bitcoin/secp256k1.cpp
2013-03-06 01:42:20 +01:00

535 lines
19 KiB
C++

#include <stdint.h>
#include <string>
#include <stdio.h>
#include <gmpxx.h>
#include <assert.h>
// #define VERIFY_MAGNITUDE 1
namespace secp256k1 {
/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F,
* represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular,
* each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element
* is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations
* accept any input with magnitude at most M, and have different rules for propagating magnitude to their
* output.
*/
class FieldElem {
private:
// X = sum(i=0..4, elem[i]*2^52)
uint64_t n[5];
#ifdef VERIFY_MAGNITUDE
int magnitude;
#endif
public:
/** Creates a constant field element. Magnitude=1 */
FieldElem(int x = 0) {
n[0] = x;
n[1] = n[2] = n[3] = n[4] = 0;
#ifdef VERIFY_MAGNITUDE
magnitude = 1;
#endif
}
/** Normalizes the internal representation entries. Magnitude=1 */
void Normalize() {
uint64_t c;
if (n[0] > 0xFFFFFFFFFFFFFULL || n[1] > 0xFFFFFFFFFFFFFULL || n[2] > 0xFFFFFFFFFFFFFULL || n[3] > 0xFFFFFFFFFFFFFULL || n[4] > 0xFFFFFFFFFFFFULL) {
c = n[0];
uint64_t t0 = c & 0xFFFFFFFFFFFFFULL;
c = (c >> 52) + n[1];
uint64_t t1 = c & 0xFFFFFFFFFFFFFULL;
c = (c >> 52) + n[2];
uint64_t t2 = c & 0xFFFFFFFFFFFFFULL;
c = (c >> 52) + n[3];
uint64_t t3 = c & 0xFFFFFFFFFFFFFULL;
c = (c >> 52) + n[4];
uint64_t t4 = c & 0x0FFFFFFFFFFFFULL;
c >>= 48;
if (c) {
c = c * 0x1000003D1ULL + t0;
t0 = c & 0xFFFFFFFFFFFFFULL;
c = (c >> 52) + t1;
t1 = c & 0xFFFFFFFFFFFFFULL;
c = (c >> 52) + t2;
t2 = c & 0xFFFFFFFFFFFFFULL;
c = (c >> 52) + t3;
t3 = c & 0xFFFFFFFFFFFFFULL;
c = (c >> 52) + t4;
t4 = c & 0x0FFFFFFFFFFFFULL;
c >>= 48;
}
n[0] = t0; n[1] = t1; n[2] = t2; n[3] = t3; n[4] = t4;
}
if (n[4] == 0xFFFFFFFFFFFFULL && n[3] == 0xFFFFFFFFFFFFFULL && n[2] == 0xFFFFFFFFFFFFFULL && n[1] == 0xFFFFFFFFFFFFF && n[0] >= 0xFFFFEFFFFFC2FULL) {
n[4] = 0;
n[3] = 0;
n[2] = 0;
n[1] = 0;
n[0] -= 0xFFFFEFFFFFC2FULL;
}
#ifdef VERIFY_MAGNITUDE
magnitude = 1;
#endif
}
bool IsZero() {
Normalize();
return n[0] == 0 && n[1] == 0 && n[2] == 0 && n[3] == 0 && n[4] == 0;
}
bool friend operator==(FieldElem &a, FieldElem &b) {
a.Normalize();
b.Normalize();
return a.n[0] == b.n[0] && a.n[1] == b.n[1] && a.n[2] == b.n[2] && a.n[3] == b.n[3] && a.n[4] == b.n[4];
}
void Get(uint64_t *out) {
Normalize();
out[0] = n[0] | (n[1] << 52);
out[1] = (n[1] >> 12) | (n[2] << 40);
out[2] = (n[2] >> 24) | (n[3] << 28);
out[3] = (n[3] >> 36) | (n[4] << 16);
}
void Set(const uint64_t *in) {
n[0] = in[0] & 0xFFFFFFFFFFFFFULL;
n[1] = ((in[0] >> 52) | (in[1] << 12)) & 0xFFFFFFFFFFFFFULL;
n[2] = ((in[1] >> 40) | (in[2] << 24)) & 0xFFFFFFFFFFFFFULL;
n[3] = ((in[2] >> 28) | (in[3] << 36)) & 0xFFFFFFFFFFFFFULL;
n[4] = (in[3] >> 16);
#ifdef VERIFY_MAGNITUDE
magnitude = 1;
#endif
}
/** Set a FieldElem to be the negative of another. Increases magnitude by one. */
void SetNeg(const FieldElem &a, int magnitudeIn) {
