bitcoin/src/wallet/wallet.cpp
Karl-Johan Alm 6d3568371e
wallet: Switch to using ancestor/descendant limits
Instead of combining the -limitancestorcount and -limitdescendantcount into a nMaxChainLength, this commit uses each one separately in the coin eligibility filters.
2018-06-11 19:04:56 +09:00

4539 lines
162 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2017 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <wallet/wallet.h>
#include <checkpoints.h>
#include <chain.h>
#include <wallet/coincontrol.h>
#include <consensus/consensus.h>
#include <consensus/validation.h>
#include <fs.h>
#include <init.h>
#include <key.h>
#include <key_io.h>
#include <keystore.h>
#include <validation.h>
#include <net.h>
#include <policy/fees.h>
#include <policy/policy.h>
#include <policy/rbf.h>
#include <primitives/block.h>
#include <primitives/transaction.h>
#include <script/script.h>
#include <timedata.h>
#include <txmempool.h>
#include <utilmoneystr.h>
#include <wallet/fees.h>
#include <wallet/walletutil.h>
#include <algorithm>
#include <assert.h>
#include <future>
#include <boost/algorithm/string/replace.hpp>
static CCriticalSection cs_wallets;
static std::vector<std::shared_ptr<CWallet>> vpwallets GUARDED_BY(cs_wallets);
bool AddWallet(const std::shared_ptr<CWallet>& wallet)
{
LOCK(cs_wallets);
assert(wallet);
std::vector<std::shared_ptr<CWallet>>::const_iterator i = std::find(vpwallets.begin(), vpwallets.end(), wallet);
if (i != vpwallets.end()) return false;
vpwallets.push_back(wallet);
return true;
}
bool RemoveWallet(const std::shared_ptr<CWallet>& wallet)
{
LOCK(cs_wallets);
assert(wallet);
std::vector<std::shared_ptr<CWallet>>::iterator i = std::find(vpwallets.begin(), vpwallets.end(), wallet);
if (i == vpwallets.end()) return false;
vpwallets.erase(i);
return true;
}
bool HasWallets()
{
LOCK(cs_wallets);
return !vpwallets.empty();
}
std::vector<std::shared_ptr<CWallet>> GetWallets()
{
LOCK(cs_wallets);
return vpwallets;
}
std::shared_ptr<CWallet> GetWallet(const std::string& name)
{
LOCK(cs_wallets);
for (const std::shared_ptr<CWallet>& wallet : vpwallets) {
if (wallet->GetName() == name) return wallet;
}
return nullptr;
}
const uint32_t BIP32_HARDENED_KEY_LIMIT = 0x80000000;
const uint256 CMerkleTx::ABANDON_HASH(uint256S("0000000000000000000000000000000000000000000000000000000000000001"));
/** @defgroup mapWallet
*
* @{
*/
std::string COutput::ToString() const
{
return strprintf("COutput(%s, %d, %d) [%s]", tx->GetHash().ToString(), i, nDepth, FormatMoney(tx->tx->vout[i].nValue));
}
class CAffectedKeysVisitor : public boost::static_visitor<void> {
private:
const CKeyStore &keystore;
std::vector<CKeyID> &vKeys;
public:
CAffectedKeysVisitor(const CKeyStore &keystoreIn, std::vector<CKeyID> &vKeysIn) : keystore(keystoreIn), vKeys(vKeysIn) {}
void Process(const CScript &script) {
txnouttype type;
std::vector<CTxDestination> vDest;
int nRequired;
if (ExtractDestinations(script, type, vDest, nRequired)) {
for (const CTxDestination &dest : vDest)
boost::apply_visitor(*this, dest);
}
}
void operator()(const CKeyID &keyId) {
if (keystore.HaveKey(keyId))
vKeys.push_back(keyId);
}
void operator()(const CScriptID &scriptId) {
CScript script;
if (keystore.GetCScript(scriptId, script))
Process(script);
}
void operator()(const WitnessV0ScriptHash& scriptID)
{
CScriptID id;
CRIPEMD160().Write(scriptID.begin(), 32).Finalize(id.begin());
CScript script;
if (keystore.GetCScript(id, script)) {
Process(script);
}
}
void operator()(const WitnessV0KeyHash& keyid)
{
CKeyID id(keyid);
if (keystore.HaveKey(id)) {
vKeys.push_back(id);
}
}
template<typename X>
void operator()(const X &none) {}
};
const CWalletTx* CWallet::GetWalletTx(const uint256& hash) const
{
LOCK(cs_wallet);
std::map<uint256, CWalletTx>::const_iterator it = mapWallet.find(hash);
if (it == mapWallet.end())
return nullptr;
return &(it->second);
}
CPubKey CWallet::GenerateNewKey(WalletBatch &batch, bool internal)
{
AssertLockHeld(cs_wallet); // mapKeyMetadata
bool fCompressed = CanSupportFeature(FEATURE_COMPRPUBKEY); // default to compressed public keys if we want 0.6.0 wallets
CKey secret;
// Create new metadata
int64_t nCreationTime = GetTime();
CKeyMetadata metadata(nCreationTime);
// use HD key derivation if HD was enabled during wallet creation
if (IsHDEnabled()) {
DeriveNewChildKey(batch, metadata, secret, (CanSupportFeature(FEATURE_HD_SPLIT) ? internal : false));
} else {
secret.MakeNewKey(fCompressed);
}
// Compressed public keys were introduced in version 0.6.0
if (fCompressed) {
SetMinVersion(FEATURE_COMPRPUBKEY);
}
CPubKey pubkey = secret.GetPubKey();
assert(secret.VerifyPubKey(pubkey));
mapKeyMetadata[pubkey.GetID()] = metadata;
UpdateTimeFirstKey(nCreationTime);
if (!AddKeyPubKeyWithDB(batch, secret, pubkey)) {
throw std::runtime_error(std::string(__func__) + ": AddKey failed");
}
return pubkey;
}
void CWallet::DeriveNewChildKey(WalletBatch &batch, CKeyMetadata& metadata, CKey& secret, bool internal)
{
// for now we use a fixed keypath scheme of m/0'/0'/k
CKey seed; //seed (256bit)
CExtKey masterKey; //hd master key
CExtKey accountKey; //key at m/0'
CExtKey chainChildKey; //key at m/0'/0' (external) or m/0'/1' (internal)
CExtKey childKey; //key at m/0'/0'/<n>'
// try to get the seed
if (!GetKey(hdChain.seed_id, seed))
throw std::runtime_error(std::string(__func__) + ": seed not found");
masterKey.SetSeed(seed.begin(), seed.size());
// derive m/0'
// use hardened derivation (child keys >= 0x80000000 are hardened after bip32)
masterKey.Derive(accountKey, BIP32_HARDENED_KEY_LIMIT);
// derive m/0'/0' (external chain) OR m/0'/1' (internal chain)
assert(internal ? CanSupportFeature(FEATURE_HD_SPLIT) : true);
accountKey.Derive(chainChildKey, BIP32_HARDENED_KEY_LIMIT+(internal ? 1 : 0));
// derive child key at next index, skip keys already known to the wallet
do {
// always derive hardened keys
// childIndex | BIP32_HARDENED_KEY_LIMIT = derive childIndex in hardened child-index-range
// example: 1 | BIP32_HARDENED_KEY_LIMIT == 0x80000001 == 2147483649
if (internal) {
chainChildKey.Derive(childKey, hdChain.nInternalChainCounter | BIP32_HARDENED_KEY_LIMIT);
metadata.hdKeypath = "m/0'/1'/" + std::to_string(hdChain.nInternalChainCounter) + "'";
hdChain.nInternalChainCounter++;
}
else {
chainChildKey.Derive(childKey, hdChain.nExternalChainCounter | BIP32_HARDENED_KEY_LIMIT);
metadata.hdKeypath = "m/0'/0'/" + std::to_string(hdChain.nExternalChainCounter) + "'";
hdChain.nExternalChainCounter++;
}
} while (HaveKey(childKey.key.GetPubKey().GetID()));
secret = childKey.key;
metadata.hd_seed_id = hdChain.seed_id;
// update the chain model in the database
if (!batch.WriteHDChain(hdChain))
throw std::runtime_error(std::string(__func__) + ": Writing HD chain model failed");
}
bool CWallet::AddKeyPubKeyWithDB(WalletBatch &batch, const CKey& secret, const CPubKey &pubkey)
{
AssertLockHeld(cs_wallet); // mapKeyMetadata
// CCryptoKeyStore has no concept of wallet databases, but calls AddCryptedKey
// which is overridden below. To avoid flushes, the database handle is
// tunneled through to it.
bool needsDB = !encrypted_batch;
if (needsDB) {
encrypted_batch = &batch;
}
if (!CCryptoKeyStore::AddKeyPubKey(secret, pubkey)) {
if (needsDB) encrypted_batch = nullptr;
return false;
}
if (needsDB) encrypted_batch = nullptr;
// check if we need to remove from watch-only
CScript script;
script = GetScriptForDestination(pubkey.GetID());
if (HaveWatchOnly(script)) {
RemoveWatchOnly(script);
}
script = GetScriptForRawPubKey(pubkey);
if (HaveWatchOnly(script)) {
RemoveWatchOnly(script);
}
if (!IsCrypted()) {
return batch.WriteKey(pubkey,
secret.GetPrivKey(),
mapKeyMetadata[pubkey.GetID()]);
}
return true;
}
bool CWallet::AddKeyPubKey(const CKey& secret, const CPubKey &pubkey)
{
WalletBatch batch(*database);
return CWallet::AddKeyPubKeyWithDB(batch, secret, pubkey);
}
bool CWallet::AddCryptedKey(const CPubKey &vchPubKey,
const std::vector<unsigned char> &vchCryptedSecret)
{
if (!CCryptoKeyStore::AddCryptedKey(vchPubKey, vchCryptedSecret))
return false;
{
LOCK(cs_wallet);
if (encrypted_batch)
return encrypted_batch->WriteCryptedKey(vchPubKey,
vchCryptedSecret,
mapKeyMetadata[vchPubKey.GetID()]);
else
return WalletBatch(*database).WriteCryptedKey(vchPubKey,
vchCryptedSecret,
mapKeyMetadata[vchPubKey.GetID()]);
}
}
bool CWallet::LoadKeyMetadata(const CKeyID& keyID, const CKeyMetadata &meta)
{
AssertLockHeld(cs_wallet); // mapKeyMetadata
UpdateTimeFirstKey(meta.nCreateTime);
mapKeyMetadata[keyID] = meta;
return true;
}
bool CWallet::LoadScriptMetadata(const CScriptID& script_id, const CKeyMetadata &meta)
{
AssertLockHeld(cs_wallet); // m_script_metadata
UpdateTimeFirstKey(meta.nCreateTime);
m_script_metadata[script_id] = meta;
return true;
}
bool CWallet::LoadCryptedKey(const CPubKey &vchPubKey, const std::vector<unsigned char> &vchCryptedSecret)
{
return CCryptoKeyStore::AddCryptedKey(vchPubKey, vchCryptedSecret);
}
/**
* Update wallet first key creation time. This should be called whenever keys
* are added to the wallet, with the oldest key creation time.
*/
void CWallet::UpdateTimeFirstKey(int64_t nCreateTime)
{
AssertLockHeld(cs_wallet);
if (nCreateTime <= 1) {
// Cannot determine birthday information, so set the wallet birthday to
// the beginning of time.
nTimeFirstKey = 1;
} else if (!nTimeFirstKey || nCreateTime < nTimeFirstKey) {
nTimeFirstKey = nCreateTime;
}
}
bool CWallet::AddCScript(const CScript& redeemScript)
{
if (!CCryptoKeyStore::AddCScript(redeemScript))
return false;
return WalletBatch(*database).WriteCScript(Hash160(redeemScript), redeemScript);
}
bool CWallet::LoadCScript(const CScript& redeemScript)
{
/* A sanity check was added in pull #3843 to avoid adding redeemScripts
* that never can be redeemed. However, old wallets may still contain
* these. Do not add them to the wallet and warn. */
if (redeemScript.size() > MAX_SCRIPT_ELEMENT_SIZE)
{
std::string strAddr = EncodeDestination(CScriptID(redeemScript));
LogPrintf("%s: Warning: This wallet contains a redeemScript of size %i which exceeds maximum size %i thus can never be redeemed. Do not use address %s.\n",
__func__, redeemScript.size(), MAX_SCRIPT_ELEMENT_SIZE, strAddr);
return true;
}
return CCryptoKeyStore::AddCScript(redeemScript);
}
bool CWallet::AddWatchOnly(const CScript& dest)
{
if (!CCryptoKeyStore::AddWatchOnly(dest))
return false;
const CKeyMetadata& meta = m_script_metadata[CScriptID(dest)];
UpdateTimeFirstKey(meta.nCreateTime);
NotifyWatchonlyChanged(true);
return WalletBatch(*database).WriteWatchOnly(dest, meta);
}
bool CWallet::AddWatchOnly(const CScript& dest, int64_t nCreateTime)
{
m_script_metadata[CScriptID(dest)].nCreateTime = nCreateTime;
return AddWatchOnly(dest);
}
bool CWallet::RemoveWatchOnly(const CScript &dest)
{
AssertLockHeld(cs_wallet);
if (!CCryptoKeyStore::RemoveWatchOnly(dest))
return false;
if (!HaveWatchOnly())
NotifyWatchonlyChanged(false);
if (!WalletBatch(*database).EraseWatchOnly(dest))
return false;
return true;
}
bool CWallet::LoadWatchOnly(const CScript &dest)
{
return CCryptoKeyStore::AddWatchOnly(dest);
}
bool CWallet::Unlock(const SecureString& strWalletPassphrase)
{
CCrypter crypter;
CKeyingMaterial _vMasterKey;
{
LOCK(cs_wallet);
for (const MasterKeyMap::value_type& pMasterKey : mapMasterKeys)
{
if(!crypter.SetKeyFromPassphrase(strWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod))
return false;
if (!crypter.Decrypt(pMasterKey.second.vchCryptedKey, _vMasterKey))
continue; // try another master key
if (CCryptoKeyStore::Unlock(_vMasterKey))
return true;
}
}
return false;
}
bool CWallet::ChangeWalletPassphrase(const SecureString& strOldWalletPassphrase, const SecureString& strNewWalletPassphrase)
{
bool fWasLocked = IsLocked();
{
LOCK(cs_wallet);
Lock();
CCrypter crypter;
CKeyingMaterial _vMasterKey;
for (MasterKeyMap::value_type& pMasterKey : mapMasterKeys)
{
if(!crypter.SetKeyFromPassphrase(strOldWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod))
return false;
if (!crypter.Decrypt(pMasterKey.second.vchCryptedKey, _vMasterKey))
return false;
if (CCryptoKeyStore::Unlock(_vMasterKey))
{
int64_t nStartTime = GetTimeMillis();
crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod);
pMasterKey.second.nDeriveIterations = static_cast<unsigned int>(pMasterKey.second.nDeriveIterations * (100 / ((double)(GetTimeMillis() - nStartTime))));
nStartTime = GetTimeMillis();
crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod);
pMasterKey.second.nDeriveIterations = (pMasterKey.second.nDeriveIterations + static_cast<unsigned int>(pMasterKey.second.nDeriveIterations * 100 / ((double)(GetTimeMillis() - nStartTime)))) / 2;
if (pMasterKey.second.nDeriveIterations < 25000)
pMasterKey.second.nDeriveIterations = 25000;
LogPrintf("Wallet passphrase changed to an nDeriveIterations of %i\n", pMasterKey.second.nDeriveIterations);
if (!crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod))
return false;
if (!crypter.Encrypt(_vMasterKey, pMasterKey.second.vchCryptedKey))
return false;
WalletBatch(*database).WriteMasterKey(pMasterKey.first, pMasterKey.second);
if (fWasLocked)
Lock();
return true;
}
}
}
return false;
}
void CWallet::ChainStateFlushed(const CBlockLocator& loc)
{
WalletBatch batch(*database);
batch.WriteBestBlock(loc);
}
bool CWallet::SetMinVersion(enum WalletFeature nVersion, WalletBatch* batch_in, bool fExplicit)
{
LOCK(cs_wallet); // nWalletVersion
if (nWalletVersion >= nVersion)
return true;
// when doing an explicit upgrade, if we pass the max version permitted, upgrade all the way
if (fExplicit && nVersion > nWalletMaxVersion)
nVersion = FEATURE_LATEST;
nWalletVersion = nVersion;
if (nVersion > nWalletMaxVersion)
nWalletMaxVersion = nVersion;
{
WalletBatch* batch = batch_in ? batch_in : new WalletBatch(*database);
if (nWalletVersion > 40000)
batch->WriteMinVersion(nWalletVersion);
if (!batch_in)
delete batch;
}
return true;
}
bool CWallet::SetMaxVersion(int nVersion)
{
LOCK(cs_wallet); // nWalletVersion, nWalletMaxVersion
// cannot downgrade below current version
if (nWalletVersion > nVersion)
return false;
nWalletMaxVersion = nVersion;
return true;
}
std::set<uint256> CWallet::GetConflicts(const uint256& txid) const
{
std::set<uint256> result;
AssertLockHeld(cs_wallet);
std::map<uint256, CWalletTx>::const_iterator it = mapWallet.find(txid);
if (it == mapWallet.end())
return result;
const CWalletTx& wtx = it->second;
std::pair<TxSpends::const_iterator, TxSpends::const_iterator> range;
for (const CTxIn& txin : wtx.tx->vin)
{
if (mapTxSpends.count(txin.prevout) <= 1)
continue; // No conflict if zero or one spends
range = mapTxSpends.equal_range(txin.prevout);
for (TxSpends::const_iterator _it = range.first; _it != range.second; ++_it)
result.insert(_it->second);
}
return result;
}
bool CWallet::HasWalletSpend(const uint256& txid) const
{
AssertLockHeld(cs_wallet);
auto iter = mapTxSpends.lower_bound(COutPoint(txid, 0));
return (iter != mapTxSpends.end() && iter->first.hash == txid);
}
void CWallet::Flush(bool shutdown)
{
database->Flush(shutdown);
}
void CWallet::SyncMetaData(std::pair<TxSpends::iterator, TxSpends::iterator> range)
{
// We want all the wallet transactions in range to have the same metadata as
// the oldest (smallest nOrderPos).
