bitcoin/test/functional/rpc_rawtransaction.py
2018-07-27 07:15:02 -04:00

437 lines
23 KiB
Python
Executable file

#!/usr/bin/env python3
# Copyright (c) 2014-2018 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test the rawtransaction RPCs.
Test the following RPCs:
- createrawtransaction
- signrawtransactionwithwallet
- sendrawtransaction
- decoderawtransaction
- getrawtransaction
"""
from collections import OrderedDict
from io import BytesIO
from test_framework.messages import CTransaction, ToHex
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import *
class multidict(dict):
"""Dictionary that allows duplicate keys.
Constructed with a list of (key, value) tuples. When dumped by the json module,
will output invalid json with repeated keys, eg:
>>> json.dumps(multidict([(1,2),(1,2)])
'{"1": 2, "1": 2}'
Used to test calls to rpc methods with repeated keys in the json object."""
def __init__(self, x):
dict.__init__(self, x)
self.x = x
def items(self):
return self.x
# Create one-input, one-output, no-fee transaction:
class RawTransactionsTest(BitcoinTestFramework):
def set_test_params(self):
self.setup_clean_chain = True
self.num_nodes = 3
self.extra_args = [["-addresstype=legacy"], ["-addresstype=legacy"], ["-addresstype=legacy"]]
def setup_network(self, split=False):
super().setup_network()
connect_nodes_bi(self.nodes, 0, 2)
def run_test(self):
self.log.info('prepare some coins for multiple *rawtransaction commands')
self.nodes[2].generate(1)
self.sync_all()
self.nodes[0].generate(101)
self.sync_all()
self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),1.5)
self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),1.0)
self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),5.0)
self.sync_all()
self.nodes[0].generate(5)
self.sync_all()
self.log.info('Test getrawtransaction on genesis block coinbase returns an error')
block = self.nodes[0].getblock(self.nodes[0].getblockhash(0))
assert_raises_rpc_error(-5, "The genesis block coinbase is not considered an ordinary transaction", self.nodes[0].getrawtransaction, block['merkleroot'])
self.log.info('Check parameter types and required parameters of createrawtransaction')
# Test `createrawtransaction` required parameters
assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction)
assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction, [])
# Test `createrawtransaction` invalid extra parameters
assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction, [], {}, 0, False, 'foo')
# Test `createrawtransaction` invalid `inputs`
txid = '1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000'
assert_raises_rpc_error(-3, "Expected type array", self.nodes[0].createrawtransaction, 'foo', {})
assert_raises_rpc_error(-1, "JSON value is not an object as expected", self.nodes[0].createrawtransaction, ['foo'], {})
assert_raises_rpc_error(-8, "txid must be hexadecimal string", self.nodes[0].createrawtransaction, [{}], {})
assert_raises_rpc_error(-8, "txid must be hexadecimal string", self.nodes[0].createrawtransaction, [{'txid': 'foo'}], {})
assert_raises_rpc_error(-8, "Invalid parameter, missing vout key", self.nodes[0].createrawtransaction, [{'txid': txid}], {})
assert_raises_rpc_error(-8, "Invalid parameter, missing vout key", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': 'foo'}], {})
assert_raises_rpc_error(-8, "Invalid parameter, vout must be positive", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': -1}], {})
assert_raises_rpc_error(-8, "Invalid parameter, sequence number is out of range", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': 0, 'sequence': -1}], {})
# Test `createrawtransaction` invalid `outputs`
address = self.nodes[0].getnewaddress()
address2 = self.nodes[0].getnewaddress()
assert_raises_rpc_error(-1, "JSON value is not an array as expected", self.nodes[0].createrawtransaction, [], 'foo')