#ifdef VERIFY_MAGNITUDE
assert(a.magnitude <= magnitudeIn);
magnitude = magnitudeIn + 1;
#endif
n[0] = 0xFFFFEFFFFFC2FULL * (magnitudeIn + 1) - a.n[0];
n[1] = 0xFFFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[1];
n[2] = 0xFFFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[2];
n[3] = 0xFFFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[3];
n[4] = 0x0FFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[4];
}
/** Multiplies this FieldElem with an integer constant. Magnitude is multiplied by v */
void operator*=(int v) {
#ifdef VERIFY_MAGNITUDE
magnitude *= v;
#endif
n[0] *= v;
n[1] *= v;
n[2] *= v;
n[3] *= v;
n[4] *= v;
}
void operator+=(const FieldElem &a) {
#ifdef VERIFY_MAGNITUDE
magnitude += a.magnitude;
#endif
n[0] += a.n[0];
n[1] += a.n[1];
n[2] += a.n[2];
n[3] += a.n[3];
n[4] += a.n[4];
}
/** Set this FieldElem to be the multiplication of two others. Magnitude=1 */
void SetMult(const FieldElem &a, const FieldElem &b) {
#ifdef VERIFY_MAGNITUDE
assert(a.magnitude <= 8);
assert(b.magnitude <= 8);
#endif
__int128 c = (__int128)a.n[0] * b.n[0];
uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0FFFFFFFFFFFFFE0
c = c + (__int128)a.n[0] * b.n[1] +
(__int128)a.n[1] * b.n[0];
uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 20000000000000BF
c = c + (__int128)a.n[0] * b.n[2] +
(__int128)a.n[1] * b.n[1] +
(__int128)a.n[2] * b.n[0];
uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 30000000000001A0
c = c + (__int128)a.n[0] * b.n[3] +
(__int128)a.n[1] * b.n[2] +
(__int128)a.n[2] * b.n[1] +
(__int128)a.n[3] * b.n[0];
uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 4000000000000280
c = c + (__int128)a.n[0] * b.n[4] +
(__int128)a.n[1] * b.n[3] +
(__int128)a.n[2] * b.n[2] +
(__int128)a.n[3] * b.n[1] +
(__int128)a.n[4] * b.n[0];
uint64_t t4 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 320000000000037E
c = c + (__int128)a.n[1] * b.n[4] +
(__int128)a.n[2] * b.n[3] +
(__int128)a.n[3] * b.n[2] +
(__int128)a.n[4] * b.n[1];
uint64_t t5 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 22000000000002BE
c = c + (__int128)a.n[2] * b.n[4] +
(__int128)a.n[3] * b.n[3] +
(__int128)a.n[4] * b.n[2];
uint64_t t6 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 12000000000001DE
c = c + (__int128)a.n[3] * b.n[4] +
(__int128)a.n[4] * b.n[3];
uint64_t t7 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 02000000000000FE
c = c + (__int128)a.n[4] * b.n[4];
uint64_t t8 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 001000000000001E
uint64_t t9 = c;
c = t0 + (__int128)t5 * 0x1000003D10ULL;
t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
c = c + t1 + (__int128)t6 * 0x1000003D10ULL;
t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
c = c + t2 + (__int128)t7 * 0x1000003D10ULL;
n[2] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
c = c + t3 + (__int128)t8 * 0x1000003D10ULL;
n[3] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