// So: find smallest nOrderPos:
int nMinOrderPos = std::numeric_limits<int>::max();
const CWalletTx* copyFrom = nullptr;
for (TxSpends::iterator it = range.first; it != range.second; ++it) {
const CWalletTx* wtx = &mapWallet.at(it->second);
if (wtx->nOrderPos < nMinOrderPos) {
nMinOrderPos = wtx->nOrderPos;;
copyFrom = wtx;
}
}
if (!copyFrom) {
return;
}
// Now copy data from copyFrom to rest:
for (TxSpends::iterator it = range.first; it != range.second; ++it)
{
const uint256& hash = it->second;
CWalletTx* copyTo = &mapWallet.at(hash);
if (copyFrom == copyTo) continue;
assert(copyFrom && "Oldest wallet transaction in range assumed to have been found.");
if (!copyFrom->IsEquivalentTo(*copyTo)) continue;
copyTo->mapValue = copyFrom->mapValue;
copyTo->vOrderForm = copyFrom->vOrderForm;
// fTimeReceivedIsTxTime not copied on purpose
// nTimeReceived not copied on purpose
copyTo->nTimeSmart = copyFrom->nTimeSmart;
copyTo->fFromMe = copyFrom->fFromMe;
copyTo->strFromAccount = copyFrom->strFromAccount;
// nOrderPos not copied on purpose
// cached members not copied on purpose
}
}
/**
* Outpoint is spent if any non-conflicted transaction
* spends it:
*/
bool CWallet::IsSpent(const uint256& hash, unsigned int n) const
{
const COutPoint outpoint(hash, n);
std::pair<TxSpends::const_iterator, TxSpends::const_iterator> range;
range = mapTxSpends.equal_range(outpoint);
for (TxSpends::const_iterator it = range.first; it != range.second; ++it)
{
const uint256& wtxid = it->second;
std::map<uint256, CWalletTx>::const_iterator mit = mapWallet.find(wtxid);
if (mit != mapWallet.end()) {
int depth = mit->second.GetDepthInMainChain();
if (depth > 0 || (depth == 0 && !mit->second.isAbandoned()))
return true; // Spent
}
}
return false;
}
void CWallet::AddToSpends(const COutPoint& outpoint, const uint256& wtxid)
{
mapTxSpends.insert(std::make_pair(outpoint, wtxid));
std::pair<TxSpends::iterator, TxSpends::iterator> range;
range = mapTxSpends.equal_range(outpoint);
SyncMetaData(range);
}
void CWallet::AddToSpends(const uint256& wtxid)
{
auto it = mapWallet.find(wtxid);
assert(it != mapWallet.end());
CWalletTx& thisTx = it->second;
if (thisTx.IsCoinBase()) // Coinbases don't spend anything!
return;
for (const CTxIn& txin : thisTx.tx->vin)
AddToSpends(txin.prevout, wtxid);
}
bool CWallet::EncryptWallet(const SecureString& strWalletPassphrase)
{
if (IsCrypted())
return false;
CKeyingMaterial _vMasterKey;
_vMasterKey.resize(WALLET_CRYPTO_KEY_SIZE);
GetStrongRandBytes(&_vMasterKey[0], WALLET_CRYPTO_KEY_SIZE);
CMasterKey kMasterKey;
kMasterKey.vchSalt.resize(WALLET_CRYPTO_SALT_SIZE);
GetStrongRandBytes(&kMasterKey.vchSalt[0], WALLET_CRYPTO_SALT_SIZE);
CCrypter crypter;
int64_t nStartTime = GetTimeMillis();
crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, 25000, kMasterKey.nDerivationMethod);
kMasterKey.nDeriveIterations = static_cast<unsigned int>(2500000 / ((double)(GetTimeMillis() - nStartTime)));
nStartTime = GetTimeMillis();
crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, kMasterKey.nDeriveIterations, kMasterKey.nDerivationMethod);
kMasterKey.nDeriveIterations = (kMasterKey.nDeriveIterations + static_cast<unsigned int>(kMasterKey.nDeriveIterations * 100 / ((double)(GetTimeMillis() - nStartTime)))) / 2;
if (kMasterKey.nDeriveIterations < 25000)
kMasterKey.nDeriveIterations = 25000;
LogPrintf("Encrypting Wallet with an nDeriveIterations of %i\n", kMasterKey.nDeriveIterations);
if (!crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, kMasterKey.nDeriveIterations, kMasterKey.nDerivationMethod))
return false;
if (!crypter.Encrypt(_vMasterKey, kMasterKey.vchCryptedKey))
return false;
{
LOCK(cs_wallet);
mapMasterKeys[++nMasterKeyMaxID] = kMasterKey;
assert(!encrypted_batch);
encrypted_batch = new WalletBatch(*database);
if (!encrypted_batch->TxnBegin()) {
delete encrypted_batch;
encrypted_batch = nullptr;
return false;
}
encrypted_batch->WriteMasterKey(nMasterKeyMaxID, kMasterKey);
if (!EncryptKeys(_vMasterKey))
{
encrypted_batch->TxnAbort();
delete encrypted_batch;
// We now probably have half of our keys encrypted in memory, and half not...
// die and let the user reload the unencrypted wallet.
assert(false);
}
// Encryption was introduced in version 0.4.0
SetMinVersion(FEATURE_WALLETCRYPT, encrypted_batch, true);
if (!encrypted_batch->TxnCommit()) {
delete encrypted_batch;
// We now have keys encrypted in memory, but not on disk...
// die to avoid confusion and let the user reload the unencrypted wallet.
assert(false);
}
delete encrypted_batch;
encrypted_batch = nullptr;
Lock();
Unlock(strWalletPassphrase);
// if we are using HD, replace the HD seed with a new one
if (IsHDEnabled()) {
if (!SetHDSeed(GenerateNewSeed())) {
return false;
}
}
NewKeyPool();
Lock();
// Need to completely rewrite the wallet file; if we don't, bdb might keep
// bits of the unencrypted private key in slack space in the database file.
database->Rewrite();
}
NotifyStatusChanged(this);
return true;
}
DBErrors CWallet::ReorderTransactions()
{
LOCK(cs_wallet);
WalletBatch batch(*database);
// Old wallets didn't have any defined order for transactions
// Probably a bad idea to change the output of this
// First: get all CWalletTx and CAccountingEntry into a sorted-by-time multimap.
typedef std::pair<CWalletTx*, CAccountingEntry*> TxPair;
typedef std::multimap<int64_t, TxPair > TxItems;
TxItems txByTime;
for (auto& entry : mapWallet)
{
CWalletTx* wtx = &entry.second;
txByTime.insert(std::make_pair(wtx->nTimeReceived, TxPair(wtx, nullptr)));
}
std::list<CAccountingEntry> acentries;
batch.ListAccountCreditDebit("", acentries);
for (CAccountingEntry& entry : acentries)
{
txByTime.insert(std::make_pair(entry.nTime, TxPair(nullptr, &entry)));
}
nOrderPosNext = 0;
std::vector<int64_t> nOrderPosOffsets;
for (TxItems::iterator it = txByTime.begin(); it != txByTime.end(); ++it)
{
CWalletTx *const pwtx = (*it).second.first;
CAccountingEntry *const pacentry = (*it).second.second;
int64_t& nOrderPos = (pwtx != nullptr) ? pwtx->nOrderPos : pacentry->nOrderPos;
if (nOrderPos == -1)
{
nOrderPos = nOrderPosNext++;
nOrderPosOffsets.push_back(nOrderPos);
if (pwtx)
{
if (!batch.WriteTx(*pwtx))
return DBErrors::LOAD_FAIL;
}
else
if (!batch.WriteAccountingEntry(pacentry->nEntryNo, *pacentry))
return DBErrors::LOAD_FAIL;
}
else
{
int64_t nOrderPosOff = 0;
for (const int64_t& nOffsetStart : nOrderPosOffsets)
{
if (nOrderPos >= nOffsetStart)
++nOrderPosOff;
}
nOrderPos += nOrderPosOff;
nOrderPosNext = std::max(nOrderPosNext, nOrderPos + 1);
if (!nOrderPosOff)
continue;
// Since we're changing the order, write it back
if (pwtx)
{
if (!batch.WriteTx(*pwtx))
return DBErrors::LOAD_FAIL;
}
else
if (!batch.WriteAccountingEntry(pacentry->nEntryNo, *pacentry))
return DBErrors::LOAD_FAIL;
}
}
batch.WriteOrderPosNext(nOrderPosNext);
return DBErrors::LOAD_OK;
}
int64_t CWallet::IncOrderPosNext(WalletBatch *batch)
{
AssertLockHeld(cs_wallet); // nOrderPosNext
int64_t nRet = nOrderPosNext++;
if (batch) {
batch->WriteOrderPosNext(nOrderPosNext);
} else {
WalletBatch(*database).WriteOrderPosNext(nOrderPosNext);
}
return nRet;
}
bool CWallet::AccountMove(std::string strFrom, std::string strTo, CAmount nAmount, std::string strComment)
{
WalletBatch batch(*database);
if (!batch.TxnBegin())
return false;
int64_t nNow = GetAdjustedTime();
// Debit
CAccountingEntry debit;
debit.nOrderPos = IncOrderPosNext(&batch);
debit.strAccount = strFrom;
debit.nCreditDebit = -nAmount;
debit.nTime = nNow;
debit.strOtherAccount = strTo;
debit.strComment = strComment;
AddAccountingEntry(debit, &batch);
// Credit
CAccountingEntry credit;
credit.nOrderPos = IncOrderPosNext(&batch);
credit.strAccount = strTo;
credit.nCreditDebit = nAmount;
credit.nTime = nNow;
credit.strOtherAccount = strFrom;
credit.strComment = strComment;
AddAccountingEntry(credit, &batch);
if (!batch.TxnCommit())
return false;
return true;
}
bool CWallet::GetLabelDestination(CTxDestination &dest, const std::string& label, bool bForceNew)
{
WalletBatch batch(*database);
CAccount account;
batch.ReadAccount(label, account);
if (!bForceNew) {
if (!account.vchPubKey.IsValid())
bForceNew = true;
else {
// Check if the current key has been used (TODO: check other addresses with the same key)
CScript scriptPubKey = GetScriptForDestination(GetDestinationForKey(account.vchPubKey, m_default_address_type));
for (std::map<uint256, CWalletTx>::iterator it = mapWallet.begin();
it != mapWallet.end() && account.vchPubKey.IsValid();
++it)
for (const CTxOut& txout : (*it).second.tx->vout)
if (txout.scriptPubKey == scriptPubKey) {
bForceNew = true;
break;
}
}
}
// Generate a new key
if (bForceNew) {
if (!GetKeyFromPool(account.vchPubKey, false))
return false;
LearnRelatedScripts(account.vchPubKey, m_default_address_type);
dest = GetDestinationForKey(account.vchPubKey, m_default_address_type);
SetAddressBook(dest, label, "receive");
batch.WriteAccount(label, account);
} else {
dest = GetDestinationForKey(account.vchPubKey, m_default_address_type);
}
return true;
}
void CWallet::MarkDirty()
{
{
LOCK(cs_wallet);
for (std::pair<const uint256, CWalletTx>& item : mapWallet)
item.second.MarkDirty();
}
}
bool CWallet::MarkReplaced(const uint256& originalHash, const uint256& newHash)
{
LOCK(cs_wallet);
auto mi = mapWallet.find(originalHash);
// There is a bug if MarkReplaced is not called on an existing wallet transaction.
assert(mi != mapWallet.end());
CWalletTx& wtx = (*mi).second;
// Ensure for now that we're not overwriting data
assert(wtx.mapValue.count("replaced_by_txid") == 0);
wtx.mapValue["replaced_by_txid"] = newHash.ToString();
WalletBatch batch(*database, "r+");
bool success = true;
if (!batch.WriteTx(wtx)) {
LogPrintf("%s: Updating batch tx %s failed\n", __func__, wtx.GetHash().ToString());
success = false;
}
NotifyTransactionChanged(this, originalHash, CT_UPDATED);
return success;
}
bool CWallet::AddToWallet(const CWalletTx& wtxIn, bool fFlushOnClose)
{
LOCK(cs_wallet);
WalletBatch batch(*database, "r+", fFlushOnClose);
uint256 hash = wtxIn.GetHash();
// Inserts only if not already there, returns tx inserted or tx found
std::pair<std::map<uint256, CWalletTx>::iterator, bool> ret = mapWallet.insert(std::make_pair(hash, wtxIn));
CWalletTx& wtx = (*ret.first).second;
wtx.BindWallet(this);
bool fInsertedNew = ret.second;
if (fInsertedNew)
{
wtx.nTimeReceived = GetAdjustedTime();
wtx.nOrderPos = IncOrderPosNext(&batch);
wtxOrdered.insert(std::make_pair(wtx.nOrderPos, TxPair(&wtx, nullptr)));
wtx.nTimeSmart = ComputeTimeSmart(wtx);
AddToSpends(hash);
}
bool fUpdated = false;
if (!fInsertedNew)
{
// Merge
if (!wtxIn.hashUnset() && wtxIn.hashBlock != wtx.hashBlock)
{
wtx.hashBlock = wtxIn.hashBlock;
fUpdated = true;
}
// If no longer abandoned, update
if (wtxIn.hashBlock.IsNull() && wtx.isAbandoned())
{
wtx.hashBlock = wtxIn.hashBlock;
fUpdated = true;
}
if (wtxIn.nIndex != -1 && (wtxIn.nIndex != wtx.nIndex))
{
wtx.nIndex = wtxIn.nIndex;
fUpdated = true;
}
if (wtxIn.fFromMe && wtxIn.fFromMe != wtx.fFromMe)
{
wtx.fFromMe = wtxIn.fFromMe;
fUpdated = true;
}
// If we have a witness-stripped version of this transaction, and we
// see a new version with a witness, then we must be upgrading a pre-segwit
// wallet. Store the new version of the transaction with the witness,
// as the stripped-version must be invalid.
// TODO: Store all versions of the transaction, instead of just one.
if (wtxIn.tx->HasWitness() && !wtx.tx->HasWitness()) {
wtx.SetTx(wtxIn.tx);
fUpdated = true;
}
}
//// debug print
LogPrintf("AddToWallet %s %s%s\n", wtxIn.GetHash().ToString(), (fInsertedNew ? "new" : ""), (fUpdated ? "update" : ""));
// Write to disk
if (fInsertedNew || fUpdated)
if (!batch.WriteTx(wtx))
return false;
// Break debit/credit balance caches:
wtx.MarkDirty();
// Notify UI of new or updated transaction
NotifyTransactionChanged(this, hash, fInsertedNew ? CT_NEW : CT_UPDATED);
// notify an external script when a wallet transaction comes in or is updated
std::string strCmd = gArgs.GetArg("-walletnotify", "");
if (!strCmd.empty())
{
boost::replace_all(strCmd, "%s", wtxIn.GetHash().GetHex());
std::thread t(runCommand, strCmd);
t.detach(); // thread runs free
}
return true;
}
bool CWallet::LoadToWallet(const CWalletTx& wtxIn)
{
uint256 hash = wtxIn.GetHash();
CWalletTx& wtx = mapWallet.emplace(hash, wtxIn).first->second;
wtx.BindWallet(this);
wtxOrdered.insert(std::make_pair(wtx.nOrderPos, TxPair(&wtx, nullptr)));
AddToSpends(hash);
for (const CTxIn& txin : wtx.tx->vin) {
auto it = mapWallet.find(txin.prevout.hash);
if (it != mapWallet.end()) {
CWalletTx& prevtx = it->second;
if (prevtx.nIndex == -1 && !prevtx.hashUnset()) {
MarkConflicted(prevtx.hashBlock, wtx.GetHash());
}
}
}
return true;
}
/**
* Add a transaction to the wallet, or update it. pIndex and posInBlock should
* be set when the transaction was known to be included in a block. When
* pIndex == nullptr, then wallet state is not updated in AddToWallet, but
* notifications happen and cached balances are marked dirty.
*
* If fUpdate is true, existing transactions will be updated.
* TODO: One exception to this is that the abandoned state is cleared under the
* assumption that any further notification of a transaction that was considered
* abandoned is an indication that it is not safe to be considered abandoned.
* Abandoned state should probably be more carefully tracked via different
* posInBlock signals or by checking mempool presence when necessary.
*/
bool CWallet::AddToWalletIfInvolvingMe(const CTransactionRef& ptx, const CBlockIndex* pIndex, int posInBlock, bool fUpdate)
{
const CTransaction& tx = *ptx;
{
AssertLockHeld(cs_wallet);
if (pIndex != nullptr) {
for (const CTxIn& txin : tx.vin) {
std::pair<TxSpends::const_iterator, TxSpends::const_iterator> range = mapTxSpends.equal_range(txin.prevout);
while (range.first != range.second) {
if (range.first->second != tx.GetHash()) {
LogPrintf("Transaction %s (in block %s) conflicts with wallet transaction %s (both spend %s:%i)\n", tx.GetHash().ToString(), pIndex->GetBlockHash().ToString(), range.first->second.ToString(), range.first->first.hash.ToString(), range.first->first.n);
MarkConflicted(pIndex->GetBlockHash(), range.first->second);
}
range.first++;
}
}
}
bool fExisted = mapWallet.count(tx.GetHash()) != 0;
if (fExisted && !fUpdate) return false;
if (fExisted || IsMine(tx) || IsFromMe(tx))
{
/* Check if any keys in the wallet keypool that were supposed to be unused
* have appeared in a new transaction. If so, remove those keys from the keypool.
* This can happen when restoring an old wallet backup that does not contain
* the mostly recently created transactions from newer versions of the wallet.
*/
// loop though all outputs
for (const CTxOut& txout: tx.vout) {
// extract addresses and check if they match with an unused keypool key
std::vector<CKeyID> vAffected;
CAffectedKeysVisitor(*this, vAffected).Process(txout.scriptPubKey);
for (const CKeyID &keyid : vAffected) {
std::map<CKeyID, int64_t>::const_iterator mi = m_pool_key_to_index.find(keyid);
if (mi != m_pool_key_to_index.end()) {
LogPrintf("%s: Detected a used keypool key, mark all keypool key up to this key as used\n", __func__);
MarkReserveKeysAsUsed(mi->second);
if (!TopUpKeyPool()) {
LogPrintf("%s: Topping up keypool failed (locked wallet)\n", __func__);
}
}
}
}
CWalletTx wtx(this, ptx);
// Get merkle branch if transaction was found in a block
if (pIndex != nullptr)
wtx.SetMerkleBranch(pIndex, posInBlock);
return AddToWallet(wtx, false);
}
}
return false;
}
bool CWallet::TransactionCanBeAbandoned(const uint256& hashTx) const
{
LOCK2(cs_main, cs_wallet);
const CWalletTx* wtx = GetWalletTx(hashTx);
return wtx && !wtx->isAbandoned() && wtx->GetDepthInMainChain() == 0 && !wtx->InMempool();
}
bool CWallet::AbandonTransaction(const uint256& hashTx)
{
LOCK2(cs_main, cs_wallet);
WalletBatch batch(*database, "r+");
std::set<uint256> todo;
std::set<uint256> done;
// Can't mark abandoned if confirmed or in mempool
auto it = mapWallet.find(hashTx);
assert(it != mapWallet.end());
CWalletTx& origtx = it->second;
if (origtx.GetDepthInMainChain() != 0 || origtx.InMempool()) {
return false;
}
todo.insert(hashTx);
while (!todo.empty()) {
uint256 now = *todo.begin();
todo.erase(now);
done.insert(now);
auto it = mapWallet.find(now);
assert(it != mapWallet.end());
CWalletTx& wtx = it->second;
int currentconfirm = wtx.GetDepthInMainChain();
// If the orig tx was not in block, none of its spends can be
assert(currentconfirm <= 0);
// if (currentconfirm < 0) {Tx and spends are already conflicted, no need to abandon}
if (currentconfirm == 0 && !wtx.isAbandoned()) {
// If the orig tx was not in block/mempool, none of its spends can be in mempool
assert(!wtx.InMempool());
wtx.nIndex = -1;
wtx.setAbandoned();
wtx.MarkDirty();
batch.WriteTx(wtx);
NotifyTransactionChanged(this, wtx.GetHash(), CT_UPDATED);
// Iterate over all its outputs, and mark transactions in the wallet that spend them abandoned too
TxSpends::const_iterator iter = mapTxSpends.lower_bound(COutPoint(hashTx, 0));
while (iter != mapTxSpends.end() && iter->first.hash == now) {
if (!done.count(iter->second)) {
todo.insert(iter->second);
}
iter++;
}
// If a transaction changes 'conflicted' state, that changes the balance
// available of the outputs it spends. So force those to be recomputed
for (const CTxIn& txin : wtx.tx->vin)
{
auto it = mapWallet.find(txin.prevout.hash);
if (it != mapWallet.end()) {
it->second.MarkDirty();
}
}
}
}
return true;
}
void CWallet::MarkConflicted(const uint256& hashBlock, const uint256& hashTx)
{
LOCK2(cs_main, cs_wallet);
int conflictconfirms = 0;
CBlockIndex* pindex = LookupBlockIndex(hashBlock);
if (pindex && chainActive.Contains(pindex)) {
conflictconfirms = -(chainActive.Height() - pindex->nHeight + 1);
}
// If number of conflict confirms cannot be determined, this means
// that the block is still unknown or not yet part of the main chain,
// for example when loading the wallet during a reindex. Do nothing in that
// case.
if (conflictconfirms >= 0)
return;
// Do not flush the wallet here for performance reasons
WalletBatch batch(*database, "r+", false);
std::set<uint256> todo;
std::set<uint256> done;
todo.insert(hashTx);
while (!todo.empty()) {
uint256 now = *todo.begin();
todo.erase(now);
done.insert(now);
auto it = mapWallet.find(now);
assert(it != mapWallet.end());
CWalletTx& wtx = it->second;
int currentconfirm = wtx.GetDepthInMainChain();
if (conflictconfirms < currentconfirm) {
// Block is 'more conflicted' than current confirm; update.
