bitcoin/src/test/fuzz/txrequest.cpp
2020-10-12 12:14:53 -07:00

374 lines
14 KiB
C++

// Copyright (c) 2020 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <crypto/common.h>
#include <crypto/sha256.h>
#include <crypto/siphash.h>
#include <primitives/transaction.h>
#include <test/fuzz/fuzz.h>
#include <txrequest.h>
#include <bitset>
#include <cstdint>
#include <queue>
#include <vector>
namespace {
constexpr int MAX_TXHASHES = 16;
constexpr int MAX_PEERS = 16;
//! Randomly generated GenTxids used in this test (length is MAX_TXHASHES).
uint256 TXHASHES[MAX_TXHASHES];
//! Precomputed random durations (positive and negative, each ~exponentially distributed).
std::chrono::microseconds DELAYS[256];
struct Initializer
{
Initializer()
{
for (uint8_t txhash = 0; txhash < MAX_TXHASHES; txhash += 1) {
CSHA256().Write(&txhash, 1).Finalize(TXHASHES[txhash].begin());
}
int i = 0;
// DELAYS[N] for N=0..15 is just N microseconds.
for (; i < 16; ++i) {
DELAYS[i] = std::chrono::microseconds{i};
}
// DELAYS[N] for N=16..127 has randomly-looking but roughly exponentially increasing values up to
// 198.416453 seconds.
for (; i < 128; ++i) {
int diff_bits = ((i - 10) * 2) / 9;
uint64_t diff = 1 + (CSipHasher(0, 0).Write(i).Finalize() >> (64 - diff_bits));
DELAYS[i] = DELAYS[i - 1] + std::chrono::microseconds{diff};
}
// DELAYS[N] for N=128..255 are negative delays with the same magnitude as N=0..127.
for (; i < 256; ++i) {
DELAYS[i] = -DELAYS[255 - i];
}
}
} g_initializer;
/** Tester class for TxRequestTracker
*
* It includes a naive reimplementation of its behavior, for a limited set
* of MAX_TXHASHES distinct txids, and MAX_PEERS peer identifiers.
*
* All of the public member functions perform the same operation on
* an actual TxRequestTracker and on the state of the reimplementation.
* The output of GetRequestable is compared with the expected value
* as well.
*
* Check() calls the TxRequestTracker's sanity check, plus compares the
* output of the constant accessors (Size(), CountLoad(), CountTracked())
* with expected values.
*/
class Tester
{
//! TxRequestTracker object being tested.
TxRequestTracker m_tracker;
//! States for txid/peer combinations in the naive data structure.
enum class State {
NOTHING, //!< Absence of this txid/peer combination
// Note that this implementation does not distinguish between DELAYED/READY/BEST variants of CANDIDATE.
CANDIDATE,
REQUESTED,
COMPLETED,
};
//! Sequence numbers, incremented whenever a new CANDIDATE is added.
uint64_t m_current_sequence{0};
//! List of future 'events' (all inserted reqtimes/exptimes). This is used to implement AdvanceToEvent.
std::priority_queue<std::chrono::microseconds, std::vector<std::chrono::microseconds>,
std::greater<std::chrono::microseconds>> m_events;
//! Information about a txhash/peer combination.
struct Announcement
{
std::chrono::microseconds m_time;
uint64_t m_sequence;
State m_state{State::NOTHING};
bool m_preferred;
bool m_is_wtxid;
uint64_t m_priority; //!< Precomputed priority.
};
//! Information about all txhash/peer combination.
Announcement m_announcements[MAX_TXHASHES][MAX_PEERS];
//! The current time; can move forward and backward.
std::chrono::microseconds m_now{244466666};
//! Delete txhashes whose only announcements are COMPLETED.
void Cleanup(int txhash)
{
bool all_nothing = true;
for (int peer = 0; peer < MAX_PEERS; ++peer) {
const Announcement& ann = m_announcements[txhash][peer];
if (ann.m_state != State::NOTHING) {
if (ann.m_state != State::COMPLETED) return;
all_nothing = false;
}
}
if (all_nothing) return;
for (int peer = 0; peer < MAX_PEERS; ++peer) {
m_announcements[txhash][peer].m_state = State::NOTHING;
}
}
//! Find the current best peer to request from for a txhash (or -1 if none).
int GetSelected(int txhash) const
{
int ret = -1;
uint64_t ret_priority = 0;
for (int peer = 0; peer < MAX_PEERS; ++peer) {
const Announcement& ann = m_announcements[txhash][peer];
// Return -1 if there already is a (non-expired) in-flight request.
if (ann.m_state == State::REQUESTED) return -1;
// If it's a viable candidate, see if it has lower priority than the best one so far.