c = c + t4 + (__int128)t9 * 0x1000003D10ULL;
n[4] = c & 0x0FFFFFFFFFFFFULL; c = c >> 48; // c max 000001000003D110
c = t0 + (__int128)c * 0x1000003D1ULL;
n[0] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 1000008
n[1] = t1 + c;
#ifdef VERIFY_MAGNITUDE
magnitude = 1;
#endif
}
/** Set this FieldElem to be the square of another. Magnitude=1 */
void SetSquare(const FieldElem &a) {
#ifdef VERIFY_MAGNITUDE
assert(a.magnitude <= 8);
#endif
__int128 c = (__int128)a.n[0] * a.n[0];
uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0FFFFFFFFFFFFFE0
c = c + (__int128)(a.n[0]*2) * a.n[1];
uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 20000000000000BF
c = c + (__int128)(a.n[0]*2) * a.n[2] +
(__int128)a.n[1] * a.n[1];
uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 30000000000001A0
c = c + (__int128)(a.n[0]*2) * a.n[3] +
(__int128)(a.n[1]*2) * a.n[2];
uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 4000000000000280
c = c + (__int128)(a.n[0]*2) * a.n[4] +
(__int128)(a.n[1]*2) * a.n[3] +
(__int128)a.n[2] * a.n[2];
uint64_t t4 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 320000000000037E
c = c + (__int128)(a.n[1]*2) * a.n[4] +
(__int128)(a.n[2]*2) * a.n[3];
uint64_t t5 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 22000000000002BE
c = c + (__int128)(a.n[2]*2) * a.n[4] +
(__int128)a.n[3] * a.n[3];
uint64_t t6 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 12000000000001DE
c = c + (__int128)(a.n[3]*2) * a.n[4];
uint64_t t7 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 02000000000000FE
c = c + (__int128)a.n[4] * a.n[4];
uint64_t t8 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 001000000000001E
uint64_t t9 = c;
c = t0 + (__int128)t5 * 0x1000003D10ULL;
t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
c = c + t1 + (__int128)t6 * 0x1000003D10ULL;
t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
c = c + t2 + (__int128)t7 * 0x1000003D10ULL;
n[2] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
c = c + t3 + (__int128)t8 * 0x1000003D10ULL;
n[3] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
c = c + t4 + (__int128)t9 * 0x1000003D10ULL;
n[4] = c & 0x0FFFFFFFFFFFFULL; c = c >> 48; // c max 000001000003D110
c = t0 + (__int128)c * 0x1000003D1ULL;
n[0] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 1000008
n[1] = t1 + c;
#ifdef VERIFY_MAGNITUDE
assert(a.magnitude <= 8);
#endif
}
/** Set this to be the (modular) square root of another FieldElem. Magnitude=1 */
void SetSquareRoot(const FieldElem &a) {
// calculate a^p, with p={15,780,1022,1023}
FieldElem a2; a2.SetSquare(a);
FieldElem a3; a3.SetMult(a2,a);
FieldElem a6; a6.SetSquare(a3);
FieldElem a12; a12.SetSquare(a6);
FieldElem a15; a15.SetMult(a12,a3);
FieldElem a30; a30.SetSquare(a15);
FieldElem a60; a60.SetSquare(a30);
FieldElem a120; a120.SetSquare(a60);
FieldElem a240; a240.SetSquare(a120);
FieldElem a255; a255.SetMult(a240,a15);
FieldElem a510; a510.SetSquare(a255);
FieldElem a750; a750.SetMult(a510,a240);