// Mark transaction as conflicted with this block.
wtx.nIndex = -1;
wtx.hashBlock = hashBlock;
wtx.MarkDirty();
batch.WriteTx(wtx);
// Iterate over all its outputs, and mark transactions in the wallet that spend them conflicted too
TxSpends::const_iterator iter = mapTxSpends.lower_bound(COutPoint(now, 0));
while (iter != mapTxSpends.end() && iter->first.hash == now) {
if (!done.count(iter->second)) {
todo.insert(iter->second);
}
iter++;
}
// If a transaction changes 'conflicted' state, that changes the balance
// available of the outputs it spends. So force those to be recomputed
for (const CTxIn& txin : wtx.tx->vin) {
auto it = mapWallet.find(txin.prevout.hash);
if (it != mapWallet.end()) {
it->second.MarkDirty();
}
}
}
}
}
void CWallet::SyncTransaction(const CTransactionRef& ptx, const CBlockIndex *pindex, int posInBlock) {
const CTransaction& tx = *ptx;
if (!AddToWalletIfInvolvingMe(ptx, pindex, posInBlock, true))
return; // Not one of ours
// If a transaction changes 'conflicted' state, that changes the balance
// available of the outputs it spends. So force those to be
// recomputed, also:
for (const CTxIn& txin : tx.vin) {
auto it = mapWallet.find(txin.prevout.hash);
if (it != mapWallet.end()) {
it->second.MarkDirty();
}
}
}
void CWallet::TransactionAddedToMempool(const CTransactionRef& ptx) {
LOCK2(cs_main, cs_wallet);
SyncTransaction(ptx);
auto it = mapWallet.find(ptx->GetHash());
if (it != mapWallet.end()) {
it->second.fInMempool = true;
}
}
void CWallet::TransactionRemovedFromMempool(const CTransactionRef &ptx) {
LOCK(cs_wallet);
auto it = mapWallet.find(ptx->GetHash());
if (it != mapWallet.end()) {
it->second.fInMempool = false;
}
}
void CWallet::BlockConnected(const std::shared_ptr<const CBlock>& pblock, const CBlockIndex *pindex, const std::vector<CTransactionRef>& vtxConflicted) {
LOCK2(cs_main, cs_wallet);
// TODO: Temporarily ensure that mempool removals are notified before
// connected transactions. This shouldn't matter, but the abandoned
// state of transactions in our wallet is currently cleared when we
// receive another notification and there is a race condition where
// notification of a connected conflict might cause an outside process
// to abandon a transaction and then have it inadvertently cleared by
// the notification that the conflicted transaction was evicted.
for (const CTransactionRef& ptx : vtxConflicted) {
SyncTransaction(ptx);
TransactionRemovedFromMempool(ptx);
}
for (size_t i = 0; i < pblock->vtx.size(); i++) {
SyncTransaction(pblock->vtx[i], pindex, i);
TransactionRemovedFromMempool(pblock->vtx[i]);
}
m_last_block_processed = pindex;
}
void CWallet::BlockDisconnected(const std::shared_ptr<const CBlock>& pblock) {
LOCK2(cs_main, cs_wallet);
for (const CTransactionRef& ptx : pblock->vtx) {
SyncTransaction(ptx);
}
}
void CWallet::BlockUntilSyncedToCurrentChain() {
AssertLockNotHeld(cs_main);
AssertLockNotHeld(cs_wallet);
{
// Skip the queue-draining stuff if we know we're caught up with
// chainActive.Tip()...
// We could also take cs_wallet here, and call m_last_block_processed
// protected by cs_wallet instead of cs_main, but as long as we need
// cs_main here anyway, it's easier to just call it cs_main-protected.
LOCK(cs_main);
const CBlockIndex* initialChainTip = chainActive.Tip();
if (m_last_block_processed->GetAncestor(initialChainTip->nHeight) == initialChainTip) {
return;
}
}
// ...otherwise put a callback in the validation interface queue and wait
// for the queue to drain enough to execute it (indicating we are caught up
// at least with the time we entered this function).
SyncWithValidationInterfaceQueue();
}
isminetype CWallet::IsMine(const CTxIn &txin) const
{
{
LOCK(cs_wallet);
std::map<uint256, CWalletTx>::const_iterator mi = mapWallet.find(txin.prevout.hash);
if (mi != mapWallet.end())
{
const CWalletTx& prev = (*mi).second;
if (txin.prevout.n < prev.tx->vout.size())
return IsMine(prev.tx->vout[txin.prevout.n]);
}
}
return ISMINE_NO;
}
// Note that this function doesn't distinguish between a 0-valued input,
// and a not-"is mine" (according to the filter) input.
CAmount CWallet::GetDebit(const CTxIn &txin, const isminefilter& filter) const
{
{
LOCK(cs_wallet);
std::map<uint256, CWalletTx>::const_iterator mi = mapWallet.find(txin.prevout.hash);
if (mi != mapWallet.end())
{
const CWalletTx& prev = (*mi).second;
if (txin.prevout.n < prev.tx->vout.size())
if (IsMine(prev.tx->vout[txin.prevout.n]) & filter)
return prev.tx->vout[txin.prevout.n].nValue;
}
}
return 0;
}
isminetype CWallet::IsMine(const CTxOut& txout) const
{
return ::IsMine(*this, txout.scriptPubKey);
}
CAmount CWallet::GetCredit(const CTxOut& txout, const isminefilter& filter) const
{
if (!MoneyRange(txout.nValue))
throw std::runtime_error(std::string(__func__) + ": value out of range");
return ((IsMine(txout) & filter) ? txout.nValue : 0);
}
bool CWallet::IsChange(const CTxOut& txout) const
{
// TODO: fix handling of 'change' outputs. The assumption is that any
// payment to a script that is ours, but is not in the address book
// is change. That assumption is likely to break when we implement multisignature
// wallets that return change back into a multi-signature-protected address;
// a better way of identifying which outputs are 'the send' and which are
// 'the change' will need to be implemented (maybe extend CWalletTx to remember
// which output, if any, was change).
if (::IsMine(*this, txout.scriptPubKey))
{
CTxDestination address;
if (!ExtractDestination(txout.scriptPubKey, address))
return true;
LOCK(cs_wallet);
if (!mapAddressBook.count(address))
return true;
}
return false;
}
CAmount CWallet::GetChange(const CTxOut& txout) const
{
if (!MoneyRange(txout.nValue))
throw std::runtime_error(std::string(__func__) + ": value out of range");
return (IsChange(txout) ? txout.nValue : 0);
}
bool CWallet::IsMine(const CTransaction& tx) const
{
for (const CTxOut& txout : tx.vout)
if (IsMine(txout))
return true;
return false;
}
bool CWallet::IsFromMe(const CTransaction& tx) const
{
return (GetDebit(tx, ISMINE_ALL) > 0);
}
CAmount CWallet::GetDebit(const CTransaction& tx, const isminefilter& filter) const
{
CAmount nDebit = 0;
for (const CTxIn& txin : tx.vin)
{
nDebit += GetDebit(txin, filter);
if (!MoneyRange(nDebit))
throw std::runtime_error(std::string(__func__) + ": value out of range");
}
return nDebit;
}
bool CWallet::IsAllFromMe(const CTransaction& tx, const isminefilter& filter) const
{
LOCK(cs_wallet);
for (const CTxIn& txin : tx.vin)
{
auto mi = mapWallet.find(txin.prevout.hash);
if (mi == mapWallet.end())
return false; // any unknown inputs can't be from us
const CWalletTx& prev = (*mi).second;
if (txin.prevout.n >= prev.tx->vout.size())
return false; // invalid input!
if (!(IsMine(prev.tx->vout[txin.prevout.n]) & filter))
return false;
}
return true;
}
CAmount CWallet::GetCredit(const CTransaction& tx, const isminefilter& filter) const
{
CAmount nCredit = 0;
for (const CTxOut& txout : tx.vout)
{
nCredit += GetCredit(txout, filter);
if (!MoneyRange(nCredit))
throw std::runtime_error(std::string(__func__) + ": value out of range");
}
return nCredit;
}
CAmount CWallet::GetChange(const CTransaction& tx) const
{
CAmount nChange = 0;
for (const CTxOut& txout : tx.vout)
{
nChange += GetChange(txout);
if (!MoneyRange(nChange))
throw std::runtime_error(std::string(__func__) + ": value out of range");
}
return nChange;
}
CPubKey CWallet::GenerateNewSeed()
{
CKey key;
key.MakeNewKey(true);
return DeriveNewSeed(key);
}
CPubKey CWallet::DeriveNewSeed(const CKey& key)
{
int64_t nCreationTime = GetTime();
CKeyMetadata metadata(nCreationTime);
// calculate the seed
CPubKey seed = key.GetPubKey();
assert(key.VerifyPubKey(seed));
// set the hd keypath to "s" -> Seed, refers the seed to itself
metadata.hdKeypath = "s";
metadata.hd_seed_id = seed.GetID();
{
LOCK(cs_wallet);
// mem store the metadata
mapKeyMetadata[seed.GetID()] = metadata;
// write the key&metadata to the database
if (!AddKeyPubKey(key, seed))
throw std::runtime_error(std::string(__func__) + ": AddKeyPubKey failed");
}
return seed;
}
bool CWallet::SetHDSeed(const CPubKey& seed)
{
LOCK(cs_wallet);
// store the keyid (hash160) together with
// the child index counter in the database
// as a hdchain object
CHDChain newHdChain;
newHdChain.nVersion = CanSupportFeature(FEATURE_HD_SPLIT) ? CHDChain::VERSION_HD_CHAIN_SPLIT : CHDChain::VERSION_HD_BASE;
newHdChain.seed_id = seed.GetID();
SetHDChain(newHdChain, false);
return true;
}
bool CWallet::SetHDChain(const CHDChain& chain, bool memonly)
{
LOCK(cs_wallet);
if (!memonly && !WalletBatch(*database).WriteHDChain(chain))
throw std::runtime_error(std::string(__func__) + ": writing chain failed");
hdChain = chain;
return true;
}
bool CWallet::IsHDEnabled() const
{
return !hdChain.seed_id.IsNull();
}
int64_t CWalletTx::GetTxTime() const
{
int64_t n = nTimeSmart;
return n ? n : nTimeReceived;
}
int CWalletTx::GetRequestCount() const
{
// Returns -1 if it wasn't being tracked
int nRequests = -1;
{
LOCK(pwallet->cs_wallet);
if (IsCoinBase())
{
// Generated block
if (!hashUnset())
{
std::map<uint256, int>::const_iterator mi = pwallet->mapRequestCount.find(hashBlock);
if (mi != pwallet->mapRequestCount.end())
nRequests = (*mi).second;
}
}
else
{
// Did anyone request this transaction?
std::map<uint256, int>::const_iterator mi = pwallet->mapRequestCount.find(GetHash());
if (mi != pwallet->mapRequestCount.end())
{
nRequests = (*mi).second;
// How about the block it's in?
if (nRequests == 0 && !hashUnset())
{
std::map<uint256, int>::const_iterator _mi = pwallet->mapRequestCount.find(hashBlock);
if (_mi != pwallet->mapRequestCount.end())
nRequests = (*_mi).second;
else
nRequests = 1; // If it's in someone else's block it must have got out
}
}
}
}
return nRequests;
}
// Helper for producing a max-sized low-S signature (eg 72 bytes)
bool CWallet::DummySignInput(CTxIn &tx_in, const CTxOut &txout) const
{
// Fill in dummy signatures for fee calculation.
const CScript& scriptPubKey = txout.scriptPubKey;
SignatureData sigdata;
if (!ProduceSignature(*this, DUMMY_SIGNATURE_CREATOR, scriptPubKey, sigdata))
{
return false;
} else {
UpdateInput(tx_in, sigdata);
}
return true;
}
// Helper for producing a bunch of max-sized low-S signatures (eg 72 bytes)
bool CWallet::DummySignTx(CMutableTransaction &txNew, const std::vector<CTxOut> &txouts) const
{
// Fill in dummy signatures for fee calculation.
int nIn = 0;
for (const auto& txout : txouts)
{
if (!DummySignInput(txNew.vin[nIn], txout)) {
return false;
}
nIn++;
}
return true;
}
int64_t CalculateMaximumSignedTxSize(const CTransaction &tx, const CWallet *wallet)
{
std::vector<CTxOut> txouts;
// Look up the inputs. We should have already checked that this transaction
// IsAllFromMe(ISMINE_SPENDABLE), so every input should already be in our
// wallet, with a valid index into the vout array, and the ability to sign.
for (auto& input : tx.vin) {
const auto mi = wallet->mapWallet.find(input.prevout.hash);
if (mi == wallet->mapWallet.end()) {
return -1;
}
assert(input.prevout.n < mi->second.tx->vout.size());
txouts.emplace_back(mi->second.tx->vout[input.prevout.n]);
}
return CalculateMaximumSignedTxSize(tx, wallet, txouts);
}
// txouts needs to be in the order of tx.vin
int64_t CalculateMaximumSignedTxSize(const CTransaction &tx, const CWallet *wallet, const std::vector<CTxOut>& txouts)
{
CMutableTransaction txNew(tx);
if (!wallet->DummySignTx(txNew, txouts)) {
// This should never happen, because IsAllFromMe(ISMINE_SPENDABLE)
// implies that we can sign for every input.
return -1;
}
return GetVirtualTransactionSize(txNew);
}
int CalculateMaximumSignedInputSize(const CTxOut& txout, const CWallet* wallet)
{
CMutableTransaction txn;
txn.vin.push_back(CTxIn(COutPoint()));
if (!wallet->DummySignInput(txn.vin[0], txout)) {
// This should never happen, because IsAllFromMe(ISMINE_SPENDABLE)
// implies that we can sign for every input.
return -1;
}
return GetVirtualTransactionInputSize(txn.vin[0]);
}
void CWalletTx::GetAmounts(std::list<COutputEntry>& listReceived,
std::list<COutputEntry>& listSent, CAmount& nFee, std::string& strSentAccount, const isminefilter& filter) const
{
nFee = 0;
listReceived.clear();
listSent.clear();
strSentAccount = strFromAccount;
// Compute fee:
CAmount nDebit = GetDebit(filter);
if (nDebit > 0) // debit>0 means we signed/sent this transaction
{
CAmount nValueOut = tx->GetValueOut();
nFee = nDebit - nValueOut;
}
// Sent/received.
for (unsigned int i = 0; i < tx->vout.size(); ++i)
{
const CTxOut& txout = tx->vout[i];
isminetype fIsMine = pwallet->IsMine(txout);
// Only need to handle txouts if AT LEAST one of these is true:
// 1) they debit from us (sent)
// 2) the output is to us (received)
if (nDebit > 0)
{
// Don't report 'change' txouts
if (pwallet->IsChange(txout))
continue;
}
else if (!(fIsMine & filter))
continue;
// In either case, we need to get the destination address
CTxDestination address;
if (!ExtractDestination(txout.scriptPubKey, address) && !txout.scriptPubKey.IsUnspendable())
{
LogPrintf("CWalletTx::GetAmounts: Unknown transaction type found, txid %s\n",
this->GetHash().ToString());
address = CNoDestination();
}
COutputEntry output = {address, txout.nValue, (int)i};
// If we are debited by the transaction, add the output as a "sent" entry
if (nDebit > 0)
listSent.push_back(output);
// If we are receiving the output, add it as a "received" entry
if (fIsMine & filter)
listReceived.push_back(output);
}
}
/**
* Scan active chain for relevant transactions after importing keys. This should
* be called whenever new keys are added to the wallet, with the oldest key
* creation time.
*
* @return Earliest timestamp that could be successfully scanned from. Timestamp
* returned will be higher than startTime if relevant blocks could not be read.
*/
int64_t CWallet::RescanFromTime(int64_t startTime, const WalletRescanReserver& reserver, bool update)
{
// Find starting block. May be null if nCreateTime is greater than the
// highest blockchain timestamp, in which case there is nothing that needs
// to be scanned.
CBlockIndex* startBlock = nullptr;
{
LOCK(cs_main);
startBlock = chainActive.FindEarliestAtLeast(startTime - TIMESTAMP_WINDOW);
LogPrintf("%s: Rescanning last %i blocks\n", __func__, startBlock ? chainActive.Height() - startBlock->nHeight + 1 : 0);
}
if (startBlock) {
const CBlockIndex* const failedBlock = ScanForWalletTransactions(startBlock, nullptr, reserver, update);
if (failedBlock) {
return failedBlock->GetBlockTimeMax() + TIMESTAMP_WINDOW + 1;
}
}
return startTime;
}
/**
* Scan the block chain (starting in pindexStart) for transactions
* from or to us. If fUpdate is true, found transactions that already
* exist in the wallet will be updated.
*
* Returns null if scan was successful. Otherwise, if a complete rescan was not
* possible (due to pruning or corruption), returns pointer to the most recent
* block that could not be scanned.
*
* If pindexStop is not a nullptr, the scan will stop at the block-index
* defined by pindexStop
*
* Caller needs to make sure pindexStop (and the optional pindexStart) are on
* the main chain after to the addition of any new keys you want to detect
* transactions for.
