mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-12 04:42:36 -03:00
180 lines
6.7 KiB
C++
180 lines
6.7 KiB
C++
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
|
// Copyright (c) 2009-2019 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include <merkleblock.h>
|
|
|
|
#include <hash.h>
|
|
#include <consensus/consensus.h>
|
|
|
|
|
|
std::vector<unsigned char> BitsToBytes(const std::vector<bool>& bits)
|
|
{
|
|
std::vector<unsigned char> ret((bits.size() + 7) / 8);
|
|
for (unsigned int p = 0; p < bits.size(); p++) {
|
|
ret[p / 8] |= bits[p] << (p % 8);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
std::vector<bool> BytesToBits(const std::vector<unsigned char>& bytes)
|
|
{
|
|
std::vector<bool> ret(bytes.size() * 8);
|
|
for (unsigned int p = 0; p < ret.size(); p++) {
|
|
ret[p] = (bytes[p / 8] & (1 << (p % 8))) != 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
CMerkleBlock::CMerkleBlock(const CBlock& block, CBloomFilter* filter, const std::set<uint256>* txids)
|
|
{
|
|
header = block.GetBlockHeader();
|
|
|
|
std::vector<bool> vMatch;
|
|
std::vector<uint256> vHashes;
|
|
|
|
vMatch.reserve(block.vtx.size());
|
|
vHashes.reserve(block.vtx.size());
|
|
|
|
for (unsigned int i = 0; i < block.vtx.size(); i++)
|
|
{
|
|
const uint256& hash = block.vtx[i]->GetHash();
|
|
if (txids && txids->count(hash)) {
|
|
vMatch.push_back(true);
|
|
} else if (filter && filter->IsRelevantAndUpdate(*block.vtx[i])) {
|
|
vMatch.push_back(true);
|
|
vMatchedTxn.emplace_back(i, hash);
|
|
} else {
|
|
vMatch.push_back(false);
|
|
}
|
|
vHashes.push_back(hash);
|
|
}
|
|
|
|
txn = CPartialMerkleTree(vHashes, vMatch);
|
|
}
|
|
|
|
uint256 CPartialMerkleTree::CalcHash(int height, unsigned int pos, const std::vector<uint256> &vTxid) {
|
|
//we can never have zero txs in a merkle block, we always need the coinbase tx
|
|
//if we do not have this assert, we can hit a memory access violation when indexing into vTxid
|
|
assert(vTxid.size() != 0);
|
|
if (height == 0) {
|
|
// hash at height 0 is the txids themself
|
|
return vTxid[pos];
|
|
} else {
|
|
// calculate left hash
|
|
uint256 left = CalcHash(height-1, pos*2, vTxid), right;
|
|
// calculate right hash if not beyond the end of the array - copy left hash otherwise
|
|
if (pos*2+1 < CalcTreeWidth(height-1))
|
|
right = CalcHash(height-1, pos*2+1, vTxid);
|
|
else
|
|
right = left;
|
|
// combine subhashes
|
|
return Hash(left.begin(), left.end(), right.begin(), right.end());
|
|
}
|
|
}
|
|
|
|
void CPartialMerkleTree::TraverseAndBuild(int height, unsigned int pos, const std::vector<uint256> &vTxid, const std::vector<bool> &vMatch) {
|
|
// determine whether this node is the parent of at least one matched txid
|
|
bool fParentOfMatch = false;
|
|
for (unsigned int p = pos << height; p < (pos+1) << height && p < nTransactions; p++)
|
|
fParentOfMatch |= vMatch[p];
|
|
// store as flag bit
|
|
vBits.push_back(fParentOfMatch);
|
|
if (height==0 || !fParentOfMatch) {
|
|
// if at height 0, or nothing interesting below, store hash and stop
|
|
vHash.push_back(CalcHash(height, pos, vTxid));
|
|
} else {
|
|
// otherwise, don't store any hash, but descend into the subtrees
|
|
TraverseAndBuild(height-1, pos*2, vTxid, vMatch);
|
|
if (pos*2+1 < CalcTreeWidth(height-1))
|
|
TraverseAndBuild(height-1, pos*2+1, vTxid, vMatch);
|
|
}
|
|
}
|
|
|
|