FieldElem a780; a780.SetMult(a750,a30);
FieldElem a1020; a1020.SetSquare(a510);
FieldElem a1022; a1022.SetMult(a1020,a2);
FieldElem a1023; a1023.SetMult(a1022,a);
FieldElem x = a15;
for (int i=0; i<21; i++) {
for (int j=0; j<10; j++) x.SetSquare(x);
x.SetMult(x,a1023);
}
for (int j=0; j<10; j++) x.SetSquare(x);
x.SetMult(x,a1022);
for (int i=0; i<2; i++) {
for (int j=0; j<10; j++) x.SetSquare(x);
x.SetMult(x,a1023);
}
for (int j=0; j<10; j++) x.SetSquare(x);
SetMult(x,a780);
}
bool IsOdd() {
Normalize();
return n[0] & 1;
}
/** Set this to be the (modular) inverse of another FieldElem. Magnitude=1 */
void SetInverse(const FieldElem &a) {
// calculate a^p, with p={45,63,1019,1023}
FieldElem a2; a2.SetSquare(a);
FieldElem a3; a3.SetMult(a2,a);
FieldElem a4; a4.SetSquare(a);
FieldElem a5; a5.SetMult(a4,a);
FieldElem a10; a10.SetSquare(a5);
FieldElem a11; a11.SetMult(a10,a);
FieldElem a21; a21.SetMult(a11,a10);
FieldElem a42; a42.SetSquare(a21);
FieldElem a45; a45.SetMult(a42,a3);
FieldElem a63; a63.SetMult(a42,a21);
FieldElem a126; a126.SetSquare(a63);
FieldElem a252; a252.SetSquare(a126);
FieldElem a504; a504.SetSquare(a252);
FieldElem a1008; a1008.SetSquare(a504);
FieldElem a1019; a1019.SetMult(a1008,a11);
FieldElem a1023; a1023.SetMult(a1019,a4);
FieldElem x = a63;
for (int i=0; i<21; i++) {
for (int j=0; j<10; j++) x.SetSquare(x);
x.SetMult(x,a1023);
}
for (int j=0; j<10; j++) x.SetSquare(x);
x.SetMult(x,a1019);
for (int i=0; i<2; i++) {
for (int j=0; j<10; j++) x.SetSquare(x);
x.SetMult(x,a1023);
}
for (int j=0; j<10; j++) x.SetSquare(x);
SetMult(x,a45);
}
std::string ToString() {
uint64_t tmp[4];
Get(tmp);
std::string ret;
for (int i=63; i>=0; i--) {
int val = (tmp[i/16] >> ((i%16)*4)) & 0xF;
static const char *c = "0123456789ABCDEF";
ret += c[val];
}
return ret;
}
void SetHex(const std::string &str) {
uint64_t tmp[4] = {0,0,0,0};
static const int cvt[256] = {0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 1, 2, 3, 4, 5, 6,7,8,9,0,0,0,0,0,0,
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0};
for (int i=0; i<64; i++) {
if (str.length() > (63-i))
tmp[i/16] |= (uint64_t)cvt[(unsigned char)str[63-i]] << ((i%16)*4);
}
Set(tmp);
}
};
template<typename F> class GroupElem {
private:
bool fInfinity;
F x;
F y;
F z;
public:
/** Creates the point at infinity */
GroupElem<F>() {
fInfinity = true;
}
/** Creates the point with given affine coordinates */
GroupElem<F>(const F &xin, const F &yin) {
fInfinity = false;
x = xin;
y = yin;
z = F(1);
}
/** Checks whether this is the point at infinity */
bool IsInfinity() const {
return fInfinity;
}
/** Checks whether this is a non-infinite point on the curve */
bool IsValid() {
if (IsInfinity())
return false;
// y^2 = x^3 + 7
// (Y/Z^3)^2 = (X/Z^2)^3 + 7
// Y^2 / Z^6 = X^3 / Z^6 + 7
// Y^2 = X^3 + 7*Z^6
F y2; y2.SetSquare(y);
F x3; x3.SetSquare(x); x3.SetMult(x3,x);
F z2; z2.SetSquare(z);
F z6; z6.SetSquare(z2); z6.SetMult(z6,z2);
z6 *= 7;
x3 += z6;