*/
CBlockIndex* CWallet::ScanForWalletTransactions(CBlockIndex* pindexStart, CBlockIndex* pindexStop, const WalletRescanReserver &reserver, bool fUpdate)
{
int64_t nNow = GetTime();
const CChainParams& chainParams = Params();
assert(reserver.isReserved());
if (pindexStop) {
assert(pindexStop->nHeight >= pindexStart->nHeight);
}
CBlockIndex* pindex = pindexStart;
CBlockIndex* ret = nullptr;
if (pindex) LogPrintf("Rescan started from block %d...\n", pindex->nHeight);
{
fAbortRescan = false;
ShowProgress(_("Rescanning..."), 0); // show rescan progress in GUI as dialog or on splashscreen, if -rescan on startup
CBlockIndex* tip = nullptr;
double progress_begin;
double progress_end;
{
LOCK(cs_main);
progress_begin = GuessVerificationProgress(chainParams.TxData(), pindex);
if (pindexStop == nullptr) {
tip = chainActive.Tip();
progress_end = GuessVerificationProgress(chainParams.TxData(), tip);
} else {
progress_end = GuessVerificationProgress(chainParams.TxData(), pindexStop);
}
}
double progress_current = progress_begin;
while (pindex && !fAbortRescan && !ShutdownRequested())
{
if (pindex->nHeight % 100 == 0 && progress_end - progress_begin > 0.0) {
ShowProgress(_("Rescanning..."), std::max(1, std::min(99, (int)((progress_current - progress_begin) / (progress_end - progress_begin) * 100))));
}
if (GetTime() >= nNow + 60) {
nNow = GetTime();
LogPrintf("Still rescanning. At block %d. Progress=%f\n", pindex->nHeight, progress_current);
}
CBlock block;
if (ReadBlockFromDisk(block, pindex, Params().GetConsensus())) {
LOCK2(cs_main, cs_wallet);
if (pindex && !chainActive.Contains(pindex)) {
// Abort scan if current block is no longer active, to prevent
// marking transactions as coming from the wrong block.
ret = pindex;
break;
}
for (size_t posInBlock = 0; posInBlock < block.vtx.size(); ++posInBlock) {
AddToWalletIfInvolvingMe(block.vtx[posInBlock], pindex, posInBlock, fUpdate);
}
} else {
ret = pindex;
}
if (pindex == pindexStop) {
break;
}
{
LOCK(cs_main);
pindex = chainActive.Next(pindex);
progress_current = GuessVerificationProgress(chainParams.TxData(), pindex);
if (pindexStop == nullptr && tip != chainActive.Tip()) {
tip = chainActive.Tip();
// in case the tip has changed, update progress max
progress_end = GuessVerificationProgress(chainParams.TxData(), tip);
}
}
}
if (pindex && fAbortRescan) {
LogPrintf("Rescan aborted at block %d. Progress=%f\n", pindex->nHeight, progress_current);
} else if (pindex && ShutdownRequested()) {
LogPrintf("Rescan interrupted by shutdown request at block %d. Progress=%f\n", pindex->nHeight, progress_current);
}
ShowProgress(_("Rescanning..."), 100); // hide progress dialog in GUI
}
return ret;
}
void CWallet::ReacceptWalletTransactions()
{
// If transactions aren't being broadcasted, don't let them into local mempool either
if (!fBroadcastTransactions)
return;
LOCK2(cs_main, cs_wallet);
std::map<int64_t, CWalletTx*> mapSorted;
// Sort pending wallet transactions based on their initial wallet insertion order
for (std::pair<const uint256, CWalletTx>& item : mapWallet)
{
const uint256& wtxid = item.first;
CWalletTx& wtx = item.second;
assert(wtx.GetHash() == wtxid);
int nDepth = wtx.GetDepthInMainChain();
if (!wtx.IsCoinBase() && (nDepth == 0 && !wtx.isAbandoned())) {
mapSorted.insert(std::make_pair(wtx.nOrderPos, &wtx));
}
}
// Try to add wallet transactions to memory pool
for (std::pair<const int64_t, CWalletTx*>& item : mapSorted) {
CWalletTx& wtx = *(item.second);
CValidationState state;
wtx.AcceptToMemoryPool(maxTxFee, state);
}
}
bool CWalletTx::RelayWalletTransaction(CConnman* connman)
{
assert(pwallet->GetBroadcastTransactions());
if (!IsCoinBase() && !isAbandoned() && GetDepthInMainChain() == 0)
{
CValidationState state;
/* GetDepthInMainChain already catches known conflicts. */
if (InMempool() || AcceptToMemoryPool(maxTxFee, state)) {
LogPrintf("Relaying wtx %s\n", GetHash().ToString());
if (connman) {
CInv inv(MSG_TX, GetHash());
connman->ForEachNode([&inv](CNode* pnode)
{
pnode->PushInventory(inv);
});
return true;
}
}
}
return false;
}
std::set<uint256> CWalletTx::GetConflicts() const
{
std::set<uint256> result;
if (pwallet != nullptr)
{
uint256 myHash = GetHash();
result = pwallet->GetConflicts(myHash);
result.erase(myHash);
}
return result;
}
CAmount CWalletTx::GetDebit(const isminefilter& filter) const
{
if (tx->vin.empty())
return 0;
CAmount debit = 0;
if(filter & ISMINE_SPENDABLE)
{
if (fDebitCached)
debit += nDebitCached;
else
{
nDebitCached = pwallet->GetDebit(*tx, ISMINE_SPENDABLE);
fDebitCached = true;
debit += nDebitCached;
}
}
if(filter & ISMINE_WATCH_ONLY)
{
if(fWatchDebitCached)
debit += nWatchDebitCached;
else
{
nWatchDebitCached = pwallet->GetDebit(*tx, ISMINE_WATCH_ONLY);
fWatchDebitCached = true;
debit += nWatchDebitCached;
}
}
return debit;
}
CAmount CWalletTx::GetCredit(const isminefilter& filter) const
{
// Must wait until coinbase is safely deep enough in the chain before valuing it
if (IsCoinBase() && GetBlocksToMaturity() > 0)
return 0;
CAmount credit = 0;
if (filter & ISMINE_SPENDABLE)
{
// GetBalance can assume transactions in mapWallet won't change
if (fCreditCached)
credit += nCreditCached;
else
{
nCreditCached = pwallet->GetCredit(*tx, ISMINE_SPENDABLE);
fCreditCached = true;
credit += nCreditCached;
}
}
if (filter & ISMINE_WATCH_ONLY)
{
if (fWatchCreditCached)
credit += nWatchCreditCached;
else
{
nWatchCreditCached = pwallet->GetCredit(*tx, ISMINE_WATCH_ONLY);
fWatchCreditCached = true;
credit += nWatchCreditCached;
}
}
return credit;
}
CAmount CWalletTx::GetImmatureCredit(bool fUseCache) const
{
if (IsCoinBase() && GetBlocksToMaturity() > 0 && IsInMainChain())
{
if (fUseCache && fImmatureCreditCached)
return nImmatureCreditCached;
nImmatureCreditCached = pwallet->GetCredit(*tx, ISMINE_SPENDABLE);
fImmatureCreditCached = true;
return nImmatureCreditCached;
}
return 0;
}
CAmount CWalletTx::GetAvailableCredit(bool fUseCache) const
{
if (pwallet == nullptr)
return 0;
// Must wait until coinbase is safely deep enough in the chain before valuing it
if (IsCoinBase() && GetBlocksToMaturity() > 0)
return 0;
if (fUseCache && fAvailableCreditCached)
return nAvailableCreditCached;
CAmount nCredit = 0;
uint256 hashTx = GetHash();
for (unsigned int i = 0; i < tx->vout.size(); i++)
{
if (!pwallet->IsSpent(hashTx, i))
{
const CTxOut &txout = tx->vout[i];
nCredit += pwallet->GetCredit(txout, ISMINE_SPENDABLE);
if (!MoneyRange(nCredit))
throw std::runtime_error(std::string(__func__) + " : value out of range");
}
}
nAvailableCreditCached = nCredit;
fAvailableCreditCached = true;
return nCredit;
}
CAmount CWalletTx::GetImmatureWatchOnlyCredit(const bool fUseCache) const
{
if (IsCoinBase() && GetBlocksToMaturity() > 0 && IsInMainChain())
{
if (fUseCache && fImmatureWatchCreditCached)
return nImmatureWatchCreditCached;
nImmatureWatchCreditCached = pwallet->GetCredit(*tx, ISMINE_WATCH_ONLY);
fImmatureWatchCreditCached = true;
return nImmatureWatchCreditCached;
}
return 0;
}
CAmount CWalletTx::GetAvailableWatchOnlyCredit(const bool fUseCache) const
{
if (pwallet == nullptr)
return 0;
// Must wait until coinbase is safely deep enough in the chain before valuing it
if (IsCoinBase() && GetBlocksToMaturity() > 0)
return 0;
if (fUseCache && fAvailableWatchCreditCached)
return nAvailableWatchCreditCached;
CAmount nCredit = 0;
for (unsigned int i = 0; i < tx->vout.size(); i++)
{
if (!pwallet->IsSpent(GetHash(), i))
{
const CTxOut &txout = tx->vout[i];
nCredit += pwallet->GetCredit(txout, ISMINE_WATCH_ONLY);
if (!MoneyRange(nCredit))
throw std::runtime_error(std::string(__func__) + ": value out of range");
}
}
nAvailableWatchCreditCached = nCredit;
fAvailableWatchCreditCached = true;
return nCredit;
}
CAmount CWalletTx::GetChange() const
{
if (fChangeCached)
return nChangeCached;
nChangeCached = pwallet->GetChange(*tx);
fChangeCached = true;
return nChangeCached;
}
bool CWalletTx::InMempool() const
{
return fInMempool;
}
bool CWalletTx::IsTrusted() const
{
// Quick answer in most cases
if (!CheckFinalTx(*tx))
return false;
int nDepth = GetDepthInMainChain();
if (nDepth >= 1)
return true;
if (nDepth < 0)
return false;
if (!pwallet->m_spend_zero_conf_change || !IsFromMe(ISMINE_ALL)) // using wtx's cached debit
return false;
// Don't trust unconfirmed transactions from us unless they are in the mempool.
if (!InMempool())
return false;
// Trusted if all inputs are from us and are in the mempool:
for (const CTxIn& txin : tx->vin)
{
// Transactions not sent by us: not trusted
const CWalletTx* parent = pwallet->GetWalletTx(txin.prevout.hash);
if (parent == nullptr)
return false;
const CTxOut& parentOut = parent->tx->vout[txin.prevout.n];
if (pwallet->IsMine(parentOut) != ISMINE_SPENDABLE)
return false;
}
return true;
}
bool CWalletTx::IsEquivalentTo(const CWalletTx& _tx) const
{
CMutableTransaction tx1 {*this->tx};
CMutableTransaction tx2 {*_tx.tx};
for (auto& txin : tx1.vin) txin.scriptSig = CScript();
for (auto& txin : tx2.vin) txin.scriptSig = CScript();
return CTransaction(tx1) == CTransaction(tx2);
}
std::vector<uint256> CWallet::ResendWalletTransactionsBefore(int64_t nTime, CConnman* connman)
{
std::vector<uint256> result;
LOCK(cs_wallet);
// Sort them in chronological order
std::multimap<unsigned int, CWalletTx*> mapSorted;
for (std::pair<const uint256, CWalletTx>& item : mapWallet)
{
CWalletTx& wtx = item.second;
// Don't rebroadcast if newer than nTime:
if (wtx.nTimeReceived > nTime)
continue;
mapSorted.insert(std::make_pair(wtx.nTimeReceived, &wtx));
}
for (std::pair<const unsigned int, CWalletTx*>& item : mapSorted)
{
CWalletTx& wtx = *item.second;
if (wtx.RelayWalletTransaction(connman))
result.push_back(wtx.GetHash());
}
return result;
}
void CWallet::ResendWalletTransactions(int64_t nBestBlockTime, CConnman* connman)
{
// Do this infrequently and randomly to avoid giving away
// that these are our transactions.
if (GetTime() < nNextResend || !fBroadcastTransactions)
return;
bool fFirst = (nNextResend == 0);
nNextResend = GetTime() + GetRand(30 * 60);
if (fFirst)
return;
// Only do it if there's been a new block since last time
if (nBestBlockTime < nLastResend)
return;
nLastResend = GetTime();
// Rebroadcast unconfirmed txes older than 5 minutes before the last
// block was found:
std::vector<uint256> relayed = ResendWalletTransactionsBefore(nBestBlockTime-5*60, connman);
if (!relayed.empty())
LogPrintf("%s: rebroadcast %u unconfirmed transactions\n", __func__, relayed.size());
}
/** @} */ // end of mapWallet
/** @defgroup Actions
*
* @{
*/
CAmount CWallet::GetBalance() const
{
CAmount nTotal = 0;
{
LOCK2(cs_main, cs_wallet);
for (const auto& entry : mapWallet)
{
const CWalletTx* pcoin = &entry.second;
if (pcoin->IsTrusted())
nTotal += pcoin->GetAvailableCredit();
}
}
return nTotal;
}
CAmount CWallet::GetUnconfirmedBalance() const
{
CAmount nTotal = 0;
{
LOCK2(cs_main, cs_wallet);
for (const auto& entry : mapWallet)
{
const CWalletTx* pcoin = &entry.second;
if (!pcoin->IsTrusted() && pcoin->GetDepthInMainChain() == 0 && pcoin->InMempool())
nTotal += pcoin->GetAvailableCredit();
}
}
return nTotal;
}
CAmount CWallet::GetImmatureBalance() const
{
CAmount nTotal = 0;
{
LOCK2(cs_main, cs_wallet);
for (const auto& entry : mapWallet)
{
const CWalletTx* pcoin = &entry.second;
nTotal += pcoin->GetImmatureCredit();
}
}
return nTotal;
}
CAmount CWallet::GetWatchOnlyBalance() const
{
CAmount nTotal = 0;
{
LOCK2(cs_main, cs_wallet);
for (const auto& entry : mapWallet)
{
const CWalletTx* pcoin = &entry.second;
if (pcoin->IsTrusted())
nTotal += pcoin->GetAvailableWatchOnlyCredit();
}
}
return nTotal;
}
CAmount CWallet::GetUnconfirmedWatchOnlyBalance() const
{
CAmount nTotal = 0;
{
LOCK2(cs_main, cs_wallet);
for (const auto& entry : mapWallet)
{
const CWalletTx* pcoin = &entry.second;
if (!pcoin->IsTrusted() && pcoin->GetDepthInMainChain() == 0 && pcoin->InMempool())
nTotal += pcoin->GetAvailableWatchOnlyCredit();
}
}
return nTotal;
}
CAmount CWallet::GetImmatureWatchOnlyBalance() const
{
CAmount nTotal = 0;
{
LOCK2(cs_main, cs_wallet);
for (const auto& entry : mapWallet)
{
const CWalletTx* pcoin = &entry.second;
nTotal += pcoin->GetImmatureWatchOnlyCredit();
}
}
return nTotal;
}
// Calculate total balance in a different way from GetBalance. The biggest
// difference is that GetBalance sums up all unspent TxOuts paying to the
// wallet, while this sums up both spent and unspent TxOuts paying to the
// wallet, and then subtracts the values of TxIns spending from the wallet. This
// also has fewer restrictions on which unconfirmed transactions are considered
// trusted.
CAmount CWallet::GetLegacyBalance(const isminefilter& filter, int minDepth, const std::string* account) const
{
LOCK2(cs_main, cs_wallet);
CAmount balance = 0;
for (const auto& entry : mapWallet) {
const CWalletTx& wtx = entry.second;
const int depth = wtx.GetDepthInMainChain();
if (depth < 0 || !CheckFinalTx(*wtx.tx) || wtx.GetBlocksToMaturity() > 0) {
continue;
}
// Loop through tx outputs and add incoming payments. For outgoing txs,
// treat change outputs specially, as part of the amount debited.
CAmount debit = wtx.GetDebit(filter);
const bool outgoing = debit > 0;
for (const CTxOut& out : wtx.tx->vout) {
if (outgoing && IsChange(out)) {
debit -= out.nValue;
} else if (IsMine(out) & filter && depth >= minDepth && (!account || *account == GetLabelName(out.scriptPubKey))) {
balance += out.nValue;
}
}
// For outgoing txs, subtract amount debited.
if (outgoing && (!account || *account == wtx.strFromAccount)) {
balance -= debit;
}
}
if (account) {
balance += WalletBatch(*database).GetAccountCreditDebit(*account);
}
return balance;
}
CAmount CWallet::GetAvailableBalance(const CCoinControl* coinControl) const
{
LOCK2(cs_main, cs_wallet);
CAmount balance = 0;
std::vector<COutput> vCoins;
AvailableCoins(vCoins, true, coinControl);
for (const COutput& out : vCoins) {
if (out.fSpendable) {
balance += out.tx->tx->vout[out.i].nValue;
}
}
return balance;
}
void CWallet::AvailableCoins(std::vector<COutput> &vCoins, bool fOnlySafe, const CCoinControl *coinControl, const CAmount &nMinimumAmount, const CAmount &nMaximumAmount, const CAmount &nMinimumSumAmount, const uint64_t nMaximumCount, const int nMinDepth, const int nMaxDepth) const
{
AssertLockHeld(cs_main);
AssertLockHeld(cs_wallet);
vCoins.clear();
CAmount nTotal = 0;
for (const auto& entry : mapWallet)
{
const uint256& wtxid = entry.first;
const CWalletTx* pcoin = &entry.second;
if (!CheckFinalTx(*pcoin->tx))
continue;
if (pcoin->IsCoinBase() && pcoin->GetBlocksToMaturity() > 0)
continue;
int nDepth = pcoin->GetDepthInMainChain();
if (nDepth < 0)
continue;
// We should not consider coins which aren't at least in our mempool
// It's possible for these to be conflicted via ancestors which we may never be able to detect
if (nDepth == 0 && !pcoin->InMempool())
continue;
bool safeTx = pcoin->IsTrusted();
// We should not consider coins from transactions that are replacing
// other transactions.
//
// Example: There is a transaction A which is replaced by bumpfee
// transaction B. In this case, we want to prevent creation of
// a transaction B' which spends an output of B.
//
// Reason: If transaction A were initially confirmed, transactions B
// and B' would no longer be valid, so the user would have to create
// a new transaction C to replace B'. However, in the case of a
// one-block reorg, transactions B' and C might BOTH be accepted,
// when the user only wanted one of them. Specifically, there could
// be a 1-block reorg away from the chain where transactions A and C
// were accepted to another chain where B, B', and C were all
// accepted.
if (nDepth == 0 && pcoin->mapValue.count("replaces_txid")) {
safeTx = false;
}
// Similarly, we should not consider coins from transactions that
// have been replaced. In the example above, we would want to prevent
// creation of a transaction A' spending an output of A, because if
// transaction B were initially confirmed, conflicting with A and
// A', we wouldn't want to the user to create a transaction D
// intending to replace A', but potentially resulting in a scenario
// where A, A', and D could all be accepted (instead of just B and
// D, or just A and A' like the user would want).
if (nDepth == 0 && pcoin->mapValue.count("replaced_by_txid")) {
safeTx = false;
}
if (fOnlySafe && !safeTx) {
continue;
}
if (nDepth < nMinDepth || nDepth > nMaxDepth)
continue;
for (unsigned int i = 0; i < pcoin->tx->vout.size(); i++) {
if (pcoin->tx->vout[i].nValue < nMinimumAmount || pcoin->tx->vout[i].nValue > nMaximumAmount)
continue;
if (coinControl && coinControl->HasSelected() && !coinControl->fAllowOtherInputs && !coinControl->IsSelected(COutPoint(entry.first, i)))
continue;
if (IsLockedCoin(entry.first, i))
continue;
if (IsSpent(wtxid, i))
continue;
isminetype mine = IsMine(pcoin->tx->vout[i]);
if (mine == ISMINE_NO) {
continue;
}
bool solvable = IsSolvable(*this, pcoin->tx->vout[i].scriptPubKey);
bool spendable = ((mine & ISMINE_SPENDABLE) != ISMINE_NO) || (((mine & ISMINE_WATCH_ONLY) != ISMINE_NO) && (coinControl && coinControl->fAllowWatchOnly && solvable));
vCoins.push_back(COutput(pcoin, i, nDepth, spendable, solvable, safeTx));
// Checks the sum amount of all UTXO's.
if (nMinimumSumAmount != MAX_MONEY) {
nTotal += pcoin->tx->vout[i].nValue;
if (nTotal >= nMinimumSumAmount) {
return;
}
}
// Checks the maximum number of UTXO's.
if (nMaximumCount > 0 && vCoins.size() >= nMaximumCount) {
return;
}
}
}
}
std::map<CTxDestination, std::vector<COutput>> CWallet::ListCoins() const
{
// TODO: Add AssertLockHeld(cs_wallet) here.
