmp[4] = {0,0,0,0};
|
|
static const int cvt[256] = {0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0, 1, 2, 3, 4, 5, 6,7,8,9,0,0,0,0,0,0,
|
|
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
|
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0};
|
|
for (int i=0; i<64; i++) {
|
|
if (str.length() > (63-i))
|
|
tmp[i/16] |= (uint64_t)cvt[(unsigned char)str[63-i]] << ((i%16)*4);
|
|
}
|
|
Set(tmp);
|
|
}
|
|
};
|
|
|
|
template<typename F> class GroupElem {
|
|
private:
|
|
bool fInfinity;
|
|
F x;
|
|
F y;
|
|
F z;
|
|
|
|
public:
|
|
/** Creates the point at infinity */
|
|
GroupElem<F>() {
|
|
fInfinity = true;
|
|
}
|
|
|
|
/** Creates the point with given affine coordinates */
|
|
GroupElem<F>(const F &xin, const F &yin) {
|
|
fInfinity = false;
|
|
x = xin;
|
|
y = yin;
|
|
z = F(1);
|
|
}
|
|
|
|
/** Checks whether this is the point at infinity */
|
|
bool IsInfinity() const {
|
|
return fInfinity;
|
|
}
|
|
|
|
/** Checks whether this is a non-infinite point on the curve */
|
|
bool IsValid() {
|
|
if (IsInfinity())
|
|
return false;
|
|
// y^2 = x^3 + 7
|
|
// (Y/Z^3)^2 = (X/Z^2)^3 + 7
|
|
// Y^2 / Z^6 = X^3 / Z^6 + 7
|
|
// Y^2 = X^3 + 7*Z^6
|
|
F y2; y2.SetSquare(y);
|
|
F x3; x3.SetSquare(x); x3.SetMult(x3,x);
|
|
F z2; z2.SetSquare(z);
|
|
F z6; z6.SetSquare(z2); z6.SetMult(z6,z2);
|
|
z6 *= 7;
|
|
x3 += z6;
|
|
return y2 == x3;
|
|
}
|
|
|
|
/** Returns the affine coordinates of this point */
|
|
void GetAffine(F &xout, F &yout) {
|
|
z.SetInverse(z);
|
|
F z2;
|
|
z2.SetSquare(z);
|
|
F z3;
|
|
z3.SetMult(z,z2);
|
|
x.SetMult(x,z2);
|
|
y.SetMult(y,z3);
|
|
z = F(1);
|
|
xout = x;
|
|
yout = y;
|
|
}
|
|
|
|
/** Sets this point to have a given X coordinate & given Y oddness */
|
|
void SetCompressed(const F &xin, bool fOdd) {
|
|
x = xin;
|
|
F x2; x2.SetSquare(x);
|
|
F x3; x3.SetMult(x,x2);
|
|
fInfinity = false;
|
|
F c(7);
|
|
c += x3;
|
|
y.SetSquareRoot(c);
|
|
z = F(1);
|
|
if (y.IsOdd() != fOdd)
|
|
y.SetNeg(y,1);
|
|
}
|
|
|
|
/** Sets this point to be the EC double of another */
|
|
void SetDouble(const GroupElem<F> &p) {
|
|
if (p.fInfinity || y.IsZero()) {
|
|
fInfinity = true;
|
|
return;
|
|
}
|
|
|
|
F t1,t2,t3,t4,t5;
|
|
z.SetMult(p.y,p.z);
|
|
z *= 2; // Z' = 2*Y*Z (2)
|
|
t1.SetSquare(p.x);
|
|
t1 *= 3; // T1 = 3*X^2 (3)
|
|
t2.SetSquare(t1); // T2 = 9*X^4 (1)
|
|
t3.SetSquare(y);
|
|
t3 *= 2; // T3 = 2*Y^2 (2)
|
|
t4.SetSquare(t3);
|
|