return y2 == x3;
}
/** Returns the affine coordinates of this point */
void GetAffine(F &xout, F &yout) {
z.SetInverse(z);
F z2;
z2.SetSquare(z);
F z3;
z3.SetMult(z,z2);
x.SetMult(x,z2);
y.SetMult(y,z3);
z = F(1);
xout = x;
yout = y;
}
/** Sets this point to have a given X coordinate & given Y oddness */
void SetCompressed(const F &xin, bool fOdd) {
x = xin;
F x2; x2.SetSquare(x);
F x3; x3.SetMult(x,x2);
fInfinity = false;
F c(7);
c += x3;
y.SetSquareRoot(c);
z = F(1);
if (y.IsOdd() != fOdd)
y.SetNeg(y,1);
}
/** Sets this point to be the EC double of another */
void SetDouble(const GroupElem<F> &p) {
if (p.fInfinity || y.IsZero()) {
fInfinity = true;
return;
}
F t1,t2,t3,t4,t5;
z.SetMult(p.y,p.z);
z *= 2; // Z' = 2*Y*Z (2)
t1.SetSquare(p.x);
t1 *= 3; // T1 = 3*X^2 (3)
t2.SetSquare(t1); // T2 = 9*X^4 (1)
t3.SetSquare(y);
t3 *= 2; // T3 = 2*Y^2 (2)
t4.SetSquare(t3);
t4 *= 2; // T4 = 8*Y^4 (2)
t3.SetMult(x,t3); // T3 = 2*X*Y^2 (1)
x = t3;
x *= 4; // X' = 8*X*Y^2 (4)
x.SetNeg(x,4); // X' = -8*X*Y^2 (5)
x += t2; // X' = 9*X^4 - 8*X*Y^2 (6)
t2.SetNeg(t2,1); // T2 = -9*X^4 (2)
t3 *= 6; // T3 = 12*X*Y^2 (6)
t3 += t2; // T3 = 12*X*Y^2 - 9*X^4 (8)
y.SetMult(t1,t3); // Y' = 36*X^3*Y^2 - 27*X^6 (1)
t2.SetNeg(t4,2); // T2 = -8*Y^4 (3)
y += t2; // Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4)
}
/** Sets this point to be the EC addition of two others */
void SetAdd(const GroupElem<F> &p, const GroupElem<F> &q) {
if (p.fInfinity) {
*this = q;
return;
}
if (q.fInfinity) {
*this = p;
return;
}
fInfinity = false;
const F &x1 = p.x, &y1 = p.y, &z1 = p.z, &x2 = q.x, &y2 = q.y, &z2 = q.z;
F z22; z22.SetSquare(z2);
F z12; z12.SetSquare(z1);
F u1; u1.SetMult(x1, z22);
F u2; u2.SetMult(x2, z12);
F s1; s1.SetMult(y1, z22); s1.SetMult(s1, z2);
F s2; s2.SetMult(y2, z12); s2.SetMult(s2, z1);
if (u1 == u2) {
if (s1 == s2) {
SetDouble(p);
} else {
fInfinity = true;
}
return;
}
F h; h.SetNeg(u1,1); h += u2;
F r; r.SetNeg(s1,1); r += s2;
F r2; r2.SetSquare(r);
F h2; h2.SetSquare(h);
F h3; h3.SetMult(h,h2);
z.SetMult(p.z,q.z); z.SetMult(z, h);
F t; t.SetMult(u1,h2);
x = t; x *= 2; x += h3; x.SetNeg(x,3); x += r2;
y.SetNeg(x,5); y += t; y.SetMult(y,r);
h3.SetMult(h3,s1); h3.SetNeg(h3,1);
y += h3;
}
std::string ToString() {
F xt,yt;
if (fInfinity)
return "(inf)";
GetAffine(xt,yt);
return "(" + xt.ToString() + "," + yt.ToString() + ")";
}
};
}
using namespace secp256k1;
int main() {
FieldElem f1,f2;
f1.SetHex("8b30bbe9ae2a990696b22f670709dff3727fd8bc04d3362c6c7bf458e2846004");
// f2.SetHex("a357ae915c4a65281309edf20504740f0eb3343990216b4f81063cb65f2f7e0f");
GroupElem<FieldElem> g1;
printf("%s\n", g1.ToString().c_str());
GroupElem<FieldElem> p = g1;
GroupElem<FieldElem> q = p;
//printf("ok %i\n", (int)p.IsValid());
p.SetCompressed(f1,false);
printf("ok %i\n", (int)p.IsValid());
printf("%s\n", p.ToString().c_str());
p.SetCompressed(f1,true);
printf("ok %i\n", (int)p.IsValid());
printf("%s\n", p.ToString().c_str());
return 0;
}