self.nodes[0].createrawtransaction(inputs=[], outputs={}) # Should not throw for backwards compatibility
self.nodes[0].createrawtransaction(inputs=[], outputs=[])
assert_raises_rpc_error(-8, "Data must be hexadecimal string", self.nodes[0].createrawtransaction, [], {'data': 'foo'})
assert_raises_rpc_error(-5, "Invalid Bitcoin address", self.nodes[0].createrawtransaction, [], {'foo': 0})
assert_raises_rpc_error(-3, "Invalid amount", self.nodes[0].createrawtransaction, [], {address: 'foo'})
assert_raises_rpc_error(-3, "Amount out of range", self.nodes[0].createrawtransaction, [], {address: -1})
assert_raises_rpc_error(-8, "Invalid parameter, duplicated address: %s" % address, self.nodes[0].createrawtransaction, [], multidict([(address, 1), (address, 1)]))
assert_raises_rpc_error(-8, "Invalid parameter, duplicated address: %s" % address, self.nodes[0].createrawtransaction, [], [{address: 1}, {address: 1}])
assert_raises_rpc_error(-8, "Invalid parameter, key-value pair must contain exactly one key", self.nodes[0].createrawtransaction, [], [{'a': 1, 'b': 2}])
assert_raises_rpc_error(-8, "Invalid parameter, key-value pair not an object as expected", self.nodes[0].createrawtransaction, [], [['key-value pair1'], ['2']])
# Test `createrawtransaction` invalid `locktime`
assert_raises_rpc_error(-3, "Expected type number", self.nodes[0].createrawtransaction, [], {}, 'foo')
assert_raises_rpc_error(-8, "Invalid parameter, locktime out of range", self.nodes[0].createrawtransaction, [], {}, -1)
assert_raises_rpc_error(-8, "Invalid parameter, locktime out of range", self.nodes[0].createrawtransaction, [], {}, 4294967296)
# Test `createrawtransaction` invalid `replaceable`
assert_raises_rpc_error(-3, "Expected type bool", self.nodes[0].createrawtransaction, [], {}, 0, 'foo')
self.log.info('Check that createrawtransaction accepts an array and object as outputs')
tx = CTransaction()
# One output
tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs={address: 99}))))
assert_equal(len(tx.vout), 1)
assert_equal(
bytes_to_hex_str(tx.serialize()),
self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=[{address: 99}]),
)
# Two outputs
tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=OrderedDict([(address, 99), (address2, 99)])))))
assert_equal(len(tx.vout), 2)
assert_equal(
bytes_to_hex_str(tx.serialize()),
self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=[{address: 99}, {address2: 99}]),
)
# Two data outputs
tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=multidict([('data', '99'), ('data', '99')])))))
assert_equal(len(tx.vout), 2)
assert_equal(
bytes_to_hex_str(tx.serialize()),
self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=[{'data': '99'}, {'data': '99'}]),
)
# Multiple mixed outputs
tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=multidict([(address, 99), ('data', '99'), ('data', '99')])))))
assert_equal(len(tx.vout), 3)
assert_equal(
bytes_to_hex_str(tx.serialize()),
self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=[{address: 99}, {'data': '99'}, {'data': '99'}]),
)
for type in ["bech32", "p2sh-segwit", "legacy"]:
addr = self.nodes[0].getnewaddress("", type)
addrinfo = self.nodes[0].getaddressinfo(addr)
pubkey = addrinfo["scriptPubKey"]
self.log.info('sendrawtransaction with missing prevtx info (%s)' %(type))
# Test `signrawtransactionwithwallet` invalid `prevtxs`
inputs = [ {'txid' : txid, 'vout' : 3, 'sequence' : 1000}]
outputs = { self.nodes[0].getnewaddress() : 1 }
rawtx = self.nodes[0].createrawtransaction(inputs, outputs)
prevtx = dict(txid=txid, scriptPubKey=pubkey, vout=3, amount=1)
succ = self.nodes[0].signrawtransactionwithwallet(rawtx, [prevtx])
assert succ["complete"]
if type == "legacy":
del prevtx["amount"]