//
// Because the return value from this function contains pointers to
// CWalletTx objects, callers to this function really should acquire the
// cs_wallet lock before calling it. However, the current caller doesn't
// acquire this lock yet. There was an attempt to add the missing lock in
// https://github.com/bitcoin/bitcoin/pull/10340, but that change has been
// postponed until after https://github.com/bitcoin/bitcoin/pull/10244 to
// avoid adding some extra complexity to the Qt code.
std::map<CTxDestination, std::vector<COutput>> result;
std::vector<COutput> availableCoins;
LOCK2(cs_main, cs_wallet);
AvailableCoins(availableCoins);
for (auto& coin : availableCoins) {
CTxDestination address;
if (coin.fSpendable &&
ExtractDestination(FindNonChangeParentOutput(*coin.tx->tx, coin.i).scriptPubKey, address)) {
result[address].emplace_back(std::move(coin));
}
}
std::vector<COutPoint> lockedCoins;
ListLockedCoins(lockedCoins);
for (const auto& output : lockedCoins) {
auto it = mapWallet.find(output.hash);
if (it != mapWallet.end()) {
int depth = it->second.GetDepthInMainChain();
if (depth >= 0 && output.n < it->second.tx->vout.size() &&
IsMine(it->second.tx->vout[output.n]) == ISMINE_SPENDABLE) {
CTxDestination address;
if (ExtractDestination(FindNonChangeParentOutput(*it->second.tx, output.n).scriptPubKey, address)) {
result[address].emplace_back(
&it->second, output.n, depth, true /* spendable */, true /* solvable */, false /* safe */);
}
}
}
}
return result;
}
const CTxOut& CWallet::FindNonChangeParentOutput(const CTransaction& tx, int output) const
{
const CTransaction* ptx = &tx;
int n = output;
while (IsChange(ptx->vout[n]) && ptx->vin.size() > 0) {
const COutPoint& prevout = ptx->vin[0].prevout;
auto it = mapWallet.find(prevout.hash);
if (it == mapWallet.end() || it->second.tx->vout.size() <= prevout.n ||
!IsMine(it->second.tx->vout[prevout.n])) {
break;
}
ptx = it->second.tx.get();
n = prevout.n;
}
return ptx->vout[n];
}
bool CWallet::OutputEligibleForSpending(const COutput& output, const CoinEligibilityFilter& eligibility_filter) const
{
if (!output.fSpendable)
return false;
if (output.nDepth < (output.tx->IsFromMe(ISMINE_ALL) ? eligibility_filter.conf_mine : eligibility_filter.conf_theirs))
return false;
size_t ancestors, descendants;
mempool.GetTransactionAncestry(output.tx->GetHash(), ancestors, descendants);
if (ancestors > eligibility_filter.max_ancestors || descendants > eligibility_filter.max_descendants) {
return false;
}
return true;
}
bool CWallet::SelectCoinsMinConf(const CAmount& nTargetValue, const CoinEligibilityFilter& eligibility_filter, std::vector<COutput> vCoins,
std::set<CInputCoin>& setCoinsRet, CAmount& nValueRet, const CoinSelectionParams& coin_selection_params, bool& bnb_used) const
{
setCoinsRet.clear();
nValueRet = 0;
std::vector<CInputCoin> utxo_pool;
if (coin_selection_params.use_bnb) {
// Get long term estimate
FeeCalculation feeCalc;
CCoinControl temp;
temp.m_confirm_target = 1008;
CFeeRate long_term_feerate = GetMinimumFeeRate(*this, temp, ::mempool, ::feeEstimator, &feeCalc);
// Calculate cost of change
CAmount cost_of_change = GetDiscardRate(*this, ::feeEstimator).GetFee(coin_selection_params.change_spend_size) + coin_selection_params.effective_fee.GetFee(coin_selection_params.change_output_size);
// Filter by the min conf specs and add to utxo_pool and calculate effective value
for (const COutput &output : vCoins)
{
if (!OutputEligibleForSpending(output, eligibility_filter))
continue;
CInputCoin coin(output.tx->tx, output.i);
coin.effective_value = coin.txout.nValue - (output.nInputBytes < 0 ? 0 : coin_selection_params.effective_fee.GetFee(output.nInputBytes));
// Only include outputs that are positive effective value (i.e. not dust)
if (coin.effective_value > 0) {
coin.fee = output.nInputBytes < 0 ? 0 : coin_selection_params.effective_fee.GetFee(output.nInputBytes);
coin.long_term_fee = output.nInputBytes < 0 ? 0 : long_term_feerate.GetFee(output.nInputBytes);
utxo_pool.push_back(coin);
}
}
// Calculate the fees for things that aren't inputs
CAmount not_input_fees = coin_selection_params.effective_fee.GetFee(coin_selection_params.tx_noinputs_size);
bnb_used = true;
return SelectCoinsBnB(utxo_pool, nTargetValue, cost_of_change, setCoinsRet, nValueRet, not_input_fees);
} else {
// Filter by the min conf specs and add to utxo_pool
for (const COutput &output : vCoins)
{
if (!OutputEligibleForSpending(output, eligibility_filter))
continue;
CInputCoin coin = CInputCoin(output.tx->tx, output.i);
utxo_pool.push_back(coin);
}
bnb_used = false;
return KnapsackSolver(nTargetValue, utxo_pool, setCoinsRet, nValueRet);
}
}
bool CWallet::SelectCoins(const std::vector<COutput>& vAvailableCoins, const CAmount& nTargetValue, std::set<CInputCoin>& setCoinsRet, CAmount& nValueRet, const CCoinControl& coin_control, CoinSelectionParams& coin_selection_params, bool& bnb_used) const
{
std::vector<COutput> vCoins(vAvailableCoins);
// coin control -> return all selected outputs (we want all selected to go into the transaction for sure)
if (coin_control.HasSelected() && !coin_control.fAllowOtherInputs)
{
// We didn't use BnB here, so set it to false.
bnb_used = false;
for (const COutput& out : vCoins)
{
if (!out.fSpendable)
continue;
nValueRet += out.tx->tx->vout[out.i].nValue;
setCoinsRet.insert(CInputCoin(out.tx->tx, out.i));
}
return (nValueRet >= nTargetValue);
}
// calculate value from preset inputs and store them
std::set<CInputCoin> setPresetCoins;
CAmount nValueFromPresetInputs = 0;
std::vector<COutPoint> vPresetInputs;
coin_control.ListSelected(vPresetInputs);
for (const COutPoint& outpoint : vPresetInputs)
{
// For now, don't use BnB if preset inputs are selected. TODO: Enable this later
bnb_used = false;
coin_selection_params.use_bnb = false;
std::map<uint256, CWalletTx>::const_iterator it = mapWallet.find(outpoint.hash);
if (it != mapWallet.end())
{
const CWalletTx* pcoin = &it->second;
// Clearly invalid input, fail
if (pcoin->tx->vout.size() <= outpoint.n)
return false;
// Just to calculate the marginal byte size
nValueFromPresetInputs += pcoin->tx->vout[outpoint.n].nValue;
setPresetCoins.insert(CInputCoin(pcoin->tx, outpoint.n));
} else
return false; // TODO: Allow non-wallet inputs
}
// remove preset inputs from vCoins
for (std::vector<COutput>::iterator it = vCoins.begin(); it != vCoins.end() && coin_control.HasSelected();)
{
if (setPresetCoins.count(CInputCoin(it->tx->tx, it->i)))
it = vCoins.erase(it);
else
++it;
}
size_t max_ancestors = (size_t)std::max<int64_t>(1, gArgs.GetArg("-limitancestorcount", DEFAULT_ANCESTOR_LIMIT));
size_t max_descendants = (size_t)std::max<int64_t>(1, gArgs.GetArg("-limitdescendantcount", DEFAULT_DESCENDANT_LIMIT));
bool fRejectLongChains = gArgs.GetBoolArg("-walletrejectlongchains", DEFAULT_WALLET_REJECT_LONG_CHAINS);
bool res = nTargetValue <= nValueFromPresetInputs ||
SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, CoinEligibilityFilter(1, 6, 0), vCoins, setCoinsRet, nValueRet, coin_selection_params, bnb_used) ||
SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, CoinEligibilityFilter(1, 1, 0), vCoins, setCoinsRet, nValueRet, coin_selection_params, bnb_used) ||
(m_spend_zero_conf_change && SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, CoinEligibilityFilter(0, 1, 2), vCoins, setCoinsRet, nValueRet, coin_selection_params, bnb_used)) ||
(m_spend_zero_conf_change && SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, CoinEligibilityFilter(0, 1, std::min((size_t)4, max_ancestors/3), std::min((size_t)4, max_descendants/3)), vCoins, setCoinsRet, nValueRet, coin_selection_params, bnb_used)) ||
(m_spend_zero_conf_change && SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, CoinEligibilityFilter(0, 1, max_ancestors/2, max_descendants/2), vCoins, setCoinsRet, nValueRet, coin_selection_params, bnb_used)) ||
(m_spend_zero_conf_change && SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, CoinEligibilityFilter(0, 1, max_ancestors-1, max_descendants-1), vCoins, setCoinsRet, nValueRet, coin_selection_params, bnb_used)) ||
(m_spend_zero_conf_change && !fRejectLongChains && SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, CoinEligibilityFilter(0, 1, std::numeric_limits<uint64_t>::max()), vCoins, setCoinsRet, nValueRet, coin_selection_params, bnb_used));
// because SelectCoinsMinConf clears the setCoinsRet, we now add the possible inputs to the coinset
setCoinsRet.insert(setPresetCoins.begin(), setPresetCoins.end());
// add preset inputs to the total value selected
nValueRet += nValueFromPresetInputs;
return res;
}
bool CWallet::SignTransaction(CMutableTransaction &tx)
{
AssertLockHeld(cs_wallet); // mapWallet
// sign the new tx
int nIn = 0;
for (auto& input : tx.vin) {
std::map<uint256, CWalletTx>::const_iterator mi = mapWallet.find(input.prevout.hash);
if(mi == mapWallet.end() || input.prevout.n >= mi->second.tx->vout.size()) {
return false;
}
const CScript& scriptPubKey = mi->second.tx->vout[input.prevout.n].scriptPubKey;
const CAmount& amount = mi->second.tx->vout[input.prevout.n].nValue;
SignatureData sigdata;
if (!ProduceSignature(*this, MutableTransactionSignatureCreator(&tx, nIn, amount, SIGHASH_ALL), scriptPubKey, sigdata)) {
return false;
}
UpdateInput(input, sigdata);
nIn++;
}
return true;
}
bool CWallet::FundTransaction(CMutableTransaction& tx, CAmount& nFeeRet, int& nChangePosInOut, std::string& strFailReason, bool lockUnspents, const std::set<int>& setSubtractFeeFromOutputs, CCoinControl coinControl)
{
std::vector<CRecipient> vecSend;
// Turn the txout set into a CRecipient vector.
for (size_t idx = 0; idx < tx.vout.size(); idx++) {
const CTxOut& txOut = tx.vout[idx];
CRecipient recipient = {txOut.scriptPubKey, txOut.nValue, setSubtractFeeFromOutputs.count(idx) == 1};
vecSend.push_back(recipient);
}
coinControl.fAllowOtherInputs = true;
for (const CTxIn& txin : tx.vin) {
coinControl.Select(txin.prevout);
}
// Acquire the locks to prevent races to the new locked unspents between the
// CreateTransaction call and LockCoin calls (when lockUnspents is true).
LOCK2(cs_main, cs_wallet);
CReserveKey reservekey(this);
CTransactionRef tx_new;
if (!CreateTransaction(vecSend, tx_new, reservekey, nFeeRet, nChangePosInOut, strFailReason, coinControl, false)) {
return false;
}
if (nChangePosInOut != -1) {
tx.vout.insert(tx.vout.begin() + nChangePosInOut, tx_new->vout[nChangePosInOut]);
// We don't have the normal Create/Commit cycle, and don't want to risk
// reusing change, so just remove the key from the keypool here.
reservekey.KeepKey();
}
// Copy output sizes from new transaction; they may have had the fee
// subtracted from them.
for (unsigned int idx = 0; idx < tx.vout.size(); idx++) {
tx.vout[idx].nValue = tx_new->vout[idx].nValue;
}
// Add new txins while keeping original txin scriptSig/order.
for (const CTxIn& txin : tx_new->vin) {
if (!coinControl.IsSelected(txin.prevout)) {
tx.vin.push_back(txin);
if (lockUnspents) {
LockCoin(txin.prevout);
}
}
}
return true;
}
OutputType CWallet::TransactionChangeType(OutputType change_type, const std::vector<CRecipient>& vecSend)
{
// If -changetype is specified, always use that change type.
if (change_type != OutputType::CHANGE_AUTO) {
return change_type;
}
// if m_default_address_type is legacy, use legacy address as change (even
// if some of the outputs are P2WPKH or P2WSH).
if (m_default_address_type == OutputType::LEGACY) {
return OutputType::LEGACY;
}
// if any destination is P2WPKH or P2WSH, use P2WPKH for the change
// output.
for (const auto& recipient : vecSend) {
// Check if any destination contains a witness program:
int witnessversion = 0;
std::vector<unsigned char> witnessprogram;
if (recipient.scriptPubKey.IsWitnessProgram(witnessversion, witnessprogram)) {
return OutputType::BECH32;
}
}
// else use m_default_address_type for change
return m_default_address_type;
}
bool CWallet::CreateTransaction(const std::vector<CRecipient>& vecSend, CTransactionRef& tx, CReserveKey& reservekey, CAmount& nFeeRet,
int& nChangePosInOut, std::string& strFailReason, const CCoinControl& coin_control, bool sign)
{
CAmount nValue = 0;
int nChangePosRequest = nChangePosInOut;
unsigned int nSubtractFeeFromAmount = 0;
for (const auto& recipient : vecSend)
{
if (nValue < 0 || recipient.nAmount < 0)
{
strFailReason = _("Transaction amounts must not be negative");
return false;
}
nValue += recipient.nAmount;
if (recipient.fSubtractFeeFromAmount)
nSubtractFeeFromAmount++;
}
if (vecSend.empty())
{
strFailReason = _("Transaction must have at least one recipient");
return false;
}
CMutableTransaction txNew;
// Discourage fee sniping.
//
// For a large miner the value of the transactions in the best block and
// the mempool can exceed the cost of deliberately attempting to mine two
// blocks to orphan the current best block. By setting nLockTime such that
// only the next block can include the transaction, we discourage this
// practice as the height restricted and limited blocksize gives miners
// considering fee sniping fewer options for pulling off this attack.
//
// A simple way to think about this is from the wallet's point of view we
// always want the blockchain to move forward. By setting nLockTime this
// way we're basically making the statement that we only want this
// transaction to appear in the next block; we don't want to potentially
// encourage reorgs by allowing transactions to appear at lower heights
// than the next block in forks of the best chain.
//
// Of course, the subsidy is high enough, and transaction volume low
// enough, that fee sniping isn't a problem yet, but by implementing a fix
// now we ensure code won't be written that makes assumptions about
// nLockTime that preclude a fix later.
txNew.nLockTime = chainActive.Height();
// Secondly occasionally randomly pick a nLockTime even further back, so
// that transactions that are delayed after signing for whatever reason,
// e.g. high-latency mix networks and some CoinJoin implementations, have
// better privacy.
if (GetRandInt(10) == 0)
txNew.nLockTime = std::max(0, (int)txNew.nLockTime - GetRandInt(100));
assert(txNew.nLockTime <= (unsigned int)chainActive.Height());
assert(txNew.nLockTime < LOCKTIME_THRESHOLD);
FeeCalculation feeCalc;
CAmount nFeeNeeded;
int nBytes;
{
std::set<CInputCoin> setCoins;
LOCK2(cs_main, cs_wallet);
{
std::vector<COutput> vAvailableCoins;
AvailableCoins(vAvailableCoins, true, &coin_control);
CoinSelectionParams coin_selection_params; // Parameters for coin selection, init with dummy
// Create change script that will be used if we need change
// TODO: pass in scriptChange instead of reservekey so
// change transaction isn't always pay-to-bitcoin-address
CScript scriptChange;
// coin control: send change to custom address
if (!boost::get<CNoDestination>(&coin_control.destChange)) {
scriptChange = GetScriptForDestination(coin_control.destChange);
} else { // no coin control: send change to newly generated address
// Note: We use a new key here to keep it from being obvious which side is the change.
// The drawback is that by not reusing a previous key, the change may be lost if a
// backup is restored, if the backup doesn't have the new private key for the change.
// If we reused the old key, it would be possible to add code to look for and
// rediscover unknown transactions that were written with keys of ours to recover
// post-backup change.
// Reserve a new key pair from key pool
CPubKey vchPubKey;
bool ret;
ret = reservekey.GetReservedKey(vchPubKey, true);
if (!ret)
{
strFailReason = _("Keypool ran out, please call keypoolrefill first");
return false;
}
const OutputType change_type = TransactionChangeType(coin_control.m_change_type ? *coin_control.m_change_type : m_default_change_type, vecSend);
LearnRelatedScripts(vchPubKey, change_type);
scriptChange = GetScriptForDestination(GetDestinationForKey(vchPubKey, change_type));
}
CTxOut change_prototype_txout(0, scriptChange);
coin_selection_params.change_output_size = GetSerializeSize(change_prototype_txout, SER_DISK, 0);
CFeeRate discard_rate = GetDiscardRate(*this, ::feeEstimator);
// Get the fee rate to use effective values in coin selection
CFeeRate nFeeRateNeeded = GetMinimumFeeRate(*this, coin_control, ::mempool, ::feeEstimator, &feeCalc);
nFeeRet = 0;
bool pick_new_inputs = true;
CAmount nValueIn = 0;
// BnB selector is the only selector used when this is true.
// That should only happen on the first pass through the loop.
coin_selection_params.use_bnb = nSubtractFeeFromAmount == 0; // If we are doing subtract fee from recipient, then don't use BnB
// Start with no fee and loop until there is enough fee
while (true)
{
nChangePosInOut = nChangePosRequest;
txNew.vin.clear();
txNew.vout.clear();
bool fFirst = true;
CAmount nValueToSelect = nValue;
if (nSubtractFeeFromAmount == 0)
nValueToSelect += nFeeRet;
// vouts to the payees
coin_selection_params.tx_noinputs_size = 11; // Static vsize overhead + outputs vsize. 4 nVersion, 4 nLocktime, 1 input count, 1 output count, 1 witness overhead (dummy, flag, stack size)
for (const auto& recipient : vecSend)
{
CTxOut txout(recipient.nAmount, recipient.scriptPubKey);
if (recipient.fSubtractFeeFromAmount)
{
assert(nSubtractFeeFromAmount != 0);
txout.nValue -= nFeeRet / nSubtractFeeFromAmount; // Subtract fee equally from each selected recipient
if (fFirst) // first receiver pays the remainder not divisible by output count
{
fFirst = false;
txout.nValue -= nFeeRet % nSubtractFeeFromAmount;
}
}
// Include the fee cost for outputs. Note this is only used for BnB right now
coin_selection_params.tx_noinputs_size += ::GetSerializeSize(txout, SER_NETWORK, PROTOCOL_VERSION);
if (IsDust(txout, ::dustRelayFee))
{
if (recipient.fSubtractFeeFromAmount && nFeeRet > 0)
{
if (txout.nValue < 0)
strFailReason = _("The transaction amount is too small to pay the fee");
else
strFailReason = _("The transaction amount is too small to send after the fee has been deducted");
}
else
strFailReason = _("Transaction amount too small");
return false;
}
txNew.vout.push_back(txout);
}
// Choose coins to use
bool bnb_used;
if (pick_new_inputs) {
nValueIn = 0;
setCoins.clear();
coin_selection_params.change_spend_size = CalculateMaximumSignedInputSize(change_prototype_txout, this);
coin_selection_params.effective_fee = nFeeRateNeeded;
if (!SelectCoins(vAvailableCoins, nValueToSelect, setCoins, nValueIn, coin_control, coin_selection_params, bnb_used))
{
// If BnB was used, it was the first pass. No longer the first pass and continue loop with knapsack.
if (bnb_used) {
coin_selection_params.use_bnb = false;
continue;
}
else {
strFailReason = _("Insufficient funds");
return false;
}
}
}
const CAmount nChange = nValueIn - nValueToSelect;
if (nChange > 0)
{
// Fill a vout to ourself
CTxOut newTxOut(nChange, scriptChange);
// Never create dust outputs; if we would, just
// add the dust to the fee.