if (ann.m_state == State::CANDIDATE && ann.m_time <= m_now) {
if (ret == -1 || ann.m_priority > ret_priority) {
std::tie(ret, ret_priority) = std::tie(peer, ann.m_priority);
}
}
}
return ret;
}
public:
Tester() : m_tracker(true) {}
std::chrono::microseconds Now() const { return m_now; }
void AdvanceTime(std::chrono::microseconds offset)
{
m_now += offset;
while (!m_events.empty() && m_events.top() <= m_now) m_events.pop();
}
void AdvanceToEvent()
{
while (!m_events.empty() && m_events.top() <= m_now) m_events.pop();
if (!m_events.empty()) {
m_now = m_events.top();
m_events.pop();
}
}
void DisconnectedPeer(int peer)
{
// Apply to naive structure: all announcements for that peer are wiped.
for (int txhash = 0; txhash < MAX_TXHASHES; ++txhash) {
if (m_announcements[txhash][peer].m_state != State::NOTHING) {
m_announcements[txhash][peer].m_state = State::NOTHING;
Cleanup(txhash);
}
}
// Call TxRequestTracker's implementation.
m_tracker.DisconnectedPeer(peer);
}
void ForgetTxHash(int txhash)
{
// Apply to naive structure: all announcements for that txhash are wiped.
for (int peer = 0; peer < MAX_PEERS; ++peer) {
m_announcements[txhash][peer].m_state = State::NOTHING;
}
Cleanup(txhash);
// Call TxRequestTracker's implementation.
m_tracker.ForgetTxHash(TXHASHES[txhash]);
}
void ReceivedInv(int peer, int txhash, bool is_wtxid, bool preferred, std::chrono::microseconds reqtime)
{
// Apply to naive structure: if no announcement for txidnum/peer combination
// already, create a new CANDIDATE; otherwise do nothing.
Announcement& ann = m_announcements[txhash][peer];
if (ann.m_state == State::NOTHING) {
ann.m_preferred = preferred;
ann.m_state = State::CANDIDATE;
ann.m_time = reqtime;
ann.m_is_wtxid = is_wtxid;
ann.m_sequence = m_current_sequence++;
ann.m_priority = m_tracker.ComputePriority(TXHASHES[txhash], peer, ann.m_preferred);
// Add event so that AdvanceToEvent can quickly jump to the point where its reqtime passes.
if (reqtime > m_now) m_events.push(reqtime);
}
// Call TxRequestTracker's implementation.
m_tracker.ReceivedInv(peer, GenTxid{is_wtxid, TXHASHES[txhash]}, preferred, reqtime);
}
void RequestedTx(int peer, int txhash, std::chrono::microseconds exptime)
{
// Apply to naive structure: if a CANDIDATE announcement exists for peer/txhash,
// convert it to REQUESTED, and change any existing REQUESTED announcement for the same txhash to COMPLETED.
if (m_announcements[txhash][peer].m_state == State::CANDIDATE) {
for (int peer2 = 0; peer2 < MAX_PEERS; ++peer2) {
if (m_announcements[txhash][peer2].m_state == State::REQUESTED) {
m_announcements[txhash][peer2].m_state = State::COMPLETED;
}
}
m_announcements[txhash][peer].m_state = State::REQUESTED;
m_announcements[txhash][peer].m_time = exptime;
}
// Add event so that AdvanceToEvent can quickly jump to the point where its exptime passes.
if (exptime > m_now) m_events.push(exptime);
// Call TxRequestTracker's implementation.
m_tracker.RequestedTx(peer, TXHASHES[txhash], exptime);
}
void ReceivedResponse(int peer, int txhash)
{
// Apply to naive structure: convert anything to COMPLETED.
if (m_announcements[txhash][peer].m_state != State::NOTHING) {
m_announcements[txhash][peer].m_state = State::COMPLETED;
Cleanup(txhash);
}
// Call TxRequestTracker's implementation.
m_tracker.ReceivedResponse(peer, TXHASHES[txhash]);
}
void GetRequestable(int peer)
{
// Implement using naive structure:
//! list of (sequence number, txhash, is_wtxid) tuples.
std::vector<std::tuple<uint64_t, int, bool>> result;
std::vector<std::pair<NodeId, GenTxid>> expected_expired;
for (int txhash = 0; txhash < MAX_TXHASHES; ++txhash) {
// Mark any expired REQUESTED announcements as COMPLETED.
for (int peer2 = 0; peer2 < MAX_PEERS; ++peer2) {
Announcement& ann2 = m_announcements[txhash][peer2];
if (ann2.m_state == State::REQUESTED && ann2.m_time <= m_now) {
expected_expired.emplace_back(peer2, GenTxid{ann2.m_is_wtxid, TXHASHES[txhash]});
ann2.m_state = State::COMPLETED;
break;
}
}
// And delete txids with only COMPLETED announcements left.