succ = self.nodes[0].signrawtransactionwithwallet(rawtx, [prevtx])
assert succ["complete"]
if type != "legacy":
assert_raises_rpc_error(-3, "Missing amount", self.nodes[0].signrawtransactionwithwallet, rawtx, [
{
"txid": txid,
"scriptPubKey": pubkey,
"vout": 3,
}
])
assert_raises_rpc_error(-3, "Missing vout", self.nodes[0].signrawtransactionwithwallet, rawtx, [
{
"txid": txid,
"scriptPubKey": pubkey,
"amount": 1,
}
])
assert_raises_rpc_error(-3, "Missing txid", self.nodes[0].signrawtransactionwithwallet, rawtx, [
{
"scriptPubKey": pubkey,
"vout": 3,
"amount": 1,
}
])
assert_raises_rpc_error(-3, "Missing scriptPubKey", self.nodes[0].signrawtransactionwithwallet, rawtx, [
{
"txid": txid,
"vout": 3,
"amount": 1
}
])
#########################################
# sendrawtransaction with missing input #
#########################################
self.log.info('sendrawtransaction with missing input')
inputs = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1}] #won't exists
outputs = { self.nodes[0].getnewaddress() : 4.998 }
rawtx = self.nodes[2].createrawtransaction(inputs, outputs)
rawtx = self.nodes[2].signrawtransactionwithwallet(rawtx)
# This will raise an exception since there are missing inputs
assert_raises_rpc_error(-25, "Missing inputs", self.nodes[2].sendrawtransaction, rawtx['hex'])
#####################################
# getrawtransaction with block hash #
#####################################
# make a tx by sending then generate 2 blocks; block1 has the tx in it
tx = self.nodes[2].sendtoaddress(self.nodes[1].getnewaddress(), 1)
block1, block2 = self.nodes[2].generate(2)
self.sync_all()
# We should be able to get the raw transaction by providing the correct block
gottx = self.nodes[0].getrawtransaction(tx, True, block1)
assert_equal(gottx['txid'], tx)
assert_equal(gottx['in_active_chain'], True)
# We should not have the 'in_active_chain' flag when we don't provide a block
gottx = self.nodes[0].getrawtransaction(tx, True)
assert_equal(gottx['txid'], tx)
assert 'in_active_chain' not in gottx
# We should not get the tx if we provide an unrelated block
assert_raises_rpc_error(-5, "No such transaction found", self.nodes[0].getrawtransaction, tx, True, block2)
# An invalid block hash should raise the correct errors
assert_raises_rpc_error(-8, "parameter 3 must be hexadecimal", self.nodes[0].getrawtransaction, tx, True, True)
assert_raises_rpc_error(-8, "parameter 3 must be hexadecimal", self.nodes[0].getrawtransaction, tx, True, "foobar")
assert_raises_rpc_error(-8, "parameter 3 must be of length 64", self.nodes[0].getrawtransaction, tx, True, "abcd1234")
assert_raises_rpc_error(-5, "Block hash not found", self.nodes[0].getrawtransaction, tx, True, "0000000000000000000000000000000000000000000000000000000000000000")
# Undo the blocks and check in_active_chain
self.nodes[0].invalidateblock(block1)
gottx = self.nodes[0].getrawtransaction(txid=tx, verbose=True, blockhash=block1)
assert_equal(gottx['in_active_chain'], False)
self.nodes[0].reconsiderblock(block1)
assert_equal(self.nodes[0].getbestblockhash(), block2)
#########################
# RAW TX MULTISIG TESTS #
#########################
# 2of2 test
addr1 = self.nodes[2].getnewaddress()
addr2 = self.nodes[2].getnewaddress()
addr1Obj = self.nodes[2].getaddressinfo(addr1)
addr2Obj = self.nodes[2].getaddressinfo(addr2)
# Tests for createmultisig and addmultisigaddress
assert_raises_rpc_error(-5, "Invalid public key", self.nodes[0].createmultisig, 1, ["01020304"])
self.nodes[0].createmultisig(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) # createmultisig can only take public keys
assert_raises_rpc_error(-5, "Invalid public key", self.nodes[0].createmultisig, 2, [addr1Obj['pubkey'], addr1]) # addmultisigaddress can take both pubkeys and addresses so long as they are in the wallet, which is tested here.
mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr1])['address']
#use balance deltas instead of absolute values
bal = self.nodes[2].getbalance()
# send 1.2 BTC to msig adr
txId = self.nodes[0].sendtoaddress(mSigObj, 1.2)
self.sync_all()
self.nodes[0].generate(1)
self.sync_all()
assert_equal(self.nodes[2].getbalance(), bal+Decimal('1.20000000')) #node2 has both keys of the 2of2 ms addr., tx should affect the balance
# 2of3 test from different nodes
bal = self.nodes[2].getbalance()
addr1 = self.nodes[1].getnewaddress()
addr2 = self.nodes[2].getnewaddress()
addr3 = self.nodes[2].getnewaddress()
addr1Obj = self.nodes[1].getaddressinfo(addr1)
addr2Obj = self.nodes[2].getaddressinfo(addr2)
addr3Obj = self.nodes[2].getaddressinfo(addr3)
mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey']])['address']
txId = self.nodes[0].sendtoaddress(mSigObj, 2.2)
decTx = self.nodes[0].gettransaction(txId)
rawTx = self.nodes[0].decoderawtransaction(decTx['hex'])
self.sync_all()
self.nodes[0].generate(1)
self.sync_all()
#THIS IS AN INCOMPLETE FEATURE
#NODE2 HAS TWO OF THREE KEY AND THE FUNDS SHOULD BE SPENDABLE AND COUNT AT BALANCE CALCULATION
assert_equal(self.nodes[2].getbalance(), bal) #for now, assume the funds of a 2of3 multisig tx are not marked as spendable
txDetails = self.nodes[0].gettransaction(txId, True)
rawTx = self.nodes[0].decoderawtransaction(txDetails['hex'])
vout = False
for outpoint in rawTx['vout']:
if outpoint['value'] == Decimal('2.20000000'):
vout = outpoint
break
bal = self.nodes[0].getbalance()
inputs = [{ "txid" : txId, "vout" : vout['n'], "scriptPubKey" : vout['scriptPubKey']['hex'], "amount" : vout['value']}]
outputs = { self.nodes[0].getnewaddress() : 2.19 }
rawTx = self.nodes[2].createrawtransaction(inputs, outputs)
rawTxPartialSigned = self.nodes[1].signrawtransactionwithwallet(rawTx, inputs)
assert_equal(rawTxPartialSigned['complete'], False) #node1 only has one key, can't comp. sign the tx
rawTxSigned = self.nodes[2].signrawtransactionwithwallet(rawTx, inputs)
assert_equal(rawTxSigned['complete'], True) #node2 can sign the tx compl., own two of three keys
self.nodes[2].sendrawtransaction(rawTxSigned['hex'])
rawTx = self.nodes[0].decoderawtransaction(rawTxSigned['hex'])
self.sync_all()
self.nodes[0].generate(1)
self.sync_all()
assert_equal(self.nodes[0].getbalance(), bal+Decimal('50.00000000')+Decimal('2.19000000')) #block reward + tx
# 2of2 test for combining transactions
bal = self.nodes[2].getbalance()
addr1 = self.nodes[1].getnewaddress()
addr2 = self.nodes[2].getnewaddress()
addr1Obj = self.nodes[1].getaddressinfo(addr1)
addr2Obj = self.nodes[2].getaddressinfo(addr2)
self.nodes[1].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address']
mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address']
mSigObjValid = self.nodes[2].getaddressinfo(mSigObj)
txId = self.nodes[0].sendtoaddress(mSigObj, 2.2)
decTx = self.nodes[0].gettransaction(txId)
rawTx2 = self.nodes[0].decoderawtransaction(decTx['hex'])
self.sync_all()
self.nodes[0].generate(1)
self.sync_all()
assert_equal(self.nodes[2].getbalance(), bal) # the funds of a 2of2 multisig tx should not be marked as spendable
txDetails = self.nodes[0].gettransaction(txId, True)
rawTx2 = self.nodes[0].decoderawtransaction(txDetails['hex'])
vout = False
for outpoint in rawTx2['vout']:
if outpoint['value'] == Decimal('2.20000000'):
vout = outpoint
break
bal = self.nodes[0].getbalance()
inputs = [{ "txid" : txId, "vout" : vout['n'], "scriptPubKey" : vout['scriptPubKey']['hex'], "redeemScript" : mSigObjValid['hex'], "amount" : vout['value']}]
outputs = { self.nodes[0].getnewaddress() : 2.19 }
rawTx2 = self.nodes[2].createrawtransaction(inputs, outputs)
rawTxPartialSigned1 = self.nodes[1].signrawtransactionwithwallet(rawTx2, inputs)
self.log.debug(rawTxPartialSigned1)
assert_equal(rawTxPartialSigned1['complete'], False) #node1 only has one key, can't comp. sign the tx
rawTxPartialSigned2 = self.nodes[2].signrawtransactionwithwallet(rawTx2, inputs)
self.log.debug(rawTxPartialSigned2)
assert_equal(rawTxPartialSigned2['complete'], False) #node2 only has one key, can't comp. sign the tx
rawTxComb = self.nodes[2].combinerawtransaction([rawTxPartialSigned1['hex'], rawTxPartialSigned2['hex']])