t4 *= 2; // T4 = 8*Y^4 (2)
|
|
t3.SetMult(x,t3); // T3 = 2*X*Y^2 (1)
|
|
x = t3;
|
|
x *= 4; // X' = 8*X*Y^2 (4)
|
|
x.SetNeg(x,4); // X' = -8*X*Y^2 (5)
|
|
x += t2; // X' = 9*X^4 - 8*X*Y^2 (6)
|
|
t2.SetNeg(t2,1); // T2 = -9*X^4 (2)
|
|
t3 *= 6; // T3 = 12*X*Y^2 (6)
|
|
t3 += t2; // T3 = 12*X*Y^2 - 9*X^4 (8)
|
|
y.SetMult(t1,t3); // Y' = 36*X^3*Y^2 - 27*X^6 (1)
|
|
t2.SetNeg(t4,2); // T2 = -8*Y^4 (3)
|
|
y += t2; // Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4)
|
|
}
|
|
|
|
/** Sets this point to be the EC addition of two others */
|
|
void SetAdd(const GroupElem<F> &p, const GroupElem<F> &q) {
|
|
if (p.fInfinity) {
|
|
*this = q;
|
|
return;
|
|
}
|
|
if (q.fInfinity) {
|
|
*this = p;
|
|
return;
|
|
}
|
|
fInfinity = false;
|
|
const F &x1 = p.x, &y1 = p.y, &z1 = p.z, &x2 = q.x, &y2 = q.y, &z2 = q.z;
|
|
F z22; z22.SetSquare(z2);
|
|
F z12; z12.SetSquare(z1);
|
|
F u1; u1.SetMult(x1, z22);
|
|
F u2; u2.SetMult(x2, z12);
|
|
F s1; s1.SetMult(y1, z22); s1.SetMult(s1, z2);
|
|
F s2; s2.SetMult(y2, z12); s2.SetMult(s2, z1);
|
|
if (u1 == u2) {
|
|
if (s1 == s2) {
|
|
SetDouble(p);
|
|
} else {
|
|
fInfinity = true;
|
|
}
|
|
return;
|
|
}
|
|
F h; h.SetNeg(u1,1); h += u2;
|
|
F r; r.SetNeg(s1,1); r += s2;
|
|
F r2; r2.SetSquare(r);
|
|
F h2; h2.SetSquare(h);
|
|
F h3; h3.SetMult(h,h2);
|
|
z.SetMult(p.z,q.z); z.SetMult(z, h);
|
|
F t; t.SetMult(u1,h2);
|
|
x = t; x *= 2; x += h3; x.SetNeg(x,3); x += r2;
|
|
y.SetNeg(x,5); y += t; y.SetMult(y,r);
|
|
h3.SetMult(h3,s1); h3.SetNeg(h3,1);
|
|
y += h3;
|
|
}
|
|
|
|
std::string ToString() {
|
|
F xt,yt;
|
|
if (fInfinity)
|
|
return "(inf)";
|
|
GetAffine(xt,yt);
|
|
return "(" + xt.ToString() + "," + yt.ToString() + ")";
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
using namespace secp256k1;
|
|
|
|
int main() {
|
|
FieldElem f1,f2;
|
|
f1.SetHex("8b30bbe9ae2a990696b22f670709dff3727fd8bc04d3362c6c7bf458e2846004");
|
|
// f2.SetHex("a357ae915c4a65281309edf20504740f0eb3343990216b4f81063cb65f2f7e0f");
|
|
GroupElem<FieldElem> g1;
|
|
printf("%s\n", g1.ToString().c_str());
|
|
GroupElem<FieldElem> p = g1;
|
|
GroupElem<FieldElem> q = p;
|
|
//printf("ok %i\n", (int)p.IsValid());
|
|
p.SetCompressed(f1,false);
|
|
printf("ok %i\n", (int)p.IsValid());
|
|
printf("%s\n", p.ToString().c_str());
|
|
p.SetCompressed(f1,true);
|
|
printf("ok %i\n", (int)p.IsValid());
|
|
printf("%s\n", p.ToString().c_str());
|
|
return 0;
|
|
}
|