// The nChange when BnB is used is always going to go to fees.
if (IsDust(newTxOut, discard_rate) || bnb_used)
{
nChangePosInOut = -1;
nFeeRet += nChange;
}
else
{
if (nChangePosInOut == -1)
{
// Insert change txn at random position:
nChangePosInOut = GetRandInt(txNew.vout.size()+1);
}
else if ((unsigned int)nChangePosInOut > txNew.vout.size())
{
strFailReason = _("Change index out of range");
return false;
}
std::vector<CTxOut>::iterator position = txNew.vout.begin()+nChangePosInOut;
txNew.vout.insert(position, newTxOut);
}
} else {
nChangePosInOut = -1;
}
// Dummy fill vin for maximum size estimation
//
for (const auto& coin : setCoins) {
txNew.vin.push_back(CTxIn(coin.outpoint,CScript()));
}
nBytes = CalculateMaximumSignedTxSize(txNew, this);
if (nBytes < 0) {
strFailReason = _("Signing transaction failed");
return false;
}
nFeeNeeded = GetMinimumFee(*this, nBytes, coin_control, ::mempool, ::feeEstimator, &feeCalc);
if (feeCalc.reason == FeeReason::FALLBACK && !m_allow_fallback_fee) {
// eventually allow a fallback fee
strFailReason = _("Fee estimation failed. Fallbackfee is disabled. Wait a few blocks or enable -fallbackfee.");
return false;
}
// If we made it here and we aren't even able to meet the relay fee on the next pass, give up
// because we must be at the maximum allowed fee.
if (nFeeNeeded < ::minRelayTxFee.GetFee(nBytes))
{
strFailReason = _("Transaction too large for fee policy");
return false;
}
if (nFeeRet >= nFeeNeeded) {
// Reduce fee to only the needed amount if possible. This
// prevents potential overpayment in fees if the coins
// selected to meet nFeeNeeded result in a transaction that
// requires less fee than the prior iteration.
// If we have no change and a big enough excess fee, then
// try to construct transaction again only without picking
// new inputs. We now know we only need the smaller fee
// (because of reduced tx size) and so we should add a
// change output. Only try this once.
if (nChangePosInOut == -1 && nSubtractFeeFromAmount == 0 && pick_new_inputs) {
unsigned int tx_size_with_change = nBytes + coin_selection_params.change_output_size + 2; // Add 2 as a buffer in case increasing # of outputs changes compact size
CAmount fee_needed_with_change = GetMinimumFee(*this, tx_size_with_change, coin_control, ::mempool, ::feeEstimator, nullptr);
CAmount minimum_value_for_change = GetDustThreshold(change_prototype_txout, discard_rate);
if (nFeeRet >= fee_needed_with_change + minimum_value_for_change) {
pick_new_inputs = false;
nFeeRet = fee_needed_with_change;
continue;
}
}
// If we have change output already, just increase it
if (nFeeRet > nFeeNeeded && nChangePosInOut != -1 && nSubtractFeeFromAmount == 0) {
CAmount extraFeePaid = nFeeRet - nFeeNeeded;
std::vector<CTxOut>::iterator change_position = txNew.vout.begin()+nChangePosInOut;
change_position->nValue += extraFeePaid;
nFeeRet -= extraFeePaid;
}
break; // Done, enough fee included.
}
else if (!pick_new_inputs) {
// This shouldn't happen, we should have had enough excess
// fee to pay for the new output and still meet nFeeNeeded
// Or we should have just subtracted fee from recipients and
// nFeeNeeded should not have changed
strFailReason = _("Transaction fee and change calculation failed");
return false;
}
// Try to reduce change to include necessary fee
if (nChangePosInOut != -1 && nSubtractFeeFromAmount == 0) {
CAmount additionalFeeNeeded = nFeeNeeded - nFeeRet;
std::vector<CTxOut>::iterator change_position = txNew.vout.begin()+nChangePosInOut;
// Only reduce change if remaining amount is still a large enough output.
if (change_position->nValue >= MIN_FINAL_CHANGE + additionalFeeNeeded) {
change_position->nValue -= additionalFeeNeeded;
nFeeRet += additionalFeeNeeded;
break; // Done, able to increase fee from change
}
}
// If subtracting fee from recipients, we now know what fee we
// need to subtract, we have no reason to reselect inputs
if (nSubtractFeeFromAmount > 0) {
pick_new_inputs = false;
}
// Include more fee and try again.
nFeeRet = nFeeNeeded;
coin_selection_params.use_bnb = false;
continue;
}
}
if (nChangePosInOut == -1) reservekey.ReturnKey(); // Return any reserved key if we don't have change
// Shuffle selected coins and fill in final vin
txNew.vin.clear();
std::vector<CInputCoin> selected_coins(setCoins.begin(), setCoins.end());
std::shuffle(selected_coins.begin(), selected_coins.end(), FastRandomContext());
// Note how the sequence number is set to non-maxint so that
// the nLockTime set above actually works.
//
// BIP125 defines opt-in RBF as any nSequence < maxint-1, so
// we use the highest possible value in that range (maxint-2)
// to avoid conflicting with other possible uses of nSequence,
// and in the spirit of "smallest possible change from prior
// behavior."
const uint32_t nSequence = coin_control.m_signal_bip125_rbf.get_value_or(m_signal_rbf) ? MAX_BIP125_RBF_SEQUENCE : (CTxIn::SEQUENCE_FINAL - 1);
for (const auto& coin : selected_coins) {
txNew.vin.push_back(CTxIn(coin.outpoint, CScript(), nSequence));
}
if (sign)
{
int nIn = 0;
for (const auto& coin : selected_coins)
{
const CScript& scriptPubKey = coin.txout.scriptPubKey;
SignatureData sigdata;
if (!ProduceSignature(*this, MutableTransactionSignatureCreator(&txNew, nIn, coin.txout.nValue, SIGHASH_ALL), scriptPubKey, sigdata))
{
strFailReason = _("Signing transaction failed");
return false;
} else {
UpdateInput(txNew.vin.at(nIn), sigdata);
}
nIn++;
}
}
// Return the constructed transaction data.
tx = MakeTransactionRef(std::move(txNew));
// Limit size
if (GetTransactionWeight(*tx) >= MAX_STANDARD_TX_WEIGHT)
{
strFailReason = _("Transaction too large");
return false;
}
}
if (gArgs.GetBoolArg("-walletrejectlongchains", DEFAULT_WALLET_REJECT_LONG_CHAINS)) {
// Lastly, ensure this tx will pass the mempool's chain limits
LockPoints lp;
CTxMemPoolEntry entry(tx, 0, 0, 0, false, 0, lp);
CTxMemPool::setEntries setAncestors;
size_t nLimitAncestors = gArgs.GetArg("-limitancestorcount", DEFAULT_ANCESTOR_LIMIT);
size_t nLimitAncestorSize = gArgs.GetArg("-limitancestorsize", DEFAULT_ANCESTOR_SIZE_LIMIT)*1000;
size_t nLimitDescendants = gArgs.GetArg("-limitdescendantcount", DEFAULT_DESCENDANT_LIMIT);
size_t nLimitDescendantSize = gArgs.GetArg("-limitdescendantsize", DEFAULT_DESCENDANT_SIZE_LIMIT)*1000;
std::string errString;
if (!mempool.CalculateMemPoolAncestors(entry, setAncestors, nLimitAncestors, nLimitAncestorSize, nLimitDescendants, nLimitDescendantSize, errString)) {
strFailReason = _("Transaction has too long of a mempool chain");
return false;
}
}
LogPrintf("Fee Calculation: Fee:%d Bytes:%u Needed:%d Tgt:%d (requested %d) Reason:\"%s\" Decay %.5f: Estimation: (%g - %g) %.2f%% %.1f/(%.1f %d mem %.1f out) Fail: (%g - %g) %.2f%% %.1f/(%.1f %d mem %.1f out)\n",
nFeeRet, nBytes, nFeeNeeded, feeCalc.returnedTarget, feeCalc.desiredTarget, StringForFeeReason(feeCalc.reason), feeCalc.est.decay,
feeCalc.est.pass.start, feeCalc.est.pass.end,
100 * feeCalc.est.pass.withinTarget / (feeCalc.est.pass.totalConfirmed + feeCalc.est.pass.inMempool + feeCalc.est.pass.leftMempool),
feeCalc.est.pass.withinTarget, feeCalc.est.pass.totalConfirmed, feeCalc.est.pass.inMempool, feeCalc.est.pass.leftMempool,
feeCalc.est.fail.start, feeCalc.est.fail.end,
100 * feeCalc.est.fail.withinTarget / (feeCalc.est.fail.totalConfirmed + feeCalc.est.fail.inMempool + feeCalc.est.fail.leftMempool),
feeCalc.est.fail.withinTarget, feeCalc.est.fail.totalConfirmed, feeCalc.est.fail.inMempool, feeCalc.est.fail.leftMempool);
return true;
}
/**
* Call after CreateTransaction unless you want to abort
*/
bool CWallet::CommitTransaction(CTransactionRef tx, mapValue_t mapValue, std::vector<std::pair<std::string, std::string>> orderForm, std::string fromAccount, CReserveKey& reservekey, CConnman* connman, CValidationState& state)
{
{
LOCK2(cs_main, cs_wallet);
CWalletTx wtxNew(this, std::move(tx));
wtxNew.mapValue = std::move(mapValue);
wtxNew.vOrderForm = std::move(orderForm);
wtxNew.strFromAccount = std::move(fromAccount);
wtxNew.fTimeReceivedIsTxTime = true;
wtxNew.fFromMe = true;
LogPrintf("CommitTransaction:\n%s", wtxNew.tx->ToString()); /* Continued */
{
// Take key pair from key pool so it won't be used again
reservekey.KeepKey();
// Add tx to wallet, because if it has change it's also ours,
// otherwise just for transaction history.
AddToWallet(wtxNew);
// Notify that old coins are spent
for (const CTxIn& txin : wtxNew.tx->vin)
{
CWalletTx &coin = mapWallet.at(txin.prevout.hash);
coin.BindWallet(this);
NotifyTransactionChanged(this, coin.GetHash(), CT_UPDATED);
}
}
// Track how many getdata requests our transaction gets
mapRequestCount[wtxNew.GetHash()] = 0;
// Get the inserted-CWalletTx from mapWallet so that the
// fInMempool flag is cached properly
CWalletTx& wtx = mapWallet.at(wtxNew.GetHash());
if (fBroadcastTransactions)
{
// Broadcast
if (!wtx.AcceptToMemoryPool(maxTxFee, state)) {
LogPrintf("CommitTransaction(): Transaction cannot be broadcast immediately, %s\n", FormatStateMessage(state));
// TODO: if we expect the failure to be long term or permanent, instead delete wtx from the wallet and return failure.
} else {
wtx.RelayWalletTransaction(connman);
}
}
}
return true;
}
void CWallet::ListAccountCreditDebit(const std::string& strAccount, std::list<CAccountingEntry>& entries) {
WalletBatch batch(*database);
return batch.ListAccountCreditDebit(strAccount, entries);
}
bool CWallet::AddAccountingEntry(const CAccountingEntry& acentry)
{
WalletBatch batch(*database);
return AddAccountingEntry(acentry, &batch);
}
bool CWallet::AddAccountingEntry(const CAccountingEntry& acentry, WalletBatch *batch)
{
if (!batch->WriteAccountingEntry(++nAccountingEntryNumber, acentry)) {
return false;
}
laccentries.push_back(acentry);
CAccountingEntry & entry = laccentries.back();
wtxOrdered.insert(std::make_pair(entry.nOrderPos, TxPair(nullptr, &entry)));
return true;
}
DBErrors CWallet::LoadWallet(bool& fFirstRunRet)
{
LOCK2(cs_main, cs_wallet);
fFirstRunRet = false;
DBErrors nLoadWalletRet = WalletBatch(*database,"cr+").LoadWallet(this);
if (nLoadWalletRet == DBErrors::NEED_REWRITE)
{
if (database->Rewrite("\x04pool"))
{
setInternalKeyPool.clear();
setExternalKeyPool.clear();
m_pool_key_to_index.clear();
// Note: can't top-up keypool here, because wallet is locked.
// User will be prompted to unlock wallet the next operation
// that requires a new key.
}
}
// This wallet is in its first run if all of these are empty
fFirstRunRet = mapKeys.empty() && mapCryptedKeys.empty() && mapWatchKeys.empty() && setWatchOnly.empty() && mapScripts.empty();
if (nLoadWalletRet != DBErrors::LOAD_OK)
return nLoadWalletRet;
return DBErrors::LOAD_OK;
}
DBErrors CWallet::ZapSelectTx(std::vector<uint256>& vHashIn, std::vector<uint256>& vHashOut)
{
AssertLockHeld(cs_wallet); // mapWallet
DBErrors nZapSelectTxRet = WalletBatch(*database,"cr+").ZapSelectTx(vHashIn, vHashOut);
for (uint256 hash : vHashOut)
mapWallet.erase(hash);
if (nZapSelectTxRet == DBErrors::NEED_REWRITE)
{
if (database->Rewrite("\x04pool"))
{
setInternalKeyPool.clear();
setExternalKeyPool.clear();
m_pool_key_to_index.clear();
// Note: can't top-up keypool here, because wallet is locked.
// User will be prompted to unlock wallet the next operation
// that requires a new key.
}
}
if (nZapSelectTxRet != DBErrors::LOAD_OK)
return nZapSelectTxRet;
MarkDirty();
return DBErrors::LOAD_OK;
}
DBErrors CWallet::ZapWalletTx(std::vector<CWalletTx>& vWtx)
{
DBErrors nZapWalletTxRet = WalletBatch(*database,"cr+").ZapWalletTx(vWtx);
if (nZapWalletTxRet == DBErrors::NEED_REWRITE)
{
if (database->Rewrite("\x04pool"))
{
LOCK(cs_wallet);
setInternalKeyPool.clear();
setExternalKeyPool.clear();
m_pool_key_to_index.clear();
// Note: can't top-up keypool here, because wallet is locked.
// User will be prompted to unlock wallet the next operation
// that requires a new key.
}
}
if (nZapWalletTxRet != DBErrors::LOAD_OK)
return nZapWalletTxRet;
return DBErrors::LOAD_OK;
}
bool CWallet::SetAddressBook(const CTxDestination& address, const std::string& strName, const std::string& strPurpose)
{
bool fUpdated = false;
{
LOCK(cs_wallet); // mapAddressBook
std::map<CTxDestination, CAddressBookData>::iterator mi = mapAddressBook.find(address);
fUpdated = mi != mapAddressBook.end();
mapAddressBook[address].name = strName;
if (!strPurpose.empty()) /* update purpose only if requested */
mapAddressBook[address].purpose = strPurpose;
}
NotifyAddressBookChanged(this, address, strName, ::IsMine(*this, address) != ISMINE_NO,
strPurpose, (fUpdated ? CT_UPDATED : CT_NEW) );
if (!strPurpose.empty() && !WalletBatch(*database).WritePurpose(EncodeDestination(address), strPurpose))
return false;
return WalletBatch(*database).WriteName(EncodeDestination(address), strName);
}
bool CWallet::DelAddressBook(const CTxDestination& address)
{
{
LOCK(cs_wallet); // mapAddressBook
// Delete destdata tuples associated with address
std::string strAddress = EncodeDestination(address);
for (const std::pair<std::string, std::string> &item : mapAddressBook[address].destdata)
{
WalletBatch(*database).EraseDestData(strAddress, item.first);
}
mapAddressBook.erase(address);
}
NotifyAddressBookChanged(this, address, "", ::IsMine(*this, address) != ISMINE_NO, "", CT_DELETED);
WalletBatch(*database).ErasePurpose(EncodeDestination(address));
return WalletBatch(*database).EraseName(EncodeDestination(address));
}
const std::string& CWallet::GetLabelName(const CScript& scriptPubKey) const
{
CTxDestination address;
if (ExtractDestination(scriptPubKey, address) && !scriptPubKey.IsUnspendable()) {
auto mi = mapAddressBook.find(address);
if (mi != mapAddressBook.end()) {
return mi->second.name;
}
}
// A scriptPubKey that doesn't have an entry in the address book is
// associated with the default label ("").
const static std::string DEFAULT_LABEL_NAME;
return DEFAULT_LABEL_NAME;
}
/**
* Mark old keypool keys as used,
* and generate all new keys
*/
bool CWallet::NewKeyPool()
{
{
LOCK(cs_wallet);
WalletBatch batch(*database);
for (int64_t nIndex : setInternalKeyPool) {
batch.ErasePool(nIndex);
}
setInternalKeyPool.clear();
for (int64_t nIndex : setExternalKeyPool) {
batch.ErasePool(nIndex);
}
setExternalKeyPool.clear();
for (int64_t nIndex : set_pre_split_keypool) {
batch.ErasePool(nIndex);
}
set_pre_split_keypool.clear();
m_pool_key_to_index.clear();
if (!TopUpKeyPool()) {
return false;
}
LogPrintf("CWallet::NewKeyPool rewrote keypool\n");
}
return true;
}
size_t CWallet::KeypoolCountExternalKeys()
{
AssertLockHeld(cs_wallet); // setExternalKeyPool
return setExternalKeyPool.size() + set_pre_split_keypool.size();
}
void CWallet::LoadKeyPool(int64_t nIndex, const CKeyPool &keypool)
{
AssertLockHeld(cs_wallet);
if (keypool.m_pre_split) {
set_pre_split_keypool.insert(nIndex);
} else if (keypool.fInternal) {
setInternalKeyPool.insert(nIndex);
} else {
setExternalKeyPool.insert(nIndex);
}
m_max_keypool_index = std::max(m_max_keypool_index, nIndex);
m_pool_key_to_index[keypool.vchPubKey.GetID()] = nIndex;
// If no metadata exists yet, create a default with the pool key's
// creation time. Note that this may be overwritten by actually
// stored metadata for that key later, which is fine.