self.log.debug(rawTxComb)
self.nodes[2].sendrawtransaction(rawTxComb)
rawTx2 = self.nodes[0].decoderawtransaction(rawTxComb)
self.sync_all()
self.nodes[0].generate(1)
self.sync_all()
assert_equal(self.nodes[0].getbalance(), bal+Decimal('50.00000000')+Decimal('2.19000000')) #block reward + tx
# decoderawtransaction tests
# witness transaction
encrawtx = "010000000001010000000000000072c1a6a246ae63f74f931e8365e15a089c68d61900000000000000000000ffffffff0100e1f50500000000000000000000"
decrawtx = self.nodes[0].decoderawtransaction(encrawtx, True) # decode as witness transaction
assert_equal(decrawtx['vout'][0]['value'], Decimal('1.00000000'))
assert_raises_rpc_error(-22, 'TX decode failed', self.nodes[0].decoderawtransaction, encrawtx, False) # force decode as non-witness transaction
# non-witness transaction
encrawtx = "01000000010000000000000072c1a6a246ae63f74f931e8365e15a089c68d61900000000000000000000ffffffff0100e1f505000000000000000000"
decrawtx = self.nodes[0].decoderawtransaction(encrawtx, False) # decode as non-witness transaction
assert_equal(decrawtx['vout'][0]['value'], Decimal('1.00000000'))
# getrawtransaction tests
# 1. valid parameters - only supply txid
txHash = rawTx["hash"]
assert_equal(self.nodes[0].getrawtransaction(txHash), rawTxSigned['hex'])
# 2. valid parameters - supply txid and 0 for non-verbose
assert_equal(self.nodes[0].getrawtransaction(txHash, 0), rawTxSigned['hex'])
# 3. valid parameters - supply txid and False for non-verbose
assert_equal(self.nodes[0].getrawtransaction(txHash, False), rawTxSigned['hex'])
# 4. valid parameters - supply txid and 1 for verbose.
# We only check the "hex" field of the output so we don't need to update this test every time the output format changes.
assert_equal(self.nodes[0].getrawtransaction(txHash, 1)["hex"], rawTxSigned['hex'])
# 5. valid parameters - supply txid and True for non-verbose
assert_equal(self.nodes[0].getrawtransaction(txHash, True)["hex"], rawTxSigned['hex'])
# 6. invalid parameters - supply txid and string "Flase"
assert_raises_rpc_error(-1, "not a boolean", self.nodes[0].getrawtransaction, txHash, "Flase")
# 7. invalid parameters - supply txid and empty array
assert_raises_rpc_error(-1, "not a boolean", self.nodes[0].getrawtransaction, txHash, [])
# 8. invalid parameters - supply txid and empty dict
assert_raises_rpc_error(-1, "not a boolean", self.nodes[0].getrawtransaction, txHash, {})
inputs = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : 1000}]
outputs = { self.nodes[0].getnewaddress() : 1 }
rawtx = self.nodes[0].createrawtransaction(inputs, outputs)
decrawtx= self.nodes[0].decoderawtransaction(rawtx)
assert_equal(decrawtx['vin'][0]['sequence'], 1000)
# 9. invalid parameters - sequence number out of range
inputs = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : -1}]
outputs = { self.nodes[0].getnewaddress() : 1 }
assert_raises_rpc_error(-8, 'Invalid parameter, sequence number is out of range', self.nodes[0].createrawtransaction, inputs, outputs)
# 10. invalid parameters - sequence number out of range
inputs = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : 4294967296}]
outputs = { self.nodes[0].getnewaddress() : 1 }
assert_raises_rpc_error(-8, 'Invalid parameter, sequence number is out of range', self.nodes[0].createrawtransaction, inputs, outputs)
inputs = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : 4294967294}]
outputs = { self.nodes[0].getnewaddress() : 1 }
rawtx = self.nodes[0].createrawtransaction(inputs, outputs)
decrawtx= self.nodes[0].decoderawtransaction(rawtx)
assert_equal(decrawtx['vin'][0]['sequence'], 4294967294)
####################################
# TRANSACTION VERSION NUMBER TESTS #
####################################
# Test the minimum transaction version number that fits in a signed 32-bit integer.
tx = CTransaction()
tx.nVersion = -0x80000000
rawtx = ToHex(tx)
decrawtx = self.nodes[0].decoderawtransaction(rawtx)
assert_equal(decrawtx['version'], -0x80000000)
# Test the maximum transaction version number that fits in a signed 32-bit integer.
tx = CTransaction()
tx.nVersion = 0x7fffffff
rawtx = ToHex(tx)
decrawtx = self.nodes[0].decoderawtransaction(rawtx)
assert_equal(decrawtx['version'], 0x7fffffff)
if __name__ == '__main__':
RawTransactionsTest().main()