Cleanup(txhash);
// CANDIDATEs for which this announcement has the highest priority get returned.
const Announcement& ann = m_announcements[txhash][peer];
if (ann.m_state == State::CANDIDATE && GetSelected(txhash) == peer) {
result.emplace_back(ann.m_sequence, txhash, ann.m_is_wtxid);
}
}
// Sort the results by sequence number.
std::sort(result.begin(), result.end());
std::sort(expected_expired.begin(), expected_expired.end());
// Compare with TxRequestTracker's implementation.
std::vector<std::pair<NodeId, GenTxid>> expired;
const auto actual = m_tracker.GetRequestable(peer, m_now, &expired);
std::sort(expired.begin(), expired.end());
assert(expired == expected_expired);
m_tracker.PostGetRequestableSanityCheck(m_now);
assert(result.size() == actual.size());
for (size_t pos = 0; pos < actual.size(); ++pos) {
assert(TXHASHES[std::get<1>(result[pos])] == actual[pos].GetHash());
assert(std::get<2>(result[pos]) == actual[pos].IsWtxid());
}
}
void Check()
{
// Compare CountTracked and CountLoad with naive structure.
size_t total = 0;
for (int peer = 0; peer < MAX_PEERS; ++peer) {
size_t tracked = 0;
size_t inflight = 0;
size_t candidates = 0;
for (int txhash = 0; txhash < MAX_TXHASHES; ++txhash) {
tracked += m_announcements[txhash][peer].m_state != State::NOTHING;
inflight += m_announcements[txhash][peer].m_state == State::REQUESTED;
candidates += m_announcements[txhash][peer].m_state == State::CANDIDATE;
}
assert(m_tracker.Count(peer) == tracked);
assert(m_tracker.CountInFlight(peer) == inflight);
assert(m_tracker.CountCandidates(peer) == candidates);
total += tracked;
}
// Compare Size.
assert(m_tracker.Size() == total);
// Invoke internal consistency check of TxRequestTracker object.
m_tracker.SanityCheck();
}
};
} // namespace
void test_one_input(const std::vector<uint8_t>& buffer)
{
// Tester object (which encapsulates a TxRequestTracker).
Tester tester;
// Decode the input as a sequence of instructions with parameters
auto it = buffer.begin();
while (it != buffer.end()) {
int cmd = *(it++) % 11;
int peer, txidnum, delaynum;
switch (cmd) {
case 0: // Make time jump to the next event (m_time of CANDIDATE or REQUESTED)
tester.AdvanceToEvent();
break;
case 1: // Change time
delaynum = it == buffer.end() ? 0 : *(it++);
tester.AdvanceTime(DELAYS[delaynum]);
break;
case 2: // Query for requestable txs
peer = it == buffer.end() ? 0 : *(it++) % MAX_PEERS;
tester.GetRequestable(peer);
break;
case 3: // Peer went offline
peer = it == buffer.end() ? 0 : *(it++) % MAX_PEERS;
tester.DisconnectedPeer(peer);
break;
case 4: // No longer need tx
txidnum = it == buffer.end() ? 0 : *(it++);
tester.ForgetTxHash(txidnum % MAX_TXHASHES);
break;
case 5: // Received immediate preferred inv
case 6: // Same, but non-preferred.
peer = it == buffer.end() ? 0 : *(it++) % MAX_PEERS;
txidnum = it == buffer.end() ? 0 : *(it++);
tester.ReceivedInv(peer, txidnum % MAX_TXHASHES, (txidnum / MAX_TXHASHES) & 1, cmd & 1,
std::chrono::microseconds::min());
break;
case 7: // Received delayed preferred inv
case 8: // Same, but non-preferred.
peer = it == buffer.end() ? 0 : *(it++) % MAX_PEERS;
txidnum = it == buffer.end() ? 0 : *(it++);
delaynum = it == buffer.end() ? 0 : *(it++);
tester.ReceivedInv(peer, txidnum % MAX_TXHASHES, (txidnum / MAX_TXHASHES) & 1, cmd & 1,
tester.Now() + DELAYS[delaynum]);
break;
case 9: // Requested tx from peer
peer = it == buffer.end() ? 0 : *(it++) % MAX_PEERS;
txidnum = it == buffer.end() ? 0 : *(it++);
delaynum = it == buffer.end() ? 0 : *(it++);
tester.RequestedTx(peer, txidnum % MAX_TXHASHES, tester.Now() + DELAYS[delaynum]);
break;
case 10: // Received response
peer = it == buffer.end() ? 0 : *(it++) % MAX_PEERS;
txidnum = it == buffer.end() ? 0 : *(it++);
tester.ReceivedResponse(peer, txidnum % MAX_TXHASHES);
break;
default:
assert(false);
}
}
tester.Check();
}