CKeyID keyid = keypool.vchPubKey.GetID();
if (mapKeyMetadata.count(keyid) == 0)
mapKeyMetadata[keyid] = CKeyMetadata(keypool.nTime);
}
bool CWallet::TopUpKeyPool(unsigned int kpSize)
{
{
LOCK(cs_wallet);
if (IsLocked())
return false;
// Top up key pool
unsigned int nTargetSize;
if (kpSize > 0)
nTargetSize = kpSize;
else
nTargetSize = std::max(gArgs.GetArg("-keypool", DEFAULT_KEYPOOL_SIZE), (int64_t) 0);
// count amount of available keys (internal, external)
// make sure the keypool of external and internal keys fits the user selected target (-keypool)
int64_t missingExternal = std::max(std::max((int64_t) nTargetSize, (int64_t) 1) - (int64_t)setExternalKeyPool.size(), (int64_t) 0);
int64_t missingInternal = std::max(std::max((int64_t) nTargetSize, (int64_t) 1) - (int64_t)setInternalKeyPool.size(), (int64_t) 0);
if (!IsHDEnabled() || !CanSupportFeature(FEATURE_HD_SPLIT))
{
// don't create extra internal keys
missingInternal = 0;
}
bool internal = false;
WalletBatch batch(*database);
for (int64_t i = missingInternal + missingExternal; i--;)
{
if (i < missingInternal) {
internal = true;
}
assert(m_max_keypool_index < std::numeric_limits<int64_t>::max()); // How in the hell did you use so many keys?
int64_t index = ++m_max_keypool_index;
CPubKey pubkey(GenerateNewKey(batch, internal));
if (!batch.WritePool(index, CKeyPool(pubkey, internal))) {
throw std::runtime_error(std::string(__func__) + ": writing generated key failed");
}
if (internal) {
setInternalKeyPool.insert(index);
} else {
setExternalKeyPool.insert(index);
}
m_pool_key_to_index[pubkey.GetID()] = index;
}
if (missingInternal + missingExternal > 0) {
LogPrintf("keypool added %d keys (%d internal), size=%u (%u internal)\n", missingInternal + missingExternal, missingInternal, setInternalKeyPool.size() + setExternalKeyPool.size() + set_pre_split_keypool.size(), setInternalKeyPool.size());
}
}
return true;
}
bool CWallet::ReserveKeyFromKeyPool(int64_t& nIndex, CKeyPool& keypool, bool fRequestedInternal)
{
nIndex = -1;
keypool.vchPubKey = CPubKey();
{
LOCK(cs_wallet);
if (!IsLocked())
TopUpKeyPool();
bool fReturningInternal = IsHDEnabled() && CanSupportFeature(FEATURE_HD_SPLIT) && fRequestedInternal;
bool use_split_keypool = set_pre_split_keypool.empty();
std::set<int64_t>& setKeyPool = use_split_keypool ? (fReturningInternal ? setInternalKeyPool : setExternalKeyPool) : set_pre_split_keypool;
// Get the oldest key
if (setKeyPool.empty()) {
return false;
}
WalletBatch batch(*database);
auto it = setKeyPool.begin();
nIndex = *it;
setKeyPool.erase(it);
if (!batch.ReadPool(nIndex, keypool)) {
throw std::runtime_error(std::string(__func__) + ": read failed");
}
if (!HaveKey(keypool.vchPubKey.GetID())) {
throw std::runtime_error(std::string(__func__) + ": unknown key in key pool");
}
// If the key was pre-split keypool, we don't care about what type it is
if (use_split_keypool && keypool.fInternal != fReturningInternal) {
throw std::runtime_error(std::string(__func__) + ": keypool entry misclassified");
}
if (!keypool.vchPubKey.IsValid()) {
throw std::runtime_error(std::string(__func__) + ": keypool entry invalid");
}
m_pool_key_to_index.erase(keypool.vchPubKey.GetID());
LogPrintf("keypool reserve %d\n", nIndex);
}
return true;
}
void CWallet::KeepKey(int64_t nIndex)
{
// Remove from key pool
WalletBatch batch(*database);
batch.ErasePool(nIndex);
LogPrintf("keypool keep %d\n", nIndex);
}
void CWallet::ReturnKey(int64_t nIndex, bool fInternal, const CPubKey& pubkey)
{
// Return to key pool
{
LOCK(cs_wallet);
if (fInternal) {
setInternalKeyPool.insert(nIndex);
} else if (!set_pre_split_keypool.empty()) {
set_pre_split_keypool.insert(nIndex);
} else {
setExternalKeyPool.insert(nIndex);
}
m_pool_key_to_index[pubkey.GetID()] = nIndex;
}
LogPrintf("keypool return %d\n", nIndex);
}
bool CWallet::GetKeyFromPool(CPubKey& result, bool internal)
{
CKeyPool keypool;
{
LOCK(cs_wallet);
int64_t nIndex;
if (!ReserveKeyFromKeyPool(nIndex, keypool, internal)) {
if (IsLocked()) return false;
WalletBatch batch(*database);
result = GenerateNewKey(batch, internal);
return true;
}
KeepKey(nIndex);
result = keypool.vchPubKey;
}
return true;
}
static int64_t GetOldestKeyTimeInPool(const std::set<int64_t>& setKeyPool, WalletBatch& batch) {
if (setKeyPool.empty()) {
return GetTime();
}
CKeyPool keypool;
int64_t nIndex = *(setKeyPool.begin());
if (!batch.ReadPool(nIndex, keypool)) {
throw std::runtime_error(std::string(__func__) + ": read oldest key in keypool failed");
}
assert(keypool.vchPubKey.IsValid());
return keypool.nTime;
}
int64_t CWallet::GetOldestKeyPoolTime()
{
LOCK(cs_wallet);
WalletBatch batch(*database);
// load oldest key from keypool, get time and return
int64_t oldestKey = GetOldestKeyTimeInPool(setExternalKeyPool, batch);
if (IsHDEnabled() && CanSupportFeature(FEATURE_HD_SPLIT)) {
oldestKey = std::max(GetOldestKeyTimeInPool(setInternalKeyPool, batch), oldestKey);
if (!set_pre_split_keypool.empty()) {
oldestKey = std::max(GetOldestKeyTimeInPool(set_pre_split_keypool, batch), oldestKey);
}
}
return oldestKey;
}
std::map<CTxDestination, CAmount> CWallet::GetAddressBalances()
{
std::map<CTxDestination, CAmount> balances;
{
LOCK(cs_wallet);
for (const auto& walletEntry : mapWallet)
{
const CWalletTx *pcoin = &walletEntry.second;
if (!pcoin->IsTrusted())
continue;
if (pcoin->IsCoinBase() && pcoin->GetBlocksToMaturity() > 0)
continue;
int nDepth = pcoin->GetDepthInMainChain();
if (nDepth < (pcoin->IsFromMe(ISMINE_ALL) ? 0 : 1))
continue;
for (unsigned int i = 0; i < pcoin->tx->vout.size(); i++)
{
CTxDestination addr;
if (!IsMine(pcoin->tx->vout[i]))
continue;
if(!ExtractDestination(pcoin->tx->vout[i].scriptPubKey, addr))
continue;
CAmount n = IsSpent(walletEntry.first, i) ? 0 : pcoin->tx->vout[i].nValue;
if (!balances.count(addr))
balances[addr] = 0;
balances[addr] += n;
}
}
}
return balances;
}
std::set< std::set<CTxDestination> > CWallet::GetAddressGroupings()
{
AssertLockHeld(cs_wallet); // mapWallet
std::set< std::set<CTxDestination> > groupings;
std::set<CTxDestination> grouping;
for (const auto& walletEntry : mapWallet)
{
const CWalletTx *pcoin = &walletEntry.second;
if (pcoin->tx->vin.size() > 0)
{
bool any_mine = false;
// group all input addresses with each other
for (CTxIn txin : pcoin->tx->vin)
{
CTxDestination address;
if(!IsMine(txin)) /* If this input isn't mine, ignore it */
continue;
if(!ExtractDestination(mapWallet.at(txin.prevout.hash).tx->vout[txin.prevout.n].scriptPubKey, address))
continue;
grouping.insert(address);
any_mine = true;
}
// group change with input addresses
if (any_mine)
{
for (CTxOut txout : pcoin->tx->vout)
if (IsChange(txout))
{
CTxDestination txoutAddr;
if(!ExtractDestination(txout.scriptPubKey, txoutAddr))
continue;
grouping.insert(txoutAddr);
}
}
if (grouping.size() > 0)
{
groupings.insert(grouping);
grouping.clear();
}
}
// group lone addrs by themselves
for (const auto& txout : pcoin->tx->vout)
if (IsMine(txout))
{
CTxDestination address;
if(!ExtractDestination(txout.scriptPubKey, address))
continue;
grouping.insert(address);
groupings.insert(grouping);
grouping.clear();
}
}
std::set< std::set<CTxDestination>* > uniqueGroupings; // a set of pointers to groups of addresses
std::map< CTxDestination, std::set<CTxDestination>* > setmap; // map addresses to the unique group containing it
for (std::set<CTxDestination> _grouping : groupings)
{
// make a set of all the groups hit by this new group
std::set< std::set<CTxDestination>* > hits;
std::map< CTxDestination, std::set<CTxDestination>* >::iterator it;
for (CTxDestination address : _grouping)
if ((it = setmap.find(address)) != setmap.end())
hits.insert((*it).second);
// merge all hit groups into a new single group and delete old groups
std::set<CTxDestination>* merged = new std::set<CTxDestination>(_grouping);
for (std::set<CTxDestination>* hit : hits)
{
merged->insert(hit->begin(), hit->end());
uniqueGroupings.erase(hit);
delete hit;
}
uniqueGroupings.insert(merged);
// update setmap
for (CTxDestination element : *merged)
setmap[element] = merged;
}
std::set< std::set<CTxDestination> > ret;
for (std::set<CTxDestination>* uniqueGrouping : uniqueGroupings)
{
ret.insert(*uniqueGrouping);
delete uniqueGrouping;
}
return ret;
}
std::set<CTxDestination> CWallet::GetLabelAddresses(const std::string& label) const
{
LOCK(cs_wallet);
std::set<CTxDestination> result;
for (const std::pair<CTxDestination, CAddressBookData>& item : mapAddressBook)
{
const CTxDestination& address = item.first;
const std::string& strName = item.second.name;
if (strName == label)
result.insert(address);
}
return result;
}
void CWallet::DeleteLabel(const std::string& label)
{
WalletBatch batch(*database);
batch.EraseAccount(label);
}
bool CReserveKey::GetReservedKey(CPubKey& pubkey, bool internal)
{
if (nIndex == -1)
{
CKeyPool keypool;
if (!pwallet->ReserveKeyFromKeyPool(nIndex, keypool, internal)) {
return false;
}
vchPubKey = keypool.vchPubKey;
fInternal = keypool.fInternal;
}
assert(vchPubKey.IsValid());
pubkey = vchPubKey;
return true;
}
void CReserveKey::KeepKey()
{
if (nIndex != -1)
pwallet->KeepKey(nIndex);
nIndex = -1;
vchPubKey = CPubKey();
}
void CReserveKey::ReturnKey()
{
if (nIndex != -1) {
pwallet->ReturnKey(nIndex, fInternal, vchPubKey);
}
nIndex = -1;
vchPubKey = CPubKey();
}
void CWallet::MarkReserveKeysAsUsed(int64_t keypool_id)
{
AssertLockHeld(cs_wallet);
bool internal = setInternalKeyPool.count(keypool_id);
if (!internal) assert(setExternalKeyPool.count(keypool_id) || set_pre_split_keypool.count(keypool_id));
std::set<int64_t> *setKeyPool = internal ? &setInternalKeyPool : (set_pre_split_keypool.empty() ? &setExternalKeyPool : &set_pre_split_keypool);
auto it = setKeyPool->begin();
WalletBatch batch(*database);
while (it != std::end(*setKeyPool)) {
const int64_t& index = *(it);
if (index > keypool_id) break; // set*KeyPool is ordered
CKeyPool keypool;
if (batch.ReadPool(index, keypool)) { //TODO: This should be unnecessary
m_pool_key_to_index.erase(keypool.vchPubKey.GetID());
}
LearnAllRelatedScripts(keypool.vchPubKey);
batch.ErasePool(index);
LogPrintf("keypool index %d removed\n", index);
it = setKeyPool->erase(it);
}
}
void CWallet::GetScriptForMining(std::shared_ptr<CReserveScript> &script)
{
std::shared_ptr<CReserveKey> rKey = std::make_shared<CReserveKey>(this);
CPubKey pubkey;
if (!rKey->GetReservedKey(pubkey))
return;
script = rKey;
script->reserveScript = CScript() << ToByteVector(pubkey) << OP_CHECKSIG;
}
void CWallet::LockCoin(const COutPoint& output)
{
AssertLockHeld(cs_wallet); // setLockedCoins
setLockedCoins.insert(output);
}
void CWallet::UnlockCoin(const COutPoint& output)
{
AssertLockHeld(cs_wallet); // setLockedCoins
setLockedCoins.erase(output);
}
void CWallet::UnlockAllCoins()
{
AssertLockHeld(cs_wallet); // setLockedCoins
setLockedCoins.clear();
}
bool CWallet::IsLockedCoin(uint256 hash, unsigned int n) const
{
AssertLockHeld(cs_wallet); // setLockedCoins
COutPoint outpt(hash, n);
return (setLockedCoins.count(outpt) > 0);
}
void CWallet::ListLockedCoins(std::vector<COutPoint>& vOutpts) const
{
AssertLockHeld(cs_wallet); // setLockedCoins
for (std::set<COutPoint>::iterator it = setLockedCoins.begin();
it != setLockedCoins.end(); it++) {
COutPoint outpt = (*it);
vOutpts.push_back(outpt);
}
}
/** @} */ // end of Actions
void CWallet::GetKeyBirthTimes(std::map<CTxDestination, int64_t> &mapKeyBirth) const {
AssertLockHeld(cs_wallet); // mapKeyMetadata
mapKeyBirth.clear();
// get birth times for keys with metadata
for (const auto& entry : mapKeyMetadata) {
if (entry.second.nCreateTime) {
mapKeyBirth[entry.first] = entry.second.nCreateTime;
}
}
// map in which we'll infer heights of other keys
CBlockIndex *pindexMax = chainActive[std::max(0, chainActive.Height() - 144)]; // the tip can be reorganized; use a 144-block safety margin
std::map<CKeyID, CBlockIndex*> mapKeyFirstBlock;
for (const CKeyID &keyid : GetKeys()) {
if (mapKeyBirth.count(keyid) == 0)
mapKeyFirstBlock[keyid] = pindexMax;
}
// if there are no such keys, we're done
if (mapKeyFirstBlock.empty())
return;
// find first block that affects those keys, if there are any left
std::vector<CKeyID> vAffected;
for (const auto& entry : mapWallet) {
// iterate over all wallet transactions...
const CWalletTx &wtx = entry.second;
CBlockIndex* pindex = LookupBlockIndex(wtx.hashBlock);
if (pindex && chainActive.Contains(pindex)) {
// ... which are already in a block
int nHeight = pindex->nHeight;
for (const CTxOut &txout : wtx.tx->vout) {
// iterate over all their outputs
CAffectedKeysVisitor(*this, vAffected).Process(txout.scriptPubKey);
for (const CKeyID &keyid : vAffected) {
// ... and all their affected keys
std::map<CKeyID, CBlockIndex*>::iterator rit = mapKeyFirstBlock.find(keyid);
if (rit != mapKeyFirstBlock.end() && nHeight < rit->second->nHeight)
rit->second = pindex;
}
vAffected.clear();
}
}
}
// Extract block timestamps for those keys
for (const auto& entry : mapKeyFirstBlock)
mapKeyBirth[entry.first] = entry.second->GetBlockTime() - TIMESTAMP_WINDOW; // block times can be 2h off
}
/**
* Compute smart timestamp for a transaction being added to the wallet.
*
* Logic:
* - If sending a transaction, assign its timestamp to the current time.
* - If receiving a transaction outside a block, assign its timestamp to the
* current time.
* - If receiving a block with a future timestamp, assign all its (not already
* known) transactions' timestamps to the current time.
* - If receiving a block with a past timestamp, before the most recent known
* transaction (that we care about), assign all its (not already known)
* transactions' timestamps to the same timestamp as that most-recent-known
* transaction.
* - If receiving a block with a past timestamp, but after the most recent known
* transaction, assign all its (not already known) transactions' timestamps to
* the block time.
*
* For more information see CWalletTx::nTimeSmart,
* https://bitcointalk.org/?topic=54527, or
* https://github.com/bitcoin/bitcoin/pull/1393.
*/
unsigned int CWallet::ComputeTimeSmart(const CWalletTx& wtx) const
{
unsigned int nTimeSmart = wtx.nTimeReceived;
if (!wtx.hashUnset()) {
if (const CBlockIndex* pindex = LookupBlockIndex(wtx.hashBlock)) {
int64_t latestNow = wtx.nTimeReceived;
int64_t latestEntry = 0;
// Tolerate times up to the last timestamp in the wallet not more than 5 minutes into the future
int64_t latestTolerated = latestNow + 300;
const TxItems& txOrdered = wtxOrdered;
for (auto it = txOrdered.rbegin(); it != txOrdered.rend(); ++it) {
CWalletTx* const pwtx = it->second.first;
if (pwtx == &wtx) {
continue;
}
CAccountingEntry* const pacentry = it->second.second;
int64_t nSmartTime;
if (pwtx) {
nSmartTime = pwtx->nTimeSmart;
if (!nSmartTime) {
nSmartTime = pwtx->nTimeReceived;
}
} else {
nSmartTime = pacentry->nTime;
}
if (nSmartTime <= latestTolerated) {
latestEntry = nSmartTime;
if (nSmartTime > latestNow) {
latestNow = nSmartTime;
}
break;
}
}
int64_t blocktime = pindex->GetBlockTime();
nTimeSmart = std::max(latestEntry, std::min(blocktime, latestNow));
} else {
LogPrintf("%s: found %s in block %s not in index\n", __func__, wtx.GetHash().ToString(), wtx.hashBlock.ToString());
}
}
return nTimeSmart;
}
bool CWallet::AddDestData(const CTxDestination &dest, const std::string &key, const std::string &value)
{
if (boost::get<CNoDestination>(&dest))
return false;
mapAddressBook[dest].destdata.insert(std::make_pair(key, value));
return WalletBatch(*database).WriteDestData(EncodeDestination(dest), key, value);
}
bool CWallet::EraseDestData(const CTxDestination &dest, const std::string &key)
{
if (!mapAddressBook[dest].destdata.erase(key))
return false;
return WalletBatch(*database).EraseDestData(EncodeDestination(dest), key);
}
bool CWallet::LoadDestData(const CTxDestination &dest, const std::string &key, const std::string &value)
{
mapAddressBook[dest].destdata.insert(std::make_pair(key, value));
return true;
}
bool CWallet::GetDestData(const CTxDestination &dest, const std::string &key, std::string *value) const
{
std::map<CTxDestination, CAddressBookData>::const_iterator i = mapAddressBook.find(dest);
if(i != mapAddressBook.end())
{
CAddressBookData::StringMap::const_iterator j = i->second.destdata.find(key);
if(j != i->second.destdata.end())
{
if(value)
*value = j->second;
return true;
}
}
return false;
}
std::vector<std::string> CWallet::GetDestValues(const std::string& prefix) const
{
LOCK(cs_wallet);
std::vector<std::string> values;
for (const auto& address : mapAddressBook) {
for (const auto& data : address.second.destdata) {
if (!data.first.compare(0, prefix.size(), prefix)) {
values.emplace_back(data.second);
}
}
}
return values;
}
void CWallet::MarkPreSplitKeys()
{
WalletBatch batch(*database);
for (auto it = setExternalKeyPool.begin(); it != setExternalKeyPool.end();) {
int64_t index = *it;
CKeyPool keypool;
if (!batch.ReadPool(index, keypool)) {
throw std::runtime_error(std::string(__func__) + ": read keypool entry failed");
}
keypool.m_pre_split = true;
if (!batch.WritePool(index, keypool)) {
throw std::runtime_error(std::string(__func__) + ": writing modified keypool entry failed");
}
set_pre_split_keypool.insert(index);
it = setExternalKeyPool.erase(it);
}
}
bool CWallet::Verify(std::string wallet_file, bool salvage_wallet, std::string& error_string, std::string& warning_string)
{
// Do some checking on wallet path. It should be either a:
//
// 1. Path where a directory can be created.
// 2. Path to an existing directory.
// 3. Path to a symlink to a directory.
// 4. For backwards compatibility, the name of a data file in -walletdir.