uint256 CPartialMerkleTree::TraverseAndExtract(int height, unsigned int pos, unsigned int &nBitsUsed, unsigned int &nHashUsed, std::vector<uint256> &vMatch, std::vector<unsigned int> &vnIndex) {
|
|
if (nBitsUsed >= vBits.size()) {
|
|
// overflowed the bits array - failure
|
|
fBad = true;
|
|
return uint256();
|
|
}
|
|
bool fParentOfMatch = vBits[nBitsUsed++];
|
|
if (height==0 || !fParentOfMatch) {
|
|
// if at height 0, or nothing interesting below, use stored hash and do not descend
|
|
if (nHashUsed >= vHash.size()) {
|
|
// overflowed the hash array - failure
|
|
fBad = true;
|
|
return uint256();
|
|
}
|
|
const uint256 &hash = vHash[nHashUsed++];
|
|
if (height==0 && fParentOfMatch) { // in case of height 0, we have a matched txid
|
|
vMatch.push_back(hash);
|
|
vnIndex.push_back(pos);
|
|
}
|
|
return hash;
|
|
} else {
|
|
// otherwise, descend into the subtrees to extract matched txids and hashes
|
|
uint256 left = TraverseAndExtract(height-1, pos*2, nBitsUsed, nHashUsed, vMatch, vnIndex), right;
|
|
if (pos*2+1 < CalcTreeWidth(height-1)) {
|
|
right = TraverseAndExtract(height-1, pos*2+1, nBitsUsed, nHashUsed, vMatch, vnIndex);
|
|
if (right == left) {
|
|
// The left and right branches should never be identical, as the transaction
|
|
// hashes covered by them must each be unique.
|
|
fBad = true;
|
|
}
|
|
} else {
|
|
right = left;
|
|
}
|
|
// and combine them before returning
|
|
return Hash(left.begin(), left.end(), right.begin(), right.end());
|
|
}
|
|
}
|
|
|
|
CPartialMerkleTree::CPartialMerkleTree(const std::vector<uint256> &vTxid, const std::vector<bool> &vMatch) : nTransactions(vTxid.size()), fBad(false) {
|
|
// reset state
|
|
vBits.clear();
|
|
vHash.clear();
|
|
|
|
// calculate height of tree
|
|
int nHeight = 0;
|
|
while (CalcTreeWidth(nHeight) > 1)
|
|
nHeight++;
|
|
|
|
// traverse the partial tree
|
|
TraverseAndBuild(nHeight, 0, vTxid, vMatch);
|
|
}
|
|
|
|
CPartialMerkleTree::CPartialMerkleTree() : nTransactions(0), fBad(true) {}
|
|
|
|
uint256 CPartialMerkleTree::ExtractMatches(std::vector<uint256> &vMatch, std::vector<unsigned int> &vnIndex) {
|
|
vMatch.clear();
|
|
// An empty set will not work
|
|
if (nTransactions == 0)
|
|
return uint256();
|
|
// check for excessively high numbers of transactions
|
|
if (nTransactions > MAX_BLOCK_WEIGHT / MIN_TRANSACTION_WEIGHT)
|
|
return uint256();
|
|
// there can never be more hashes provided than one for every txid
|
|
if (vHash.size() > nTransactions)
|
|
return uint256();
|
|
// there must be at least one bit per node in the partial tree, and at least one node per hash
|
|
if (vBits.size() < vHash.size())
|
|
return uint256();
|
|
// calculate height of tree
|
|
int nHeight = 0;
|
|
while (CalcTreeWidth(nHeight) > 1)
|
|
nHeight++;
|
|
// traverse the partial tree
|
|
unsigned int nBitsUsed = 0, nHashUsed = 0;
|
|
uint256 hashMerkleRoot = TraverseAndExtract(nHeight, 0, nBitsUsed, nHashUsed, vMatch, vnIndex);
|
|
// verify that no problems occurred during the tree traversal
|
|
if (fBad)
|
|
return uint256();
|
|
// verify that all bits were consumed (except for the padding caused by serializing it as a byte sequence)
|
|
if ((nBitsUsed+7)/8 != (vBits.size()+7)/8)
|
|
return uint256();
|
|
// verify that all hashes were consumed
|
|
if (nHashUsed != vHash.size())
|
|
return uint256();
|
|
return hashMerkleRoot;
|
|
}
|