LOCK(cs_wallets);
fs::path wallet_path = fs::absolute(wallet_file, GetWalletDir());
fs::file_type path_type = fs::symlink_status(wallet_path).type();
if (!(path_type == fs::file_not_found || path_type == fs::directory_file ||
(path_type == fs::symlink_file && fs::is_directory(wallet_path)) ||
(path_type == fs::regular_file && fs::path(wallet_file).filename() == wallet_file))) {
error_string = strprintf(
"Invalid -wallet path '%s'. -wallet path should point to a directory where wallet.dat and "
"database/log.?????????? files can be stored, a location where such a directory could be created, "
"or (for backwards compatibility) the name of an existing data file in -walletdir (%s)",
wallet_file, GetWalletDir());
return false;
}
// Make sure that the wallet path doesn't clash with an existing wallet path
for (auto wallet : GetWallets()) {
if (fs::absolute(wallet->GetName(), GetWalletDir()) == wallet_path) {
error_string = strprintf("Error loading wallet %s. Duplicate -wallet filename specified.", wallet_file);
return false;
}
}
if (!WalletBatch::VerifyEnvironment(wallet_path, error_string)) {
return false;
}
if (salvage_wallet) {
// Recover readable keypairs:
CWallet dummyWallet("dummy", WalletDatabase::CreateDummy());
std::string backup_filename;
if (!WalletBatch::Recover(wallet_path, (void *)&dummyWallet, WalletBatch::RecoverKeysOnlyFilter, backup_filename)) {
return false;
}
}
return WalletBatch::VerifyDatabaseFile(wallet_path, warning_string, error_string);
}
std::shared_ptr<CWallet> CWallet::CreateWalletFromFile(const std::string& name, const fs::path& path)
{
const std::string& walletFile = name;
// needed to restore wallet transaction meta data after -zapwallettxes
std::vector<CWalletTx> vWtx;
if (gArgs.GetBoolArg("-zapwallettxes", false)) {
uiInterface.InitMessage(_("Zapping all transactions from wallet..."));
std::unique_ptr<CWallet> tempWallet = MakeUnique<CWallet>(name, WalletDatabase::Create(path));
DBErrors nZapWalletRet = tempWallet->ZapWalletTx(vWtx);
if (nZapWalletRet != DBErrors::LOAD_OK) {
InitError(strprintf(_("Error loading %s: Wallet corrupted"), walletFile));
return nullptr;
}
}
uiInterface.InitMessage(_("Loading wallet..."));
int64_t nStart = GetTimeMillis();
bool fFirstRun = true;
std::shared_ptr<CWallet> walletInstance = std::make_shared<CWallet>(name, WalletDatabase::Create(path));
DBErrors nLoadWalletRet = walletInstance->LoadWallet(fFirstRun);
if (nLoadWalletRet != DBErrors::LOAD_OK)
{
if (nLoadWalletRet == DBErrors::CORRUPT) {
InitError(strprintf(_("Error loading %s: Wallet corrupted"), walletFile));
return nullptr;
}
else if (nLoadWalletRet == DBErrors::NONCRITICAL_ERROR)
{
InitWarning(strprintf(_("Error reading %s! All keys read correctly, but transaction data"
" or address book entries might be missing or incorrect."),
walletFile));
}
else if (nLoadWalletRet == DBErrors::TOO_NEW) {
InitError(strprintf(_("Error loading %s: Wallet requires newer version of %s"), walletFile, _(PACKAGE_NAME)));
return nullptr;
}
else if (nLoadWalletRet == DBErrors::NEED_REWRITE)
{
InitError(strprintf(_("Wallet needed to be rewritten: restart %s to complete"), _(PACKAGE_NAME)));
return nullptr;
}
else {
InitError(strprintf(_("Error loading %s"), walletFile));
return nullptr;
}
}
uiInterface.LoadWallet(walletInstance);
int prev_version = walletInstance->nWalletVersion;
if (gArgs.GetBoolArg("-upgradewallet", fFirstRun))
{
int nMaxVersion = gArgs.GetArg("-upgradewallet", 0);
if (nMaxVersion == 0) // the -upgradewallet without argument case
{
LogPrintf("Performing wallet upgrade to %i\n", FEATURE_LATEST);
nMaxVersion = CLIENT_VERSION;
walletInstance->SetMinVersion(FEATURE_LATEST); // permanently upgrade the wallet immediately
}
else
LogPrintf("Allowing wallet upgrade up to %i\n", nMaxVersion);
if (nMaxVersion < walletInstance->GetVersion())
{
InitError(_("Cannot downgrade wallet"));
return nullptr;
}
walletInstance->SetMaxVersion(nMaxVersion);
}
// Upgrade to HD if explicit upgrade
if (gArgs.GetBoolArg("-upgradewallet", false)) {
LOCK(walletInstance->cs_wallet);
// Do not upgrade versions to any version between HD_SPLIT and FEATURE_PRE_SPLIT_KEYPOOL unless already supporting HD_SPLIT
int max_version = walletInstance->nWalletVersion;
if (!walletInstance->CanSupportFeature(FEATURE_HD_SPLIT) && max_version >=FEATURE_HD_SPLIT && max_version < FEATURE_PRE_SPLIT_KEYPOOL) {
InitError(_("Cannot upgrade a non HD split wallet without upgrading to support pre split keypool. Please use -upgradewallet=169900 or -upgradewallet with no version specified."));
return nullptr;
}
bool hd_upgrade = false;
bool split_upgrade = false;
if (walletInstance->CanSupportFeature(FEATURE_HD) && !walletInstance->IsHDEnabled()) {
LogPrintf("Upgrading wallet to HD\n");
walletInstance->SetMinVersion(FEATURE_HD);
// generate a new master key
CPubKey masterPubKey = walletInstance->GenerateNewSeed();
if (!walletInstance->SetHDSeed(masterPubKey)) {
throw std::runtime_error(std::string(__func__) + ": Storing master key failed");
}
hd_upgrade = true;
}
// Upgrade to HD chain split if necessary
if (walletInstance->CanSupportFeature(FEATURE_HD_SPLIT)) {
LogPrintf("Upgrading wallet to use HD chain split\n");
walletInstance->SetMinVersion(FEATURE_PRE_SPLIT_KEYPOOL);
split_upgrade = FEATURE_HD_SPLIT > prev_version;
}
// Mark all keys currently in the keypool as pre-split
if (split_upgrade) {
walletInstance->MarkPreSplitKeys();
}
// Regenerate the keypool if upgraded to HD
if (hd_upgrade) {
if (!walletInstance->TopUpKeyPool()) {
InitError(_("Unable to generate keys") += "\n");
return nullptr;
}
}
}
if (fFirstRun)
{
// ensure this wallet.dat can only be opened by clients supporting HD with chain split and expects no default key
if (!gArgs.GetBoolArg("-usehd", true)) {
InitError(strprintf(_("Error creating %s: You can't create non-HD wallets with this version."), walletFile));
return nullptr;
}
walletInstance->SetMinVersion(FEATURE_LATEST);
// generate a new seed
CPubKey seed = walletInstance->GenerateNewSeed();
if (!walletInstance->SetHDSeed(seed))
throw std::runtime_error(std::string(__func__) + ": Storing HD seed failed");
// Top up the keypool
if (!walletInstance->TopUpKeyPool()) {
InitError(_("Unable to generate initial keys") += "\n");
return nullptr;
}
walletInstance->ChainStateFlushed(chainActive.GetLocator());
} else if (gArgs.IsArgSet("-usehd")) {
bool useHD = gArgs.GetBoolArg("-usehd", true);
if (walletInstance->IsHDEnabled() && !useHD) {
InitError(strprintf(_("Error loading %s: You can't disable HD on an already existing HD wallet"), walletFile));
return nullptr;
}
if (!walletInstance->IsHDEnabled() && useHD) {
InitError(strprintf(_("Error loading %s: You can't enable HD on an already existing non-HD wallet"), walletFile));
return nullptr;
}
}
if (!gArgs.GetArg("-addresstype", "").empty() && !ParseOutputType(gArgs.GetArg("-addresstype", ""), walletInstance->m_default_address_type)) {
InitError(strprintf("Unknown address type '%s'", gArgs.GetArg("-addresstype", "")));
return nullptr;
}
if (!gArgs.GetArg("-changetype", "").empty() && !ParseOutputType(gArgs.GetArg("-changetype", ""), walletInstance->m_default_change_type)) {
InitError(strprintf("Unknown change type '%s'", gArgs.GetArg("-changetype", "")));
return nullptr;
}
if (gArgs.IsArgSet("-mintxfee")) {
CAmount n = 0;
if (!ParseMoney(gArgs.GetArg("-mintxfee", ""), n) || 0 == n) {
InitError(AmountErrMsg("mintxfee", gArgs.GetArg("-mintxfee", "")));
return nullptr;
}
if (n > HIGH_TX_FEE_PER_KB) {
InitWarning(AmountHighWarn("-mintxfee") + " " +
_("This is the minimum transaction fee you pay on every transaction."));
}
walletInstance->m_min_fee = CFeeRate(n);
}
walletInstance->m_allow_fallback_fee = Params().IsFallbackFeeEnabled();
if (gArgs.IsArgSet("-fallbackfee")) {
CAmount nFeePerK = 0;
if (!ParseMoney(gArgs.GetArg("-fallbackfee", ""), nFeePerK)) {
InitError(strprintf(_("Invalid amount for -fallbackfee=<amount>: '%s'"), gArgs.GetArg("-fallbackfee", "")));
return nullptr;
}
if (nFeePerK > HIGH_TX_FEE_PER_KB) {
InitWarning(AmountHighWarn("-fallbackfee") + " " +
_("This is the transaction fee you may pay when fee estimates are not available."));
}
walletInstance->m_fallback_fee = CFeeRate(nFeePerK);
walletInstance->m_allow_fallback_fee = nFeePerK != 0; //disable fallback fee in case value was set to 0, enable if non-null value
}
if (gArgs.IsArgSet("-discardfee")) {
CAmount nFeePerK = 0;
if (!ParseMoney(gArgs.GetArg("-discardfee", ""), nFeePerK)) {
InitError(strprintf(_("Invalid amount for -discardfee=<amount>: '%s'"), gArgs.GetArg("-discardfee", "")));
return nullptr;
}
if (nFeePerK > HIGH_TX_FEE_PER_KB) {
InitWarning(AmountHighWarn("-discardfee") + " " +
_("This is the transaction fee you may discard if change is smaller than dust at this level"));
}
walletInstance->m_discard_rate = CFeeRate(nFeePerK);
}
if (gArgs.IsArgSet("-paytxfee")) {
CAmount nFeePerK = 0;
if (!ParseMoney(gArgs.GetArg("-paytxfee", ""), nFeePerK)) {
InitError(AmountErrMsg("paytxfee", gArgs.GetArg("-paytxfee", "")));
return nullptr;
}
if (nFeePerK > HIGH_TX_FEE_PER_KB) {
InitWarning(AmountHighWarn("-paytxfee") + " " +
_("This is the transaction fee you will pay if you send a transaction."));
}
walletInstance->m_pay_tx_fee = CFeeRate(nFeePerK, 1000);
if (walletInstance->m_pay_tx_fee < ::minRelayTxFee) {
InitError(strprintf(_("Invalid amount for -paytxfee=<amount>: '%s' (must be at least %s)"),
gArgs.GetArg("-paytxfee", ""), ::minRelayTxFee.ToString()));
return nullptr;
}
}
walletInstance->m_confirm_target = gArgs.GetArg("-txconfirmtarget", DEFAULT_TX_CONFIRM_TARGET);
walletInstance->m_spend_zero_conf_change = gArgs.GetBoolArg("-spendzeroconfchange", DEFAULT_SPEND_ZEROCONF_CHANGE);
walletInstance->m_signal_rbf = gArgs.GetBoolArg("-walletrbf", DEFAULT_WALLET_RBF);
LogPrintf(" wallet %15dms\n", GetTimeMillis() - nStart);
// Try to top up keypool. No-op if the wallet is locked.
walletInstance->TopUpKeyPool();
LOCK(cs_main);
CBlockIndex *pindexRescan = chainActive.Genesis();
if (!gArgs.GetBoolArg("-rescan", false))
{
WalletBatch batch(*walletInstance->database);
CBlockLocator locator;
if (batch.ReadBestBlock(locator))
pindexRescan = FindForkInGlobalIndex(chainActive, locator);
}
walletInstance->m_last_block_processed = chainActive.Tip();
if (chainActive.Tip() && chainActive.Tip() != pindexRescan)
{
//We can't rescan beyond non-pruned blocks, stop and throw an error
//this might happen if a user uses an old wallet within a pruned node
// or if he ran -disablewallet for a longer time, then decided to re-enable
if (fPruneMode)
{
CBlockIndex *block = chainActive.Tip();
while (block && block->pprev && (block->pprev->nStatus & BLOCK_HAVE_DATA) && block->pprev->nTx > 0 && pindexRescan != block)
block = block->pprev;
if (pindexRescan != block) {
InitError(_("Prune: last wallet synchronisation goes beyond pruned data. You need to -reindex (download the whole blockchain again in case of pruned node)"));
return nullptr;
}
}
uiInterface.InitMessage(_("Rescanning..."));
LogPrintf("Rescanning last %i blocks (from block %i)...\n", chainActive.Height() - pindexRescan->nHeight, pindexRescan->nHeight);
// No need to read and scan block if block was created before
// our wallet birthday (as adjusted for block time variability)
while (pindexRescan && walletInstance->nTimeFirstKey && (pindexRescan->GetBlockTime() < (walletInstance->nTimeFirstKey - TIMESTAMP_WINDOW))) {
pindexRescan = chainActive.Next(pindexRescan);
}
nStart = GetTimeMillis();
{
WalletRescanReserver reserver(walletInstance.get());
if (!reserver.reserve()) {
InitError(_("Failed to rescan the wallet during initialization"));
return nullptr;
}
walletInstance->ScanForWalletTransactions(pindexRescan, nullptr, reserver, true);
}
LogPrintf(" rescan %15dms\n", GetTimeMillis() - nStart);
walletInstance->ChainStateFlushed(chainActive.GetLocator());
walletInstance->database->IncrementUpdateCounter();
// Restore wallet transaction metadata after -zapwallettxes=1
if (gArgs.GetBoolArg("-zapwallettxes", false) && gArgs.GetArg("-zapwallettxes", "1") != "2")
{
WalletBatch batch(*walletInstance->database);
for (const CWalletTx& wtxOld : vWtx)
{
uint256 hash = wtxOld.GetHash();
std::map<uint256, CWalletTx>::iterator mi = walletInstance->mapWallet.find(hash);
if (mi != walletInstance->mapWallet.end())
{
const CWalletTx* copyFrom = &wtxOld;
CWalletTx* copyTo = &mi->second;
copyTo->mapValue = copyFrom->mapValue;
copyTo->vOrderForm = copyFrom->vOrderForm;
copyTo->nTimeReceived = copyFrom->nTimeReceived;
copyTo->nTimeSmart = copyFrom->nTimeSmart;
copyTo->fFromMe = copyFrom->fFromMe;
copyTo->strFromAccount = copyFrom->strFromAccount;
copyTo->nOrderPos = copyFrom->nOrderPos;
batch.WriteTx(*copyTo);
}
}
}
}
// Register with the validation interface. It's ok to do this after rescan since we're still holding cs_main.
RegisterValidationInterface(walletInstance.get());
walletInstance->SetBroadcastTransactions(gArgs.GetBoolArg("-walletbroadcast", DEFAULT_WALLETBROADCAST));
{
LOCK(walletInstance->cs_wallet);
LogPrintf("setKeyPool.size() = %u\n", walletInstance->GetKeyPoolSize());
LogPrintf("mapWallet.size() = %u\n", walletInstance->mapWallet.size());
LogPrintf("mapAddressBook.size() = %u\n", walletInstance->mapAddressBook.size());
}
return walletInstance;
}
void CWallet::postInitProcess()
{
// Add wallet transactions that aren't already in a block to mempool
// Do this here as mempool requires genesis block to be loaded
ReacceptWalletTransactions();
}
bool CWallet::BackupWallet(const std::string& strDest)
{
return database->Backup(strDest);
}
CKeyPool::CKeyPool()
{
nTime = GetTime();
fInternal = false;
m_pre_split = false;
}
CKeyPool::CKeyPool(const CPubKey& vchPubKeyIn, bool internalIn)
{
nTime = GetTime();
vchPubKey = vchPubKeyIn;
fInternal = internalIn;
m_pre_split = false;
}
CWalletKey::CWalletKey(int64_t nExpires)
{
nTimeCreated = (nExpires ? GetTime() : 0);
nTimeExpires = nExpires;
}
void CMerkleTx::SetMerkleBranch(const CBlockIndex* pindex, int posInBlock)
{
// Update the tx's hashBlock
hashBlock = pindex->GetBlockHash();
// set the position of the transaction in the block
nIndex = posInBlock;
}
int CMerkleTx::GetDepthInMainChain(const CBlockIndex* &pindexRet) const
{
if (hashUnset())
return 0;
AssertLockHeld(cs_main);
// Find the block it claims to be in
CBlockIndex* pindex = LookupBlockIndex(hashBlock);
if (!pindex || !chainActive.Contains(pindex))
return 0;
pindexRet = pindex;
return ((nIndex == -1) ? (-1) : 1) * (chainActive.Height() - pindex->nHeight + 1);
}
int CMerkleTx::GetBlocksToMaturity() const
{
if (!IsCoinBase())
return 0;
return std::max(0, (COINBASE_MATURITY+1) - GetDepthInMainChain());
}
bool CWalletTx::AcceptToMemoryPool(const CAmount& nAbsurdFee, CValidationState& state)
{
// We must set fInMempool here - while it will be re-set to true by the
// entered-mempool callback, if we did not there would be a race where a
// user could call sendmoney in a loop and hit spurious out of funds errors
// because we think that this newly generated transaction's change is
// unavailable as we're not yet aware that it is in the mempool.
bool ret = ::AcceptToMemoryPool(mempool, state, tx, nullptr /* pfMissingInputs */,
nullptr /* plTxnReplaced */, false /* bypass_limits */, nAbsurdFee);
fInMempool |= ret;
return ret;
}
static const std::string OUTPUT_TYPE_STRING_LEGACY = "legacy";
static const std::string OUTPUT_TYPE_STRING_P2SH_SEGWIT = "p2sh-segwit";
static const std::string OUTPUT_TYPE_STRING_BECH32 = "bech32";
bool ParseOutputType(const std::string& type, OutputType& output_type)
{
if (type == OUTPUT_TYPE_STRING_LEGACY) {
output_type = OutputType::LEGACY;
return true;
} else if (type == OUTPUT_TYPE_STRING_P2SH_SEGWIT) {
output_type = OutputType::P2SH_SEGWIT;
return true;
} else if (type == OUTPUT_TYPE_STRING_BECH32) {
output_type = OutputType::BECH32;
return true;
}
return false;
}
const std::string& FormatOutputType(OutputType type)
{
switch (type) {
case OutputType::LEGACY: return OUTPUT_TYPE_STRING_LEGACY;
case OutputType::P2SH_SEGWIT: return OUTPUT_TYPE_STRING_P2SH_SEGWIT;
case OutputType::BECH32: return OUTPUT_TYPE_STRING_BECH32;
default: assert(false);
}
}
void CWallet::LearnRelatedScripts(const CPubKey& key, OutputType type)
{
if (key.IsCompressed() && (type == OutputType::P2SH_SEGWIT || type == OutputType::BECH32)) {
CTxDestination witdest = WitnessV0KeyHash(key.GetID());
CScript witprog = GetScriptForDestination(witdest);
// Make sure the resulting program is solvable.
assert(IsSolvable(*this, witprog));
AddCScript(witprog);
}
}
void CWallet::LearnAllRelatedScripts(const CPubKey& key)
{
// OutputType::P2SH_SEGWIT always adds all necessary scripts for all types.
LearnRelatedScripts(key, OutputType::P2SH_SEGWIT);
}
CTxDestination GetDestinationForKey(const CPubKey& key, OutputType type)
{
switch (type) {
case OutputType::LEGACY: return key.GetID();
case OutputType::P2SH_SEGWIT:
case OutputType::BECH32: {
if (!key.IsCompressed()) return key.GetID();
CTxDestination witdest = WitnessV0KeyHash(key.GetID());
CScript witprog = GetScriptForDestination(witdest);
if (type == OutputType::P2SH_SEGWIT) {
return CScriptID(witprog);
} else {
return witdest;
}
}
default: assert(false);
}
}
std::vector<CTxDestination> GetAllDestinationsForKey(const CPubKey& key)
{
CKeyID keyid = key.GetID();
if (key.IsCompressed()) {
CTxDestination segwit = WitnessV0KeyHash(keyid);
CTxDestination p2sh = CScriptID(GetScriptForDestination(segwit));
return std::vector<CTxDestination>{std::move(keyid), std::move(p2sh), std::move(segwit)};
} else {
return std::vector<CTxDestination>{std::move(keyid)};
}
}
CTxDestination CWallet::AddAndGetDestinationForScript(const CScript& script, OutputType type)
{
// Note that scripts over 520 bytes are not yet supported.
switch (type) {
case OutputType::LEGACY:
return CScriptID(script);
case OutputType::P2SH_SEGWIT:
case OutputType::BECH32: {
WitnessV0ScriptHash hash;
CSHA256().Write(script.data(), script.size()).Finalize(hash.begin());
CTxDestination witdest = hash;
CScript witprog = GetScriptForDestination(witdest);
// Check if the resulting program is solvable (i.e. doesn't use an uncompressed key)
if (!IsSolvable(*this, witprog)) return CScriptID(script);
// Add the redeemscript, so that P2WSH and P2SH-P2WSH outputs are recognized as ours.
AddCScript(witprog);
if (type == OutputType::BECH32) {
return witdest;
} else {
return CScriptID(witprog);
}
}
default: assert(false);
}
}